]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 FAULT_KMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
97
98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101
102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
103 typecheck(unsigned long long, b) && \
104 ((long long)((a) - (b)) > 0))
105
106 typedef u32 block_t; /*
107 * should not change u32, since it is the on-disk block
108 * address format, __le32.
109 */
110 typedef u32 nid_t;
111
112 struct f2fs_mount_info {
113 unsigned int opt;
114 };
115
116 #define F2FS_FEATURE_ENCRYPT 0x0001
117 #define F2FS_FEATURE_BLKZONED 0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
120 #define F2FS_FEATURE_PRJQUOTA 0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
123 #define F2FS_FEATURE_QUOTA_INO 0x0080
124
125 #define F2FS_HAS_FEATURE(sb, mask) \
126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask) \
128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask) \
130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131
132 /*
133 * For checkpoint manager
134 */
135 enum {
136 NAT_BITMAP,
137 SIT_BITMAP
138 };
139
140 #define CP_UMOUNT 0x00000001
141 #define CP_FASTBOOT 0x00000002
142 #define CP_SYNC 0x00000004
143 #define CP_RECOVERY 0x00000008
144 #define CP_DISCARD 0x00000010
145 #define CP_TRIMMED 0x00000020
146
147 #define DEF_BATCHED_TRIM_SECTIONS 2048
148 #define BATCHED_TRIM_SEGMENTS(sbi) \
149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi) \
151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL 60 /* 60 secs */
157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
158
159 struct cp_control {
160 int reason;
161 __u64 trim_start;
162 __u64 trim_end;
163 __u64 trim_minlen;
164 };
165
166 /*
167 * For CP/NAT/SIT/SSA readahead
168 */
169 enum {
170 META_CP,
171 META_NAT,
172 META_SIT,
173 META_SSA,
174 META_POR,
175 };
176
177 /* for the list of ino */
178 enum {
179 ORPHAN_INO, /* for orphan ino list */
180 APPEND_INO, /* for append ino list */
181 UPDATE_INO, /* for update ino list */
182 FLUSH_INO, /* for multiple device flushing */
183 MAX_INO_ENTRY, /* max. list */
184 };
185
186 struct ino_entry {
187 struct list_head list; /* list head */
188 nid_t ino; /* inode number */
189 unsigned int dirty_device; /* dirty device bitmap */
190 };
191
192 /* for the list of inodes to be GCed */
193 struct inode_entry {
194 struct list_head list; /* list head */
195 struct inode *inode; /* vfs inode pointer */
196 };
197
198 /* for the bitmap indicate blocks to be discarded */
199 struct discard_entry {
200 struct list_head list; /* list head */
201 block_t start_blkaddr; /* start blockaddr of current segment */
202 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
203 };
204
205 /* default discard granularity of inner discard thread, unit: block count */
206 #define DEFAULT_DISCARD_GRANULARITY 16
207
208 /* max discard pend list number */
209 #define MAX_PLIST_NUM 512
210 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
211 (MAX_PLIST_NUM - 1) : (blk_num - 1))
212
213 enum {
214 D_PREP,
215 D_SUBMIT,
216 D_DONE,
217 };
218
219 struct discard_info {
220 block_t lstart; /* logical start address */
221 block_t len; /* length */
222 block_t start; /* actual start address in dev */
223 };
224
225 struct discard_cmd {
226 struct rb_node rb_node; /* rb node located in rb-tree */
227 union {
228 struct {
229 block_t lstart; /* logical start address */
230 block_t len; /* length */
231 block_t start; /* actual start address in dev */
232 };
233 struct discard_info di; /* discard info */
234
235 };
236 struct list_head list; /* command list */
237 struct completion wait; /* compleation */
238 struct block_device *bdev; /* bdev */
239 unsigned short ref; /* reference count */
240 unsigned char state; /* state */
241 int error; /* bio error */
242 };
243
244 enum {
245 DPOLICY_BG,
246 DPOLICY_FORCE,
247 DPOLICY_FSTRIM,
248 DPOLICY_UMOUNT,
249 MAX_DPOLICY,
250 };
251
252 struct discard_policy {
253 int type; /* type of discard */
254 unsigned int min_interval; /* used for candidates exist */
255 unsigned int max_interval; /* used for candidates not exist */
256 unsigned int max_requests; /* # of discards issued per round */
257 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
258 bool io_aware; /* issue discard in idle time */
259 bool sync; /* submit discard with REQ_SYNC flag */
260 unsigned int granularity; /* discard granularity */
261 };
262
263 struct discard_cmd_control {
264 struct task_struct *f2fs_issue_discard; /* discard thread */
265 struct list_head entry_list; /* 4KB discard entry list */
266 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
267 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
268 struct list_head wait_list; /* store on-flushing entries */
269 struct list_head fstrim_list; /* in-flight discard from fstrim */
270 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
271 unsigned int discard_wake; /* to wake up discard thread */
272 struct mutex cmd_lock;
273 unsigned int nr_discards; /* # of discards in the list */
274 unsigned int max_discards; /* max. discards to be issued */
275 unsigned int discard_granularity; /* discard granularity */
276 unsigned int undiscard_blks; /* # of undiscard blocks */
277 atomic_t issued_discard; /* # of issued discard */
278 atomic_t issing_discard; /* # of issing discard */
279 atomic_t discard_cmd_cnt; /* # of cached cmd count */
280 struct rb_root root; /* root of discard rb-tree */
281 };
282
283 /* for the list of fsync inodes, used only during recovery */
284 struct fsync_inode_entry {
285 struct list_head list; /* list head */
286 struct inode *inode; /* vfs inode pointer */
287 block_t blkaddr; /* block address locating the last fsync */
