]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'v5.11' into next
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO,
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_MAX,
58 };
59
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
62
63 struct f2fs_fault_info {
64 atomic_t inject_ops;
65 unsigned int inject_rate;
66 unsigned int inject_type;
67 };
68
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72
73 /*
74 * For mount options
75 */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
91 #define F2FS_MOUNT_USRQUOTA 0x00080000
92 #define F2FS_MOUNT_GRPQUOTA 0x00100000
93 #define F2FS_MOUNT_PRJQUOTA 0x00200000
94 #define F2FS_MOUNT_QUOTA 0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
98 #define F2FS_MOUNT_NORECOVERY 0x04000000
99 #define F2FS_MOUNT_ATGC 0x08000000
100
101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105
106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
107 typecheck(unsigned long long, b) && \
108 ((long long)((a) - (b)) > 0))
109
110 typedef u32 block_t; /*
111 * should not change u32, since it is the on-disk block
112 * address format, __le32.
113 */
114 typedef u32 nid_t;
115
116 #define COMPRESS_EXT_NUM 16
117
118 struct f2fs_mount_info {
119 unsigned int opt;
120 int write_io_size_bits; /* Write IO size bits */
121 block_t root_reserved_blocks; /* root reserved blocks */
122 kuid_t s_resuid; /* reserved blocks for uid */
123 kgid_t s_resgid; /* reserved blocks for gid */
124 int active_logs; /* # of active logs */
125 int inline_xattr_size; /* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 struct f2fs_fault_info fault_info; /* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 /* Names of quota files with journalled quota */
131 char *s_qf_names[MAXQUOTAS];
132 int s_jquota_fmt; /* Format of quota to use */
133 #endif
134 /* For which write hints are passed down to block layer */
135 int whint_mode;
136 int alloc_mode; /* segment allocation policy */
137 int fsync_mode; /* fsync policy */
138 int fs_mode; /* fs mode: LFS or ADAPTIVE */
139 int bggc_mode; /* bggc mode: off, on or sync */
140 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 block_t unusable_cap_perc; /* percentage for cap */
142 block_t unusable_cap; /* Amount of space allowed to be
143 * unusable when disabling checkpoint
144 */
145
146 /* For compression */
147 unsigned char compress_algorithm; /* algorithm type */
148 unsigned char compress_log_size; /* cluster log size */
149 bool compress_chksum; /* compressed data chksum */
150 unsigned char compress_ext_cnt; /* extension count */
151 int compress_mode; /* compression mode */
152 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
153 };
154
155 #define F2FS_FEATURE_ENCRYPT 0x0001
156 #define F2FS_FEATURE_BLKZONED 0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
159 #define F2FS_FEATURE_PRJQUOTA 0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
162 #define F2FS_FEATURE_QUOTA_INO 0x0080
163 #define F2FS_FEATURE_INODE_CRTIME 0x0100
164 #define F2FS_FEATURE_LOST_FOUND 0x0200
165 #define F2FS_FEATURE_VERITY 0x0400
166 #define F2FS_FEATURE_SB_CHKSUM 0x0800
167 #define F2FS_FEATURE_CASEFOLD 0x1000
168 #define F2FS_FEATURE_COMPRESSION 0x2000
169
170 #define __F2FS_HAS_FEATURE(raw_super, mask) \
171 ((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask) \
174 (sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask) \
176 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
177
178 /*
179 * Default values for user and/or group using reserved blocks
180 */
181 #define F2FS_DEF_RESUID 0
182 #define F2FS_DEF_RESGID 0
183
184 /*
185 * For checkpoint manager
186 */
187 enum {
188 NAT_BITMAP,
189 SIT_BITMAP
190 };
191
192 #define CP_UMOUNT 0x00000001
193 #define CP_FASTBOOT 0x00000002
194 #define CP_SYNC 0x00000004
195 #define CP_RECOVERY 0x00000008
196 #define CP_DISCARD 0x00000010
197 #define CP_TRIMMED 0x00000020
198 #define CP_PAUSE 0x00000040
199 #define CP_RESIZE 0x00000080
200
201 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
207 #define DEF_CP_INTERVAL 60 /* 60 secs */
208 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
209 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
212
213 struct cp_control {
214 int reason;
215 __u64 trim_start;
216 __u64 trim_end;
217 __u64 trim_minlen;
218 };
219
220 /*
221 * indicate meta/data type
222 */
223 enum {
224 META_CP,
225 META_NAT,
226 META_SIT,
227 META_SSA,
228 META_MAX,
229 META_POR,
230 DATA_GENERIC, /* check range only */
231 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
232 DATA_GENERIC_ENHANCE_READ, /*
233 * strong check on range and segment
234 * bitmap but no warning due to race
235 * condition of read on truncated area
236 * by extent_cache
237 */
238 META_GENERIC,
239 };
240
241 /* for the list of ino */
242 enum {
243 ORPHAN_INO, /* for orphan ino list */
244 APPEND_INO, /* for append ino list */
245 UPDATE_INO, /* for update ino list */
246 TRANS_DIR_INO, /* for trasactions dir ino list */
247 FLUSH_INO, /* for multiple device flushing */
248 MAX_INO_ENTRY, /* max. list */
249 };
250
251 struct ino_entry {
252 struct list_head list; /* list head */
253 nid_t ino; /* inode number */
254 unsigned int dirty_device; /* dirty device bitmap */
255 };
256
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 struct list_head list; /* list head */
260 struct inode *inode; /* vfs inode pointer */
261 };
262
263 struct fsync_node_entry {
264 struct list_head list; /* list head */
265 struct page *page; /* warm node page pointer */
266 unsigned int seq_id; /* sequence id */
267 };
268
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 struct list_head list; /* list head */
272 block_t start_blkaddr; /* start blockaddr of current segment */
273 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
274 };
275
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY 16
278
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM 512
281 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
282 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283
284 enum {
285 D_PREP, /* initial */
286 D_PARTIAL, /* partially submitted */
287 D_SUBMIT, /* all submitted */
288 D_DONE, /* finished */
289 };
290
291 struct discard_info {
292 block_t lstart; /* logical start address */
293 block_t len; /* length */
294 block_t start; /* actual start address in dev */
295 };
296
297 struct discard_cmd {
298 struct rb_node rb_node; /* rb node located in rb-tree */
299 union {
300 struct {
301 block_t lstart; /* logical start address */
302 block_t len; /* length */
303 block_t start; /* actual start address in dev */
304 };
305 struct discard_info di; /* discard info */
306
307 };
308 struct list_head list; /* command list */
309 struct completion wait; /* compleation */
310 struct block_device *bdev; /* bdev */
311 unsigned short ref; /* reference count */
312 unsigned char state; /* state */
313 unsigned char queued; /* queued discard */
314 int error; /* bio error */
315 spinlock_t lock; /* for state/bio_ref updating */
316 unsigned short bio_ref; /* bio reference count */
317 };
318
319 enum {
320 DPOLICY_BG,
321 DPOLICY_FORCE,
322 DPOLICY_FSTRIM,
323 DPOLICY_UMOUNT,
324 MAX_DPOLICY,
325 };
326
327 struct discard_policy {
328 int type; /* type of discard */
329 unsigned int min_interval; /* used for candidates exist */
330 unsigned int mid_interval; /* used for device busy */
331 unsigned int max_interval; /* used for candidates not exist */
332 unsigned int max_requests; /* # of discards issued per round */
333 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
334 bool io_aware; /* issue discard in idle time */
335 bool sync; /* submit discard with REQ_SYNC flag */
336 bool ordered; /* issue discard by lba order */
337 bool timeout; /* discard timeout for put_super */
338 unsigned int granularity; /* discard granularity */
339 };
340
341 struct discard_cmd_control {
342 struct task_struct *f2fs_issue_discard; /* discard thread */
343 struct list_head entry_list; /* 4KB discard entry list */
344 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 struct list_head wait_list; /* store on-flushing entries */
346 struct list_head fstrim_list; /* in-flight discard from fstrim */
347 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
348 unsigned int discard_wake; /* to wake up discard thread */
349 struct mutex cmd_lock;
350 unsigned int nr_discards; /* # of discards in the list */
351 unsigned int max_discards; /* max. discards to be issued */
352 unsigned int discard_granularity; /* discard granularity */
353 unsigned int undiscard_blks; /* # of undiscard blocks */
354 unsigned int next_pos; /* next discard position */
355 atomic_t issued_discard; /* # of issued discard */
356 atomic_t queued_discard; /* # of queued discard */
357 atomic_t discard_cmd_cnt; /* # of cached cmd count */
358 struct rb_root_cached root; /* root of discard rb-tree */
359 bool rbtree_check; /* config for consistence check */
360 };
361
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 struct list_head list; /* list head */
365 struct inode *inode; /* vfs inode pointer */
366 block_t blkaddr; /* block address locating the last fsync */
367 block_t last_dentry; /* block address locating the last dentry */
368 };
369
370 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
372
373 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
377
378 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 int before = nats_in_cursum(journal);
384
385 journal->n_nats = cpu_to_le16(before + i);
386 return before;
387 }
388
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 int before = sits_in_cursum(journal);
392
393 journal->n_sits = cpu_to_le16(before + i);
394 return before;
395 }
396
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 int size, int type)
399 {
400 if (type == NAT_JOURNAL)
401 return size <= MAX_NAT_JENTRIES(journal);
402 return size <= MAX_SIT_JENTRIES(journal);
403 }
404
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE 1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
410 (CUR_ADDRS_PER_INODE(inode) - \
411 get_inline_xattr_addrs(inode) - \
412 DEF_INLINE_RESERVED_SIZE))
413
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
421 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 NR_INLINE_DENTRY(inode) + \
423 INLINE_DENTRY_BITMAP_SIZE(inode)))
424
425 /*
426 * For INODE and NODE manager
427 */
428 /* for directory operations */
429
430 struct f2fs_filename {
431 /*
432 * The filename the user specified. This is NULL for some
433 * filesystem-internal operations, e.g. converting an inline directory
434 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 */
436 const struct qstr *usr_fname;
437
438 /*
439 * The on-disk filename. For encrypted directories, this is encrypted.
440 * This may be NULL for lookups in an encrypted dir without the key.
441 */
442 struct fscrypt_str disk_name;
443
444 /* The dirhash of this filename */
445 f2fs_hash_t hash;
446
447 #ifdef CONFIG_FS_ENCRYPTION
448 /*
449 * For lookups in encrypted directories: either the buffer backing
450 * disk_name, or a buffer that holds the decoded no-key name.
451 */
452 struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 /*
456 * For casefolded directories: the casefolded name, but it's left NULL
457 * if the original name is not valid Unicode, if the directory is both
458 * casefolded and encrypted and its encryption key is unavailable, or if
459 * the filesystem is doing an internal operation where usr_fname is also
460 * NULL. In all these cases we fall back to treating the name as an
461 * opaque byte sequence.
462 */
463 struct fscrypt_str cf_name;
464 #endif
465 };
466
467 struct f2fs_dentry_ptr {
468 struct inode *inode;
469 void *bitmap;
470 struct f2fs_dir_entry *dentry;
471 __u8 (*filename)[F2FS_SLOT_LEN];
472 int max;
473 int nr_bitmap;
474 };
475
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 d->inode = inode;
480 d->max = NR_DENTRY_IN_BLOCK;
481 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 d->bitmap = t->dentry_bitmap;
483 d->dentry = t->dentry;
484 d->filename = t->filename;
485 }
486
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 struct f2fs_dentry_ptr *d, void *t)
489 {
490 int entry_cnt = NR_INLINE_DENTRY(inode);
491 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 int reserved_size = INLINE_RESERVED_SIZE(inode);
493
494 d->inode = inode;
495 d->max = entry_cnt;
496 d->nr_bitmap = bitmap_size;
497 d->bitmap = t;
498 d->dentry = t + bitmap_size + reserved_size;
499 d->filename = t + bitmap_size + reserved_size +
500 SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502
503 /*
504 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505 * as its node offset to distinguish from index node blocks.
506 * But some bits are used to mark the node block.
507 */
508 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 >> OFFSET_BIT_SHIFT)
510 enum {
511 ALLOC_NODE, /* allocate a new node page if needed */
512 LOOKUP_NODE, /* look up a node without readahead */
513 LOOKUP_NODE_RA, /*
514 * look up a node with readahead called
515 * by get_data_block.
516 */
517 };
518
519 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
520
521 /* congestion wait timeout value, default: 20ms */
522 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
523
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
526
527 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
528
529 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
530
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
533
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER 128
536
537 struct rb_entry {
538 struct rb_node rb_node; /* rb node located in rb-tree */
539 union {
540 struct {
541 unsigned int ofs; /* start offset of the entry */
542 unsigned int len; /* length of the entry */
543 };
544 unsigned long long key; /* 64-bits key */
545 } __packed;
546 };
547
548 struct extent_info {
549 unsigned int fofs; /* start offset in a file */
550 unsigned int len; /* length of the extent */
551 u32 blk; /* start block address of the extent */
552 };
553
554 struct extent_node {
555 struct rb_node rb_node; /* rb node located in rb-tree */
556 struct extent_info ei; /* extent info */
557 struct list_head list; /* node in global extent list of sbi */
558 struct extent_tree *et; /* extent tree pointer */
559 };
560
561 struct extent_tree {
562 nid_t ino; /* inode number */
563 struct rb_root_cached root; /* root of extent info rb-tree */
564 struct extent_node *cached_en; /* recently accessed extent node */
565 struct extent_info largest; /* largested extent info */
566 struct list_head list; /* to be used by sbi->zombie_list */
567 rwlock_t lock; /* protect extent info rb-tree */
568 atomic_t node_cnt; /* # of extent node in rb-tree*/
569 bool largest_updated; /* largest extent updated */
570 };
571
572 /*
573 * This structure is taken from ext4_map_blocks.
