]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'char-misc-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /* for the list of directory inodes */
140 struct dir_inode_entry {
141 struct list_head list; /* list head */
142 struct inode *inode; /* vfs inode pointer */
143 };
144
145 /* for the list of blockaddresses to be discarded */
146 struct discard_entry {
147 struct list_head list; /* list head */
148 block_t blkaddr; /* block address to be discarded */
149 int len; /* # of consecutive blocks of the discard */
150 };
151
152 /* for the list of fsync inodes, used only during recovery */
153 struct fsync_inode_entry {
154 struct list_head list; /* list head */
155 struct inode *inode; /* vfs inode pointer */
156 block_t blkaddr; /* block address locating the last fsync */
157 block_t last_dentry; /* block address locating the last dentry */
158 block_t last_inode; /* block address locating the last inode */
159 };
160
161 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
162 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
163
164 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
165 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
166 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
167 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
168
169 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
170 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
171
172 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
173 {
174 int before = nats_in_cursum(rs);
175 rs->n_nats = cpu_to_le16(before + i);
176 return before;
177 }
178
179 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
180 {
181 int before = sits_in_cursum(rs);
182 rs->n_sits = cpu_to_le16(before + i);
183 return before;
184 }
185
186 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
187 int type)
188 {
189 if (type == NAT_JOURNAL)
190 return size <= MAX_NAT_JENTRIES(sum);
191 return size <= MAX_SIT_JENTRIES(sum);
192 }
193
194 /*
195 * ioctl commands
196 */
197 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
198 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
199
200 #define F2FS_IOCTL_MAGIC 0xf5
201 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
202 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
203 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
204
205 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
206 /*
207 * ioctl commands in 32 bit emulation
208 */
209 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
210 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
211 #endif
212
213 /*
214 * For INODE and NODE manager
215 */
216 /* for directory operations */
217 struct f2fs_dentry_ptr {
218 const void *bitmap;
219 struct f2fs_dir_entry *dentry;
220 __u8 (*filename)[F2FS_SLOT_LEN];
221 int max;
222 };
223
224 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
225 void *src, int type)
226 {
227 if (type == 1) {
228 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
229 d->max = NR_DENTRY_IN_BLOCK;
230 d->bitmap = &t->dentry_bitmap;
231 d->dentry = t->dentry;
232 d->filename = t->filename;
233 } else {
234 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
235 d->max = NR_INLINE_DENTRY;
236 d->bitmap = &t->dentry_bitmap;
237 d->dentry = t->dentry;
238 d->filename = t->filename;
239 }
240 }
241
242 /*
243 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
244 * as its node offset to distinguish from index node blocks.
245 * But some bits are used to mark the node block.
246 */
247 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
248 >> OFFSET_BIT_SHIFT)
249 enum {
250 ALLOC_NODE, /* allocate a new node page if needed */
251 LOOKUP_NODE, /* look up a node without readahead */
252 LOOKUP_NODE_RA, /*
253 * look up a node with readahead called
254 * by get_data_block.
255 */
256 };
257
258 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
259
260 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
261
262 /* for in-memory extent cache entry */
263 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
264
265 struct extent_info {
266 rwlock_t ext_lock; /* rwlock for consistency */
267 unsigned int fofs; /* start offset in a file */
268 u32 blk_addr; /* start block address of the extent */
269 unsigned int len; /* length of the extent */
270 };
271
272 /*
273 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
274 */
275 #define FADVISE_COLD_BIT 0x01
276 #define FADVISE_LOST_PINO_BIT 0x02
277
278 #define DEF_DIR_LEVEL 0
279
280 struct f2fs_inode_info {
281 struct inode vfs_inode; /* serve a vfs inode */
282 unsigned long i_flags; /* keep an inode flags for ioctl */
283 unsigned char i_advise; /* use to give file attribute hints */
284 unsigned char i_dir_level; /* use for dentry level for large dir */
285 unsigned int i_current_depth; /* use only in directory structure */
286 unsigned int i_pino; /* parent inode number */
287 umode_t i_acl_mode; /* keep file acl mode temporarily */
288
289 /* Use below internally in f2fs*/
290 unsigned long flags; /* use to pass per-file flags */
291 struct rw_semaphore i_sem; /* protect fi info */
292 atomic_t dirty_pages; /* # of dirty pages */
293 f2fs_hash_t chash; /* hash value of given file name */
294 unsigned int clevel; /* maximum level of given file name */
295 nid_t i_xattr_nid; /* node id that contains xattrs */
296 unsigned long long xattr_ver; /* cp version of xattr modification */
297 struct extent_info ext; /* in-memory extent cache entry */
298 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
299
300 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
301 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
302 struct mutex inmem_lock; /* lock for inmemory pages */
303 };
304
305 static inline void get_extent_info(struct extent_info *ext,
306 struct f2fs_extent i_ext)
307 {
308 write_lock(&ext->ext_lock);
309 ext->fofs = le32_to_cpu(i_ext.fofs);
310 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
311 ext->len = le32_to_cpu(i_ext.len);
312 write_unlock(&ext->ext_lock);
313 }
314
315 static inline void set_raw_extent(struct extent_info *ext,
316 struct f2fs_extent *i_ext)
317 {
318 read_lock(&ext->ext_lock);
319 i_ext->fofs = cpu_to_le32(ext->fofs);
320 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
321 i_ext->len = cpu_to_le32(ext->len);
322 read_unlock(&ext->ext_lock);
323 }
324
325 struct f2fs_nm_info {
326 block_t nat_blkaddr; /* base disk address of NAT */
327 nid_t max_nid; /* maximum possible node ids */
328 nid_t available_nids; /* maximum available node ids */
329 nid_t next_scan_nid; /* the next nid to be scanned */
330 unsigned int ram_thresh; /* control the memory footprint */
331
332 /* NAT cache management */
333 struct radix_tree_root nat_root;/* root of the nat entry cache */
334 struct radix_tree_root nat_set_root;/* root of the nat set cache */
335 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
336 struct list_head nat_entries; /* cached nat entry list (clean) */
337 unsigned int nat_cnt; /* the # of cached nat entries */
338 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
339
340 /* free node ids management */
341 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
342 struct list_head free_nid_list; /* a list for free nids */
343 spinlock_t free_nid_list_lock; /* protect free nid list */
344 unsigned int fcnt; /* the number of free node id */
345 struct mutex build_lock; /* lock for build free nids */
346
347 /* for checkpoint */
348 char *nat_bitmap; /* NAT bitmap pointer */
349 int bitmap_size; /* bitmap size */
350 };
351
352 /*
353 * this structure is used as one of function parameters.
