]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: stat dirty regular/symlink inodes
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
58
59 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
60 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
61 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
62
63 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
64 typecheck(unsigned long long, b) && \
65 ((long long)((a) - (b)) > 0))
66
67 typedef u32 block_t; /*
68 * should not change u32, since it is the on-disk block
69 * address format, __le32.
70 */
71 typedef u32 nid_t;
72
73 struct f2fs_mount_info {
74 unsigned int opt;
75 };
76
77 #define F2FS_FEATURE_ENCRYPT 0x0001
78
79 #define F2FS_HAS_FEATURE(sb, mask) \
80 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
81 #define F2FS_SET_FEATURE(sb, mask) \
82 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
83 #define F2FS_CLEAR_FEATURE(sb, mask) \
84 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
85
86 #define CRCPOLY_LE 0xedb88320
87
88 static inline __u32 f2fs_crc32(void *buf, size_t len)
89 {
90 unsigned char *p = (unsigned char *)buf;
91 __u32 crc = F2FS_SUPER_MAGIC;
92 int i;
93
94 while (len--) {
95 crc ^= *p++;
96 for (i = 0; i < 8; i++)
97 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
98 }
99 return crc;
100 }
101
102 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
103 {
104 return f2fs_crc32(buf, buf_size) == blk_crc;
105 }
106
107 /*
108 * For checkpoint manager
109 */
110 enum {
111 NAT_BITMAP,
112 SIT_BITMAP
113 };
114
115 enum {
116 CP_UMOUNT,
117 CP_FASTBOOT,
118 CP_SYNC,
119 CP_RECOVERY,
120 CP_DISCARD,
121 };
122
123 #define DEF_BATCHED_TRIM_SECTIONS 32
124 #define BATCHED_TRIM_SEGMENTS(sbi) \
125 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
126 #define BATCHED_TRIM_BLOCKS(sbi) \
127 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
128 #define DEF_CP_INTERVAL 60 /* 60 secs */
129
130 struct cp_control {
131 int reason;
132 __u64 trim_start;
133 __u64 trim_end;
134 __u64 trim_minlen;
135 __u64 trimmed;
136 };
137
138 /*
139 * For CP/NAT/SIT/SSA readahead
140 */
141 enum {
142 META_CP,
143 META_NAT,
144 META_SIT,
145 META_SSA,
146 META_POR,
147 };
148
149 /* for the list of ino */
150 enum {
151 ORPHAN_INO, /* for orphan ino list */
152 APPEND_INO, /* for append ino list */
153 UPDATE_INO, /* for update ino list */
154 MAX_INO_ENTRY, /* max. list */
155 };
156
157 struct ino_entry {
158 struct list_head list; /* list head */
159 nid_t ino; /* inode number */
160 };
161
162 /* for the list of inodes to be GCed */
163 struct inode_entry {
164 struct list_head list; /* list head */
165 struct inode *inode; /* vfs inode pointer */
166 };
167
168 /* for the list of blockaddresses to be discarded */
169 struct discard_entry {
170 struct list_head list; /* list head */
171 block_t blkaddr; /* block address to be discarded */
172 int len; /* # of consecutive blocks of the discard */
173 };
174
175 /* for the list of fsync inodes, used only during recovery */
176 struct fsync_inode_entry {
177 struct list_head list; /* list head */
178 struct inode *inode; /* vfs inode pointer */
179 block_t blkaddr; /* block address locating the last fsync */
180 block_t last_dentry; /* block address locating the last dentry */
181 block_t last_inode; /* block address locating the last inode */
182 };
183
184 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
185 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
186
187 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
188 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
189 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
190 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
191
192 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
193 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
194
195 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
196 {
197 int before = nats_in_cursum(rs);
198 rs->n_nats = cpu_to_le16(before + i);
199 return before;
200 }
201
202 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
203 {
204 int before = sits_in_cursum(rs);
205 rs->n_sits = cpu_to_le16(before + i);
206 return before;
207 }
208
209 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
210 int type)
211 {
212 if (type == NAT_JOURNAL)
213 return size <= MAX_NAT_JENTRIES(sum);
214 return size <= MAX_SIT_JENTRIES(sum);
215 }
216
217 /*
218 * ioctl commands
219 */
220 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
221 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
222 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
223
224 #define F2FS_IOCTL_MAGIC 0xf5
225 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
226 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
227 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
228 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
229 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
230 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
231 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
232 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
233
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
235 _IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
237 _IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
239 _IOW('f', 21, struct f2fs_encryption_policy)
240
241 /*
242 * should be same as XFS_IOC_GOINGDOWN.
243 * Flags for going down operation used by FS_IOC_GOINGDOWN
244 */
245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
249 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
250
251 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
252 /*
253 * ioctl commands in 32 bit emulation
254 */
255 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
256 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
257 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
258 #endif
259
260 struct f2fs_defragment {
261 u64 start;
262 u64 len;
263 };
264
265 /*
266 * For INODE and NODE manager
267 */
268 /* for directory operations */
269 struct f2fs_str {
270 unsigned char *name;
271 u32 len;
272 };
273
274 struct f2fs_filename {
275 const struct qstr *usr_fname;
276 struct f2fs_str disk_name;
277 f2fs_hash_t hash;
278 #ifdef CONFIG_F2FS_FS_ENCRYPTION
279 struct f2fs_str crypto_buf;
280 #endif
281 };
282
283 #define FSTR_INIT(n, l) { .name = n, .len = l }
284 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
285 #define fname_name(p) ((p)->disk_name.name)
286 #define fname_len(p) ((p)->disk_name.len)
287
288 struct f2fs_dentry_ptr {
289 struct inode *inode;
290 const void *bitmap;
291 struct f2fs_dir_entry *dentry;
292 __u8 (*filename)[F2FS_SLOT_LEN];
293 int max;
294 };
295
296 static inline void make_dentry_ptr(struct inode *inode,
297 struct f2fs_dentry_ptr *d, void *src, int type)
298 {
299 d->inode = inode;
300
301 if (type == 1) {
302 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
303 d->max = NR_DENTRY_IN_BLOCK;
304 d->bitmap = &t->dentry_bitmap;
305 d->dentry = t->dentry;
306 d->filename = t->filename;
307 } else {
308 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
309 d->max = NR_INLINE_DENTRY;
310 d->bitmap = &t->dentry_bitmap;
311 d->dentry = t->dentry;
312 d->filename = t->filename;
313 }
314 }
315
316 /*
317 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
318 * as its node offset to distinguish from index node blocks.
319 * But some bits are used to mark the node block.
320 */
321 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
322 >> OFFSET_BIT_SHIFT)
323 enum {
324 ALLOC_NODE, /* allocate a new node page if needed */
325 LOOKUP_NODE, /* look up a node without readahead */
326 LOOKUP_NODE_RA, /*
327 * look up a node with readahead called
328 * by get_data_block.
329 */
330 };
331
332 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
333
334 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
335
336 /* vector size for gang look-up from extent cache that consists of radix tree */
337 #define EXT_TREE_VEC_SIZE 64
338
339 /* for in-memory extent cache entry */
340 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
341
342 /* number of extent info in extent cache we try to shrink */
343 #define EXTENT_CACHE_SHRINK_NUMBER 128
344
345 struct extent_info {
346 unsigned int fofs; /* start offset in a file */
347 u32 blk; /* start block address of the extent */
348 unsigned int len; /* length of the extent */
349 };
350
351 struct extent_node {
352 struct rb_node rb_node; /* rb node located in rb-tree */
353 struct list_head list; /* node in global extent list of sbi */
354 struct extent_info ei; /* extent info */
355 };
356
357 struct extent_tree {
358 nid_t ino; /* inode number */
359 struct rb_root root; /* root of extent info rb-tree */
360 struct extent_node *cached_en; /* recently accessed extent node */
361 struct extent_info largest; /* largested extent info */
362 rwlock_t lock; /* protect extent info rb-tree */
363 atomic_t refcount; /* reference count of rb-tree */
364 unsigned int count; /* # of extent node in rb-tree*/
365 };
366
367 /*
368 * This structure is taken from ext4_map_blocks.