574 *
575 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576 */
577 #define F2FS_MAP_NEW (1 << BH_New)
578 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 F2FS_MAP_UNWRITTEN)
582
583 struct f2fs_map_blocks {
584 block_t m_pblk;
585 block_t m_lblk;
586 unsigned int m_len;
587 unsigned int m_flags;
588 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
589 pgoff_t *m_next_extent; /* point to next possible extent */
590 int m_seg_type;
591 bool m_may_create; /* indicate it is from write path */
592 };
593
594 /* for flag in get_data_block */
595 enum {
596 F2FS_GET_BLOCK_DEFAULT,
597 F2FS_GET_BLOCK_FIEMAP,
598 F2FS_GET_BLOCK_BMAP,
599 F2FS_GET_BLOCK_DIO,
600 F2FS_GET_BLOCK_PRE_DIO,
601 F2FS_GET_BLOCK_PRE_AIO,
602 F2FS_GET_BLOCK_PRECACHE,
603 };
604
605 /*
606 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607 */
608 #define FADVISE_COLD_BIT 0x01
609 #define FADVISE_LOST_PINO_BIT 0x02
610 #define FADVISE_ENCRYPT_BIT 0x04
611 #define FADVISE_ENC_NAME_BIT 0x08
612 #define FADVISE_KEEP_SIZE_BIT 0x10
613 #define FADVISE_HOT_BIT 0x20
614 #define FADVISE_VERITY_BIT 0x40
615
616 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617
618 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
636
637 #define DEF_DIR_LEVEL 0
638
639 enum {
640 GC_FAILURE_PIN,
641 GC_FAILURE_ATOMIC,
642 MAX_GC_FAILURE
643 };
644
645 /* used for f2fs_inode_info->flags */
646 enum {
647 FI_NEW_INODE, /* indicate newly allocated inode */
648 FI_DIRTY_INODE, /* indicate inode is dirty or not */
649 FI_AUTO_RECOVER, /* indicate inode is recoverable */
650 FI_DIRTY_DIR, /* indicate directory has dirty pages */
651 FI_INC_LINK, /* need to increment i_nlink */
652 FI_ACL_MODE, /* indicate acl mode */
653 FI_NO_ALLOC, /* should not allocate any blocks */
654 FI_FREE_NID, /* free allocated nide */
655 FI_NO_EXTENT, /* not to use the extent cache */
656 FI_INLINE_XATTR, /* used for inline xattr */
657 FI_INLINE_DATA, /* used for inline data*/
658 FI_INLINE_DENTRY, /* used for inline dentry */
659 FI_APPEND_WRITE, /* inode has appended data */
660 FI_UPDATE_WRITE, /* inode has in-place-update data */
661 FI_NEED_IPU, /* used for ipu per file */
662 FI_ATOMIC_FILE, /* indicate atomic file */
663 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
664 FI_VOLATILE_FILE, /* indicate volatile file */
665 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
666 FI_DROP_CACHE, /* drop dirty page cache */
667 FI_DATA_EXIST, /* indicate data exists */
668 FI_INLINE_DOTS, /* indicate inline dot dentries */
669 FI_DO_DEFRAG, /* indicate defragment is running */
670 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
671 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
672 FI_HOT_DATA, /* indicate file is hot */
673 FI_EXTRA_ATTR, /* indicate file has extra attribute */
674 FI_PROJ_INHERIT, /* indicate file inherits projectid */
675 FI_PIN_FILE, /* indicate file should not be gced */
676 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
678 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
679 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
680 FI_MMAP_FILE, /* indicate file was mmapped */
681 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
682 FI_MAX, /* max flag, never be used */
683 };
684
685 struct f2fs_inode_info {
686 struct inode vfs_inode; /* serve a vfs inode */
687 unsigned long i_flags; /* keep an inode flags for ioctl */
688 unsigned char i_advise; /* use to give file attribute hints */
689 unsigned char i_dir_level; /* use for dentry level for large dir */
690 unsigned int i_current_depth; /* only for directory depth */
691 /* for gc failure statistic */
692 unsigned int i_gc_failures[MAX_GC_FAILURE];
693 unsigned int i_pino; /* parent inode number */
694 umode_t i_acl_mode; /* keep file acl mode temporarily */
695
696 /* Use below internally in f2fs*/
697 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
698 struct rw_semaphore i_sem; /* protect fi info */
699 atomic_t dirty_pages; /* # of dirty pages */
700 f2fs_hash_t chash; /* hash value of given file name */
701 unsigned int clevel; /* maximum level of given file name */
702 struct task_struct *task; /* lookup and create consistency */
703 struct task_struct *cp_task; /* separate cp/wb IO stats*/
704 nid_t i_xattr_nid; /* node id that contains xattrs */
705 loff_t last_disk_size; /* lastly written file size */
706 spinlock_t i_size_lock; /* protect last_disk_size */
707
708 #ifdef CONFIG_QUOTA
709 struct dquot *i_dquot[MAXQUOTAS];
710
711 /* quota space reservation, managed internally by quota code */
712 qsize_t i_reserved_quota;
713 #endif
714 struct list_head dirty_list; /* dirty list for dirs and files */
715 struct list_head gdirty_list; /* linked in global dirty list */
716 struct list_head inmem_ilist; /* list for inmem inodes */
717 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
718 struct task_struct *inmem_task; /* store inmemory task */
719 struct mutex inmem_lock; /* lock for inmemory pages */
720 pgoff_t ra_offset; /* ongoing readahead offset */
721 struct extent_tree *extent_tree; /* cached extent_tree entry */
722
723 /* avoid racing between foreground op and gc */
724 struct rw_semaphore i_gc_rwsem[2];
725 struct rw_semaphore i_mmap_sem;
726 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727
728 int i_extra_isize; /* size of extra space located in i_addr */
729 kprojid_t i_projid; /* id for project quota */
730 int i_inline_xattr_size; /* inline xattr size */
731 struct timespec64 i_crtime; /* inode creation time */
732 struct timespec64 i_disk_time[4];/* inode disk times */
733
734 /* for file compress */
735 atomic_t i_compr_blocks; /* # of compressed blocks */
736 unsigned char i_compress_algorithm; /* algorithm type */
737 unsigned char i_log_cluster_size; /* log of cluster size */
738 unsigned short i_compress_flag; /* compress flag */
739 unsigned int i_cluster_size; /* cluster size */
740 };
741
742 static inline void get_extent_info(struct extent_info *ext,
743 struct f2fs_extent *i_ext)
744 {
745 ext->fofs = le32_to_cpu(i_ext->fofs);
746 ext->blk = le32_to_cpu(i_ext->blk);
747 ext->len = le32_to_cpu(i_ext->len);
748 }
749
750 static inline void set_raw_extent(struct extent_info *ext,
751 struct f2fs_extent *i_ext)
752 {
753 i_ext->fofs = cpu_to_le32(ext->fofs);
754 i_ext->blk = cpu_to_le32(ext->blk);
755 i_ext->len = cpu_to_le32(ext->len);
756 }
757
758 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
759 u32 blk, unsigned int len)
760 {
761 ei->fofs = fofs;
762 ei->blk = blk;
763 ei->len = len;
764 }
765
766 static inline bool __is_discard_mergeable(struct discard_info *back,
767 struct discard_info *front, unsigned int max_len)
768 {
769 return (back->lstart + back->len == front->lstart) &&
770 (back->len + front->len <= max_len);
771 }
772
773 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
774 struct discard_info *back, unsigned int max_len)
775 {
776 return __is_discard_mergeable(back, cur, max_len);
777 }
778
779 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
780 struct discard_info *front, unsigned int max_len)
781 {
782 return __is_discard_mergeable(cur, front, max_len);
783 }
784
785 static inline bool __is_extent_mergeable(struct extent_info *back,
786 struct extent_info *front)
787 {
788 return (back->fofs + back->len == front->fofs &&
789 back->blk + back->len == front->blk);
790 }
791
792 static inline bool __is_back_mergeable(struct extent_info *cur,
793 struct extent_info *back)
794 {
795 return __is_extent_mergeable(back, cur);
796 }
797
798 static inline bool __is_front_mergeable(struct extent_info *cur,
799 struct extent_info *front)
800 {
801 return __is_extent_mergeable(cur, front);
802 }
803
804 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
805 static inline void __try_update_largest_extent(struct extent_tree *et,
806 struct extent_node *en)
807 {
808 if (en->ei.len > et->largest.len) {
809 et->largest = en->ei;
810 et->largest_updated = true;
811 }
812 }
813
814 /*
815 * For free nid management
816 */
817 enum nid_state {
818 FREE_NID, /* newly added to free nid list */
819 PREALLOC_NID, /* it is preallocated */
820 MAX_NID_STATE,
821 };
822
823 enum nat_state {
824 TOTAL_NAT,
825 DIRTY_NAT,
826 RECLAIMABLE_NAT,
827 MAX_NAT_STATE,
828 };
829
830 struct f2fs_nm_info {
831 block_t nat_blkaddr; /* base disk address of NAT */
832 nid_t max_nid; /* maximum possible node ids */
833 nid_t available_nids; /* # of available node ids */
834 nid_t next_scan_nid; /* the next nid to be scanned */
835 unsigned int ram_thresh; /* control the memory footprint */
836 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
837 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
838
839 /* NAT cache management */
840 struct radix_tree_root nat_root;/* root of the nat entry cache */
841 struct radix_tree_root nat_set_root;/* root of the nat set cache */
842 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
843 struct list_head nat_entries; /* cached nat entry list (clean) */
844 spinlock_t nat_list_lock; /* protect clean nat entry list */
845 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
846 unsigned int nat_blocks; /* # of nat blocks */
847
848 /* free node ids management */
849 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
850 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
851 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
852 spinlock_t nid_list_lock; /* protect nid lists ops */
853 struct mutex build_lock; /* lock for build free nids */
854 unsigned char **free_nid_bitmap;
855 unsigned char *nat_block_bitmap;
856 unsigned short *free_nid_count; /* free nid count of NAT block */
857
858 /* for checkpoint */
859 char *nat_bitmap; /* NAT bitmap pointer */
860
861 unsigned int nat_bits_blocks; /* # of nat bits blocks */
862 unsigned char *nat_bits; /* NAT bits blocks */
863 unsigned char *full_nat_bits; /* full NAT pages */
864 unsigned char *empty_nat_bits; /* empty NAT pages */
865 #ifdef CONFIG_F2FS_CHECK_FS
866 char *nat_bitmap_mir; /* NAT bitmap mirror */
867 #endif
868 int bitmap_size; /* bitmap size */
869 };
870
871 /*
872 * this structure is used as one of function parameters.
873 * all the information are dedicated to a given direct node block determined
874 * by the data offset in a file.
875 */
876 struct dnode_of_data {
877 struct inode *inode; /* vfs inode pointer */
878 struct page *inode_page; /* its inode page, NULL is possible */
879 struct page *node_page; /* cached direct node page */
880 nid_t nid; /* node id of the direct node block */
881 unsigned int ofs_in_node; /* data offset in the node page */
882 bool inode_page_locked; /* inode page is locked or not */
883 bool node_changed; /* is node block changed */
884 char cur_level; /* level of hole node page */
885 char max_level; /* level of current page located */
886 block_t data_blkaddr; /* block address of the node block */
887 };
888
889 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
890 struct page *ipage, struct page *npage, nid_t nid)
891 {
892 memset(dn, 0, sizeof(*dn));
893 dn->inode = inode;
894 dn->inode_page = ipage;
895 dn->node_page = npage;
896 dn->nid = nid;
897 }
898
899 /*
900 * For SIT manager
901 *
902 * By default, there are 6 active log areas across the whole main area.
903 * When considering hot and cold data separation to reduce cleaning overhead,
904 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
905 * respectively.
906 * In the current design, you should not change the numbers intentionally.
907 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
908 * logs individually according to the underlying devices. (default: 6)
909 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
910 * data and 8 for node logs.
911 */
912 #define NR_CURSEG_DATA_TYPE (3)
913 #define NR_CURSEG_NODE_TYPE (3)
914 #define NR_CURSEG_INMEM_TYPE (2)
915 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
916 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
917
918 enum {
919 CURSEG_HOT_DATA = 0, /* directory entry blocks */
920 CURSEG_WARM_DATA, /* data blocks */
921 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
922 CURSEG_HOT_NODE, /* direct node blocks of directory files */
923 CURSEG_WARM_NODE, /* direct node blocks of normal files */
924 CURSEG_COLD_NODE, /* indirect node blocks */
925 NR_PERSISTENT_LOG, /* number of persistent log */
926 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
927 /* pinned file that needs consecutive block address */
928 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
929 NO_CHECK_TYPE, /* number of persistent & inmem log */
930 };
931
932 struct flush_cmd {
933 struct completion wait;
934 struct llist_node llnode;
935 nid_t ino;
936 int ret;
937 };
938
939 struct flush_cmd_control {
940 struct task_struct *f2fs_issue_flush; /* flush thread */
941 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
942 atomic_t issued_flush; /* # of issued flushes */
943 atomic_t queued_flush; /* # of queued flushes */
944 struct llist_head issue_list; /* list for command issue */
945 struct llist_node *dispatch_list; /* list for command dispatch */
946 };
947
948 struct f2fs_sm_info {
949 struct sit_info *sit_info; /* whole segment information */
950 struct free_segmap_info *free_info; /* free segment information */
951 struct dirty_seglist_info *dirty_info; /* dirty segment information */
952 struct curseg_info *curseg_array; /* active segment information */
953
954 struct rw_semaphore curseg_lock; /* for preventing curseg change */
955
956 block_t seg0_blkaddr; /* block address of 0'th segment */
957 block_t main_blkaddr; /* start block address of main area */
958 block_t ssa_blkaddr; /* start block address of SSA area */
959
960 unsigned int segment_count; /* total # of segments */
961 unsigned int main_segments; /* # of segments in main area */
962 unsigned int reserved_segments; /* # of reserved segments */
963 unsigned int ovp_segments; /* # of overprovision segments */
964
965 /* a threshold to reclaim prefree segments */
966 unsigned int rec_prefree_segments;
967
968 /* for batched trimming */
969 unsigned int trim_sections; /* # of sections to trim */
970
971 struct list_head sit_entry_set; /* sit entry set list */
972
973 unsigned int ipu_policy; /* in-place-update policy */
974 unsigned int min_ipu_util; /* in-place-update threshold */
975 unsigned int min_fsync_blocks; /* threshold for fsync */
976 unsigned int min_seq_blocks; /* threshold for sequential blocks */
977 unsigned int min_hot_blocks; /* threshold for hot block allocation */
978 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
979
980 /* for flush command control */
981 struct flush_cmd_control *fcc_info;
982
983 /* for discard command control */
984 struct discard_cmd_control *dcc_info;
985 };
986
987 /*
988 * For superblock
989 */
990 /*
991 * COUNT_TYPE for monitoring
992 *
993 * f2fs monitors the number of several block types such as on-writeback,
994 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
995 */
996 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
997 enum count_type {
998 F2FS_DIRTY_DENTS,
999 F2FS_DIRTY_DATA,
1000 F2FS_DIRTY_QDATA,
1001 F2FS_DIRTY_NODES,
1002 F2FS_DIRTY_META,
1003 F2FS_INMEM_PAGES,
1004 F2FS_DIRTY_IMETA,
1005 F2FS_WB_CP_DATA,
1006 F2FS_WB_DATA,
1007 F2FS_RD_DATA,
1008 F2FS_RD_NODE,
1009 F2FS_RD_META,
1010 F2FS_DIO_WRITE,
1011 F2FS_DIO_READ,
1012 NR_COUNT_TYPE,
1013 };
1014
1015 /*
1016 * The below are the page types of bios used in submit_bio().