354 * all the information are dedicated to a given direct node block determined
355 * by the data offset in a file.
356 */
357 struct dnode_of_data {
358 struct inode *inode; /* vfs inode pointer */
359 struct page *inode_page; /* its inode page, NULL is possible */
360 struct page *node_page; /* cached direct node page */
361 nid_t nid; /* node id of the direct node block */
362 unsigned int ofs_in_node; /* data offset in the node page */
363 bool inode_page_locked; /* inode page is locked or not */
364 block_t data_blkaddr; /* block address of the node block */
365 };
366
367 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
368 struct page *ipage, struct page *npage, nid_t nid)
369 {
370 memset(dn, 0, sizeof(*dn));
371 dn->inode = inode;
372 dn->inode_page = ipage;
373 dn->node_page = npage;
374 dn->nid = nid;
375 }
376
377 /*
378 * For SIT manager
379 *
380 * By default, there are 6 active log areas across the whole main area.
381 * When considering hot and cold data separation to reduce cleaning overhead,
382 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
383 * respectively.
384 * In the current design, you should not change the numbers intentionally.
385 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
386 * logs individually according to the underlying devices. (default: 6)
387 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
388 * data and 8 for node logs.
389 */
390 #define NR_CURSEG_DATA_TYPE (3)
391 #define NR_CURSEG_NODE_TYPE (3)
392 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
393
394 enum {
395 CURSEG_HOT_DATA = 0, /* directory entry blocks */
396 CURSEG_WARM_DATA, /* data blocks */
397 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
398 CURSEG_HOT_NODE, /* direct node blocks of directory files */
399 CURSEG_WARM_NODE, /* direct node blocks of normal files */
400 CURSEG_COLD_NODE, /* indirect node blocks */
401 NO_CHECK_TYPE
402 };
403
404 struct flush_cmd {
405 struct completion wait;
406 struct llist_node llnode;
407 int ret;
408 };
409
410 struct flush_cmd_control {
411 struct task_struct *f2fs_issue_flush; /* flush thread */
412 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
413 struct llist_head issue_list; /* list for command issue */
414 struct llist_node *dispatch_list; /* list for command dispatch */
415 };
416
417 struct f2fs_sm_info {
418 struct sit_info *sit_info; /* whole segment information */
419 struct free_segmap_info *free_info; /* free segment information */
420 struct dirty_seglist_info *dirty_info; /* dirty segment information */
421 struct curseg_info *curseg_array; /* active segment information */
422
423 block_t seg0_blkaddr; /* block address of 0'th segment */
424 block_t main_blkaddr; /* start block address of main area */
425 block_t ssa_blkaddr; /* start block address of SSA area */
426
427 unsigned int segment_count; /* total # of segments */
428 unsigned int main_segments; /* # of segments in main area */
429 unsigned int reserved_segments; /* # of reserved segments */
430 unsigned int ovp_segments; /* # of overprovision segments */
431
432 /* a threshold to reclaim prefree segments */
433 unsigned int rec_prefree_segments;
434
435 /* for small discard management */
436 struct list_head discard_list; /* 4KB discard list */
437 int nr_discards; /* # of discards in the list */
438 int max_discards; /* max. discards to be issued */
439
440 struct list_head sit_entry_set; /* sit entry set list */
441
442 unsigned int ipu_policy; /* in-place-update policy */
443 unsigned int min_ipu_util; /* in-place-update threshold */
444 unsigned int min_fsync_blocks; /* threshold for fsync */
445
446 /* for flush command control */
447 struct flush_cmd_control *cmd_control_info;
448
449 };
450
451 /*
452 * For superblock
453 */
454 /*
455 * COUNT_TYPE for monitoring
456 *
457 * f2fs monitors the number of several block types such as on-writeback,
458 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
459 */
460 enum count_type {
461 F2FS_WRITEBACK,
462 F2FS_DIRTY_DENTS,
463 F2FS_DIRTY_NODES,
464 F2FS_DIRTY_META,
465 F2FS_INMEM_PAGES,
466 NR_COUNT_TYPE,
467 };
468
469 /*
470 * The below are the page types of bios used in submit_bio().
471 * The available types are:
472 * DATA User data pages. It operates as async mode.
473 * NODE Node pages. It operates as async mode.
474 * META FS metadata pages such as SIT, NAT, CP.
475 * NR_PAGE_TYPE The number of page types.
476 * META_FLUSH Make sure the previous pages are written
477 * with waiting the bio's completion
478 * ... Only can be used with META.