369 *
370 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
371 */
372 #define F2FS_MAP_NEW (1 << BH_New)
373 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
374 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
375 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
376 F2FS_MAP_UNWRITTEN)
377
378 struct f2fs_map_blocks {
379 block_t m_pblk;
380 block_t m_lblk;
381 unsigned int m_len;
382 unsigned int m_flags;
383 };
384
385 /* for flag in get_data_block */
386 #define F2FS_GET_BLOCK_READ 0
387 #define F2FS_GET_BLOCK_DIO 1
388 #define F2FS_GET_BLOCK_FIEMAP 2
389 #define F2FS_GET_BLOCK_BMAP 3
390
391 /*
392 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
393 */
394 #define FADVISE_COLD_BIT 0x01
395 #define FADVISE_LOST_PINO_BIT 0x02
396 #define FADVISE_ENCRYPT_BIT 0x04
397 #define FADVISE_ENC_NAME_BIT 0x08
398
399 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
400 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
401 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
402 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
404 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
407 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
408 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
409 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
410
411 /* Encryption algorithms */
412 #define F2FS_ENCRYPTION_MODE_INVALID 0
413 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
414 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
415 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
416 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
417
418 #include "f2fs_crypto.h"
419
420 #define DEF_DIR_LEVEL 0
421
422 struct f2fs_inode_info {
423 struct inode vfs_inode; /* serve a vfs inode */
424 unsigned long i_flags; /* keep an inode flags for ioctl */
425 unsigned char i_advise; /* use to give file attribute hints */
426 unsigned char i_dir_level; /* use for dentry level for large dir */
427 unsigned int i_current_depth; /* use only in directory structure */
428 unsigned int i_pino; /* parent inode number */
429 umode_t i_acl_mode; /* keep file acl mode temporarily */
430
431 /* Use below internally in f2fs*/
432 unsigned long flags; /* use to pass per-file flags */
433 struct rw_semaphore i_sem; /* protect fi info */
434 atomic_t dirty_pages; /* # of dirty pages */
435 f2fs_hash_t chash; /* hash value of given file name */
436 unsigned int clevel; /* maximum level of given file name */
437 nid_t i_xattr_nid; /* node id that contains xattrs */
438 unsigned long long xattr_ver; /* cp version of xattr modification */
439
440 struct list_head dirty_list; /* linked in global dirty list */
441 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
442 struct mutex inmem_lock; /* lock for inmemory pages */
443
444 struct extent_tree *extent_tree; /* cached extent_tree entry */
445
446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
447 /* Encryption params */
448 struct f2fs_crypt_info *i_crypt_info;
449 #endif
450 };
451
452 static inline void get_extent_info(struct extent_info *ext,
453 struct f2fs_extent i_ext)
454 {
455 ext->fofs = le32_to_cpu(i_ext.fofs);
456 ext->blk = le32_to_cpu(i_ext.blk);
457 ext->len = le32_to_cpu(i_ext.len);
458 }
459
460 static inline void set_raw_extent(struct extent_info *ext,
461 struct f2fs_extent *i_ext)
462 {
463 i_ext->fofs = cpu_to_le32(ext->fofs);
464 i_ext->blk = cpu_to_le32(ext->blk);
465 i_ext->len = cpu_to_le32(ext->len);
466 }
467
468 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
469 u32 blk, unsigned int len)
470 {
471 ei->fofs = fofs;
472 ei->blk = blk;
473 ei->len = len;
474 }
475
476 static inline bool __is_extent_same(struct extent_info *ei1,
477 struct extent_info *ei2)
478 {
479 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
480 ei1->len == ei2->len);
481 }
482
483 static inline bool __is_extent_mergeable(struct extent_info *back,
484 struct extent_info *front)
485 {
486 return (back->fofs + back->len == front->fofs &&
487 back->blk + back->len == front->blk);
488 }
489
490 static inline bool __is_back_mergeable(struct extent_info *cur,
491 struct extent_info *back)
492 {
493 return __is_extent_mergeable(back, cur);
494 }
495
496 static inline bool __is_front_mergeable(struct extent_info *cur,
497 struct extent_info *front)
498 {
499 return __is_extent_mergeable(cur, front);
500 }
501
502 static inline void __try_update_largest_extent(struct extent_tree *et,
503 struct extent_node *en)
504 {
505 if (en->ei.len > et->largest.len)
506 et->largest = en->ei;
507 }
508
509 struct f2fs_nm_info {
510 block_t nat_blkaddr; /* base disk address of NAT */
511 nid_t max_nid; /* maximum possible node ids */
512 nid_t available_nids; /* maximum available node ids */
513 nid_t next_scan_nid; /* the next nid to be scanned */
514 unsigned int ram_thresh; /* control the memory footprint */
515 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 block_t data_blkaddr; /* block address of the node block */
550 };
551
552 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
553 struct page *ipage, struct page *npage, nid_t nid)
554 {
555 memset(dn, 0, sizeof(*dn));
556 dn->inode = inode;
557 dn->inode_page = ipage;
558 dn->node_page = npage;
559 dn->nid = nid;
560 }
561
562 /*
563 * For SIT manager
564 *
565 * By default, there are 6 active log areas across the whole main area.
566 * When considering hot and cold data separation to reduce cleaning overhead,
567 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
568 * respectively.
569 * In the current design, you should not change the numbers intentionally.
570 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
571 * logs individually according to the underlying devices. (default: 6)
572 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
573 * data and 8 for node logs.
574 */
575 #define NR_CURSEG_DATA_TYPE (3)
576 #define NR_CURSEG_NODE_TYPE (3)
577 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
578
579 enum {
580 CURSEG_HOT_DATA = 0, /* directory entry blocks */
581 CURSEG_WARM_DATA, /* data blocks */
582 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
583 CURSEG_HOT_NODE, /* direct node blocks of directory files */
584 CURSEG_WARM_NODE, /* direct node blocks of normal files */
585 CURSEG_COLD_NODE, /* indirect node blocks */
586 NO_CHECK_TYPE,
587 CURSEG_DIRECT_IO, /* to use for the direct IO path */
588 };
589
590 struct flush_cmd {
591 struct completion wait;
592 struct llist_node llnode;
593 int ret;
594 };
595
596 struct flush_cmd_control {
597 struct task_struct *f2fs_issue_flush; /* flush thread */
598 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
599 struct llist_head issue_list; /* list for command issue */
600 struct llist_node *dispatch_list; /* list for command dispatch */
601 };
602
603 struct f2fs_sm_info {
604 struct sit_info *sit_info; /* whole segment information */
605 struct free_segmap_info *free_info; /* free segment information */
606 struct dirty_seglist_info *dirty_info; /* dirty segment information */
607 struct curseg_info *curseg_array; /* active segment information */
608
609 block_t seg0_blkaddr; /* block address of 0'th segment */
610 block_t main_blkaddr; /* start block address of main area */
611 block_t ssa_blkaddr; /* start block address of SSA area */
612
613 unsigned int segment_count; /* total # of segments */
614 unsigned int main_segments; /* # of segments in main area */
615 unsigned int reserved_segments; /* # of reserved segments */
616 unsigned int ovp_segments; /* # of overprovision segments */
617
618 /* a threshold to reclaim prefree segments */
619 unsigned int rec_prefree_segments;
620
621 /* for small discard management */
622 struct list_head discard_list; /* 4KB discard list */
623 int nr_discards; /* # of discards in the list */
624 int max_discards; /* max. discards to be issued */
625
626 /* for batched trimming */
627 unsigned int trim_sections; /* # of sections to trim */
628
629 struct list_head sit_entry_set; /* sit entry set list */
630
631 unsigned int ipu_policy; /* in-place-update policy */
632 unsigned int min_ipu_util; /* in-place-update threshold */
633 unsigned int min_fsync_blocks; /* threshold for fsync */
634
635 /* for flush command control */
636 struct flush_cmd_control *cmd_control_info;
637
638 };
639
640 /*
641 * For superblock
642 */
643 /*
644 * COUNT_TYPE for monitoring
645 *
646 * f2fs monitors the number of several block types such as on-writeback,
647 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
648 */
649 enum count_type {
650 F2FS_WRITEBACK,
651 F2FS_DIRTY_DENTS,
652 F2FS_DIRTY_DATA,
653 F2FS_DIRTY_NODES,
654 F2FS_DIRTY_META,
655 F2FS_INMEM_PAGES,
656 NR_COUNT_TYPE,
657 };
658
659 /*
660 * The below are the page types of bios used in submit_bio().