1017 * The available types are:
1018 * DATA User data pages. It operates as async mode.
1019 * NODE Node pages. It operates as async mode.
1020 * META FS metadata pages such as SIT, NAT, CP.
1021 * NR_PAGE_TYPE The number of page types.
1022 * META_FLUSH Make sure the previous pages are written
1023 * with waiting the bio's completion
1024 * ... Only can be used with META.
1025 */
1026 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1027 enum page_type {
1028 DATA,
1029 NODE,
1030 META,
1031 NR_PAGE_TYPE,
1032 META_FLUSH,
1033 INMEM, /* the below types are used by tracepoints only. */
1034 INMEM_DROP,
1035 INMEM_INVALIDATE,
1036 INMEM_REVOKE,
1037 IPU,
1038 OPU,
1039 };
1040
1041 enum temp_type {
1042 HOT = 0, /* must be zero for meta bio */
1043 WARM,
1044 COLD,
1045 NR_TEMP_TYPE,
1046 };
1047
1048 enum need_lock_type {
1049 LOCK_REQ = 0,
1050 LOCK_DONE,
1051 LOCK_RETRY,
1052 };
1053
1054 enum cp_reason_type {
1055 CP_NO_NEEDED,
1056 CP_NON_REGULAR,
1057 CP_COMPRESSED,
1058 CP_HARDLINK,
1059 CP_SB_NEED_CP,
1060 CP_WRONG_PINO,
1061 CP_NO_SPC_ROLL,
1062 CP_NODE_NEED_CP,
1063 CP_FASTBOOT_MODE,
1064 CP_SPEC_LOG_NUM,
1065 CP_RECOVER_DIR,
1066 };
1067
1068 enum iostat_type {
1069 /* WRITE IO */
1070 APP_DIRECT_IO, /* app direct write IOs */
1071 APP_BUFFERED_IO, /* app buffered write IOs */
1072 APP_WRITE_IO, /* app write IOs */
1073 APP_MAPPED_IO, /* app mapped IOs */
1074 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1075 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1076 FS_META_IO, /* meta IOs from kworker/reclaimer */
1077 FS_GC_DATA_IO, /* data IOs from forground gc */
1078 FS_GC_NODE_IO, /* node IOs from forground gc */
1079 FS_CP_DATA_IO, /* data IOs from checkpoint */
1080 FS_CP_NODE_IO, /* node IOs from checkpoint */
1081 FS_CP_META_IO, /* meta IOs from checkpoint */
1082
1083 /* READ IO */
1084 APP_DIRECT_READ_IO, /* app direct read IOs */
1085 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1086 APP_READ_IO, /* app read IOs */
1087 APP_MAPPED_READ_IO, /* app mapped read IOs */
1088 FS_DATA_READ_IO, /* data read IOs */
1089 FS_GDATA_READ_IO, /* data read IOs from background gc */
1090 FS_CDATA_READ_IO, /* compressed data read IOs */
1091 FS_NODE_READ_IO, /* node read IOs */
1092 FS_META_READ_IO, /* meta read IOs */
1093
1094 /* other */
1095 FS_DISCARD, /* discard */
1096 NR_IO_TYPE,
1097 };
1098
1099 struct f2fs_io_info {
1100 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1101 nid_t ino; /* inode number */
1102 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1103 enum temp_type temp; /* contains HOT/WARM/COLD */
1104 int op; /* contains REQ_OP_ */
1105 int op_flags; /* req_flag_bits */
1106 block_t new_blkaddr; /* new block address to be written */
1107 block_t old_blkaddr; /* old block address before Cow */
1108 struct page *page; /* page to be written */
1109 struct page *encrypted_page; /* encrypted page */
1110 struct page *compressed_page; /* compressed page */
1111 struct list_head list; /* serialize IOs */
1112 bool submitted; /* indicate IO submission */
1113 int need_lock; /* indicate we need to lock cp_rwsem */
1114 bool in_list; /* indicate fio is in io_list */
1115 bool is_por; /* indicate IO is from recovery or not */
1116 bool retry; /* need to reallocate block address */
1117 int compr_blocks; /* # of compressed block addresses */
1118 bool encrypted; /* indicate file is encrypted */
1119 enum iostat_type io_type; /* io type */
1120 struct writeback_control *io_wbc; /* writeback control */
1121 struct bio **bio; /* bio for ipu */
1122 sector_t *last_block; /* last block number in bio */
1123 unsigned char version; /* version of the node */
1124 };
1125
1126 struct bio_entry {
1127 struct bio *bio;
1128 struct list_head list;
1129 };
1130
1131 #define is_read_io(rw) ((rw) == READ)
1132 struct f2fs_bio_info {
1133 struct f2fs_sb_info *sbi; /* f2fs superblock */
1134 struct bio *bio; /* bios to merge */
1135 sector_t last_block_in_bio; /* last block number */
1136 struct f2fs_io_info fio; /* store buffered io info. */
1137 struct rw_semaphore io_rwsem; /* blocking op for bio */
1138 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1139 struct list_head io_list; /* track fios */
1140 struct list_head bio_list; /* bio entry list head */
1141 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1142 };
1143
1144 #define FDEV(i) (sbi->devs[i])
1145 #define RDEV(i) (raw_super->devs[i])
1146 struct f2fs_dev_info {
1147 struct block_device *bdev;
1148 char path[MAX_PATH_LEN];
1149 unsigned int total_segments;
1150 block_t start_blk;
1151 block_t end_blk;
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 unsigned int nr_blkz; /* Total number of zones */
1154 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1155 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1156 #endif
1157 };
1158
1159 enum inode_type {
1160 DIR_INODE, /* for dirty dir inode */
1161 FILE_INODE, /* for dirty regular/symlink inode */
1162 DIRTY_META, /* for all dirtied inode metadata */
1163 ATOMIC_FILE, /* for all atomic files */
1164 NR_INODE_TYPE,
1165 };
1166
1167 /* for inner inode cache management */
1168 struct inode_management {
1169 struct radix_tree_root ino_root; /* ino entry array */
1170 spinlock_t ino_lock; /* for ino entry lock */
1171 struct list_head ino_list; /* inode list head */
1172 unsigned long ino_num; /* number of entries */
1173 };
1174
1175 /* for GC_AT */
1176 struct atgc_management {
1177 bool atgc_enabled; /* ATGC is enabled or not */
1178 struct rb_root_cached root; /* root of victim rb-tree */
1179 struct list_head victim_list; /* linked with all victim entries */
1180 unsigned int victim_count; /* victim count in rb-tree */
1181 unsigned int candidate_ratio; /* candidate ratio */
1182 unsigned int max_candidate_count; /* max candidate count */
1183 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1184 unsigned long long age_threshold; /* age threshold */
1185 };
1186
1187 /* For s_flag in struct f2fs_sb_info */
1188 enum {
1189 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1190 SBI_IS_CLOSE, /* specify unmounting */
1191 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1192 SBI_POR_DOING, /* recovery is doing or not */
1193 SBI_NEED_SB_WRITE, /* need to recover superblock */
1194 SBI_NEED_CP, /* need to checkpoint */
1195 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1196 SBI_IS_RECOVERED, /* recovered orphan/data */
1197 SBI_CP_DISABLED, /* CP was disabled last mount */
1198 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1199 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1200 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1201 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1202 SBI_IS_RESIZEFS, /* resizefs is in process */
1203 };
1204
1205 enum {
1206 CP_TIME,
1207 REQ_TIME,
1208 DISCARD_TIME,
1209 GC_TIME,
1210 DISABLE_TIME,
1211 UMOUNT_DISCARD_TIMEOUT,
1212 MAX_TIME,
1213 };
1214
1215 enum {
1216 GC_NORMAL,
1217 GC_IDLE_CB,
1218 GC_IDLE_GREEDY,
1219 GC_IDLE_AT,
1220 GC_URGENT_HIGH,
1221 GC_URGENT_LOW,
1222 };
1223
1224 enum {
1225 BGGC_MODE_ON, /* background gc is on */
1226 BGGC_MODE_OFF, /* background gc is off */
1227 BGGC_MODE_SYNC, /*
1228 * background gc is on, migrating blocks
1229 * like foreground gc
1230 */
1231 };
1232
1233 enum {
1234 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1235 FS_MODE_LFS, /* use lfs allocation only */
1236 };
1237
1238 enum {
1239 WHINT_MODE_OFF, /* not pass down write hints */
1240 WHINT_MODE_USER, /* try to pass down hints given by users */
1241 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1242 };
1243
1244 enum {
1245 ALLOC_MODE_DEFAULT, /* stay default */
1246 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1247 };
1248
1249 enum fsync_mode {
1250 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1251 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1252 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1253 };
1254
1255 enum {
1256 COMPR_MODE_FS, /*
1257 * automatically compress compression
1258 * enabled files
1259 */
1260 COMPR_MODE_USER, /*
1261 * automatical compression is disabled.
1262 * user can control the file compression
1263 * using ioctls
1264 */
1265 };
1266
1267 /*
1268 * this value is set in page as a private data which indicate that
1269 * the page is atomically written, and it is in inmem_pages list.
1270 */
1271 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1272 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1273
1274 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1275 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1276 #define IS_DUMMY_WRITTEN_PAGE(page) \
1277 (page_private(page) == DUMMY_WRITTEN_PAGE)
1278
1279 #ifdef CONFIG_F2FS_IO_TRACE
1280 #define IS_IO_TRACED_PAGE(page) \
1281 (page_private(page) > 0 && \
1282 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1283 #else
1284 #define IS_IO_TRACED_PAGE(page) (0)
1285 #endif
1286
1287 /* For compression */
1288 enum compress_algorithm_type {
1289 COMPRESS_LZO,
1290 COMPRESS_LZ4,
1291 COMPRESS_ZSTD,
1292 COMPRESS_LZORLE,
1293 COMPRESS_MAX,
1294 };
1295
1296 enum compress_flag {
1297 COMPRESS_CHKSUM,
1298 COMPRESS_MAX_FLAG,
1299 };
1300
1301 #define COMPRESS_DATA_RESERVED_SIZE 4
1302 struct compress_data {
1303 __le32 clen; /* compressed data size */
1304 __le32 chksum; /* compressed data chksum */
1305 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1306 u8 cdata[]; /* compressed data */
1307 };
1308
1309 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1310
1311 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1312
1313 /* compress context */
1314 struct compress_ctx {
1315 struct inode *inode; /* inode the context belong to */
1316 pgoff_t cluster_idx; /* cluster index number */
1317 unsigned int cluster_size; /* page count in cluster */
1318 unsigned int log_cluster_size; /* log of cluster size */
1319 struct page **rpages; /* pages store raw data in cluster */
1320 unsigned int nr_rpages; /* total page number in rpages */
1321 struct page **cpages; /* pages store compressed data in cluster */
1322 unsigned int nr_cpages; /* total page number in cpages */
1323 void *rbuf; /* virtual mapped address on rpages */
1324 struct compress_data *cbuf; /* virtual mapped address on cpages */
1325 size_t rlen; /* valid data length in rbuf */
1326 size_t clen; /* valid data length in cbuf */
1327 void *private; /* payload buffer for specified compression algorithm */
1328 void *private2; /* extra payload buffer */
1329 };
1330
1331 /* compress context for write IO path */
1332 struct compress_io_ctx {
1333 u32 magic; /* magic number to indicate page is compressed */
1334 struct inode *inode; /* inode the context belong to */
1335 struct page **rpages; /* pages store raw data in cluster */
1336 unsigned int nr_rpages; /* total page number in rpages */
1337 atomic_t pending_pages; /* in-flight compressed page count */
1338 };
1339
1340 /* decompress io context for read IO path */
1341 struct decompress_io_ctx {
1342 u32 magic; /* magic number to indicate page is compressed */
1343 struct inode *inode; /* inode the context belong to */
1344 pgoff_t cluster_idx; /* cluster index number */
1345 unsigned int cluster_size; /* page count in cluster */
1346 unsigned int log_cluster_size; /* log of cluster size */
1347 struct page **rpages; /* pages store raw data in cluster */
1348 unsigned int nr_rpages; /* total page number in rpages */
1349 struct page **cpages; /* pages store compressed data in cluster */
1350 unsigned int nr_cpages; /* total page number in cpages */
1351 struct page **tpages; /* temp pages to pad holes in cluster */
1352 void *rbuf; /* virtual mapped address on rpages */
1353 struct compress_data *cbuf; /* virtual mapped address on cpages */
1354 size_t rlen; /* valid data length in rbuf */
1355 size_t clen; /* valid data length in cbuf */
1356 atomic_t pending_pages; /* in-flight compressed page count */
1357 atomic_t verity_pages; /* in-flight page count for verity */
1358 bool failed; /* indicate IO error during decompression */
1359 void *private; /* payload buffer for specified decompression algorithm */
1360 void *private2; /* extra payload buffer */
1361 };
1362
1363 #define NULL_CLUSTER ((unsigned int)(~0))
1364 #define MIN_COMPRESS_LOG_SIZE 2
1365 #define MAX_COMPRESS_LOG_SIZE 8
1366 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1367
1368 struct f2fs_sb_info {
1369 struct super_block *sb; /* pointer to VFS super block */
1370 struct proc_dir_entry *s_proc; /* proc entry */
1371 struct f2fs_super_block *raw_super; /* raw super block pointer */
1372 struct rw_semaphore sb_lock; /* lock for raw super block */
1373 int valid_super_block; /* valid super block no */
1374 unsigned long s_flag; /* flags for sbi */
1375 struct mutex writepages; /* mutex for writepages() */
1376
1377 #ifdef CONFIG_BLK_DEV_ZONED
1378 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1379 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1380 #endif
1381
1382 /* for node-related operations */
1383 struct f2fs_nm_info *nm_info; /* node manager */
1384 struct inode *node_inode; /* cache node blocks */
1385
1386 /* for segment-related operations */
1387 struct f2fs_sm_info *sm_info; /* segment manager */
1388
1389 /* for bio operations */
1390 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1391 /* keep migration IO order for LFS mode */
1392 struct rw_semaphore io_order_lock;
1393 mempool_t *write_io_dummy; /* Dummy pages */
1394
1395 /* for checkpoint */
1396 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1397 int cur_cp_pack; /* remain current cp pack */
1398 spinlock_t cp_lock; /* for flag in ckpt */
1399 struct inode *meta_inode; /* cache meta blocks */
1400 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */
1401 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1402 struct rw_semaphore node_write; /* locking node writes */
1403 struct rw_semaphore node_change; /* locking node change */
1404 wait_queue_head_t cp_wait;
1405 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1406 long interval_time[MAX_TIME]; /* to store thresholds */
1407
1408 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1409
1410 spinlock_t fsync_node_lock; /* for node entry lock */
1411 struct list_head fsync_node_list; /* node list head */
1412 unsigned int fsync_seg_id; /* sequence id */
1413 unsigned int fsync_node_num; /* number of node entries */
1414
1415 /* for orphan inode, use 0'th array */
1416 unsigned int max_orphans; /* max orphan inodes */
1417
1418 /* for inode management */
1419 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1420 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1421 struct mutex flush_lock; /* for flush exclusion */
1422
1423 /* for extent tree cache */
1424 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1425 struct mutex extent_tree_lock; /* locking extent radix tree */
1426 struct list_head extent_list; /* lru list for shrinker */
1427 spinlock_t extent_lock; /* locking extent lru list */
1428 atomic_t total_ext_tree; /* extent tree count */
1429 struct list_head zombie_list; /* extent zombie tree list */
1430 atomic_t total_zombie_tree; /* extent zombie tree count */
1431 atomic_t total_ext_node; /* extent info count */
1432
1433 /* basic filesystem units */
1434 unsigned int log_sectors_per_block; /* log2 sectors per block */
1435 unsigned int log_blocksize; /* log2 block size */
1436 unsigned int blocksize; /* block size */
1437 unsigned int root_ino_num; /* root inode number*/
1438 unsigned int node_ino_num; /* node inode number*/
1439 unsigned int meta_ino_num; /* meta inode number*/
1440 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1441 unsigned int blocks_per_seg; /* blocks per segment */
1442 unsigned int segs_per_sec; /* segments per section */
1443 unsigned int secs_per_zone; /* sections per zone */
1444 unsigned int total_sections; /* total section count */
1445 unsigned int total_node_count; /* total node block count */
1446 unsigned int total_valid_node_count; /* valid node block count */
1447 loff_t max_file_blocks; /* max block index of file */
1448 int dir_level; /* directory level */
1449 int readdir_ra; /* readahead inode in readdir */
1450 u64 max_io_bytes; /* max io bytes to merge IOs */
1451
1452 block_t user_block_count; /* # of user blocks */
1453 block_t total_valid_block_count; /* # of valid blocks */
1454 block_t discard_blks; /* discard command candidats */
1455 block_t last_valid_block_count; /* for recovery */
1456 block_t reserved_blocks; /* configurable reserved blocks */
1457 block_t current_reserved_blocks; /* current reserved blocks */
1458
1459 /* Additional tracking for no checkpoint mode */
1460 block_t unusable_block_count; /* # of blocks saved by last cp */
1461
1462 unsigned int nquota_files; /* # of quota sysfile */
1463 struct rw_semaphore quota_sem; /* blocking cp for flags */
1464
1465 /* # of pages, see count_type */
1466 atomic_t nr_pages[NR_COUNT_TYPE];
1467 /* # of allocated blocks */
1468 struct percpu_counter alloc_valid_block_count;
1469
1470 /* writeback control */
1471 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1472
1473 /* valid inode count */
1474 struct percpu_counter total_valid_inode_count;
1475
1476 struct f2fs_mount_info mount_opt; /* mount options */
1477
1478 /* for cleaning operations */
1479 struct rw_semaphore gc_lock; /*
1480 * semaphore for GC, avoid
1481 * race between GC and GC or CP
1482 */
1483 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1484 struct atgc_management am; /* atgc management */
1485 unsigned int cur_victim_sec; /* current victim section num */
1486 unsigned int gc_mode; /* current GC state */
1487 unsigned int next_victim_seg[2]; /* next segment in victim section */
1488
1489 /* for skip statistic */
1490 unsigned int atomic_files; /* # of opened atomic file */
1491 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1492 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1493
1494 /* threshold for gc trials on pinned files */
1495 u64 gc_pin_file_threshold;
1496 struct rw_semaphore pin_sem;
1497
1498 /* maximum # of trials to find a victim segment for SSR and GC */
1499 unsigned int max_victim_search;
1500 /* migration granularity of garbage collection, unit: segment */
1501 unsigned int migration_granularity;
1502
1503 /*
1504 * for stat information.