479 */
480 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
481 enum page_type {
482 DATA,
483 NODE,
484 META,
485 NR_PAGE_TYPE,
486 META_FLUSH,
487 };
488
489 struct f2fs_io_info {
490 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
491 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
492 };
493
494 #define is_read_io(rw) (((rw) & 1) == READ)
495 struct f2fs_bio_info {
496 struct f2fs_sb_info *sbi; /* f2fs superblock */
497 struct bio *bio; /* bios to merge */
498 sector_t last_block_in_bio; /* last block number */
499 struct f2fs_io_info fio; /* store buffered io info. */
500 struct rw_semaphore io_rwsem; /* blocking op for bio */
501 };
502
503 /* for inner inode cache management */
504 struct inode_management {
505 struct radix_tree_root ino_root; /* ino entry array */
506 spinlock_t ino_lock; /* for ino entry lock */
507 struct list_head ino_list; /* inode list head */
508 unsigned long ino_num; /* number of entries */
509 };
510
511 struct f2fs_sb_info {
512 struct super_block *sb; /* pointer to VFS super block */
513 struct proc_dir_entry *s_proc; /* proc entry */
514 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
515 struct f2fs_super_block *raw_super; /* raw super block pointer */
516 int s_dirty; /* dirty flag for checkpoint */
517 bool need_fsck; /* need fsck.f2fs to fix */
518
519 /* for node-related operations */
520 struct f2fs_nm_info *nm_info; /* node manager */
521 struct inode *node_inode; /* cache node blocks */
522
523 /* for segment-related operations */
524 struct f2fs_sm_info *sm_info; /* segment manager */
525
526 /* for bio operations */
527 struct f2fs_bio_info read_io; /* for read bios */
528 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
529
530 /* for checkpoint */
531 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
532 struct inode *meta_inode; /* cache meta blocks */
533 struct mutex cp_mutex; /* checkpoint procedure lock */
534 struct rw_semaphore cp_rwsem; /* blocking FS operations */
535 struct rw_semaphore node_write; /* locking node writes */
536 struct mutex writepages; /* mutex for writepages() */
537 bool por_doing; /* recovery is doing or not */
538 wait_queue_head_t cp_wait;
539
540 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
541
542 /* for orphan inode, use 0'th array */
543 unsigned int max_orphans; /* max orphan inodes */
544
545 /* for directory inode management */
546 struct list_head dir_inode_list; /* dir inode list */
547 spinlock_t dir_inode_lock; /* for dir inode list lock */
548
549 /* basic filesystem units */
550 unsigned int log_sectors_per_block; /* log2 sectors per block */
551 unsigned int log_blocksize; /* log2 block size */
552 unsigned int blocksize; /* block size */
553 unsigned int root_ino_num; /* root inode number*/
554 unsigned int node_ino_num; /* node inode number*/
555 unsigned int meta_ino_num; /* meta inode number*/
556 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
557 unsigned int blocks_per_seg; /* blocks per segment */
558 unsigned int segs_per_sec; /* segments per section */
559 unsigned int secs_per_zone; /* sections per zone */
560 unsigned int total_sections; /* total section count */
561 unsigned int total_node_count; /* total node block count */
562 unsigned int total_valid_node_count; /* valid node block count */
563 unsigned int total_valid_inode_count; /* valid inode count */
564 int active_logs; /* # of active logs */
565 int dir_level; /* directory level */
566
567 block_t user_block_count; /* # of user blocks */
568 block_t total_valid_block_count; /* # of valid blocks */
569 block_t alloc_valid_block_count; /* # of allocated blocks */
570 block_t last_valid_block_count; /* for recovery */
571 u32 s_next_generation; /* for NFS support */
572 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
573
574 struct f2fs_mount_info mount_opt; /* mount options */
575
576 /* for cleaning operations */
577 struct mutex gc_mutex; /* mutex for GC */
578 struct f2fs_gc_kthread *gc_thread; /* GC thread */
579 unsigned int cur_victim_sec; /* current victim section num */
580
581 /* maximum # of trials to find a victim segment for SSR and GC */
582 unsigned int max_victim_search;
583
584 /*
585 * for stat information.
586 * one is for the LFS mode, and the other is for the SSR mode.
587 */
588 #ifdef CONFIG_F2FS_STAT_FS
589 struct f2fs_stat_info *stat_info; /* FS status information */
590 unsigned int segment_count[2]; /* # of allocated segments */
591 unsigned int block_count[2]; /* # of allocated blocks */
592 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
593 atomic_t inline_inode; /* # of inline_data inodes */
594 atomic_t inline_dir; /* # of inline_dentry inodes */
595 int bg_gc; /* background gc calls */
596 unsigned int n_dirty_dirs; /* # of dir inodes */
597 #endif
598 unsigned int last_victim[2]; /* last victim segment # */
599 spinlock_t stat_lock; /* lock for stat operations */
600
601 /* For sysfs suppport */
602 struct kobject s_kobj;
603 struct completion s_kobj_unregister;
604 };
605
606 /*
607 * Inline functions
608 */
609 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
610 {
611 return container_of(inode, struct f2fs_inode_info, vfs_inode);
612 }
613
614 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
615 {
616 return sb->s_fs_info;
617 }
618
619 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
620 {
621 return F2FS_SB(inode->i_sb);
622 }
623
624 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
625 {
626 return F2FS_I_SB(mapping->host);
627 }
628
629 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
630 {
631 return F2FS_M_SB(page->mapping);
632 }
633
634 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
635 {
636 return (struct f2fs_super_block *)(sbi->raw_super);
637 }
638
639 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
640 {
641 return (struct f2fs_checkpoint *)(sbi->ckpt);
642 }
643
644 static inline struct f2fs_node *F2FS_NODE(struct page *page)
645 {
646 return (struct f2fs_node *)page_address(page);
647 }
648
649 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
650 {
651 return &((struct f2fs_node *)page_address(page))->i;
652 }
653
654 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
655 {
656 return (struct f2fs_nm_info *)(sbi->nm_info);
657 }
658
659 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
660 {
661 return (struct f2fs_sm_info *)(sbi->sm_info);
662 }
663
664 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
665 {
666 return (struct sit_info *)(SM_I(sbi)->sit_info);
667 }
668
669 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
670 {
671 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
672 }
673
674 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
675 {
676 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
677 }
678
679 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
680 {
681 return sbi->meta_inode->i_mapping;
682 }
683
684 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
685 {
686 return sbi->node_inode->i_mapping;
687 }
688
689 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
690 {
691 sbi->s_dirty = 1;
692 }
693
694 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
695 {
696 sbi->s_dirty = 0;
697 }
698
699 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
700 {
701 return le64_to_cpu(cp->checkpoint_ver);
702 }
703
704 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
705 {
706 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
707 return ckpt_flags & f;
708 }
709
710 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
711 {
712 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
713 ckpt_flags |= f;
714 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
715 }
716
717 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
718 {
719 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
720 ckpt_flags &= (~f);
721 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
722 }
723
724 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
725 {
726 down_read(&sbi->cp_rwsem);
727 }
728
729 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
730 {
731 up_read(&sbi->cp_rwsem);
732 }
733
734 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
735 {
736 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
737 }
738
739 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
740 {
741 up_write(&sbi->cp_rwsem);
742 }
743
744 /*
745 * Check whether the given nid is within node id range.