661 * The available types are:
662 * DATA User data pages. It operates as async mode.
663 * NODE Node pages. It operates as async mode.
664 * META FS metadata pages such as SIT, NAT, CP.
665 * NR_PAGE_TYPE The number of page types.
666 * META_FLUSH Make sure the previous pages are written
667 * with waiting the bio's completion
668 * ... Only can be used with META.
669 */
670 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
671 enum page_type {
672 DATA,
673 NODE,
674 META,
675 NR_PAGE_TYPE,
676 META_FLUSH,
677 INMEM, /* the below types are used by tracepoints only. */
678 INMEM_DROP,
679 IPU,
680 OPU,
681 };
682
683 struct f2fs_io_info {
684 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
685 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
686 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
687 block_t blk_addr; /* block address to be written */
688 struct page *page; /* page to be written */
689 struct page *encrypted_page; /* encrypted page */
690 };
691
692 #define is_read_io(rw) (((rw) & 1) == READ)
693 struct f2fs_bio_info {
694 struct f2fs_sb_info *sbi; /* f2fs superblock */
695 struct bio *bio; /* bios to merge */
696 sector_t last_block_in_bio; /* last block number */
697 struct f2fs_io_info fio; /* store buffered io info. */
698 struct rw_semaphore io_rwsem; /* blocking op for bio */
699 };
700
701 enum inode_type {
702 DIR_INODE, /* for dirty dir inode */
703 FILE_INODE, /* for dirty regular/symlink inode */
704 NR_INODE_TYPE,
705 };
706
707 /* for inner inode cache management */
708 struct inode_management {
709 struct radix_tree_root ino_root; /* ino entry array */
710 spinlock_t ino_lock; /* for ino entry lock */
711 struct list_head ino_list; /* inode list head */
712 unsigned long ino_num; /* number of entries */
713 };
714
715 /* For s_flag in struct f2fs_sb_info */
716 enum {
717 SBI_IS_DIRTY, /* dirty flag for checkpoint */
718 SBI_IS_CLOSE, /* specify unmounting */
719 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
720 SBI_POR_DOING, /* recovery is doing or not */
721 };
722
723 struct f2fs_sb_info {
724 struct super_block *sb; /* pointer to VFS super block */
725 struct proc_dir_entry *s_proc; /* proc entry */
726 struct f2fs_super_block *raw_super; /* raw super block pointer */
727 int valid_super_block; /* valid super block no */
728 int s_flag; /* flags for sbi */
729
730 /* for node-related operations */
731 struct f2fs_nm_info *nm_info; /* node manager */
732 struct inode *node_inode; /* cache node blocks */
733
734 /* for segment-related operations */
735 struct f2fs_sm_info *sm_info; /* segment manager */
736
737 /* for bio operations */
738 struct f2fs_bio_info read_io; /* for read bios */
739 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
740
741 /* for checkpoint */
742 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
743 struct inode *meta_inode; /* cache meta blocks */
744 struct mutex cp_mutex; /* checkpoint procedure lock */
745 struct rw_semaphore cp_rwsem; /* blocking FS operations */
746 struct rw_semaphore node_write; /* locking node writes */
747 struct mutex writepages; /* mutex for writepages() */
748 wait_queue_head_t cp_wait;
749 long cp_expires, cp_interval; /* next expected periodic cp */
750
751 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
752
753 /* for orphan inode, use 0'th array */
754 unsigned int max_orphans; /* max orphan inodes */
755
756 /* for inode management */
757 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
758 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
759
760 /* for extent tree cache */
761 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
762 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
763 struct list_head extent_list; /* lru list for shrinker */
764 spinlock_t extent_lock; /* locking extent lru list */
765 int total_ext_tree; /* extent tree count */
766 atomic_t total_ext_node; /* extent info count */
767
768 /* basic filesystem units */
769 unsigned int log_sectors_per_block; /* log2 sectors per block */
770 unsigned int log_blocksize; /* log2 block size */
771 unsigned int blocksize; /* block size */
772 unsigned int root_ino_num; /* root inode number*/
773 unsigned int node_ino_num; /* node inode number*/
774 unsigned int meta_ino_num; /* meta inode number*/
775 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
776 unsigned int blocks_per_seg; /* blocks per segment */
777 unsigned int segs_per_sec; /* segments per section */
778 unsigned int secs_per_zone; /* sections per zone */
779 unsigned int total_sections; /* total section count */
780 unsigned int total_node_count; /* total node block count */
781 unsigned int total_valid_node_count; /* valid node block count */
782 unsigned int total_valid_inode_count; /* valid inode count */
783 int active_logs; /* # of active logs */
784 int dir_level; /* directory level */
785
786 block_t user_block_count; /* # of user blocks */
787 block_t total_valid_block_count; /* # of valid blocks */
788 block_t alloc_valid_block_count; /* # of allocated blocks */
789 block_t discard_blks; /* discard command candidats */
790 block_t last_valid_block_count; /* for recovery */
791 u32 s_next_generation; /* for NFS support */
792 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
793
794 struct f2fs_mount_info mount_opt; /* mount options */
795
796 /* for cleaning operations */
797 struct mutex gc_mutex; /* mutex for GC */
798 struct f2fs_gc_kthread *gc_thread; /* GC thread */
799 unsigned int cur_victim_sec; /* current victim section num */
800
801 /* maximum # of trials to find a victim segment for SSR and GC */
802 unsigned int max_victim_search;
803
804 /*
805 * for stat information.
806 * one is for the LFS mode, and the other is for the SSR mode.