1505 * one is for the LFS mode, and the other is for the SSR mode.
1506 */
1507 #ifdef CONFIG_F2FS_STAT_FS
1508 struct f2fs_stat_info *stat_info; /* FS status information */
1509 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1510 unsigned int segment_count[2]; /* # of allocated segments */
1511 unsigned int block_count[2]; /* # of allocated blocks */
1512 atomic_t inplace_count; /* # of inplace update */
1513 atomic64_t total_hit_ext; /* # of lookup extent cache */
1514 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1515 atomic64_t read_hit_largest; /* # of hit largest extent node */
1516 atomic64_t read_hit_cached; /* # of hit cached extent node */
1517 atomic_t inline_xattr; /* # of inline_xattr inodes */
1518 atomic_t inline_inode; /* # of inline_data inodes */
1519 atomic_t inline_dir; /* # of inline_dentry inodes */
1520 atomic_t compr_inode; /* # of compressed inodes */
1521 atomic64_t compr_blocks; /* # of compressed blocks */
1522 atomic_t vw_cnt; /* # of volatile writes */
1523 atomic_t max_aw_cnt; /* max # of atomic writes */
1524 atomic_t max_vw_cnt; /* max # of volatile writes */
1525 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1526 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1527 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1528 #endif
1529 spinlock_t stat_lock; /* lock for stat operations */
1530
1531 /* For app/fs IO statistics */
1532 spinlock_t iostat_lock;
1533 unsigned long long rw_iostat[NR_IO_TYPE];
1534 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1535 bool iostat_enable;
1536 unsigned long iostat_next_period;
1537 unsigned int iostat_period_ms;
1538
1539 /* to attach REQ_META|REQ_FUA flags */
1540 unsigned int data_io_flag;
1541 unsigned int node_io_flag;
1542
1543 /* For sysfs suppport */
1544 struct kobject s_kobj;
1545 struct completion s_kobj_unregister;
1546
1547 /* For shrinker support */
1548 struct list_head s_list;
1549 int s_ndevs; /* number of devices */
1550 struct f2fs_dev_info *devs; /* for device list */
1551 unsigned int dirty_device; /* for checkpoint data flush */
1552 spinlock_t dev_lock; /* protect dirty_device */
1553 struct mutex umount_mutex;
1554 unsigned int shrinker_run_no;
1555
1556 /* For write statistics */
1557 u64 sectors_written_start;
1558 u64 kbytes_written;
1559
1560 /* Reference to checksum algorithm driver via cryptoapi */
1561 struct crypto_shash *s_chksum_driver;
1562
1563 /* Precomputed FS UUID checksum for seeding other checksums */
1564 __u32 s_chksum_seed;
1565
1566 struct workqueue_struct *post_read_wq; /* post read workqueue */
1567
1568 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1569 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1570
1571 #ifdef CONFIG_F2FS_FS_COMPRESSION
1572 struct kmem_cache *page_array_slab; /* page array entry */
1573 unsigned int page_array_slab_size; /* default page array slab size */
1574 #endif
1575 };
1576
1577 struct f2fs_private_dio {
1578 struct inode *inode;
1579 void *orig_private;
1580 bio_end_io_t *orig_end_io;
1581 bool write;
1582 };
1583
1584 #ifdef CONFIG_F2FS_FAULT_INJECTION
1585 #define f2fs_show_injection_info(sbi, type) \
1586 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1587 KERN_INFO, sbi->sb->s_id, \
1588 f2fs_fault_name[type], \
1589 __func__, __builtin_return_address(0))
1590 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1591 {
1592 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1593
1594 if (!ffi->inject_rate)
1595 return false;
1596
1597 if (!IS_FAULT_SET(ffi, type))
1598 return false;
1599
1600 atomic_inc(&ffi->inject_ops);
1601 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1602 atomic_set(&ffi->inject_ops, 0);
1603 return true;
1604 }
1605 return false;
1606 }
1607 #else
1608 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1609 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1610 {
1611 return false;
1612 }
1613 #endif
1614
1615 /*
1616 * Test if the mounted volume is a multi-device volume.
1617 * - For a single regular disk volume, sbi->s_ndevs is 0.
1618 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1619 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1620 */
1621 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1622 {
1623 return sbi->s_ndevs > 1;
1624 }
1625
1626 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1627 {
1628 unsigned long now = jiffies;
1629
1630 sbi->last_time[type] = now;
1631
1632 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1633 if (type == REQ_TIME) {
1634 sbi->last_time[DISCARD_TIME] = now;
1635 sbi->last_time[GC_TIME] = now;
1636 }
1637 }
1638
1639 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1640 {
1641 unsigned long interval = sbi->interval_time[type] * HZ;
1642
1643 return time_after(jiffies, sbi->last_time[type] + interval);
1644 }
1645
1646 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1647 int type)
1648 {
1649 unsigned long interval = sbi->interval_time[type] * HZ;
1650 unsigned int wait_ms = 0;
1651 long delta;
1652
1653 delta = (sbi->last_time[type] + interval) - jiffies;
1654 if (delta > 0)
1655 wait_ms = jiffies_to_msecs(delta);
1656
1657 return wait_ms;
1658 }
1659
1660 /*
1661 * Inline functions
1662 */
1663 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1664 const void *address, unsigned int length)
1665 {
1666 struct {
1667 struct shash_desc shash;
1668 char ctx[4];
1669 } desc;
1670 int err;
1671
1672 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1673
1674 desc.shash.tfm = sbi->s_chksum_driver;
1675 *(u32 *)desc.ctx = crc;
1676
1677 err = crypto_shash_update(&desc.shash, address, length);
1678 BUG_ON(err);
1679
1680 return *(u32 *)desc.ctx;
1681 }
1682
1683 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1684 unsigned int length)
1685 {
1686 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1687 }
1688
1689 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1690 void *buf, size_t buf_size)
1691 {
1692 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1693 }
1694
1695 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1696 const void *address, unsigned int length)
1697 {
1698 return __f2fs_crc32(sbi, crc, address, length);
1699 }
1700
1701 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1702 {
1703 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1704 }
1705
1706 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1707 {
1708 return sb->s_fs_info;
1709 }
1710
1711 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1712 {
1713 return F2FS_SB(inode->i_sb);
1714 }
1715
1716 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1717 {
1718 return F2FS_I_SB(mapping->host);
1719 }
1720
1721 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1722 {
1723 return F2FS_M_SB(page_file_mapping(page));
1724 }
1725
1726 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1727 {
1728 return (struct f2fs_super_block *)(sbi->raw_super);
1729 }
1730
1731 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1732 {
1733 return (struct f2fs_checkpoint *)(sbi->ckpt);
1734 }
1735
1736 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1737 {
1738 return (struct f2fs_node *)page_address(page);
1739 }
1740
1741 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1742 {
1743 return &((struct f2fs_node *)page_address(page))->i;
1744 }
1745
1746 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1747 {
1748 return (struct f2fs_nm_info *)(sbi->nm_info);
1749 }
1750
1751 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1752 {
1753 return (struct f2fs_sm_info *)(sbi->sm_info);
1754 }
1755
1756 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1757 {
1758 return (struct sit_info *)(SM_I(sbi)->sit_info);
1759 }
1760
1761 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1762 {
1763 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1764 }
1765
1766 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1767 {
1768 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1769 }
1770
1771 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1772 {
1773 return sbi->meta_inode->i_mapping;
1774 }
1775
1776 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1777 {
1778 return sbi->node_inode->i_mapping;
1779 }
1780
1781 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1782 {
1783 return test_bit(type, &sbi->s_flag);
1784 }
1785
1786 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1787 {
1788 set_bit(type, &sbi->s_flag);
1789 }
1790
1791 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1792 {
1793 clear_bit(type, &sbi->s_flag);
1794 }
1795
1796 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1797 {
1798 return le64_to_cpu(cp->checkpoint_ver);
1799 }
1800
1801 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1802 {
1803 if (type < F2FS_MAX_QUOTAS)
1804 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1805 return 0;
1806 }
1807
1808 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1809 {
1810 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1811 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1812 }
1813
1814 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1815 {
1816 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1817
1818 return ckpt_flags & f;
1819 }
1820
1821 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1822 {
1823 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1824 }
1825
1826 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1827 {
1828 unsigned int ckpt_flags;
1829
1830 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1831 ckpt_flags |= f;
1832 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1833 }
1834
1835 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1836 {
1837 unsigned long flags;
1838
1839 spin_lock_irqsave(&sbi->cp_lock, flags);
1840 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1841 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1842 }
1843
1844 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1845 {
1846 unsigned int ckpt_flags;
1847
1848 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1849 ckpt_flags &= (~f);
1850 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1851 }
1852
1853 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1854 {
1855 unsigned long flags;
1856
1857 spin_lock_irqsave(&sbi->cp_lock, flags);
1858 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1859 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1860 }
1861
1862 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1863 {
1864 unsigned long flags;
1865 unsigned char *nat_bits;
1866
1867 /*
1868 * In order to re-enable nat_bits we need to call fsck.f2fs by
1869 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1870 * so let's rely on regular fsck or unclean shutdown.