288 block_t last_dentry; /* block address locating the last dentry */
289 };
290
291 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
292 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
293
294 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
295 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
296 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
297 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
298
299 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
300 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
301
302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
303 {
304 int before = nats_in_cursum(journal);
305
306 journal->n_nats = cpu_to_le16(before + i);
307 return before;
308 }
309
310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
311 {
312 int before = sits_in_cursum(journal);
313
314 journal->n_sits = cpu_to_le16(before + i);
315 return before;
316 }
317
318 static inline bool __has_cursum_space(struct f2fs_journal *journal,
319 int size, int type)
320 {
321 if (type == NAT_JOURNAL)
322 return size <= MAX_NAT_JENTRIES(journal);
323 return size <= MAX_SIT_JENTRIES(journal);
324 }
325
326 /*
327 * ioctl commands
328 */
329 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
330 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
331 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
332
333 #define F2FS_IOCTL_MAGIC 0xf5
334 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
336 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
338 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
339 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
340 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
341 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
342 struct f2fs_defragment)
343 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
344 struct f2fs_move_range)
345 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
346 struct f2fs_flush_device)
347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
348 struct f2fs_gc_range)
349 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
350
351 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
352 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
354
355 /*
356 * should be same as XFS_IOC_GOINGDOWN.
357 * Flags for going down operation used by FS_IOC_GOINGDOWN
358 */
359 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
360 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
361 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
362 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
363 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
364
365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
366 /*
367 * ioctl commands in 32 bit emulation
368 */
369 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
370 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
371 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
372 #endif
373
374 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
375 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
376
377 struct f2fs_gc_range {
378 u32 sync;
379 u64 start;
380 u64 len;
381 };
382
383 struct f2fs_defragment {
384 u64 start;
385 u64 len;
386 };
387
388 struct f2fs_move_range {
389 u32 dst_fd; /* destination fd */
390 u64 pos_in; /* start position in src_fd */
391 u64 pos_out; /* start position in dst_fd */
392 u64 len; /* size to move */
393 };
394
395 struct f2fs_flush_device {
396 u32 dev_num; /* device number to flush */
397 u32 segments; /* # of segments to flush */
398 };
399
400 /* for inline stuff */
401 #define DEF_INLINE_RESERVED_SIZE 1
402 #define DEF_MIN_INLINE_SIZE 1
403 static inline int get_extra_isize(struct inode *inode);
404 static inline int get_inline_xattr_addrs(struct inode *inode);
405 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode)
406 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
407 (CUR_ADDRS_PER_INODE(inode) - \
408 F2FS_INLINE_XATTR_ADDRS(inode) - \
409 DEF_INLINE_RESERVED_SIZE))
410
411 /* for inline dir */
412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
413 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
414 BITS_PER_BYTE + 1))
415 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
416 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
417 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
418 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
419 NR_INLINE_DENTRY(inode) + \
420 INLINE_DENTRY_BITMAP_SIZE(inode)))
421
422 /*
423 * For INODE and NODE manager
424 */
425 /* for directory operations */
426 struct f2fs_dentry_ptr {
427 struct inode *inode;
428 void *bitmap;
429 struct f2fs_dir_entry *dentry;
430 __u8 (*filename)[F2FS_SLOT_LEN];
431 int max;
432 int nr_bitmap;
433 };
434
435 static inline void make_dentry_ptr_block(struct inode *inode,
436 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
437 {
438 d->inode = inode;
439 d->max = NR_DENTRY_IN_BLOCK;
440 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
441 d->bitmap = &t->dentry_bitmap;
442 d->dentry = t->dentry;
443 d->filename = t->filename;
444 }
445
446 static inline void make_dentry_ptr_inline(struct inode *inode,
447 struct f2fs_dentry_ptr *d, void *t)
448 {
449 int entry_cnt = NR_INLINE_DENTRY(inode);
450 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
451 int reserved_size = INLINE_RESERVED_SIZE(inode);
452
453 d->inode = inode;
454 d->max = entry_cnt;
455 d->nr_bitmap = bitmap_size;
456 d->bitmap = t;
457 d->dentry = t + bitmap_size + reserved_size;
458 d->filename = t + bitmap_size + reserved_size +
459 SIZE_OF_DIR_ENTRY * entry_cnt;
460 }
461
462 /*
463 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
464 * as its node offset to distinguish from index node blocks.