807 */
808 #ifdef CONFIG_F2FS_STAT_FS
809 struct f2fs_stat_info *stat_info; /* FS status information */
810 unsigned int segment_count[2]; /* # of allocated segments */
811 unsigned int block_count[2]; /* # of allocated blocks */
812 atomic_t inplace_count; /* # of inplace update */
813 atomic64_t total_hit_ext; /* # of lookup extent cache */
814 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
815 atomic64_t read_hit_largest; /* # of hit largest extent node */
816 atomic64_t read_hit_cached; /* # of hit cached extent node */
817 atomic_t inline_xattr; /* # of inline_xattr inodes */
818 atomic_t inline_inode; /* # of inline_data inodes */
819 atomic_t inline_dir; /* # of inline_dentry inodes */
820 int bg_gc; /* background gc calls */
821 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
822 #endif
823 unsigned int last_victim[2]; /* last victim segment # */
824 spinlock_t stat_lock; /* lock for stat operations */
825
826 /* For sysfs suppport */
827 struct kobject s_kobj;
828 struct completion s_kobj_unregister;
829
830 /* For shrinker support */
831 struct list_head s_list;
832 struct mutex umount_mutex;
833 unsigned int shrinker_run_no;
834 };
835
836 /*
837 * Inline functions
838 */
839 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
840 {
841 return container_of(inode, struct f2fs_inode_info, vfs_inode);
842 }
843
844 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
845 {
846 return sb->s_fs_info;
847 }
848
849 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
850 {
851 return F2FS_SB(inode->i_sb);
852 }
853
854 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
855 {
856 return F2FS_I_SB(mapping->host);
857 }
858
859 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
860 {
861 return F2FS_M_SB(page->mapping);
862 }
863
864 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
865 {
866 return (struct f2fs_super_block *)(sbi->raw_super);
867 }
868
869 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
870 {
871 return (struct f2fs_checkpoint *)(sbi->ckpt);
872 }
873
874 static inline struct f2fs_node *F2FS_NODE(struct page *page)
875 {
876 return (struct f2fs_node *)page_address(page);
877 }
878
879 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
880 {
881 return &((struct f2fs_node *)page_address(page))->i;
882 }
883
884 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
885 {
886 return (struct f2fs_nm_info *)(sbi->nm_info);
887 }
888
889 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
890 {
891 return (struct f2fs_sm_info *)(sbi->sm_info);
892 }
893
894 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
895 {
896 return (struct sit_info *)(SM_I(sbi)->sit_info);
897 }
898
899 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
900 {
901 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
902 }
903
904 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
905 {
906 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
907 }
908
909 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
910 {
911 return sbi->meta_inode->i_mapping;
912 }
913
914 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
915 {
916 return sbi->node_inode->i_mapping;
917 }
918
919 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
920 {
921 return sbi->s_flag & (0x01 << type);
922 }
923
924 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
925 {
926 sbi->s_flag |= (0x01 << type);
927 }
928
929 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
930 {
931 sbi->s_flag &= ~(0x01 << type);
932 }
933
934 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
935 {
936 return le64_to_cpu(cp->checkpoint_ver);
937 }
938
939 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
940 {
941 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
942 return ckpt_flags & f;
943 }
944
945 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
946 {
947 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
948 ckpt_flags |= f;
949 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
950 }
951
952 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
953 {
954 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
955 ckpt_flags &= (~f);
956 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
957 }
958
959 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
960 {
961 down_read(&sbi->cp_rwsem);
962 }
963
964 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
965 {
966 up_read(&sbi->cp_rwsem);
967 }
968
969 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
970 {
971 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
972 }
973
974 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
975 {
976 up_write(&sbi->cp_rwsem);
977 }
978
979 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
980 {
981 int reason = CP_SYNC;
982
983 if (test_opt(sbi, FASTBOOT))
984 reason = CP_FASTBOOT;
985 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
986 reason = CP_UMOUNT;
987 return reason;
988 }
989
990 static inline bool __remain_node_summaries(int reason)
991 {
992 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
993 }
994
995 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
996 {
997 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
998 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
999 }
1000
1001 /*
1002 * Check whether the given nid is within node id range.
1003 */
1004 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1005 {
1006 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1007 return -EINVAL;
1008 if (unlikely(nid >= NM_I(sbi)->max_nid))
1009 return -EINVAL;
1010 return 0;
1011 }
1012
1013 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1014
1015 /*
1016 * Check whether the inode has blocks or not
1017 */
1018 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1019 {
1020 if (F2FS_I(inode)->i_xattr_nid)
1021 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1022 else
1023 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1024 }
1025
1026 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1027 {
1028 return ofs == XATTR_NODE_OFFSET;
1029 }
1030
1031 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1032 struct inode *inode, blkcnt_t count)
1033 {
1034 block_t valid_block_count;
1035
1036 spin_lock(&sbi->stat_lock);
1037 valid_block_count =
1038 sbi->total_valid_block_count + (block_t)count;
1039 if (unlikely(valid_block_count > sbi->user_block_count)) {
1040 spin_unlock(&sbi->stat_lock);
1041 return false;
1042 }
1043 inode->i_blocks += count;
1044 sbi->total_valid_block_count = valid_block_count;
1045 sbi->alloc_valid_block_count += (block_t)count;
1046 spin_unlock(&sbi->stat_lock);
1047 return true;
1048 }
1049
1050 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1051 struct inode *inode,
1052 blkcnt_t count)
1053 {
1054 spin_lock(&sbi->stat_lock);
1055 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1056 f2fs_bug_on(sbi, inode->i_blocks < count);
1057 inode->i_blocks -= count;
1058 sbi->total_valid_block_count -= (block_t)count;
1059 spin_unlock(&sbi->stat_lock);
1060 }
1061
1062 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1063 {
1064 atomic_inc(&sbi->nr_pages[count_type]);
1065 set_sbi_flag(sbi, SBI_IS_DIRTY);
1066 }
1067
1068 static inline void inode_inc_dirty_pages(struct inode *inode)
1069 {
1070 atomic_inc(&F2FS_I(inode)->dirty_pages);
1071 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1072 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1073 }
1074
1075 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1076 {
1077 atomic_dec(&sbi->nr_pages[count_type]);
1078 }
1079
1080 static inline void inode_dec_dirty_pages(struct inode *inode)
1081 {
1082 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1083 !S_ISLNK(inode->i_mode))
1084 return;
1085
1086 atomic_dec(&F2FS_I(inode)->dirty_pages);
1087 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1088 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1089 }
1090
1091 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1092 {
1093 return atomic_read(&sbi->nr_pages[count_type]);
1094 }
1095
1096 static inline int get_dirty_pages(struct inode *inode)
1097 {
1098 return atomic_read(&F2FS_I(inode)->dirty_pages);
1099 }
1100
1101 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1102 {
1103 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1104 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1105 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1106 }
1107
1108 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1109 {
1110 return sbi->total_valid_block_count;
1111 }
1112
1113 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1114 {
1115 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1116
1117 /* return NAT or SIT bitmap */
1118 if (flag == NAT_BITMAP)
1119 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1120 else if (flag == SIT_BITMAP)
1121 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1122
1123 return 0;
1124 }
1125
1126 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1127 {
1128 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1129 }
1130
1131 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1132 {
1133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134 int offset;
1135
1136 if (__cp_payload(sbi) > 0) {
1137 if (flag == NAT_BITMAP)
1138 return &ckpt->sit_nat_version_bitmap;
1139 else
1140 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1141 } else {
1142 offset = (flag == NAT_BITMAP) ?