1871 */
1872
1873 if (lock)
1874 spin_lock_irqsave(&sbi->cp_lock, flags);
1875 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1876 nat_bits = NM_I(sbi)->nat_bits;
1877 NM_I(sbi)->nat_bits = NULL;
1878 if (lock)
1879 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1880
1881 kvfree(nat_bits);
1882 }
1883
1884 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1885 struct cp_control *cpc)
1886 {
1887 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1888
1889 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1890 }
1891
1892 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1893 {
1894 down_read(&sbi->cp_rwsem);
1895 }
1896
1897 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1898 {
1899 return down_read_trylock(&sbi->cp_rwsem);
1900 }
1901
1902 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1903 {
1904 up_read(&sbi->cp_rwsem);
1905 }
1906
1907 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1908 {
1909 down_write(&sbi->cp_rwsem);
1910 }
1911
1912 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1913 {
1914 up_write(&sbi->cp_rwsem);
1915 }
1916
1917 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1918 {
1919 int reason = CP_SYNC;
1920
1921 if (test_opt(sbi, FASTBOOT))
1922 reason = CP_FASTBOOT;
1923 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1924 reason = CP_UMOUNT;
1925 return reason;
1926 }
1927
1928 static inline bool __remain_node_summaries(int reason)
1929 {
1930 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1931 }
1932
1933 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1934 {
1935 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1936 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1937 }
1938
1939 /*
1940 * Check whether the inode has blocks or not
1941 */
1942 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1943 {
1944 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1945
1946 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1947 }
1948
1949 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1950 {
1951 return ofs == XATTR_NODE_OFFSET;
1952 }
1953
1954 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1955 struct inode *inode, bool cap)
1956 {
1957 if (!inode)
1958 return true;
1959 if (!test_opt(sbi, RESERVE_ROOT))
1960 return false;
1961 if (IS_NOQUOTA(inode))
1962 return true;
1963 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1964 return true;
1965 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1966 in_group_p(F2FS_OPTION(sbi).s_resgid))
1967 return true;
1968 if (cap && capable(CAP_SYS_RESOURCE))
1969 return true;
1970 return false;
1971 }
1972
1973 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1974 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1975 struct inode *inode, blkcnt_t *count)
1976 {
1977 blkcnt_t diff = 0, release = 0;
1978 block_t avail_user_block_count;
1979 int ret;
1980
1981 ret = dquot_reserve_block(inode, *count);
1982 if (ret)
1983 return ret;
1984
1985 if (time_to_inject(sbi, FAULT_BLOCK)) {
1986 f2fs_show_injection_info(sbi, FAULT_BLOCK);
1987 release = *count;
1988 goto release_quota;
1989 }
1990
1991 /*
1992 * let's increase this in prior to actual block count change in order
1993 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1994 */
1995 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1996
1997 spin_lock(&sbi->stat_lock);
1998 sbi->total_valid_block_count += (block_t)(*count);
1999 avail_user_block_count = sbi->user_block_count -
2000 sbi->current_reserved_blocks;
2001
2002 if (!__allow_reserved_blocks(sbi, inode, true))
2003 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2004 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2005 if (avail_user_block_count > sbi->unusable_block_count)
2006 avail_user_block_count -= sbi->unusable_block_count;
2007 else
2008 avail_user_block_count = 0;
2009 }
2010 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2011 diff = sbi->total_valid_block_count - avail_user_block_count;
2012 if (diff > *count)
2013 diff = *count;
2014 *count -= diff;
2015 release = diff;
2016 sbi->total_valid_block_count -= diff;
2017 if (!*count) {
2018 spin_unlock(&sbi->stat_lock);
2019 goto enospc;
2020 }
2021 }
2022 spin_unlock(&sbi->stat_lock);
2023
2024 if (unlikely(release)) {
2025 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2026 dquot_release_reservation_block(inode, release);
2027 }
2028 f2fs_i_blocks_write(inode, *count, true, true);
2029 return 0;
2030
2031 enospc:
2032 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2033 release_quota:
2034 dquot_release_reservation_block(inode, release);
2035 return -ENOSPC;
2036 }
2037
2038 __printf(2, 3)
2039 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2040
2041 #define f2fs_err(sbi, fmt, ...) \
2042 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2043 #define f2fs_warn(sbi, fmt, ...) \
2044 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2045 #define f2fs_notice(sbi, fmt, ...) \
2046 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2047 #define f2fs_info(sbi, fmt, ...) \
2048 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2049 #define f2fs_debug(sbi, fmt, ...) \
2050 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2051
2052 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2053 struct inode *inode,
2054 block_t count)
2055 {
2056 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2057
2058 spin_lock(&sbi->stat_lock);
2059 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2060 sbi->total_valid_block_count -= (block_t)count;
2061 if (sbi->reserved_blocks &&
2062 sbi->current_reserved_blocks < sbi->reserved_blocks)
2063 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2064 sbi->current_reserved_blocks + count);
2065 spin_unlock(&sbi->stat_lock);
2066 if (unlikely(inode->i_blocks < sectors)) {
2067 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2068 inode->i_ino,
2069 (unsigned long long)inode->i_blocks,
2070 (unsigned long long)sectors);
2071 set_sbi_flag(sbi, SBI_NEED_FSCK);
2072 return;
2073 }
2074 f2fs_i_blocks_write(inode, count, false, true);
2075 }
2076
2077 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2078 {
2079 atomic_inc(&sbi->nr_pages[count_type]);
2080
2081 if (count_type == F2FS_DIRTY_DENTS ||
2082 count_type == F2FS_DIRTY_NODES ||
2083 count_type == F2FS_DIRTY_META ||
2084 count_type == F2FS_DIRTY_QDATA ||
2085 count_type == F2FS_DIRTY_IMETA)
2086 set_sbi_flag(sbi, SBI_IS_DIRTY);
2087 }
2088
2089 static inline void inode_inc_dirty_pages(struct inode *inode)
2090 {
2091 atomic_inc(&F2FS_I(inode)->dirty_pages);
2092 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2093 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2094 if (IS_NOQUOTA(inode))
2095 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2096 }
2097
2098 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2099 {
2100 atomic_dec(&sbi->nr_pages[count_type]);
2101 }
2102
2103 static inline void inode_dec_dirty_pages(struct inode *inode)
2104 {
2105 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2106 !S_ISLNK(inode->i_mode))
2107 return;
2108
2109 atomic_dec(&F2FS_I(inode)->dirty_pages);
2110 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2111 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2112 if (IS_NOQUOTA(inode))
2113 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2114 }
2115
2116 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2117 {
2118 return atomic_read(&sbi->nr_pages[count_type]);
2119 }
2120
2121 static inline int get_dirty_pages(struct inode *inode)
2122 {
2123 return atomic_read(&F2FS_I(inode)->dirty_pages);
2124 }
2125
2126 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2127 {
2128 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2129 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2130 sbi->log_blocks_per_seg;
2131
2132 return segs / sbi->segs_per_sec;
2133 }
2134
2135 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2136 {
2137 return sbi->total_valid_block_count;
2138 }
2139
2140 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2141 {
2142 return sbi->discard_blks;
2143 }
2144
2145 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2146 {
2147 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2148
2149 /* return NAT or SIT bitmap */
2150 if (flag == NAT_BITMAP)
2151 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2152 else if (flag == SIT_BITMAP)
2153 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2154
2155 return 0;
2156 }
2157
2158 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2159 {
2160 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2161 }
2162
2163 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2164 {
2165 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2166 int offset;
2167
2168 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2169 offset = (flag == SIT_BITMAP) ?
2170 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2171 /*
2172 * if large_nat_bitmap feature is enabled, leave checksum
2173 * protection for all nat/sit bitmaps.
2174 */
2175 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2176 }
2177
2178 if (__cp_payload(sbi) > 0) {
2179 if (flag == NAT_BITMAP)
2180 return &ckpt->sit_nat_version_bitmap;
2181 else
2182 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2183 } else {
2184 offset = (flag == NAT_BITMAP) ?
2185 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2186 return &ckpt->sit_nat_version_bitmap + offset;
2187 }
2188 }
2189
2190 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2191 {
2192 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2193
2194 if (sbi->cur_cp_pack == 2)
2195 start_addr += sbi->blocks_per_seg;
2196 return start_addr;
2197 }
2198
2199 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2200 {
2201 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2202
2203 if (sbi->cur_cp_pack == 1)
2204 start_addr += sbi->blocks_per_seg;
2205 return start_addr;
2206 }
2207
2208 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2209 {
2210 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2211 }
2212
2213 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2214 {
2215 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2216 }
2217
2218 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2219 struct inode *inode, bool is_inode)
2220 {
2221 block_t valid_block_count;
2222 unsigned int valid_node_count, user_block_count;
2223 int err;
2224
2225 if (is_inode) {
2226 if (inode) {
2227 err = dquot_alloc_inode(inode);
2228 if (err)
2229 return err;
2230 }
2231 } else {
2232 err = dquot_reserve_block(inode, 1);
2233 if (err)
2234 return err;
2235 }
2236
2237 if (time_to_inject(sbi, FAULT_BLOCK)) {
2238 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2239 goto enospc;
2240 }
2241
2242 spin_lock(&sbi->stat_lock);
2243
2244 valid_block_count = sbi->total_valid_block_count +
2245 sbi->current_reserved_blocks + 1;
2246
2247 if (!__allow_reserved_blocks(sbi, inode, false))
2248 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2249 user_block_count = sbi->user_block_count;
2250 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2251 user_block_count -= sbi->unusable_block_count;
2252
2253 if (unlikely(valid_block_count > user_block_count)) {
2254 spin_unlock(&sbi->stat_lock);
2255 goto enospc;
2256 }
2257
2258 valid_node_count = sbi->total_valid_node_count + 1;
2259 if (unlikely(valid_node_count > sbi->total_node_count)) {
2260 spin_unlock(&sbi->stat_lock);
2261 goto enospc;
2262 }
2263
2264 sbi->total_valid_node_count++;
2265 sbi->total_valid_block_count++;
2266 spin_unlock(&sbi->stat_lock);
2267
2268 if (inode) {
2269 if (is_inode)
2270 f2fs_mark_inode_dirty_sync(inode, true);
2271 else
2272 f2fs_i_blocks_write(inode, 1, true, true);
2273 }
2274
2275 percpu_counter_inc(&sbi->alloc_valid_block_count);
2276 return 0;
2277
2278 enospc:
2279 if (is_inode) {
2280 if (inode)
2281 dquot_free_inode(inode);
2282 } else {
2283 dquot_release_reservation_block(inode, 1);
2284 }
2285 return -ENOSPC;
2286 }
2287
2288 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2289 struct inode *inode, bool is_inode)
2290 {
2291 spin_lock(&sbi->stat_lock);
2292
2293 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2294 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2295
2296 sbi->total_valid_node_count--;
2297 sbi->total_valid_block_count--;
2298 if (sbi->reserved_blocks &&
2299 sbi->current_reserved_blocks < sbi->reserved_blocks)
2300 sbi->current_reserved_blocks++;
2301
2302 spin_unlock(&sbi->stat_lock);
2303
2304 if (is_inode) {
2305 dquot_free_inode(inode);
2306 } else {
2307 if (unlikely(inode->i_blocks == 0)) {
2308 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2309 inode->i_ino,
2310 (unsigned long long)inode->i_blocks);
2311 set_sbi_flag(sbi, SBI_NEED_FSCK);
2312 return;
2313 }
2314 f2fs_i_blocks_write(inode, 1, false, true);
2315 }
2316 }
2317
2318 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2319 {
2320 return sbi->total_valid_node_count;
2321 }
2322
2323 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2324 {
2325 percpu_counter_inc(&sbi->total_valid_inode_count);
2326 }
2327
2328 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2329 {
2330 percpu_counter_dec(&sbi->total_valid_inode_count);
2331 }
2332
2333 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2334 {
2335 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2336 }
2337
2338 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2339 pgoff_t index, bool for_write)
2340 {
2341 struct page *page;
2342
2343 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2344 if (!for_write)
2345 page = find_get_page_flags(mapping, index,
2346 FGP_LOCK | FGP_ACCESSED);
2347 else
2348 page = find_lock_page(mapping, index);
2349 if (page)
2350 return page;
2351
2352 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2353 f2fs_show_injection_info(F2FS_M_SB(mapping),
2354 FAULT_PAGE_ALLOC);
2355 return NULL;
2356 }
2357 }
2358
2359 if (!for_write)
2360 return grab_cache_page(mapping, index);
2361 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2362 }
2363
2364 static inline struct page *f2fs_pagecache_get_page(
2365 struct address_space *mapping, pgoff_t index,
2366 int fgp_flags, gfp_t gfp_mask)
2367 {
2368 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2369 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2370 return NULL;
2371 }
2372
2373 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2374 }
2375
2376 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2377 {
2378 char *src_kaddr = kmap(src);
2379 char *dst_kaddr = kmap(dst);
2380
2381 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2382 kunmap(dst);
2383 kunmap(src);
2384 }
2385
2386 static inline void f2fs_put_page(struct page *page, int unlock)
2387 {
2388 if (!page)
2389 return;
2390
2391 if (unlock) {
2392 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2393 unlock_page(page);
2394 }
2395 put_page(page);
2396 }
2397
2398 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2399 {
2400 if (dn->node_page)
2401 f2fs_put_page(dn->node_page, 1);
2402 if (dn->inode_page && dn->node_page != dn->inode_page)
2403 f2fs_put_page(dn->inode_page, 0);
2404 dn->node_page = NULL;
2405 dn->inode_page = NULL;
2406 }
2407
2408 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2409 size_t size)
2410 {
2411 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2412 }
2413
2414 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2415 gfp_t flags)
2416 {
2417 void *entry;
2418
2419 entry = kmem_cache_alloc(cachep, flags);
2420 if (!entry)
2421 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2422 return entry;
2423 }
2424
2425 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2426 {
2427 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2428 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2429 get_pages(sbi, F2FS_WB_CP_DATA) ||