465 * But some bits are used to mark the node block.
466 */
467 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
468 >> OFFSET_BIT_SHIFT)
469 enum {
470 ALLOC_NODE, /* allocate a new node page if needed */
471 LOOKUP_NODE, /* look up a node without readahead */
472 LOOKUP_NODE_RA, /*
473 * look up a node with readahead called
474 * by get_data_block.
475 */
476 };
477
478 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
479
480 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
481
482 /* vector size for gang look-up from extent cache that consists of radix tree */
483 #define EXT_TREE_VEC_SIZE 64
484
485 /* for in-memory extent cache entry */
486 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
487
488 /* number of extent info in extent cache we try to shrink */
489 #define EXTENT_CACHE_SHRINK_NUMBER 128
490
491 struct rb_entry {
492 struct rb_node rb_node; /* rb node located in rb-tree */
493 unsigned int ofs; /* start offset of the entry */
494 unsigned int len; /* length of the entry */
495 };
496
497 struct extent_info {
498 unsigned int fofs; /* start offset in a file */
499 unsigned int len; /* length of the extent */
500 u32 blk; /* start block address of the extent */
501 };
502
503 struct extent_node {
504 struct rb_node rb_node;
505 union {
506 struct {
507 unsigned int fofs;
508 unsigned int len;
509 u32 blk;
510 };
511 struct extent_info ei; /* extent info */
512
513 };
514 struct list_head list; /* node in global extent list of sbi */
515 struct extent_tree *et; /* extent tree pointer */
516 };
517
518 struct extent_tree {
519 nid_t ino; /* inode number */
520 struct rb_root root; /* root of extent info rb-tree */
521 struct extent_node *cached_en; /* recently accessed extent node */
522 struct extent_info largest; /* largested extent info */
523 struct list_head list; /* to be used by sbi->zombie_list */
524 rwlock_t lock; /* protect extent info rb-tree */
525 atomic_t node_cnt; /* # of extent node in rb-tree*/
526 };
527
528 /*
529 * This structure is taken from ext4_map_blocks.
530 *
531 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
532 */
533 #define F2FS_MAP_NEW (1 << BH_New)
534 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
535 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
536 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
537 F2FS_MAP_UNWRITTEN)
538
539 struct f2fs_map_blocks {
540 block_t m_pblk;
541 block_t m_lblk;
542 unsigned int m_len;
543 unsigned int m_flags;
544 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
545 };
546
547 /* for flag in get_data_block */
548 enum {
549 F2FS_GET_BLOCK_DEFAULT,
550 F2FS_GET_BLOCK_FIEMAP,
551 F2FS_GET_BLOCK_BMAP,
552 F2FS_GET_BLOCK_PRE_DIO,
553 F2FS_GET_BLOCK_PRE_AIO,
554 };
555
556 /*
557 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
558 */
559 #define FADVISE_COLD_BIT 0x01
560 #define FADVISE_LOST_PINO_BIT 0x02
561 #define FADVISE_ENCRYPT_BIT 0x04
562 #define FADVISE_ENC_NAME_BIT 0x08
563 #define FADVISE_KEEP_SIZE_BIT 0x10
564
565 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
566 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
567 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
568 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
569 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
570 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
571 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
572 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
573 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
574 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
575 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
576 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
577 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
578
579 #define DEF_DIR_LEVEL 0
580
581 struct f2fs_inode_info {
582 struct inode vfs_inode; /* serve a vfs inode */
583 unsigned long i_flags; /* keep an inode flags for ioctl */
584 unsigned char i_advise; /* use to give file attribute hints */
585 unsigned char i_dir_level; /* use for dentry level for large dir */
586 unsigned int i_current_depth; /* use only in directory structure */
587 unsigned int i_pino; /* parent inode number */
588 umode_t i_acl_mode; /* keep file acl mode temporarily */
589
590 /* Use below internally in f2fs*/
591 unsigned long flags; /* use to pass per-file flags */