746 */
747 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
748 {
749 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
750 return -EINVAL;
751 if (unlikely(nid >= NM_I(sbi)->max_nid))
752 return -EINVAL;
753 return 0;
754 }
755
756 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
757
758 /*
759 * Check whether the inode has blocks or not
760 */
761 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
762 {
763 if (F2FS_I(inode)->i_xattr_nid)
764 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
765 else
766 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
767 }
768
769 static inline bool f2fs_has_xattr_block(unsigned int ofs)
770 {
771 return ofs == XATTR_NODE_OFFSET;
772 }
773
774 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
775 struct inode *inode, blkcnt_t count)
776 {
777 block_t valid_block_count;
778
779 spin_lock(&sbi->stat_lock);
780 valid_block_count =
781 sbi->total_valid_block_count + (block_t)count;
782 if (unlikely(valid_block_count > sbi->user_block_count)) {
783 spin_unlock(&sbi->stat_lock);
784 return false;
785 }
786 inode->i_blocks += count;
787 sbi->total_valid_block_count = valid_block_count;
788 sbi->alloc_valid_block_count += (block_t)count;
789 spin_unlock(&sbi->stat_lock);
790 return true;
791 }
792
793 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
794 struct inode *inode,
795 blkcnt_t count)
796 {
797 spin_lock(&sbi->stat_lock);
798 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
799 f2fs_bug_on(sbi, inode->i_blocks < count);
800 inode->i_blocks -= count;
801 sbi->total_valid_block_count -= (block_t)count;
802 spin_unlock(&sbi->stat_lock);
803 }
804
805 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
806 {
807 atomic_inc(&sbi->nr_pages[count_type]);
808 F2FS_SET_SB_DIRT(sbi);
809 }
810
811 static inline void inode_inc_dirty_pages(struct inode *inode)
812 {
813 atomic_inc(&F2FS_I(inode)->dirty_pages);
814 if (S_ISDIR(inode->i_mode))
815 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
816 }
817
818 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
819 {
820 atomic_dec(&sbi->nr_pages[count_type]);
821 }
822
823 static inline void inode_dec_dirty_pages(struct inode *inode)
824 {
825 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
826 return;
827
828 atomic_dec(&F2FS_I(inode)->dirty_pages);
829
830 if (S_ISDIR(inode->i_mode))
831 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
832 }
833
834 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
835 {
836 return atomic_read(&sbi->nr_pages[count_type]);
837 }
838
839 static inline int get_dirty_pages(struct inode *inode)
840 {
841 return atomic_read(&F2FS_I(inode)->dirty_pages);
842 }
843
844 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
845 {
846 unsigned int pages_per_sec = sbi->segs_per_sec *
847 (1 << sbi->log_blocks_per_seg);
848 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
849 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
850 }
851
852 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
853 {
854 return sbi->total_valid_block_count;
855 }
856
857 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
858 {
859 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
860
861 /* return NAT or SIT bitmap */
862 if (flag == NAT_BITMAP)
863 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
864 else if (flag == SIT_BITMAP)
865 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
866
867 return 0;
868 }
869
870 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
871 {
872 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
873 int offset;
874
875 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
876 if (flag == NAT_BITMAP)
877 return &ckpt->sit_nat_version_bitmap;
878 else
879 return (unsigned char *)ckpt + F2FS_BLKSIZE;
880 } else {
881 offset = (flag == NAT_BITMAP) ?