1143 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1144 return &ckpt->sit_nat_version_bitmap + offset;
1145 }
1146 }
1147
1148 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1149 {
1150 block_t start_addr;
1151 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1152 unsigned long long ckpt_version = cur_cp_version(ckpt);
1153
1154 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1155
1156 /*
1157 * odd numbered checkpoint should at cp segment 0
1158 * and even segment must be at cp segment 1
1159 */
1160 if (!(ckpt_version & 1))
1161 start_addr += sbi->blocks_per_seg;
1162
1163 return start_addr;
1164 }
1165
1166 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1167 {
1168 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1169 }
1170
1171 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1172 struct inode *inode)
1173 {
1174 block_t valid_block_count;
1175 unsigned int valid_node_count;
1176
1177 spin_lock(&sbi->stat_lock);
1178
1179 valid_block_count = sbi->total_valid_block_count + 1;
1180 if (unlikely(valid_block_count > sbi->user_block_count)) {
1181 spin_unlock(&sbi->stat_lock);
1182 return false;
1183 }
1184
1185 valid_node_count = sbi->total_valid_node_count + 1;
1186 if (unlikely(valid_node_count > sbi->total_node_count)) {
1187 spin_unlock(&sbi->stat_lock);
1188 return false;
1189 }
1190
1191 if (inode)
1192 inode->i_blocks++;
1193
1194 sbi->alloc_valid_block_count++;
1195 sbi->total_valid_node_count++;
1196 sbi->total_valid_block_count++;
1197 spin_unlock(&sbi->stat_lock);
1198
1199 return true;
1200 }
1201
1202 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1203 struct inode *inode)
1204 {
1205 spin_lock(&sbi->stat_lock);
1206
1207 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1208 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1209 f2fs_bug_on(sbi, !inode->i_blocks);
1210
1211 inode->i_blocks--;
1212 sbi->total_valid_node_count--;
1213 sbi->total_valid_block_count--;
1214
1215 spin_unlock(&sbi->stat_lock);
1216 }
1217
1218 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1219 {
1220 return sbi->total_valid_node_count;
1221 }
1222
1223 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1224 {
1225 spin_lock(&sbi->stat_lock);
1226 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1227 sbi->total_valid_inode_count++;
1228 spin_unlock(&sbi->stat_lock);
1229 }
1230
1231 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1232 {
1233 spin_lock(&sbi->stat_lock);
1234 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1235 sbi->total_valid_inode_count--;
1236 spin_unlock(&sbi->stat_lock);
1237 }
1238
1239 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1240 {
1241 return sbi->total_valid_inode_count;
1242 }
1243
1244 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1245 pgoff_t index, bool for_write)
1246 {
1247 if (!for_write)
1248 return grab_cache_page(mapping, index);
1249 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1250 }
1251
1252 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1253 {
1254 char *src_kaddr = kmap(src);
1255 char *dst_kaddr = kmap(dst);
1256
1257 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1258 kunmap(dst);
1259 kunmap(src);
1260 }
1261
1262 static inline void f2fs_put_page(struct page *page, int unlock)
1263 {
1264 if (!page)
1265 return;
1266
1267 if (unlock) {
1268 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1269 unlock_page(page);
1270 }
1271 page_cache_release(page);
1272 }
1273
1274 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1275 {
1276 if (dn->node_page)
1277 f2fs_put_page(dn->node_page, 1);
1278 if (dn->inode_page && dn->node_page != dn->inode_page)
1279 f2fs_put_page(dn->inode_page, 0);
1280 dn->node_page = NULL;
1281 dn->inode_page = NULL;
1282 }
1283
1284 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1285 size_t size)
1286 {
1287 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1288 }
1289
1290 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1291 gfp_t flags)
1292 {
1293 void *entry;
1294
1295 entry = kmem_cache_alloc(cachep, flags);
1296 if (!entry)
1297 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1298 return entry;
1299 }
1300
1301 static inline struct bio *f2fs_bio_alloc(int npages)
1302 {
1303 struct bio *bio;
1304
1305 /* No failure on bio allocation */
1306 bio = bio_alloc(GFP_NOIO, npages);
1307 if (!bio)
1308 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1309 return bio;
1310 }
1311
1312 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1313 unsigned long index, void *item)
1314 {
1315 while (radix_tree_insert(root, index, item))
1316 cond_resched();
1317 }
1318
1319 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1320
1321 static inline bool IS_INODE(struct page *page)
1322 {
1323 struct f2fs_node *p = F2FS_NODE(page);
1324 return RAW_IS_INODE(p);
1325 }
1326
1327 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1328 {
1329 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1330 }
1331
1332 static inline block_t datablock_addr(struct page *node_page,
1333 unsigned int offset)
1334 {
1335 struct f2fs_node *raw_node;
1336 __le32 *addr_array;
1337 raw_node = F2FS_NODE(node_page);
1338 addr_array = blkaddr_in_node(raw_node);
1339 return le32_to_cpu(addr_array[offset]);
1340 }
1341
1342 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1343 {
1344 int mask;
1345
1346 addr += (nr >> 3);
1347 mask = 1 << (7 - (nr & 0x07));
1348 return mask & *addr;
1349 }
1350
1351 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1352 {
1353 int mask;
1354
1355 addr += (nr >> 3);
1356 mask = 1 << (7 - (nr & 0x07));
1357 *addr |= mask;
1358 }
1359
1360 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1361 {
1362 int mask;
1363
1364 addr += (nr >> 3);
1365 mask = 1 << (7 - (nr & 0x07));
1366 *addr &= ~mask;
1367 }
1368
1369 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1370 {
1371 int mask;
1372 int ret;
1373
1374 addr += (nr >> 3);
1375 mask = 1 << (7 - (nr & 0x07));
1376 ret = mask & *addr;
1377 *addr |= mask;
1378 return ret;
1379 }
1380
1381 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1382 {
1383 int mask;
1384 int ret;
1385
1386 addr += (nr >> 3);
1387 mask = 1 << (7 - (nr & 0x07));
1388 ret = mask & *addr;
1389 *addr &= ~mask;
1390 return ret;
1391 }
1392
1393 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1394 {
1395 int mask;
1396
1397 addr += (nr >> 3);
1398 mask = 1 << (7 - (nr & 0x07));
1399 *addr ^= mask;
1400 }
1401
1402 /* used for f2fs_inode_info->flags */
1403 enum {
1404 FI_NEW_INODE, /* indicate newly allocated inode */
1405 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1406 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1407 FI_INC_LINK, /* need to increment i_nlink */
1408 FI_ACL_MODE, /* indicate acl mode */
1409 FI_NO_ALLOC, /* should not allocate any blocks */
1410 FI_FREE_NID, /* free allocated nide */
1411 FI_UPDATE_DIR, /* should update inode block for consistency */
1412 FI_DELAY_IPUT, /* used for the recovery */
1413 FI_NO_EXTENT, /* not to use the extent cache */
1414 FI_INLINE_XATTR, /* used for inline xattr */
1415 FI_INLINE_DATA, /* used for inline data*/
1416 FI_INLINE_DENTRY, /* used for inline dentry */
1417 FI_APPEND_WRITE, /* inode has appended data */
1418 FI_UPDATE_WRITE, /* inode has in-place-update data */
1419 FI_NEED_IPU, /* used for ipu per file */
1420 FI_ATOMIC_FILE, /* indicate atomic file */
1421 FI_VOLATILE_FILE, /* indicate volatile file */
1422 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1423 FI_DROP_CACHE, /* drop dirty page cache */
1424 FI_DATA_EXIST, /* indicate data exists */
1425 FI_INLINE_DOTS, /* indicate inline dot dentries */
1426 FI_DO_DEFRAG, /* indicate defragment is running */
1427 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1428 };
1429
1430 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1431 {
1432 if (!test_bit(flag, &fi->flags))
1433 set_bit(flag, &fi->flags);
1434 }
1435
1436 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1437 {
1438 return test_bit(flag, &fi->flags);
1439 }
1440
1441 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1442 {
1443 if (test_bit(flag, &fi->flags))
1444 clear_bit(flag, &fi->flags);
1445 }
1446
1447 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1448 {
1449 fi->i_acl_mode = mode;
1450 set_inode_flag(fi, FI_ACL_MODE);
1451 }
1452
1453 static inline void get_inline_info(struct f2fs_inode_info *fi,
1454 struct f2fs_inode *ri)
1455 {
1456 if (ri->i_inline & F2FS_INLINE_XATTR)
1457 set_inode_flag(fi, FI_INLINE_XATTR);
1458 if (ri->i_inline & F2FS_INLINE_DATA)
1459 set_inode_flag(fi, FI_INLINE_DATA);
1460 if (ri->i_inline & F2FS_INLINE_DENTRY)
1461 set_inode_flag(fi, FI_INLINE_DENTRY);
1462 if (ri->i_inline & F2FS_DATA_EXIST)
1463 set_inode_flag(fi, FI_DATA_EXIST);
1464 if (ri->i_inline & F2FS_INLINE_DOTS)
1465 set_inode_flag(fi, FI_INLINE_DOTS);
1466 }
1467
1468 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1469 struct f2fs_inode *ri)
1470 {
1471 ri->i_inline = 0;
1472
1473 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1474 ri->i_inline |= F2FS_INLINE_XATTR;
1475 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1476 ri->i_inline |= F2FS_INLINE_DATA;
1477 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1478 ri->i_inline |= F2FS_INLINE_DENTRY;