592 struct rw_semaphore i_sem; /* protect fi info */
593 atomic_t dirty_pages; /* # of dirty pages */
594 f2fs_hash_t chash; /* hash value of given file name */
595 unsigned int clevel; /* maximum level of given file name */
596 struct task_struct *task; /* lookup and create consistency */
597 struct task_struct *cp_task; /* separate cp/wb IO stats*/
598 nid_t i_xattr_nid; /* node id that contains xattrs */
599 loff_t last_disk_size; /* lastly written file size */
600
601 #ifdef CONFIG_QUOTA
602 struct dquot *i_dquot[MAXQUOTAS];
603
604 /* quota space reservation, managed internally by quota code */
605 qsize_t i_reserved_quota;
606 #endif
607 struct list_head dirty_list; /* dirty list for dirs and files */
608 struct list_head gdirty_list; /* linked in global dirty list */
609 struct list_head inmem_ilist; /* list for inmem inodes */
610 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
611 struct task_struct *inmem_task; /* store inmemory task */
612 struct mutex inmem_lock; /* lock for inmemory pages */
613 struct extent_tree *extent_tree; /* cached extent_tree entry */
614 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
615 struct rw_semaphore i_mmap_sem;
616 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
617
618 int i_extra_isize; /* size of extra space located in i_addr */
619 kprojid_t i_projid; /* id for project quota */
620 int i_inline_xattr_size; /* inline xattr size */
621 };
622
623 static inline void get_extent_info(struct extent_info *ext,
624 struct f2fs_extent *i_ext)
625 {
626 ext->fofs = le32_to_cpu(i_ext->fofs);
627 ext->blk = le32_to_cpu(i_ext->blk);
628 ext->len = le32_to_cpu(i_ext->len);
629 }
630
631 static inline void set_raw_extent(struct extent_info *ext,
632 struct f2fs_extent *i_ext)
633 {
634 i_ext->fofs = cpu_to_le32(ext->fofs);
635 i_ext->blk = cpu_to_le32(ext->blk);
636 i_ext->len = cpu_to_le32(ext->len);
637 }
638
639 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
640 u32 blk, unsigned int len)
641 {
642 ei->fofs = fofs;
643 ei->blk = blk;
644 ei->len = len;
645 }
646
647 static inline bool __is_discard_mergeable(struct discard_info *back,
648 struct discard_info *front)
649 {
650 return back->lstart + back->len == front->lstart;
651 }
652
653 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
654 struct discard_info *back)
655 {
656 return __is_discard_mergeable(back, cur);
657 }
658
659 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
660 struct discard_info *front)
661 {
662 return __is_discard_mergeable(cur, front);
663 }
664
665 static inline bool __is_extent_mergeable(struct extent_info *back,
666 struct extent_info *front)
667 {
668 return (back->fofs + back->len == front->fofs &&
669 back->blk + back->len == front->blk);
670 }
671
672 static inline bool __is_back_mergeable(struct extent_info *cur,
673 struct extent_info *back)
674 {
675 return __is_extent_mergeable(back, cur);
676 }
677
678 static inline bool __is_front_mergeable(struct extent_info *cur,
679 struct extent_info *front)
680 {
681 return __is_extent_mergeable(cur, front);
682 }
683
684 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
685 static inline void __try_update_largest_extent(struct inode *inode,
686 struct extent_tree *et, struct extent_node *en)
687 {
688 if (en->ei.len > et->largest.len) {
689 et->largest = en->ei;
690 f2fs_mark_inode_dirty_sync(inode, true);
691 }
692 }
693
694 /*
695 * For free nid management
696 */
697 enum nid_state {
698 FREE_NID, /* newly added to free nid list */
699 PREALLOC_NID, /* it is preallocated */
700 MAX_NID_STATE,
701 };
702
703 struct f2fs_nm_info {
704 block_t nat_blkaddr; /* base disk address of NAT */
705 nid_t max_nid; /* maximum possible node ids */
706 nid_t available_nids; /* # of available node ids */
707 nid_t next_scan_nid; /* the next nid to be scanned */
708 unsigned int ram_thresh; /* control the memory footprint */
709 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
710 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
711
712 /* NAT cache management */
713 struct radix_tree_root nat_root;/* root of the nat entry cache */
714 struct radix_tree_root nat_set_root;/* root of the nat set cache */
715 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
716 struct list_head nat_entries; /* cached nat entry list (clean) */
717 unsigned int nat_cnt; /* the # of cached nat entries */