882 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
883 return &ckpt->sit_nat_version_bitmap + offset;
884 }
885 }
886
887 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
888 {
889 block_t start_addr;
890 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
891 unsigned long long ckpt_version = cur_cp_version(ckpt);
892
893 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
894
895 /*
896 * odd numbered checkpoint should at cp segment 0
897 * and even segment must be at cp segment 1
898 */
899 if (!(ckpt_version & 1))
900 start_addr += sbi->blocks_per_seg;
901
902 return start_addr;
903 }
904
905 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
906 {
907 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
908 }
909
910 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
911 struct inode *inode)
912 {
913 block_t valid_block_count;
914 unsigned int valid_node_count;
915
916 spin_lock(&sbi->stat_lock);
917
918 valid_block_count = sbi->total_valid_block_count + 1;
919 if (unlikely(valid_block_count > sbi->user_block_count)) {
920 spin_unlock(&sbi->stat_lock);
921 return false;
922 }
923
924 valid_node_count = sbi->total_valid_node_count + 1;
925 if (unlikely(valid_node_count > sbi->total_node_count)) {
926 spin_unlock(&sbi->stat_lock);
927 return false;
928 }
929
930 if (inode)
931 inode->i_blocks++;
932
933 sbi->alloc_valid_block_count++;
934 sbi->total_valid_node_count++;
935 sbi->total_valid_block_count++;
936 spin_unlock(&sbi->stat_lock);
937
938 return true;
939 }
940
941 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
942 struct inode *inode)
943 {
944 spin_lock(&sbi->stat_lock);
945
946 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
947 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
948 f2fs_bug_on(sbi, !inode->i_blocks);
949
950 inode->i_blocks--;
951 sbi->total_valid_node_count--;
952 sbi->total_valid_block_count--;
953
954 spin_unlock(&sbi->stat_lock);
955 }
956
957 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
958 {
959 return sbi->total_valid_node_count;
960 }
961
962 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
963 {
964 spin_lock(&sbi->stat_lock);
965 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
966 sbi->total_valid_inode_count++;
967 spin_unlock(&sbi->stat_lock);
968 }
969
970 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
971 {
972 spin_lock(&sbi->stat_lock);
973 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
974 sbi->total_valid_inode_count--;
975 spin_unlock(&sbi->stat_lock);
976 }
977
978 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
979 {
980 return sbi->total_valid_inode_count;
981 }
982
983 static inline void f2fs_put_page(struct page *page, int unlock)
984 {
985 if (!page)
986 return;
987
988 if (unlock) {
989 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
990 unlock_page(page);
991 }
992 page_cache_release(page);
993 }
994
995 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
996 {
997 if (dn->node_page)
998 f2fs_put_page(dn->node_page, 1);
999 if (dn->inode_page && dn->node_page != dn->inode_page)
1000 f2fs_put_page(dn->inode_page, 0);
1001 dn->node_page = NULL;
1002 dn->inode_page = NULL;
1003 }
1004
1005 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1006 size_t size)
1007 {
1008 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1009 }
1010
1011 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1012 gfp_t flags)
1013 {
1014 void *entry;
1015 retry:
1016 entry = kmem_cache_alloc(cachep, flags);
1017 if (!entry) {
1018 cond_resched();
1019 goto retry;
1020 }
1021
1022 return entry;
1023 }
1024
1025 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1026 unsigned long index, void *item)
1027 {
1028 while (radix_tree_insert(root, index, item))
1029 cond_resched();
1030 }
1031
1032 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1033
1034 static inline bool IS_INODE(struct page *page)
1035 {
1036 struct f2fs_node *p = F2FS_NODE(page);
1037 return RAW_IS_INODE(p);
1038 }
1039
1040 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1041 {
1042 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1043 }
1044
1045 static inline block_t datablock_addr(struct page *node_page,
1046 unsigned int offset)
1047 {
1048 struct f2fs_node *raw_node;
1049 __le32 *addr_array;
1050 raw_node = F2FS_NODE(node_page);
1051 addr_array = blkaddr_in_node(raw_node);
1052 return le32_to_cpu(addr_array[offset]);
1053 }
1054
1055 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1056 {
1057 int mask;
1058
1059 addr += (nr >> 3);
1060 mask = 1 << (7 - (nr & 0x07));
1061 return mask & *addr;
1062 }
1063
1064 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1065 {
1066 int mask;
1067 int ret;
1068
1069 addr += (nr >> 3);
1070 mask = 1 << (7 - (nr & 0x07));
1071 ret = mask & *addr;
1072 *addr |= mask;
1073 return ret;
1074 }
1075
1076 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1077 {
1078 int mask;
1079 int ret;
1080
1081 addr += (nr >> 3);
1082 mask = 1 << (7 - (nr & 0x07));
1083 ret = mask & *addr;
1084 *addr &= ~mask;
1085 return ret;
1086 }
1087
1088 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1089 {
1090 int mask;
1091
1092 addr += (nr >> 3);
1093 mask = 1 << (7 - (nr & 0x07));
1094 *addr ^= mask;
1095 }
1096
1097 /* used for f2fs_inode_info->flags */
1098 enum {
1099 FI_NEW_INODE, /* indicate newly allocated inode */
1100 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1101 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1102 FI_INC_LINK, /* need to increment i_nlink */
1103 FI_ACL_MODE, /* indicate acl mode */
1104 FI_NO_ALLOC, /* should not allocate any blocks */
1105 FI_UPDATE_DIR, /* should update inode block for consistency */
1106 FI_DELAY_IPUT, /* used for the recovery */
1107 FI_NO_EXTENT, /* not to use the extent cache */
1108 FI_INLINE_XATTR, /* used for inline xattr */
1109 FI_INLINE_DATA, /* used for inline data*/
1110 FI_INLINE_DENTRY, /* used for inline dentry */
1111 FI_APPEND_WRITE, /* inode has appended data */
1112 FI_UPDATE_WRITE, /* inode has in-place-update data */
1113 FI_NEED_IPU, /* used for ipu per file */
1114 FI_ATOMIC_FILE, /* indicate atomic file */
1115 FI_VOLATILE_FILE, /* indicate volatile file */
1116 FI_DATA_EXIST, /* indicate data exists */
1117 };
1118
1119 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1120 {
1121 if (!test_bit(flag, &fi->flags))
1122 set_bit(flag, &fi->flags);
1123 }
1124
1125 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1126 {
1127 return test_bit(flag, &fi->flags);
1128 }
1129