1479 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1480 ri->i_inline |= F2FS_DATA_EXIST;
1481 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1482 ri->i_inline |= F2FS_INLINE_DOTS;
1483 }
1484
1485 static inline int f2fs_has_inline_xattr(struct inode *inode)
1486 {
1487 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1488 }
1489
1490 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1491 {
1492 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1493 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1494 return DEF_ADDRS_PER_INODE;
1495 }
1496
1497 static inline void *inline_xattr_addr(struct page *page)
1498 {
1499 struct f2fs_inode *ri = F2FS_INODE(page);
1500 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1501 F2FS_INLINE_XATTR_ADDRS]);
1502 }
1503
1504 static inline int inline_xattr_size(struct inode *inode)
1505 {
1506 if (f2fs_has_inline_xattr(inode))
1507 return F2FS_INLINE_XATTR_ADDRS << 2;
1508 else
1509 return 0;
1510 }
1511
1512 static inline int f2fs_has_inline_data(struct inode *inode)
1513 {
1514 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1515 }
1516
1517 static inline void f2fs_clear_inline_inode(struct inode *inode)
1518 {
1519 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1520 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1521 }
1522
1523 static inline int f2fs_exist_data(struct inode *inode)
1524 {
1525 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1526 }
1527
1528 static inline int f2fs_has_inline_dots(struct inode *inode)
1529 {
1530 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1531 }
1532
1533 static inline bool f2fs_is_atomic_file(struct inode *inode)
1534 {
1535 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1536 }
1537
1538 static inline bool f2fs_is_volatile_file(struct inode *inode)
1539 {
1540 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1541 }
1542
1543 static inline bool f2fs_is_first_block_written(struct inode *inode)
1544 {
1545 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1546 }
1547
1548 static inline bool f2fs_is_drop_cache(struct inode *inode)
1549 {
1550 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1551 }
1552
1553 static inline void *inline_data_addr(struct page *page)
1554 {
1555 struct f2fs_inode *ri = F2FS_INODE(page);
1556 return (void *)&(ri->i_addr[1]);
1557 }
1558
1559 static inline int f2fs_has_inline_dentry(struct inode *inode)
1560 {
1561 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1562 }
1563
1564 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1565 {
1566 if (!f2fs_has_inline_dentry(dir))
1567 kunmap(page);
1568 }
1569
1570 static inline int is_file(struct inode *inode, int type)
1571 {
1572 return F2FS_I(inode)->i_advise & type;
1573 }
1574
1575 static inline void set_file(struct inode *inode, int type)
1576 {
1577 F2FS_I(inode)->i_advise |= type;
1578 }
1579
1580 static inline void clear_file(struct inode *inode, int type)
1581 {
1582 F2FS_I(inode)->i_advise &= ~type;
1583 }
1584
1585 static inline int f2fs_readonly(struct super_block *sb)
1586 {
1587 return sb->s_flags & MS_RDONLY;
1588 }
1589
1590 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1591 {
1592 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1593 }
1594
1595 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1596 {
1597 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1598 sbi->sb->s_flags |= MS_RDONLY;
1599 }
1600
1601 static inline bool is_dot_dotdot(const struct qstr *str)
1602 {
1603 if (str->len == 1 && str->name[0] == '.')
1604 return true;
1605
1606 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1607 return true;
1608
1609 return false;
1610 }
1611
1612 static inline bool f2fs_may_extent_tree(struct inode *inode)
1613 {
1614 mode_t mode = inode->i_mode;
1615
1616 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1617 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1618 return false;
1619
1620 return S_ISREG(mode);
1621 }
1622
1623 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1624 {
1625 void *ret;
1626
1627 ret = kmalloc(size, flags | __GFP_NOWARN);
1628 if (!ret)
1629 ret = __vmalloc(size, flags, PAGE_KERNEL);
1630 return ret;
1631 }
1632
1633 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1634 {
1635 void *ret;
1636
1637 ret = kzalloc(size, flags | __GFP_NOWARN);
1638 if (!ret)
1639 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1640 return ret;
1641 }
1642
1643 #define get_inode_mode(i) \
1644 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1645 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1646
1647 /* get offset of first page in next direct node */
1648 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1649 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1650 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1651 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1652
1653 /*
1654 * file.c
1655 */
1656 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1657 void truncate_data_blocks(struct dnode_of_data *);
1658 int truncate_blocks(struct inode *, u64, bool);
1659 int f2fs_truncate(struct inode *, bool);
1660 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1661 int f2fs_setattr(struct dentry *, struct iattr *);
1662 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1663 int truncate_data_blocks_range(struct dnode_of_data *, int);
1664 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1665 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1666
1667 /*
1668 * inode.c
1669 */
1670 void f2fs_set_inode_flags(struct inode *);
1671 struct inode *f2fs_iget(struct super_block *, unsigned long);
1672 int try_to_free_nats(struct f2fs_sb_info *, int);
1673 void update_inode(struct inode *, struct page *);
1674 void update_inode_page(struct inode *);
1675 int f2fs_write_inode(struct inode *, struct writeback_control *);
1676 void f2fs_evict_inode(struct inode *);
1677 void handle_failed_inode(struct inode *);
1678
1679 /*
1680 * namei.c
1681 */
1682 struct dentry *f2fs_get_parent(struct dentry *child);
1683
1684 /*
1685 * dir.c
1686 */
1687 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1688 void set_de_type(struct f2fs_dir_entry *, umode_t);
1689
1690 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1691 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1692 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1693 unsigned int, struct f2fs_str *);
1694 void do_make_empty_dir(struct inode *, struct inode *,
1695 struct f2fs_dentry_ptr *);
1696 struct page *init_inode_metadata(struct inode *, struct inode *,
1697 const struct qstr *, struct page *);
1698 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1699 int room_for_filename(const void *, int, int);
1700 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1701 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1702 struct page **);
1703 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1704 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1705 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1706 struct page *, struct inode *);
1707 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1708 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1709 const struct qstr *, f2fs_hash_t , unsigned int);
1710 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1711 umode_t);
1712 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1713 struct inode *);
1714 int f2fs_do_tmpfile(struct inode *, struct inode *);
1715 bool f2fs_empty_dir(struct inode *);
1716
1717 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1718 {
1719 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1720 inode, inode->i_ino, inode->i_mode);
1721 }
1722
1723 /*
1724 * super.c
1725 */
1726 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1727 int f2fs_sync_fs(struct super_block *, int);
1728 extern __printf(3, 4)
1729 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1730
1731 /*
1732 * hash.c
1733 */
1734 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1735
1736 /*
1737 * node.c
1738 */
1739 struct dnode_of_data;
1740 struct node_info;
1741
1742 bool available_free_memory(struct f2fs_sb_info *, int);
1743 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1744 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1745 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1746 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1747 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1748 int truncate_inode_blocks(struct inode *, pgoff_t);
1749 int truncate_xattr_node(struct inode *, struct page *);
1750 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1751 int remove_inode_page(struct inode *);
1752 struct page *new_inode_page(struct inode *);
1753 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1754 void ra_node_page(struct f2fs_sb_info *, nid_t);
1755 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1756 struct page *get_node_page_ra(struct page *, int);
1757 void sync_inode_page(struct dnode_of_data *);
1758 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1759 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1760 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1761 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1762 int try_to_free_nids(struct f2fs_sb_info *, int);