2430 get_pages(sbi, F2FS_DIO_READ) ||
2431 get_pages(sbi, F2FS_DIO_WRITE))
2432 return true;
2433
2434 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2435 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2436 return true;
2437
2438 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2439 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2440 return true;
2441 return false;
2442 }
2443
2444 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2445 {
2446 if (sbi->gc_mode == GC_URGENT_HIGH)
2447 return true;
2448
2449 if (is_inflight_io(sbi, type))
2450 return false;
2451
2452 if (sbi->gc_mode == GC_URGENT_LOW &&
2453 (type == DISCARD_TIME || type == GC_TIME))
2454 return true;
2455
2456 return f2fs_time_over(sbi, type);
2457 }
2458
2459 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2460 unsigned long index, void *item)
2461 {
2462 while (radix_tree_insert(root, index, item))
2463 cond_resched();
2464 }
2465
2466 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2467
2468 static inline bool IS_INODE(struct page *page)
2469 {
2470 struct f2fs_node *p = F2FS_NODE(page);
2471
2472 return RAW_IS_INODE(p);
2473 }
2474
2475 static inline int offset_in_addr(struct f2fs_inode *i)
2476 {
2477 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2478 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2479 }
2480
2481 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2482 {
2483 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2484 }
2485
2486 static inline int f2fs_has_extra_attr(struct inode *inode);
2487 static inline block_t data_blkaddr(struct inode *inode,
2488 struct page *node_page, unsigned int offset)
2489 {
2490 struct f2fs_node *raw_node;
2491 __le32 *addr_array;
2492 int base = 0;
2493 bool is_inode = IS_INODE(node_page);
2494
2495 raw_node = F2FS_NODE(node_page);
2496
2497 if (is_inode) {
2498 if (!inode)
2499 /* from GC path only */
2500 base = offset_in_addr(&raw_node->i);
2501 else if (f2fs_has_extra_attr(inode))
2502 base = get_extra_isize(inode);
2503 }
2504
2505 addr_array = blkaddr_in_node(raw_node);
2506 return le32_to_cpu(addr_array[base + offset]);
2507 }
2508
2509 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2510 {
2511 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2512 }
2513
2514 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2515 {
2516 int mask;
2517
2518 addr += (nr >> 3);
2519 mask = 1 << (7 - (nr & 0x07));
2520 return mask & *addr;
2521 }
2522
2523 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2524 {
2525 int mask;
2526
2527 addr += (nr >> 3);
2528 mask = 1 << (7 - (nr & 0x07));
2529 *addr |= mask;
2530 }
2531
2532 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2533 {
2534 int mask;
2535
2536 addr += (nr >> 3);
2537 mask = 1 << (7 - (nr & 0x07));
2538 *addr &= ~mask;
2539 }
2540
2541 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2542 {
2543 int mask;
2544 int ret;
2545
2546 addr += (nr >> 3);
2547 mask = 1 << (7 - (nr & 0x07));
2548 ret = mask & *addr;
2549 *addr |= mask;
2550 return ret;
2551 }
2552
2553 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2554 {
2555 int mask;
2556 int ret;
2557
2558 addr += (nr >> 3);
2559 mask = 1 << (7 - (nr & 0x07));
2560 ret = mask & *addr;
2561 *addr &= ~mask;
2562 return ret;
2563 }
2564
2565 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2566 {
2567 int mask;
2568
2569 addr += (nr >> 3);
2570 mask = 1 << (7 - (nr & 0x07));
2571 *addr ^= mask;
2572 }
2573
2574 /*
2575 * On-disk inode flags (f2fs_inode::i_flags)
2576 */
2577 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2578 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2579 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2580 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2581 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2582 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2583 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2584 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2585 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2586 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2587 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2588
2589 /* Flags that should be inherited by new inodes from their parent. */
2590 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2591 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2592 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2593
2594 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2595 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2596 F2FS_CASEFOLD_FL))
2597
2598 /* Flags that are appropriate for non-directories/regular files. */
2599 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2600
2601 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2602 {
2603 if (S_ISDIR(mode))
2604 return flags;
2605 else if (S_ISREG(mode))
2606 return flags & F2FS_REG_FLMASK;
2607 else
2608 return flags & F2FS_OTHER_FLMASK;
2609 }
2610
2611 static inline void __mark_inode_dirty_flag(struct inode *inode,
2612 int flag, bool set)
2613 {
2614 switch (flag) {
2615 case FI_INLINE_XATTR:
2616 case FI_INLINE_DATA:
2617 case FI_INLINE_DENTRY:
2618 case FI_NEW_INODE:
2619 if (set)
2620 return;
2621 fallthrough;
2622 case FI_DATA_EXIST:
2623 case FI_INLINE_DOTS:
2624 case FI_PIN_FILE:
2625 f2fs_mark_inode_dirty_sync(inode, true);
2626 }
2627 }
2628
2629 static inline void set_inode_flag(struct inode *inode, int flag)
2630 {
2631 set_bit(flag, F2FS_I(inode)->flags);
2632 __mark_inode_dirty_flag(inode, flag, true);
2633 }
2634
2635 static inline int is_inode_flag_set(struct inode *inode, int flag)
2636 {
2637 return test_bit(flag, F2FS_I(inode)->flags);
2638 }
2639
2640 static inline void clear_inode_flag(struct inode *inode, int flag)
2641 {
2642 clear_bit(flag, F2FS_I(inode)->flags);
2643 __mark_inode_dirty_flag(inode, flag, false);
2644 }
2645
2646 static inline bool f2fs_verity_in_progress(struct inode *inode)
2647 {
2648 return IS_ENABLED(CONFIG_FS_VERITY) &&
2649 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2650 }
2651
2652 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2653 {
2654 F2FS_I(inode)->i_acl_mode = mode;
2655 set_inode_flag(inode, FI_ACL_MODE);
2656 f2fs_mark_inode_dirty_sync(inode, false);
2657 }
2658
2659 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2660 {
2661 if (inc)
2662 inc_nlink(inode);
2663 else
2664 drop_nlink(inode);
2665 f2fs_mark_inode_dirty_sync(inode, true);
2666 }
2667
2668 static inline void f2fs_i_blocks_write(struct inode *inode,
2669 block_t diff, bool add, bool claim)
2670 {
2671 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2672 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2673
2674 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2675 if (add) {
2676 if (claim)
2677 dquot_claim_block(inode, diff);
2678 else
2679 dquot_alloc_block_nofail(inode, diff);
2680 } else {
2681 dquot_free_block(inode, diff);
2682 }
2683
2684 f2fs_mark_inode_dirty_sync(inode, true);
2685 if (clean || recover)
2686 set_inode_flag(inode, FI_AUTO_RECOVER);
2687 }
2688
2689 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2690 {
2691 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2692 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2693
2694 if (i_size_read(inode) == i_size)
2695 return;
2696
2697 i_size_write(inode, i_size);
2698 f2fs_mark_inode_dirty_sync(inode, true);
2699 if (clean || recover)
2700 set_inode_flag(inode, FI_AUTO_RECOVER);
2701 }
2702
2703 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2704 {
2705 F2FS_I(inode)->i_current_depth = depth;
2706 f2fs_mark_inode_dirty_sync(inode, true);
2707 }
2708
2709 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2710 unsigned int count)
2711 {
2712 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715
2716 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2717 {
2718 F2FS_I(inode)->i_xattr_nid = xnid;
2719 f2fs_mark_inode_dirty_sync(inode, true);
2720 }
2721
2722 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2723 {
2724 F2FS_I(inode)->i_pino = pino;
2725 f2fs_mark_inode_dirty_sync(inode, true);
2726 }
2727
2728 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2729 {
2730 struct f2fs_inode_info *fi = F2FS_I(inode);
2731
2732 if (ri->i_inline & F2FS_INLINE_XATTR)
2733 set_bit(FI_INLINE_XATTR, fi->flags);
2734 if (ri->i_inline & F2FS_INLINE_DATA)
2735 set_bit(FI_INLINE_DATA, fi->flags);
2736 if (ri->i_inline & F2FS_INLINE_DENTRY)
2737 set_bit(FI_INLINE_DENTRY, fi->flags);
2738 if (ri->i_inline & F2FS_DATA_EXIST)
2739 set_bit(FI_DATA_EXIST, fi->flags);
2740 if (ri->i_inline & F2FS_INLINE_DOTS)
2741 set_bit(FI_INLINE_DOTS, fi->flags);
2742 if (ri->i_inline & F2FS_EXTRA_ATTR)
2743 set_bit(FI_EXTRA_ATTR, fi->flags);
2744 if (ri->i_inline & F2FS_PIN_FILE)
2745 set_bit(FI_PIN_FILE, fi->flags);
2746 }
2747
2748 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2749 {
2750 ri->i_inline = 0;
2751
2752 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2753 ri->i_inline |= F2FS_INLINE_XATTR;
2754 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2755 ri->i_inline |= F2FS_INLINE_DATA;
2756 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2757 ri->i_inline |= F2FS_INLINE_DENTRY;
2758 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2759 ri->i_inline |= F2FS_DATA_EXIST;
2760 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2761 ri->i_inline |= F2FS_INLINE_DOTS;
2762 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2763 ri->i_inline |= F2FS_EXTRA_ATTR;
2764 if (is_inode_flag_set(inode, FI_PIN_FILE))
2765 ri->i_inline |= F2FS_PIN_FILE;
2766 }
2767
2768 static inline int f2fs_has_extra_attr(struct inode *inode)
2769 {
2770 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2771 }
2772
2773 static inline int f2fs_has_inline_xattr(struct inode *inode)
2774 {
2775 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2776 }
2777
2778 static inline int f2fs_compressed_file(struct inode *inode)
2779 {
2780 return S_ISREG(inode->i_mode) &&
2781 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2782 }
2783
2784 static inline bool f2fs_need_compress_data(struct inode *inode)
2785 {
2786 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2787
2788 if (!f2fs_compressed_file(inode))
2789 return false;
2790
2791 if (compress_mode == COMPR_MODE_FS)
2792 return true;
2793 else if (compress_mode == COMPR_MODE_USER &&
2794 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2795 return true;
2796
2797 return false;
2798 }
2799
2800 static inline unsigned int addrs_per_inode(struct inode *inode)
2801 {
2802 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2803 get_inline_xattr_addrs(inode);
2804
2805 if (!f2fs_compressed_file(inode))
2806 return addrs;
2807 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2808 }
2809
2810 static inline unsigned int addrs_per_block(struct inode *inode)
2811 {
2812 if (!f2fs_compressed_file(inode))
2813 return DEF_ADDRS_PER_BLOCK;
2814 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2815 }
2816
2817 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2818 {
2819 struct f2fs_inode *ri = F2FS_INODE(page);
2820
2821 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2822 get_inline_xattr_addrs(inode)]);
2823 }
2824
2825 static inline int inline_xattr_size(struct inode *inode)
2826 {
2827 if (f2fs_has_inline_xattr(inode))
2828 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2829 return 0;
2830 }
2831
2832 static inline int f2fs_has_inline_data(struct inode *inode)
2833 {
2834 return is_inode_flag_set(inode, FI_INLINE_DATA);
2835 }
2836
2837 static inline int f2fs_exist_data(struct inode *inode)
2838 {
2839 return is_inode_flag_set(inode, FI_DATA_EXIST);
2840 }
2841
2842 static inline int f2fs_has_inline_dots(struct inode *inode)
2843 {
2844 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2845 }
2846
2847 static inline int f2fs_is_mmap_file(struct inode *inode)
2848 {
2849 return is_inode_flag_set(inode, FI_MMAP_FILE);
2850 }
2851
2852 static inline bool f2fs_is_pinned_file(struct inode *inode)
2853 {
2854 return is_inode_flag_set(inode, FI_PIN_FILE);
2855 }
2856
2857 static inline bool f2fs_is_atomic_file(struct inode *inode)
2858 {
2859 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2860 }
2861
2862 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2863 {
2864 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2865 }
2866
2867 static inline bool f2fs_is_volatile_file(struct inode *inode)
2868 {
2869 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2870 }
2871
2872 static inline bool f2fs_is_first_block_written(struct inode *inode)
2873 {
2874 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2875 }
2876
2877 static inline bool f2fs_is_drop_cache(struct inode *inode)
2878 {
2879 return is_inode_flag_set(inode, FI_DROP_CACHE);
2880 }
2881
2882 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2883 {
2884 struct f2fs_inode *ri = F2FS_INODE(page);
2885 int extra_size = get_extra_isize(inode);
2886
2887 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2888 }
2889
2890 static inline int f2fs_has_inline_dentry(struct inode *inode)
2891 {
2892 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2893 }
2894
2895 static inline int is_file(struct inode *inode, int type)
2896 {
2897 return F2FS_I(inode)->i_advise & type;
2898 }
2899
2900 static inline void set_file(struct inode *inode, int type)
2901 {
2902 F2FS_I(inode)->i_advise |= type;
2903 f2fs_mark_inode_dirty_sync(inode, true);
2904 }
2905
2906 static inline void clear_file(struct inode *inode, int type)
2907 {
2908 F2FS_I(inode)->i_advise &= ~type;
2909 f2fs_mark_inode_dirty_sync(inode, true);
2910 }
2911
2912 static inline bool f2fs_is_time_consistent(struct inode *inode)
2913 {
2914 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2915 return false;
2916 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2917 return false;
2918 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2919 return false;
2920 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2921 &F2FS_I(inode)->i_crtime))
2922 return false;
2923 return true;
2924 }
2925
2926 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2927 {
2928 bool ret;
2929
2930 if (dsync) {
2931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2932
2933 spin_lock(&sbi->inode_lock[DIRTY_META]);
2934 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2935 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2936 return ret;
2937 }
2938 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2939 file_keep_isize(inode) ||
2940 i_size_read(inode) & ~PAGE_MASK)
2941 return false;
2942
2943 if (!f2fs_is_time_consistent(inode))
2944 return false;
2945
2946 spin_lock(&F2FS_I(inode)->i_size_lock);
2947 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2948 spin_unlock(&F2FS_I(inode)->i_size_lock);
2949
2950 return ret;
2951 }
2952
2953 static inline bool f2fs_readonly(struct super_block *sb)
2954 {
2955 return sb_rdonly(sb);
2956 }
2957
2958 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2959 {
2960 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2961 }
2962
2963 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2964 {
2965 if (len == 1 && name[0] == '.')
2966 return true;
2967
2968 if (len == 2 && name[0] == '.' && name[1] == '.')
2969 return true;
2970
2971 return false;
2972 }
2973
2974 static inline bool f2fs_may_extent_tree(struct inode *inode)
2975 {
2976 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2977
2978 if (!test_opt(sbi, EXTENT_CACHE) ||
2979 is_inode_flag_set(inode, FI_NO_EXTENT) ||
2980 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2981 return false;
2982
2983 /*
2984 * for recovered files during mount do not create extents
2985 * if shrinker is not registered.