1130 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1131 {
1132 if (test_bit(flag, &fi->flags))
1133 clear_bit(flag, &fi->flags);
1134 }
1135
1136 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1137 {
1138 fi->i_acl_mode = mode;
1139 set_inode_flag(fi, FI_ACL_MODE);
1140 }
1141
1142 static inline void get_inline_info(struct f2fs_inode_info *fi,
1143 struct f2fs_inode *ri)
1144 {
1145 if (ri->i_inline & F2FS_INLINE_XATTR)
1146 set_inode_flag(fi, FI_INLINE_XATTR);
1147 if (ri->i_inline & F2FS_INLINE_DATA)
1148 set_inode_flag(fi, FI_INLINE_DATA);
1149 if (ri->i_inline & F2FS_INLINE_DENTRY)
1150 set_inode_flag(fi, FI_INLINE_DENTRY);
1151 if (ri->i_inline & F2FS_DATA_EXIST)
1152 set_inode_flag(fi, FI_DATA_EXIST);
1153 }
1154
1155 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1156 struct f2fs_inode *ri)
1157 {
1158 ri->i_inline = 0;
1159
1160 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1161 ri->i_inline |= F2FS_INLINE_XATTR;
1162 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1163 ri->i_inline |= F2FS_INLINE_DATA;
1164 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1165 ri->i_inline |= F2FS_INLINE_DENTRY;
1166 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1167 ri->i_inline |= F2FS_DATA_EXIST;
1168 }
1169
1170 static inline int f2fs_has_inline_xattr(struct inode *inode)
1171 {
1172 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1173 }
1174
1175 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1176 {
1177 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1178 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1179 return DEF_ADDRS_PER_INODE;
1180 }
1181
1182 static inline void *inline_xattr_addr(struct page *page)
1183 {
1184 struct f2fs_inode *ri = F2FS_INODE(page);
1185 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1186 F2FS_INLINE_XATTR_ADDRS]);
1187 }
1188
1189 static inline int inline_xattr_size(struct inode *inode)
1190 {
1191 if (f2fs_has_inline_xattr(inode))
1192 return F2FS_INLINE_XATTR_ADDRS << 2;
1193 else
1194 return 0;
1195 }
1196
1197 static inline int f2fs_has_inline_data(struct inode *inode)
1198 {
1199 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1200 }
1201
1202 static inline void f2fs_clear_inline_inode(struct inode *inode)
1203 {
1204 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1205 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1206 }
1207
1208 static inline int f2fs_exist_data(struct inode *inode)
1209 {
1210 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1211 }
1212
1213 static inline bool f2fs_is_atomic_file(struct inode *inode)
1214 {
1215 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1216 }
1217
1218 static inline bool f2fs_is_volatile_file(struct inode *inode)
1219 {
1220 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1221 }
1222
1223 static inline void *inline_data_addr(struct page *page)
1224 {
1225 struct f2fs_inode *ri = F2FS_INODE(page);
1226 return (void *)&(ri->i_addr[1]);
1227 }
1228
1229 static inline int f2fs_has_inline_dentry(struct inode *inode)
1230 {
1231 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1232 }
1233
1234 static inline void *inline_dentry_addr(struct page *page)
1235 {
1236 struct f2fs_inode *ri = F2FS_INODE(page);
1237 return (void *)&(ri->i_addr[1]);
1238 }
1239
1240 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1241 {
1242 if (!f2fs_has_inline_dentry(dir))
1243 kunmap(page);
1244 }
1245
1246 static inline int f2fs_readonly(struct super_block *sb)
1247 {
1248 return sb->s_flags & MS_RDONLY;
1249 }
1250
1251 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1252 {
1253 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1254 }
1255
1256 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1257 {
1258 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1259 sbi->sb->s_flags |= MS_RDONLY;
1260 }
1261
1262 #define get_inode_mode(i) \
1263 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1264 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1265
1266 /* get offset of first page in next direct node */
1267 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1268 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1269 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1270 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1271
1272 /*
1273 * file.c
1274 */
1275 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1276 void truncate_data_blocks(struct dnode_of_data *);
1277 int truncate_blocks(struct inode *, u64, bool);
1278 void f2fs_truncate(struct inode *);
1279 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1280 int f2fs_setattr(struct dentry *, struct iattr *);
1281 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1282 int truncate_data_blocks_range(struct dnode_of_data *, int);
1283 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1284 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1285
1286 /*
1287 * inode.c
1288 */
1289 void f2fs_set_inode_flags(struct inode *);
1290 struct inode *f2fs_iget(struct super_block *, unsigned long);
1291 int try_to_free_nats(struct f2fs_sb_info *, int);
1292 void update_inode(struct inode *, struct page *);
1293 void update_inode_page(struct inode *);
1294 int f2fs_write_inode(struct inode *, struct writeback_control *);
1295 void f2fs_evict_inode(struct inode *);
1296 void handle_failed_inode(struct inode *);
1297
1298 /*
1299 * namei.c
1300 */
1301 struct dentry *f2fs_get_parent(struct dentry *child);
1302
1303 /*
1304 * dir.c
1305 */
1306 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1307 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1308 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1309 struct f2fs_dentry_ptr *);
1310 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1311 unsigned int);
1312 void do_make_empty_dir(struct inode *, struct inode *,
1313 struct f2fs_dentry_ptr *);
1314 struct page *init_inode_metadata(struct inode *, struct inode *,
1315 const struct qstr *, struct page *);
1316 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1317 int room_for_filename(const void *, int, int);
1318 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1319 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1320 struct page **);
1321 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1322 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1323 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1324 struct page *, struct inode *);
1325 int update_dent_inode(struct inode *, const struct qstr *);