1763 void recover_inline_xattr(struct inode *, struct page *);
1764 void recover_xattr_data(struct inode *, struct page *, block_t);
1765 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1766 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1767 struct f2fs_summary_block *);
1768 void flush_nat_entries(struct f2fs_sb_info *);
1769 int build_node_manager(struct f2fs_sb_info *);
1770 void destroy_node_manager(struct f2fs_sb_info *);
1771 int __init create_node_manager_caches(void);
1772 void destroy_node_manager_caches(void);
1773
1774 /*
1775 * segment.c
1776 */
1777 void register_inmem_page(struct inode *, struct page *);
1778 int commit_inmem_pages(struct inode *, bool);
1779 void f2fs_balance_fs(struct f2fs_sb_info *);
1780 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1781 int f2fs_issue_flush(struct f2fs_sb_info *);
1782 int create_flush_cmd_control(struct f2fs_sb_info *);
1783 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1784 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1785 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1786 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1787 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1788 void release_discard_addrs(struct f2fs_sb_info *);
1789 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1790 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1791 void allocate_new_segments(struct f2fs_sb_info *);
1792 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1793 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1794 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1795 void write_meta_page(struct f2fs_sb_info *, struct page *);
1796 void write_node_page(unsigned int, struct f2fs_io_info *);
1797 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1798 void rewrite_data_page(struct f2fs_io_info *);
1799 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1800 block_t, block_t, unsigned char, bool);
1801 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1802 block_t, block_t *, struct f2fs_summary *, int);
1803 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1804 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1805 void write_data_summaries(struct f2fs_sb_info *, block_t);
1806 void write_node_summaries(struct f2fs_sb_info *, block_t);
1807 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1808 int, unsigned int, int);
1809 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1810 int build_segment_manager(struct f2fs_sb_info *);
1811 void destroy_segment_manager(struct f2fs_sb_info *);
1812 int __init create_segment_manager_caches(void);
1813 void destroy_segment_manager_caches(void);
1814
1815 /*
1816 * checkpoint.c
1817 */
1818 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1819 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1820 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1821 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1822 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1823 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1824 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1825 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1826 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1827 void release_ino_entry(struct f2fs_sb_info *);
1828 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1829 int acquire_orphan_inode(struct f2fs_sb_info *);
1830 void release_orphan_inode(struct f2fs_sb_info *);
1831 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1832 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1833 int recover_orphan_inodes(struct f2fs_sb_info *);
1834 int get_valid_checkpoint(struct f2fs_sb_info *);
1835 void update_dirty_page(struct inode *, struct page *);
1836 void add_dirty_dir_inode(struct inode *);
1837 void remove_dirty_inode(struct inode *);
1838 void sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1839 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1840 void init_ino_entry_info(struct f2fs_sb_info *);
1841 int __init create_checkpoint_caches(void);
1842 void destroy_checkpoint_caches(void);
1843
1844 /*
1845 * data.c
1846 */
1847 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1848 int f2fs_submit_page_bio(struct f2fs_io_info *);
1849 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1850 void set_data_blkaddr(struct dnode_of_data *);
1851 int reserve_new_block(struct dnode_of_data *);
1852 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1853 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1854 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1855 struct page *find_data_page(struct inode *, pgoff_t);
1856 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1857 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1858 int do_write_data_page(struct f2fs_io_info *);
1859 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1860 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1861 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1862 int f2fs_release_page(struct page *, gfp_t);
1863
1864 /*
1865 * gc.c
1866 */
1867 int start_gc_thread(struct f2fs_sb_info *);
1868 void stop_gc_thread(struct f2fs_sb_info *);
1869 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1870 int f2fs_gc(struct f2fs_sb_info *, bool);
1871 void build_gc_manager(struct f2fs_sb_info *);
1872
1873 /*
1874 * recovery.c
1875 */
1876 int recover_fsync_data(struct f2fs_sb_info *);
1877 bool space_for_roll_forward(struct f2fs_sb_info *);
1878
1879 /*
1880 * debug.c
1881 */
1882 #ifdef CONFIG_F2FS_STAT_FS
1883 struct f2fs_stat_info {
1884 struct list_head stat_list;
1885 struct f2fs_sb_info *sbi;
1886 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1887 int main_area_segs, main_area_sections, main_area_zones;
1888 unsigned long long hit_largest, hit_cached, hit_rbtree;
1889 unsigned long long hit_total, total_ext;
1890 int ext_tree, ext_node;
1891 int ndirty_node, ndirty_meta;
1892 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1893 int nats, dirty_nats, sits, dirty_sits, fnids;
1894 int total_count, utilization;
1895 int bg_gc, inmem_pages, wb_pages;
1896 int inline_xattr, inline_inode, inline_dir;
1897 unsigned int valid_count, valid_node_count, valid_inode_count;
1898 unsigned int bimodal, avg_vblocks;
1899 int util_free, util_valid, util_invalid;
1900 int rsvd_segs, overp_segs;
1901 int dirty_count, node_pages, meta_pages;
1902 int prefree_count, call_count, cp_count;
1903 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1904 int bg_node_segs, bg_data_segs;
1905 int tot_blks, data_blks, node_blks;
1906 int bg_data_blks, bg_node_blks;
1907 int curseg[NR_CURSEG_TYPE];
1908 int cursec[NR_CURSEG_TYPE];
1909 int curzone[NR_CURSEG_TYPE];
1910
1911 unsigned int segment_count[2];
1912 unsigned int block_count[2];
1913 unsigned int inplace_count;
1914 unsigned long long base_mem, cache_mem, page_mem;
1915 };
1916
1917 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1918 {
1919 return (struct f2fs_stat_info *)sbi->stat_info;
1920 }
1921
1922 #define stat_inc_cp_count(si) ((si)->cp_count++)
1923 #define stat_inc_call_count(si) ((si)->call_count++)
1924 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1925 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1926 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1927 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1928 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1929 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1930 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1931 #define stat_inc_inline_xattr(inode) \
1932 do { \
1933 if (f2fs_has_inline_xattr(inode)) \
1934 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1935 } while (0)
1936 #define stat_dec_inline_xattr(inode) \
1937 do { \
1938 if (f2fs_has_inline_xattr(inode)) \
1939 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1940 } while (0)
1941 #define stat_inc_inline_inode(inode) \
1942 do { \
1943 if (f2fs_has_inline_data(inode)) \
1944 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1945 } while (0)
1946 #define stat_dec_inline_inode(inode) \
1947 do { \
1948 if (f2fs_has_inline_data(inode)) \
1949 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1950 } while (0)
1951 #define stat_inc_inline_dir(inode) \
1952 do { \
1953 if (f2fs_has_inline_dentry(inode)) \
1954 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1955 } while (0)
1956 #define stat_dec_inline_dir(inode) \
1957 do { \
1958 if (f2fs_has_inline_dentry(inode)) \
1959 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1960 } while (0)
1961 #define stat_inc_seg_type(sbi, curseg) \
1962 ((sbi)->segment_count[(curseg)->alloc_type]++)
1963 #define stat_inc_block_count(sbi, curseg) \
1964 ((sbi)->block_count[(curseg)->alloc_type]++)
1965 #define stat_inc_inplace_blocks(sbi) \
1966 (atomic_inc(&(sbi)->inplace_count))
1967 #define stat_inc_seg_count(sbi, type, gc_type) \
1968 do { \
1969 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1970 (si)->tot_segs++; \
1971 if (type == SUM_TYPE_DATA) { \
1972 si->data_segs++; \
1973 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1974 } else { \
1975 si->node_segs++; \
1976 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1977 } \