2986 */
2987 if (list_empty(&sbi->s_list))
2988 return false;
2989
2990 return S_ISREG(inode->i_mode);
2991 }
2992
2993 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2994 size_t size, gfp_t flags)
2995 {
2996 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2997 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2998 return NULL;
2999 }
3000
3001 return kmalloc(size, flags);
3002 }
3003
3004 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3005 size_t size, gfp_t flags)
3006 {
3007 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3008 }
3009
3010 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3011 size_t size, gfp_t flags)
3012 {
3013 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3014 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3015 return NULL;
3016 }
3017
3018 return kvmalloc(size, flags);
3019 }
3020
3021 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3022 size_t size, gfp_t flags)
3023 {
3024 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3025 }
3026
3027 static inline int get_extra_isize(struct inode *inode)
3028 {
3029 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3030 }
3031
3032 static inline int get_inline_xattr_addrs(struct inode *inode)
3033 {
3034 return F2FS_I(inode)->i_inline_xattr_size;
3035 }
3036
3037 #define f2fs_get_inode_mode(i) \
3038 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3039 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3040
3041 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3042 (offsetof(struct f2fs_inode, i_extra_end) - \
3043 offsetof(struct f2fs_inode, i_extra_isize)) \
3044
3045 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3046 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3047 ((offsetof(typeof(*(f2fs_inode)), field) + \
3048 sizeof((f2fs_inode)->field)) \
3049 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3050
3051 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3052 #define MIN_IOSTAT_PERIOD_MS 100
3053 /* maximum period of iostat tracing is 1 day */
3054 #define MAX_IOSTAT_PERIOD_MS 8640000
3055
3056 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3057 {
3058 int i;
3059
3060 spin_lock(&sbi->iostat_lock);
3061 for (i = 0; i < NR_IO_TYPE; i++) {
3062 sbi->rw_iostat[i] = 0;
3063 sbi->prev_rw_iostat[i] = 0;
3064 }
3065 spin_unlock(&sbi->iostat_lock);
3066 }
3067
3068 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3069
3070 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3071 enum iostat_type type, unsigned long long io_bytes)
3072 {
3073 if (!sbi->iostat_enable)
3074 return;
3075 spin_lock(&sbi->iostat_lock);
3076 sbi->rw_iostat[type] += io_bytes;
3077
3078 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3079 sbi->rw_iostat[APP_BUFFERED_IO] =
3080 sbi->rw_iostat[APP_WRITE_IO] -
3081 sbi->rw_iostat[APP_DIRECT_IO];
3082
3083 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3084 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3085 sbi->rw_iostat[APP_READ_IO] -
3086 sbi->rw_iostat[APP_DIRECT_READ_IO];
3087 spin_unlock(&sbi->iostat_lock);
3088
3089 f2fs_record_iostat(sbi);
3090 }
3091
3092 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3093
3094 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3095
3096 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3097 block_t blkaddr, int type);
3098 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3099 block_t blkaddr, int type)
3100 {
3101 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3102 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3103 blkaddr, type);
3104 f2fs_bug_on(sbi, 1);
3105 }
3106 }
3107
3108 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3109 {
3110 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3111 blkaddr == COMPRESS_ADDR)
3112 return false;
3113 return true;
3114 }
3115
3116 static inline void f2fs_set_page_private(struct page *page,
3117 unsigned long data)
3118 {
3119 if (PagePrivate(page))
3120 return;
3121
3122 attach_page_private(page, (void *)data);
3123 }
3124
3125 static inline void f2fs_clear_page_private(struct page *page)
3126 {
3127 detach_page_private(page);
3128 }
3129
3130 /*
3131 * file.c
3132 */
3133 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3134 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3135 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3136 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3137 int f2fs_truncate(struct inode *inode);
3138 int f2fs_getattr(const struct path *path, struct kstat *stat,
3139 u32 request_mask, unsigned int flags);
3140 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3141 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3142 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3143 int f2fs_precache_extents(struct inode *inode);
3144 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3145 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3146 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3147 int f2fs_pin_file_control(struct inode *inode, bool inc);
3148
3149 /*
3150 * inode.c
3151 */
3152 void f2fs_set_inode_flags(struct inode *inode);
3153 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3154 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3155 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3156 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3157 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3158 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3159 void f2fs_update_inode_page(struct inode *inode);
3160 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3161 void f2fs_evict_inode(struct inode *inode);
3162 void f2fs_handle_failed_inode(struct inode *inode);
3163
3164 /*
3165 * namei.c
3166 */
3167 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3168 bool hot, bool set);
3169 struct dentry *f2fs_get_parent(struct dentry *child);
3170
3171 /*
3172 * dir.c
3173 */
3174 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3175 int f2fs_init_casefolded_name(const struct inode *dir,
3176 struct f2fs_filename *fname);
3177 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3178 int lookup, struct f2fs_filename *fname);
3179 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3180 struct f2fs_filename *fname);
3181 void f2fs_free_filename(struct f2fs_filename *fname);
3182 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3183 const struct f2fs_filename *fname, int *max_slots);
3184 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3185 unsigned int start_pos, struct fscrypt_str *fstr);
3186 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3187 struct f2fs_dentry_ptr *d);
3188 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3189 const struct f2fs_filename *fname, struct page *dpage);
3190 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3191 unsigned int current_depth);
3192 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3193 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3194 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3195 const struct f2fs_filename *fname,
3196 struct page **res_page);
3197 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3198 const struct qstr *child, struct page **res_page);
3199 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3200 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3201 struct page **page);
3202 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3203 struct page *page, struct inode *inode);
3204 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3205 const struct f2fs_filename *fname);
3206 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3207 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3208 unsigned int bit_pos);
3209 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3210 struct inode *inode, nid_t ino, umode_t mode);
3211 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3212 struct inode *inode, nid_t ino, umode_t mode);
3213 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3214 struct inode *inode, nid_t ino, umode_t mode);
3215 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3216 struct inode *dir, struct inode *inode);
3217 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3218 bool f2fs_empty_dir(struct inode *dir);
3219
3220 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3221 {
3222 if (fscrypt_is_nokey_name(dentry))
3223 return -ENOKEY;
3224 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3225 inode, inode->i_ino, inode->i_mode);
3226 }
3227
3228 /*
3229 * super.c
3230 */
3231 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3232 void f2fs_inode_synced(struct inode *inode);
3233 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3234 int f2fs_quota_sync(struct super_block *sb, int type);
3235 void f2fs_quota_off_umount(struct super_block *sb);
3236 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3237 int f2fs_sync_fs(struct super_block *sb, int sync);
3238 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3239
3240 /*
3241 * hash.c
3242 */
3243 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3244
3245 /*
3246 * node.c
3247 */
3248 struct dnode_of_data;
3249 struct node_info;
3250
3251 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3252 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3253 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3254 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3255 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3256 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3257 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3258 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3259 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3260 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3261 struct node_info *ni);
3262 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3263 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3264 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3265 int f2fs_truncate_xattr_node(struct inode *inode);
3266 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3267 unsigned int seq_id);
3268 int f2fs_remove_inode_page(struct inode *inode);
3269 struct page *f2fs_new_inode_page(struct inode *inode);
3270 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3271 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3272 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3273 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3274 int f2fs_move_node_page(struct page *node_page, int gc_type);
3275 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3276 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3277 struct writeback_control *wbc, bool atomic,
3278 unsigned int *seq_id);
3279 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3280 struct writeback_control *wbc,
3281 bool do_balance, enum iostat_type io_type);
3282 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3283 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3284 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3285 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3286 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3287 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3288 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3289 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3290 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3291 unsigned int segno, struct f2fs_summary_block *sum);
3292 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3293 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3294 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3295 int __init f2fs_create_node_manager_caches(void);
3296 void f2fs_destroy_node_manager_caches(void);
3297
3298 /*
3299 * segment.c
3300 */
3301 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3302 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3303 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3304 void f2fs_drop_inmem_pages(struct inode *inode);
3305 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3306 int f2fs_commit_inmem_pages(struct inode *inode);
3307 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3308 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3309 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3310 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3311 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3312 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3313 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3314 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3315 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3316 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3317 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3318 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3319 struct cp_control *cpc);
3320 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3321 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3322 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3323 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3324 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3325 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3326 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3327 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3328 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3329 unsigned int *newseg, bool new_sec, int dir);
3330 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3331 unsigned int start, unsigned int end);
3332 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3333 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3334 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3335 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3336 struct cp_control *cpc);
3337 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3338 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3339 block_t blk_addr);
3340 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3341 enum iostat_type io_type);
3342 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3343 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3344 struct f2fs_io_info *fio);
3345 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3346 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3347 block_t old_blkaddr, block_t new_blkaddr,
3348 bool recover_curseg, bool recover_newaddr,
3349 bool from_gc);
3350 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3351 block_t old_addr, block_t new_addr,
3352 unsigned char version, bool recover_curseg,
3353 bool recover_newaddr);
3354 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3355 block_t old_blkaddr, block_t *new_blkaddr,
3356 struct f2fs_summary *sum, int type,
3357 struct f2fs_io_info *fio);
3358 void f2fs_wait_on_page_writeback(struct page *page,
3359 enum page_type type, bool ordered, bool locked);
3360 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3361 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3362 block_t len);
3363 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3364 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3365 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3366 unsigned int val, int alloc);
3367 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3368 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3369 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3370 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3371 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3372 int __init f2fs_create_segment_manager_caches(void);
3373 void f2fs_destroy_segment_manager_caches(void);
3374 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3375 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3376 enum page_type type, enum temp_type temp);
3377 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3378 unsigned int segno);
3379 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3380 unsigned int segno);
3381
3382 /*
3383 * checkpoint.c
3384 */
3385 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3386 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3387 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3388 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3389 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3390 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3391 block_t blkaddr, int type);
3392 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3393 int type, bool sync);
3394 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3395 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3396 long nr_to_write, enum iostat_type io_type);
3397 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3398 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3399 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3400 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3401 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3402 unsigned int devidx, int type);
3403 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3404 unsigned int devidx, int type);
3405 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3406 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3407 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3408 void f2fs_add_orphan_inode(struct inode *inode);
3409 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3410 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3411 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3412 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3413 void f2fs_remove_dirty_inode(struct inode *inode);
3414 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3415 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3416 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3417 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3418 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3419 int __init f2fs_create_checkpoint_caches(void);
3420 void f2fs_destroy_checkpoint_caches(void);
3421
3422 /*
3423 * data.c
3424 */
3425 int __init f2fs_init_bioset(void);
3426 void f2fs_destroy_bioset(void);
3427 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3428 int f2fs_init_bio_entry_cache(void);
3429 void f2fs_destroy_bio_entry_cache(void);
3430 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3431 struct bio *bio, enum page_type type);
3432 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3433 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3434 struct inode *inode, struct page *page,
3435 nid_t ino, enum page_type type);
3436 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3437 struct bio **bio, struct page *page);
3438 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3439 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3440 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3441 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3442 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3443 block_t blk_addr, struct bio *bio);
3444 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3445 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3446 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3447 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3448 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3449 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3450 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3451 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3452 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3453 int op_flags, bool for_write);
3454 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3455 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3456 bool for_write);
3457 struct page *f2fs_get_new_data_page(struct inode *inode,
3458 struct page *ipage, pgoff_t index, bool new_i_size);
3459 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3460 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3461 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3462 int create, int flag);
3463 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3464 u64 start, u64 len);
3465 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3466 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3467 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3468 int f2fs_write_single_data_page(struct page *page, int *submitted,
3469 struct bio **bio, sector_t *last_block,
3470 struct writeback_control *wbc,
3471 enum iostat_type io_type,
3472 int compr_blocks);
3473 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3474 unsigned int length);
3475 int f2fs_release_page(struct page *page, gfp_t wait);
3476 #ifdef CONFIG_MIGRATION
3477 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3478 struct page *page, enum migrate_mode mode);
3479 #endif
3480 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3481 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3482 int f2fs_init_post_read_processing(void);
3483 void f2fs_destroy_post_read_processing(void);
3484 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3485 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3486
3487 /*
3488 * gc.c
3489 */
3490 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3491 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3492 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3493 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3494 unsigned int segno);
3495 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3496 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3497 int __init f2fs_create_garbage_collection_cache(void);
3498 void f2fs_destroy_garbage_collection_cache(void);
3499
3500 /*
3501 * recovery.c
3502 */
3503 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3504 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3505
3506 /*
3507 * debug.c
3508 */
3509 #ifdef CONFIG_F2FS_STAT_FS
3510 struct f2fs_stat_info {
3511 struct list_head stat_list;
3512 struct f2fs_sb_info *sbi;
3513 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3514 int main_area_segs, main_area_sections, main_area_zones;
3515 unsigned long long hit_largest, hit_cached, hit_rbtree;
3516 unsigned long long hit_total, total_ext;
3517 int ext_tree, zombie_tree, ext_node;
3518 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3519 int ndirty_data, ndirty_qdata;
3520 int inmem_pages;
3521 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3522 int nats, dirty_nats, sits, dirty_sits;
3523 int free_nids, avail_nids, alloc_nids;
3524 int total_count, utilization;
3525 int bg_gc, nr_wb_cp_data, nr_wb_data;
3526 int nr_rd_data, nr_rd_node, nr_rd_meta;
3527 int nr_dio_read, nr_dio_write;
3528 unsigned int io_skip_bggc, other_skip_bggc;
3529 int nr_flushing, nr_flushed, flush_list_empty;
3530 int nr_discarding, nr_discarded;
3531 int nr_discard_cmd;
3532 unsigned int undiscard_blks;
3533 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3534 int compr_inode;
3535 unsigned long long compr_blocks;
3536 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3537 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3538 unsigned int bimodal, avg_vblocks;