1326 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1327 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1328 struct inode *);
1329 int f2fs_do_tmpfile(struct inode *, struct inode *);
1330 int f2fs_make_empty(struct inode *, struct inode *);
1331 bool f2fs_empty_dir(struct inode *);
1332
1333 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1334 {
1335 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1336 inode);
1337 }
1338
1339 /*
1340 * super.c
1341 */
1342 int f2fs_sync_fs(struct super_block *, int);
1343 extern __printf(3, 4)
1344 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1345
1346 /*
1347 * hash.c
1348 */
1349 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1350
1351 /*
1352 * node.c
1353 */
1354 struct dnode_of_data;
1355 struct node_info;
1356
1357 bool available_free_memory(struct f2fs_sb_info *, int);
1358 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1359 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1360 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1361 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1362 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1363 int truncate_inode_blocks(struct inode *, pgoff_t);
1364 int truncate_xattr_node(struct inode *, struct page *);
1365 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1366 void remove_inode_page(struct inode *);
1367 struct page *new_inode_page(struct inode *);
1368 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1369 void ra_node_page(struct f2fs_sb_info *, nid_t);
1370 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1371 struct page *get_node_page_ra(struct page *, int);
1372 void sync_inode_page(struct dnode_of_data *);
1373 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1374 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1375 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1376 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1377 void recover_inline_xattr(struct inode *, struct page *);
1378 void recover_xattr_data(struct inode *, struct page *, block_t);
1379 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1380 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1381 struct f2fs_summary_block *);
1382 void flush_nat_entries(struct f2fs_sb_info *);
1383 int build_node_manager(struct f2fs_sb_info *);
1384 void destroy_node_manager(struct f2fs_sb_info *);
1385 int __init create_node_manager_caches(void);
1386 void destroy_node_manager_caches(void);
1387
1388 /*
1389 * segment.c
1390 */
1391 void register_inmem_page(struct inode *, struct page *);
1392 void invalidate_inmem_page(struct inode *, struct page *);
1393 void commit_inmem_pages(struct inode *, bool);
1394 void f2fs_balance_fs(struct f2fs_sb_info *);
1395 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1396 int f2fs_issue_flush(struct f2fs_sb_info *);
1397 int create_flush_cmd_control(struct f2fs_sb_info *);
1398 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1399 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1400 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1401 void clear_prefree_segments(struct f2fs_sb_info *);
1402 void release_discard_addrs(struct f2fs_sb_info *);
1403 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1404 int npages_for_summary_flush(struct f2fs_sb_info *);
1405 void allocate_new_segments(struct f2fs_sb_info *);
1406 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1407 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1408 void write_meta_page(struct f2fs_sb_info *, struct page *);
1409 void write_node_page(struct f2fs_sb_info *, struct page *,
1410 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1411 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1412 struct f2fs_io_info *);
1413 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1414 void recover_data_page(struct f2fs_sb_info *, struct page *,
1415 struct f2fs_summary *, block_t, block_t);
1416 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1417 block_t, block_t *, struct f2fs_summary *, int);
1418 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1419 void write_data_summaries(struct f2fs_sb_info *, block_t);
1420 void write_node_summaries(struct f2fs_sb_info *, block_t);
1421 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1422 int, unsigned int, int);
1423 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1424 int build_segment_manager(struct f2fs_sb_info *);
1425 void destroy_segment_manager(struct f2fs_sb_info *);
1426 int __init create_segment_manager_caches(void);
1427 void destroy_segment_manager_caches(void);
1428
1429 /*
1430 * checkpoint.c
1431 */
1432 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1433 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1434 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1435 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1436 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1437 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1438 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1439 void release_dirty_inode(struct f2fs_sb_info *);
1440 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1441 int acquire_orphan_inode(struct f2fs_sb_info *);
1442 void release_orphan_inode(struct f2fs_sb_info *);
1443 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1444 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1445 void recover_orphan_inodes(struct f2fs_sb_info *);
1446 int get_valid_checkpoint(struct f2fs_sb_info *);
1447 void update_dirty_page(struct inode *, struct page *);
1448 void add_dirty_dir_inode(struct inode *);
1449 void remove_dirty_dir_inode(struct inode *);
1450 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1451 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1452 void init_ino_entry_info(struct f2fs_sb_info *);
1453 int __init create_checkpoint_caches(void);
1454 void destroy_checkpoint_caches(void);
1455
1456 /*
1457 * data.c
1458 */
1459 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1460 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1461 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1462 struct f2fs_io_info *);
1463 int reserve_new_block(struct dnode_of_data *);
1464 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1465 void update_extent_cache(block_t, struct dnode_of_data *);
1466 struct page *find_data_page(struct inode *, pgoff_t, bool);
1467 struct page *get_lock_data_page(struct inode *, pgoff_t);
1468 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1469 int do_write_data_page(struct page *, struct f2fs_io_info *);