1978 } while (0)
1979
1980 #define stat_inc_tot_blk_count(si, blks) \
1981 (si->tot_blks += (blks))
1982
1983 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1984 do { \
1985 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1986 stat_inc_tot_blk_count(si, blks); \
1987 si->data_blks += (blks); \
1988 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1989 } while (0)
1990
1991 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1992 do { \
1993 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1994 stat_inc_tot_blk_count(si, blks); \
1995 si->node_blks += (blks); \
1996 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1997 } while (0)
1998
1999 int f2fs_build_stats(struct f2fs_sb_info *);
2000 void f2fs_destroy_stats(struct f2fs_sb_info *);
2001 int __init f2fs_create_root_stats(void);
2002 void f2fs_destroy_root_stats(void);
2003 #else
2004 #define stat_inc_cp_count(si)
2005 #define stat_inc_call_count(si)
2006 #define stat_inc_bggc_count(si)
2007 #define stat_inc_dirty_inode(sbi, type)
2008 #define stat_dec_dirty_inode(sbi, type)
2009 #define stat_inc_total_hit(sb)
2010 #define stat_inc_rbtree_node_hit(sb)
2011 #define stat_inc_largest_node_hit(sbi)
2012 #define stat_inc_cached_node_hit(sbi)
2013 #define stat_inc_inline_xattr(inode)
2014 #define stat_dec_inline_xattr(inode)
2015 #define stat_inc_inline_inode(inode)
2016 #define stat_dec_inline_inode(inode)
2017 #define stat_inc_inline_dir(inode)
2018 #define stat_dec_inline_dir(inode)
2019 #define stat_inc_seg_type(sbi, curseg)
2020 #define stat_inc_block_count(sbi, curseg)
2021 #define stat_inc_inplace_blocks(sbi)
2022 #define stat_inc_seg_count(sbi, type, gc_type)
2023 #define stat_inc_tot_blk_count(si, blks)
2024 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2025 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2026
2027 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2028 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2029 static inline int __init f2fs_create_root_stats(void) { return 0; }
2030 static inline void f2fs_destroy_root_stats(void) { }
2031 #endif
2032
2033 extern const struct file_operations f2fs_dir_operations;
2034 extern const struct file_operations f2fs_file_operations;
2035 extern const struct inode_operations f2fs_file_inode_operations;
2036 extern const struct address_space_operations f2fs_dblock_aops;
2037 extern const struct address_space_operations f2fs_node_aops;
2038 extern const struct address_space_operations f2fs_meta_aops;
2039 extern const struct inode_operations f2fs_dir_inode_operations;
2040 extern const struct inode_operations f2fs_symlink_inode_operations;
2041 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2042 extern const struct inode_operations f2fs_special_inode_operations;
2043 extern struct kmem_cache *inode_entry_slab;
2044
2045 /*
2046 * inline.c
2047 */
2048 bool f2fs_may_inline_data(struct inode *);
2049 bool f2fs_may_inline_dentry(struct inode *);
2050 void read_inline_data(struct page *, struct page *);
2051 bool truncate_inline_inode(struct page *, u64);
2052 int f2fs_read_inline_data(struct inode *, struct page *);
2053 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2054 int f2fs_convert_inline_inode(struct inode *);
2055 int f2fs_write_inline_data(struct inode *, struct page *);
2056 bool recover_inline_data(struct inode *, struct page *);
2057 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2058 struct f2fs_filename *, struct page **);
2059 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2060 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2061 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2062 nid_t, umode_t);
2063 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2064 struct inode *, struct inode *);
2065 bool f2fs_empty_inline_dir(struct inode *);
2066 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2067 struct f2fs_str *);
2068 int f2fs_inline_data_fiemap(struct inode *,
2069 struct fiemap_extent_info *, __u64, __u64);
2070
2071 /*
2072 * shrinker.c
2073 */
2074 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2075 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2076 void f2fs_join_shrinker(struct f2fs_sb_info *);
2077 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2078
2079 /*
2080 * extent_cache.c
2081 */
2082 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2083 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2084 unsigned int f2fs_destroy_extent_node(struct inode *);
2085 void f2fs_destroy_extent_tree(struct inode *);
2086 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2087 void f2fs_update_extent_cache(struct dnode_of_data *);
2088 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2089 pgoff_t, block_t, unsigned int);
2090 void init_extent_cache_info(struct f2fs_sb_info *);
2091 int __init create_extent_cache(void);
2092 void destroy_extent_cache(void);
2093
2094 /*
2095 * crypto support
2096 */
2097 static inline int f2fs_encrypted_inode(struct inode *inode)
2098 {
2099 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2100 return file_is_encrypt(inode);
2101 #else
2102 return 0;
2103 #endif
2104 }
2105
2106 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2107 {
2108 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2109 file_set_encrypt(inode);
2110 #endif
2111 }
2112
2113 static inline bool f2fs_bio_encrypted(struct bio *bio)
2114 {
2115 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2116 return unlikely(bio->bi_private != NULL);
2117 #else
2118 return false;
2119 #endif
2120 }
2121
2122 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2123 {
2124 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2125 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2126 #else
2127 return 0;
2128 #endif
2129 }
2130
2131 static inline bool f2fs_may_encrypt(struct inode *inode)
2132 {
2133 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2134 mode_t mode = inode->i_mode;
2135
2136 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2137 #else
2138 return 0;
2139 #endif
2140 }
2141
2142 /* crypto_policy.c */
2143 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2144 struct inode *);
2145 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2146 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2147 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2148
2149 /* crypt.c */
2150 extern struct kmem_cache *f2fs_crypt_info_cachep;
2151 bool f2fs_valid_contents_enc_mode(uint32_t);
2152 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2153 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2154 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2155 struct page *f2fs_encrypt(struct inode *, struct page *);
2156 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2157 int f2fs_decrypt_one(struct inode *, struct page *);
2158 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2159
2160 /* crypto_key.c */
2161 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2162 int _f2fs_get_encryption_info(struct inode *inode);
2163
2164 /* crypto_fname.c */
2165 bool f2fs_valid_filenames_enc_mode(uint32_t);
2166 u32 f2fs_fname_crypto_round_up(u32, u32);
2167 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2168 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2169 const struct f2fs_str *, struct f2fs_str *);
2170 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2171 struct f2fs_str *);
2172
2173 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2174 void f2fs_restore_and_release_control_page(struct page **);
2175 void f2fs_restore_control_page(struct page *);
2176
2177 int __init f2fs_init_crypto(void);
2178 int f2fs_crypto_initialize(void);
2179 void f2fs_exit_crypto(void);
2180
2181 int f2fs_has_encryption_key(struct inode *);
2182
2183 static inline int f2fs_get_encryption_info(struct inode *inode)
2184 {
2185 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2186
2187 if (!ci ||
2188 (ci->ci_keyring_key &&
2189 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2190 (1 << KEY_FLAG_REVOKED) |
2191 (1 << KEY_FLAG_DEAD)))))
2192 return _f2fs_get_encryption_info(inode);
2193 return 0;
2194 }
2195
2196 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2197 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2198 int lookup, struct f2fs_filename *);
2199 void f2fs_fname_free_filename(struct f2fs_filename *);
2200 #else
2201 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2202 static inline void f2fs_restore_control_page(struct page *p) { }
2203
2204 static inline int __init f2fs_init_crypto(void) { return 0; }
2205 static inline void f2fs_exit_crypto(void) { }
2206
2207 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2208 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2209 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2210
2211 static inline int f2fs_fname_setup_filename(struct inode *dir,
2212 const struct qstr *iname,
2213 int lookup, struct f2fs_filename *fname)
2214 {
2215 memset(fname, 0, sizeof(struct f2fs_filename));
2216 fname->usr_fname = iname;
2217 fname->disk_name.name = (unsigned char *)iname->name;
2218 fname->disk_name.len = iname->len;
2219 return 0;
2220 }
2221
2222 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2223 #endif
2224 #endif