3539 int util_free, util_valid, util_invalid;
3540 int rsvd_segs, overp_segs;
3541 int dirty_count, node_pages, meta_pages;
3542 int prefree_count, call_count, cp_count, bg_cp_count;
3543 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3544 int bg_node_segs, bg_data_segs;
3545 int tot_blks, data_blks, node_blks;
3546 int bg_data_blks, bg_node_blks;
3547 unsigned long long skipped_atomic_files[2];
3548 int curseg[NR_CURSEG_TYPE];
3549 int cursec[NR_CURSEG_TYPE];
3550 int curzone[NR_CURSEG_TYPE];
3551 unsigned int dirty_seg[NR_CURSEG_TYPE];
3552 unsigned int full_seg[NR_CURSEG_TYPE];
3553 unsigned int valid_blks[NR_CURSEG_TYPE];
3554
3555 unsigned int meta_count[META_MAX];
3556 unsigned int segment_count[2];
3557 unsigned int block_count[2];
3558 unsigned int inplace_count;
3559 unsigned long long base_mem, cache_mem, page_mem;
3560 };
3561
3562 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3563 {
3564 return (struct f2fs_stat_info *)sbi->stat_info;
3565 }
3566
3567 #define stat_inc_cp_count(si) ((si)->cp_count++)
3568 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3569 #define stat_inc_call_count(si) ((si)->call_count++)
3570 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3571 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3572 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3573 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3574 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3575 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3576 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3577 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3578 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3579 #define stat_inc_inline_xattr(inode) \
3580 do { \
3581 if (f2fs_has_inline_xattr(inode)) \
3582 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3583 } while (0)
3584 #define stat_dec_inline_xattr(inode) \
3585 do { \
3586 if (f2fs_has_inline_xattr(inode)) \
3587 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3588 } while (0)
3589 #define stat_inc_inline_inode(inode) \
3590 do { \
3591 if (f2fs_has_inline_data(inode)) \
3592 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3593 } while (0)
3594 #define stat_dec_inline_inode(inode) \
3595 do { \
3596 if (f2fs_has_inline_data(inode)) \
3597 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3598 } while (0)
3599 #define stat_inc_inline_dir(inode) \
3600 do { \
3601 if (f2fs_has_inline_dentry(inode)) \
3602 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3603 } while (0)
3604 #define stat_dec_inline_dir(inode) \
3605 do { \
3606 if (f2fs_has_inline_dentry(inode)) \
3607 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3608 } while (0)
3609 #define stat_inc_compr_inode(inode) \
3610 do { \
3611 if (f2fs_compressed_file(inode)) \
3612 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3613 } while (0)
3614 #define stat_dec_compr_inode(inode) \
3615 do { \
3616 if (f2fs_compressed_file(inode)) \
3617 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3618 } while (0)
3619 #define stat_add_compr_blocks(inode, blocks) \
3620 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3621 #define stat_sub_compr_blocks(inode, blocks) \
3622 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3623 #define stat_inc_meta_count(sbi, blkaddr) \
3624 do { \
3625 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3626 atomic_inc(&(sbi)->meta_count[META_CP]); \
3627 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3628 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3629 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3630 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3631 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3632 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3633 } while (0)
3634 #define stat_inc_seg_type(sbi, curseg) \
3635 ((sbi)->segment_count[(curseg)->alloc_type]++)
3636 #define stat_inc_block_count(sbi, curseg) \
3637 ((sbi)->block_count[(curseg)->alloc_type]++)
3638 #define stat_inc_inplace_blocks(sbi) \
3639 (atomic_inc(&(sbi)->inplace_count))
3640 #define stat_update_max_atomic_write(inode) \
3641 do { \
3642 int cur = F2FS_I_SB(inode)->atomic_files; \
3643 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3644 if (cur > max) \
3645 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3646 } while (0)
3647 #define stat_inc_volatile_write(inode) \
3648 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3649 #define stat_dec_volatile_write(inode) \
3650 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3651 #define stat_update_max_volatile_write(inode) \
3652 do { \
3653 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3654 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3655 if (cur > max) \
3656 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3657 } while (0)
3658 #define stat_inc_seg_count(sbi, type, gc_type) \
3659 do { \
3660 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3661 si->tot_segs++; \
3662 if ((type) == SUM_TYPE_DATA) { \
3663 si->data_segs++; \
3664 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3665 } else { \
3666 si->node_segs++; \
3667 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3668 } \
3669 } while (0)
3670
3671 #define stat_inc_tot_blk_count(si, blks) \
3672 ((si)->tot_blks += (blks))
3673
3674 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3675 do { \
3676 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3677 stat_inc_tot_blk_count(si, blks); \
3678 si->data_blks += (blks); \
3679 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3680 } while (0)
3681
3682 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3683 do { \
3684 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3685 stat_inc_tot_blk_count(si, blks); \
3686 si->node_blks += (blks); \
3687 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3688 } while (0)
3689
3690 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3691 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3692 void __init f2fs_create_root_stats(void);
3693 void f2fs_destroy_root_stats(void);
3694 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3695 #else
3696 #define stat_inc_cp_count(si) do { } while (0)
3697 #define stat_inc_bg_cp_count(si) do { } while (0)
3698 #define stat_inc_call_count(si) do { } while (0)
3699 #define stat_inc_bggc_count(si) do { } while (0)
3700 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3701 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3702 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3703 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3704 #define stat_inc_total_hit(sbi) do { } while (0)
3705 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3706 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3707 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3708 #define stat_inc_inline_xattr(inode) do { } while (0)
3709 #define stat_dec_inline_xattr(inode) do { } while (0)
3710 #define stat_inc_inline_inode(inode) do { } while (0)
3711 #define stat_dec_inline_inode(inode) do { } while (0)
3712 #define stat_inc_inline_dir(inode) do { } while (0)
3713 #define stat_dec_inline_dir(inode) do { } while (0)
3714 #define stat_inc_compr_inode(inode) do { } while (0)
3715 #define stat_dec_compr_inode(inode) do { } while (0)
3716 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3717 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3718 #define stat_inc_atomic_write(inode) do { } while (0)
3719 #define stat_dec_atomic_write(inode) do { } while (0)
3720 #define stat_update_max_atomic_write(inode) do { } while (0)
3721 #define stat_inc_volatile_write(inode) do { } while (0)
3722 #define stat_dec_volatile_write(inode) do { } while (0)
3723 #define stat_update_max_volatile_write(inode) do { } while (0)
3724 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3725 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3726 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3727 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3728 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3729 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3730 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3731 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3732
3733 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3734 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3735 static inline void __init f2fs_create_root_stats(void) { }
3736 static inline void f2fs_destroy_root_stats(void) { }
3737 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3738 #endif
3739
3740 extern const struct file_operations f2fs_dir_operations;
3741 extern const struct file_operations f2fs_file_operations;
3742 extern const struct inode_operations f2fs_file_inode_operations;
3743 extern const struct address_space_operations f2fs_dblock_aops;
3744 extern const struct address_space_operations f2fs_node_aops;
3745 extern const struct address_space_operations f2fs_meta_aops;
3746 extern const struct inode_operations f2fs_dir_inode_operations;
3747 extern const struct inode_operations f2fs_symlink_inode_operations;
3748 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3749 extern const struct inode_operations f2fs_special_inode_operations;
3750 extern struct kmem_cache *f2fs_inode_entry_slab;
3751
3752 /*
3753 * inline.c
3754 */
3755 bool f2fs_may_inline_data(struct inode *inode);
3756 bool f2fs_may_inline_dentry(struct inode *inode);
3757 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3758 void f2fs_truncate_inline_inode(struct inode *inode,
3759 struct page *ipage, u64 from);
3760 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3761 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3762 int f2fs_convert_inline_inode(struct inode *inode);
3763 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3764 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3765 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3766 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3767 const struct f2fs_filename *fname,
3768 struct page **res_page);
3769 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3770 struct page *ipage);
3771 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3772 struct inode *inode, nid_t ino, umode_t mode);
3773 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3774 struct page *page, struct inode *dir,
3775 struct inode *inode);
3776 bool f2fs_empty_inline_dir(struct inode *dir);
3777 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3778 struct fscrypt_str *fstr);
3779 int f2fs_inline_data_fiemap(struct inode *inode,
3780 struct fiemap_extent_info *fieinfo,
3781 __u64 start, __u64 len);
3782
3783 /*
3784 * shrinker.c
3785 */
3786 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3787 struct shrink_control *sc);
3788 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3789 struct shrink_control *sc);
3790 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3791 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3792
3793 /*
3794 * extent_cache.c
3795 */
3796 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3797 struct rb_entry *cached_re, unsigned int ofs);
3798 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3799 struct rb_root_cached *root,
3800 struct rb_node **parent,
3801 unsigned long long key, bool *left_most);
3802 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3803 struct rb_root_cached *root,
3804 struct rb_node **parent,
3805 unsigned int ofs, bool *leftmost);
3806 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3807 struct rb_entry *cached_re, unsigned int ofs,
3808 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3809 struct rb_node ***insert_p, struct rb_node **insert_parent,
3810 bool force, bool *leftmost);
3811 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3812 struct rb_root_cached *root, bool check_key);
3813 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3814 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3815 void f2fs_drop_extent_tree(struct inode *inode);
3816 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3817 void f2fs_destroy_extent_tree(struct inode *inode);
3818 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3819 struct extent_info *ei);
3820 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3821 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3822 pgoff_t fofs, block_t blkaddr, unsigned int len);
3823 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3824 int __init f2fs_create_extent_cache(void);
3825 void f2fs_destroy_extent_cache(void);
3826
3827 /*
3828 * sysfs.c
3829 */
3830 int __init f2fs_init_sysfs(void);
3831 void f2fs_exit_sysfs(void);
3832 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3833 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3834
3835 /* verity.c */
3836 extern const struct fsverity_operations f2fs_verityops;
3837
3838 /*
3839 * crypto support
3840 */
3841 static inline bool f2fs_encrypted_file(struct inode *inode)
3842 {
3843 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3844 }
3845
3846 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3847 {
3848 #ifdef CONFIG_FS_ENCRYPTION
3849 file_set_encrypt(inode);
3850 f2fs_set_inode_flags(inode);
3851 #endif
3852 }
3853
3854 /*
3855 * Returns true if the reads of the inode's data need to undergo some
3856 * postprocessing step, like decryption or authenticity verification.
3857 */
3858 static inline bool f2fs_post_read_required(struct inode *inode)
3859 {
3860 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3861 f2fs_compressed_file(inode);
3862 }
3863
3864 /*
3865 * compress.c
3866 */
3867 #ifdef CONFIG_F2FS_FS_COMPRESSION
3868 bool f2fs_is_compressed_page(struct page *page);
3869 struct page *f2fs_compress_control_page(struct page *page);
3870 int f2fs_prepare_compress_overwrite(struct inode *inode,
3871 struct page **pagep, pgoff_t index, void **fsdata);
3872 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3873 pgoff_t index, unsigned copied);
3874 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3875 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3876 bool f2fs_is_compress_backend_ready(struct inode *inode);
3877 int f2fs_init_compress_mempool(void);
3878 void f2fs_destroy_compress_mempool(void);
3879 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3880 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3881 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3882 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3883 int f2fs_write_multi_pages(struct compress_ctx *cc,
3884 int *submitted,
3885 struct writeback_control *wbc,
3886 enum iostat_type io_type);
3887 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3888 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3889 unsigned nr_pages, sector_t *last_block_in_bio,
3890 bool is_readahead, bool for_write);
3891 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3892 void f2fs_free_dic(struct decompress_io_ctx *dic);
3893 void f2fs_decompress_end_io(struct page **rpages,
3894 unsigned int cluster_size, bool err, bool verity);
3895 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3896 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3897 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3898 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3899 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3900 int __init f2fs_init_compress_cache(void);
3901 void f2fs_destroy_compress_cache(void);
3902 #else
3903 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3904 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3905 {
3906 if (!f2fs_compressed_file(inode))
3907 return true;
3908 /* not support compression */
3909 return false;
3910 }
3911 static inline struct page *f2fs_compress_control_page(struct page *page)
3912 {
3913 WARN_ON_ONCE(1);
3914 return ERR_PTR(-EINVAL);
3915 }
3916 static inline int f2fs_init_compress_mempool(void) { return 0; }
3917 static inline void f2fs_destroy_compress_mempool(void) { }
3918 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3919 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3920 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3921 static inline void f2fs_destroy_compress_cache(void) { }
3922 #endif
3923
3924 static inline void set_compress_context(struct inode *inode)
3925 {
3926 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3927
3928 F2FS_I(inode)->i_compress_algorithm =
3929 F2FS_OPTION(sbi).compress_algorithm;
3930 F2FS_I(inode)->i_log_cluster_size =
3931 F2FS_OPTION(sbi).compress_log_size;
3932 F2FS_I(inode)->i_compress_flag =
3933 F2FS_OPTION(sbi).compress_chksum ?
3934 1 << COMPRESS_CHKSUM : 0;
3935 F2FS_I(inode)->i_cluster_size =
3936 1 << F2FS_I(inode)->i_log_cluster_size;
3937 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3938 set_inode_flag(inode, FI_COMPRESSED_FILE);
3939 stat_inc_compr_inode(inode);
3940 f2fs_mark_inode_dirty_sync(inode, true);
3941 }
3942
3943 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3944 {
3945 struct f2fs_inode_info *fi = F2FS_I(inode);
3946
3947 if (!f2fs_compressed_file(inode))
3948 return true;
3949 if (S_ISREG(inode->i_mode) &&
3950 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3951 return false;
3952
3953 fi->i_flags &= ~F2FS_COMPR_FL;
3954 stat_dec_compr_inode(inode);
3955 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3956 f2fs_mark_inode_dirty_sync(inode, true);
3957 return true;
3958 }
3959
3960 #define F2FS_FEATURE_FUNCS(name, flagname) \
3961 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3962 { \
3963 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3964 }
3965
3966 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3967 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3968 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3969 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3970 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3971 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3972 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3973 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3974 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3975 F2FS_FEATURE_FUNCS(verity, VERITY);
3976 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3977 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3978 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3979
3980 #ifdef CONFIG_BLK_DEV_ZONED
3981 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3982 block_t blkaddr)
3983 {
3984 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3985
3986 return test_bit(zno, FDEV(devi).blkz_seq);
3987 }
3988 #endif
3989
3990 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3991 {
3992 return f2fs_sb_has_blkzoned(sbi);
3993 }
3994
3995 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3996 {
3997 return blk_queue_discard(bdev_get_queue(bdev)) ||
3998 bdev_is_zoned(bdev);
3999 }
4000
4001 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4002 {
4003 int i;
4004
4005 if (!f2fs_is_multi_device(sbi))
4006 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4007
4008 for (i = 0; i < sbi->s_ndevs; i++)
4009 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4010 return true;
4011 return false;
4012 }
4013
4014 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4015 {
4016 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4017 f2fs_hw_should_discard(sbi);
4018 }
4019
4020 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4021 {
4022 int i;
4023
4024 if (!f2fs_is_multi_device(sbi))
4025 return bdev_read_only(sbi->sb->s_bdev);
4026
4027 for (i = 0; i < sbi->s_ndevs; i++)
4028 if (bdev_read_only(FDEV(i).bdev))
4029 return true;
4030 return false;
4031 }
4032
4033 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4034 {
4035 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4036 }
4037
4038 static inline bool f2fs_may_compress(struct inode *inode)
4039 {
4040 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4041 f2fs_is_atomic_file(inode) ||
4042 f2fs_is_volatile_file(inode))
4043 return false;
4044 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4045 }
4046
4047 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4048 u64 blocks, bool add)
4049 {
4050 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4051 struct f2fs_inode_info *fi = F2FS_I(inode);
4052
4053 /* don't update i_compr_blocks if saved blocks were released */
4054 if (!add && !atomic_read(&fi->i_compr_blocks))
4055 return;
4056
4057 if (add) {
4058 atomic_add(diff, &fi->i_compr_blocks);
4059 stat_add_compr_blocks(inode, diff);
4060 } else {
4061 atomic_sub(diff, &fi->i_compr_blocks);
4062 stat_sub_compr_blocks(inode, diff);
4063 }
4064 f2fs_mark_inode_dirty_sync(inode, true);
4065 }
4066
4067 static inline int block_unaligned_IO(struct inode *inode,
4068 struct kiocb *iocb, struct iov_iter *iter)
4069 {
4070 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4071 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4072 loff_t offset = iocb->ki_pos;
4073 unsigned long align = offset | iov_iter_alignment(iter);
4074
4075 return align & blocksize_mask;
4076 }
4077
4078 static inline int allow_outplace_dio(struct inode *inode,
4079 struct kiocb *iocb, struct iov_iter *iter)
4080 {
4081 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4082 int rw = iov_iter_rw(iter);
4083
4084 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4085 !block_unaligned_IO(inode, iocb, iter));
4086 }
4087
4088 static inline bool f2fs_force_buffered_io(struct inode *inode,
4089 struct kiocb *iocb, struct iov_iter *iter)
4090 {
4091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4092 int rw = iov_iter_rw(iter);
4093
4094 if (f2fs_post_read_required(inode))
4095 return true;
4096 if (f2fs_is_multi_device(sbi))
4097 return true;
4098 /*
4099 * for blkzoned device, fallback direct IO to buffered IO, so
4100 * all IOs can be serialized by log-structured write.
4101 */
4102 if (f2fs_sb_has_blkzoned(sbi))
4103 return true;
4104 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4105 if (block_unaligned_IO(inode, iocb, iter))
4106 return true;
4107 if (F2FS_IO_ALIGNED(sbi))
4108 return true;
4109 }
4110 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4111 !IS_SWAPFILE(inode))
4112 return true;
4113
4114 return false;
4115 }
4116
4117 #ifdef CONFIG_F2FS_FAULT_INJECTION
4118 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4119 unsigned int type);
4120 #else
4121 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4122 #endif
4123
4124 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4125 {
4126 #ifdef CONFIG_QUOTA
4127 if (f2fs_sb_has_quota_ino(sbi))
4128 return true;
4129 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4130 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4131 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4132 return true;
4133 #endif
4134 return false;
4135 }
4136
4137 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4138 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4139
4140 #endif /* _LINUX_F2FS_H */