1470 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1471
1472 /*
1473 * gc.c
1474 */
1475 int start_gc_thread(struct f2fs_sb_info *);
1476 void stop_gc_thread(struct f2fs_sb_info *);
1477 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1478 int f2fs_gc(struct f2fs_sb_info *);
1479 void build_gc_manager(struct f2fs_sb_info *);
1480 int __init create_gc_caches(void);
1481 void destroy_gc_caches(void);
1482
1483 /*
1484 * recovery.c
1485 */
1486 int recover_fsync_data(struct f2fs_sb_info *);
1487 bool space_for_roll_forward(struct f2fs_sb_info *);
1488
1489 /*
1490 * debug.c
1491 */
1492 #ifdef CONFIG_F2FS_STAT_FS
1493 struct f2fs_stat_info {
1494 struct list_head stat_list;
1495 struct f2fs_sb_info *sbi;
1496 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1497 int main_area_segs, main_area_sections, main_area_zones;
1498 int hit_ext, total_ext;
1499 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1500 int nats, sits, fnids;
1501 int total_count, utilization;
1502 int bg_gc, inline_inode, inline_dir, inmem_pages;
1503 unsigned int valid_count, valid_node_count, valid_inode_count;
1504 unsigned int bimodal, avg_vblocks;
1505 int util_free, util_valid, util_invalid;
1506 int rsvd_segs, overp_segs;
1507 int dirty_count, node_pages, meta_pages;
1508 int prefree_count, call_count, cp_count;
1509 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1510 int tot_blks, data_blks, node_blks;
1511 int curseg[NR_CURSEG_TYPE];
1512 int cursec[NR_CURSEG_TYPE];
1513 int curzone[NR_CURSEG_TYPE];
1514
1515 unsigned int segment_count[2];
1516 unsigned int block_count[2];
1517 unsigned base_mem, cache_mem;
1518 };
1519
1520 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1521 {
1522 return (struct f2fs_stat_info *)sbi->stat_info;
1523 }
1524
1525 #define stat_inc_cp_count(si) ((si)->cp_count++)
1526 #define stat_inc_call_count(si) ((si)->call_count++)
1527 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1528 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1529 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1530 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1531 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1532 #define stat_inc_inline_inode(inode) \
1533 do { \
1534 if (f2fs_has_inline_data(inode)) \
1535 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1536 } while (0)
1537 #define stat_dec_inline_inode(inode) \
1538 do { \
1539 if (f2fs_has_inline_data(inode)) \
1540 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1541 } while (0)
1542 #define stat_inc_inline_dir(inode) \
1543 do { \
1544 if (f2fs_has_inline_dentry(inode)) \
1545 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1546 } while (0)
1547 #define stat_dec_inline_dir(inode) \
1548 do { \
1549 if (f2fs_has_inline_dentry(inode)) \
1550 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1551 } while (0)
1552 #define stat_inc_seg_type(sbi, curseg) \
1553 ((sbi)->segment_count[(curseg)->alloc_type]++)
1554 #define stat_inc_block_count(sbi, curseg) \
1555 ((sbi)->block_count[(curseg)->alloc_type]++)
1556
1557 #define stat_inc_seg_count(sbi, type) \
1558 do { \
1559 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1560 (si)->tot_segs++; \
1561 if (type == SUM_TYPE_DATA) \
1562 si->data_segs++; \
1563 else \
1564 si->node_segs++; \
1565 } while (0)
1566
1567 #define stat_inc_tot_blk_count(si, blks) \
1568 (si->tot_blks += (blks))
1569
1570 #define stat_inc_data_blk_count(sbi, blks) \
1571 do { \
1572 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1573 stat_inc_tot_blk_count(si, blks); \
1574 si->data_blks += (blks); \
1575 } while (0)
1576
1577 #define stat_inc_node_blk_count(sbi, blks) \
1578 do { \
1579 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1580 stat_inc_tot_blk_count(si, blks); \
1581 si->node_blks += (blks); \
1582 } while (0)
1583
1584 int f2fs_build_stats(struct f2fs_sb_info *);
1585 void f2fs_destroy_stats(struct f2fs_sb_info *);
1586 void __init f2fs_create_root_stats(void);
1587 void f2fs_destroy_root_stats(void);
1588 #else
1589 #define stat_inc_cp_count(si)
1590 #define stat_inc_call_count(si)
1591 #define stat_inc_bggc_count(si)
1592 #define stat_inc_dirty_dir(sbi)
1593 #define stat_dec_dirty_dir(sbi)
1594 #define stat_inc_total_hit(sb)
1595 #define stat_inc_read_hit(sb)
1596 #define stat_inc_inline_inode(inode)
1597 #define stat_dec_inline_inode(inode)
1598 #define stat_inc_inline_dir(inode)
1599 #define stat_dec_inline_dir(inode)
1600 #define stat_inc_seg_type(sbi, curseg)
1601 #define stat_inc_block_count(sbi, curseg)
1602 #define stat_inc_seg_count(si, type)
1603 #define stat_inc_tot_blk_count(si, blks)
1604 #define stat_inc_data_blk_count(si, blks)
1605 #define stat_inc_node_blk_count(sbi, blks)
1606
1607 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1608 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1609 static inline void __init f2fs_create_root_stats(void) { }
1610 static inline void f2fs_destroy_root_stats(void) { }
1611 #endif
1612
1613 extern const struct file_operations f2fs_dir_operations;
1614 extern const struct file_operations f2fs_file_operations;
1615 extern const struct inode_operations f2fs_file_inode_operations;
1616 extern const struct address_space_operations f2fs_dblock_aops;
1617 extern const struct address_space_operations f2fs_node_aops;
1618 extern const struct address_space_operations f2fs_meta_aops;
1619 extern const struct inode_operations f2fs_dir_inode_operations;
1620 extern const struct inode_operations f2fs_symlink_inode_operations;
1621 extern const struct inode_operations f2fs_special_inode_operations;
1622
1623 /*
1624 * inline.c
1625 */
1626 bool f2fs_may_inline(struct inode *);
1627 void read_inline_data(struct page *, struct page *);
1628 int f2fs_read_inline_data(struct inode *, struct page *);
1629 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1630 int f2fs_convert_inline_inode(struct inode *);
1631 int f2fs_write_inline_data(struct inode *, struct page *);
1632 void truncate_inline_data(struct page *, u64);
1633 bool recover_inline_data(struct inode *, struct page *);
1634 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1635 struct page **);
1636 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1637 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1638 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1639 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1640 struct inode *, struct inode *);
1641 bool f2fs_empty_inline_dir(struct inode *);
1642 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1643 #endif