718 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
719 unsigned int nat_blocks; /* # of nat blocks */
720
721 /* free node ids management */
722 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
723 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
724 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
725 spinlock_t nid_list_lock; /* protect nid lists ops */
726 struct mutex build_lock; /* lock for build free nids */
727 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
728 unsigned char *nat_block_bitmap;
729 unsigned short *free_nid_count; /* free nid count of NAT block */
730
731 /* for checkpoint */
732 char *nat_bitmap; /* NAT bitmap pointer */
733
734 unsigned int nat_bits_blocks; /* # of nat bits blocks */
735 unsigned char *nat_bits; /* NAT bits blocks */
736 unsigned char *full_nat_bits; /* full NAT pages */
737 unsigned char *empty_nat_bits; /* empty NAT pages */
738 #ifdef CONFIG_F2FS_CHECK_FS
739 char *nat_bitmap_mir; /* NAT bitmap mirror */
740 #endif
741 int bitmap_size; /* bitmap size */
742 };
743
744 /*
745 * this structure is used as one of function parameters.
746 * all the information are dedicated to a given direct node block determined
747 * by the data offset in a file.
748 */
749 struct dnode_of_data {
750 struct inode *inode; /* vfs inode pointer */
751 struct page *inode_page; /* its inode page, NULL is possible */
752 struct page *node_page; /* cached direct node page */
753 nid_t nid; /* node id of the direct node block */
754 unsigned int ofs_in_node; /* data offset in the node page */
755 bool inode_page_locked; /* inode page is locked or not */
756 bool node_changed; /* is node block changed */
757 char cur_level; /* level of hole node page */
758 char max_level; /* level of current page located */
759 block_t data_blkaddr; /* block address of the node block */
760 };
761
762 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
763 struct page *ipage, struct page *npage, nid_t nid)
764 {
765 memset(dn, 0, sizeof(*dn));
766 dn->inode = inode;
767 dn->inode_page = ipage;
768 dn->node_page = npage;
769 dn->nid = nid;
770 }
771
772 /*
773 * For SIT manager
774 *
775 * By default, there are 6 active log areas across the whole main area.
776 * When considering hot and cold data separation to reduce cleaning overhead,
777 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
778 * respectively.
779 * In the current design, you should not change the numbers intentionally.
780 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
781 * logs individually according to the underlying devices. (default: 6)
782 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
783 * data and 8 for node logs.
784 */
785 #define NR_CURSEG_DATA_TYPE (3)
786 #define NR_CURSEG_NODE_TYPE (3)
787 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
788
789 enum {
790 CURSEG_HOT_DATA = 0, /* directory entry blocks */
791 CURSEG_WARM_DATA, /* data blocks */
792 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
793 CURSEG_HOT_NODE, /* direct node blocks of directory files */
794 CURSEG_WARM_NODE, /* direct node blocks of normal files */
795 CURSEG_COLD_NODE, /* indirect node blocks */
796 NO_CHECK_TYPE,
797 };
798
799 struct flush_cmd {
800 struct completion wait;
801 struct llist_node llnode;
802 nid_t ino;
803 int ret;
804 };
805
806 struct flush_cmd_control {
807 struct task_struct *f2fs_issue_flush; /* flush thread */
808 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
809 atomic_t issued_flush; /* # of issued flushes */
810 atomic_t issing_flush; /* # of issing flushes */
811 struct llist_head issue_list; /* list for command issue */
812 struct llist_node *dispatch_list; /* list for command dispatch */
813 };
814
815 struct f2fs_sm_info {
816 struct sit_info *sit_info; /* whole segment information */
817 struct free_segmap_info *free_info; /* free segment information */
818 struct dirty_seglist_info *dirty_info; /* dirty segment information */
819 struct curseg_info *curseg_array; /* active segment information */
820
821 struct rw_semaphore curseg_lock; /* for preventing curseg change */
822
823 block_t seg0_blkaddr; /* block address of 0'th segment */
824 block_t main_blkaddr; /* start block address of main area */
825 block_t ssa_blkaddr; /* start block address of SSA area */
826
827 unsigned int segment_count; /* total # of segments */
828 unsigned int main_segments; /* # of segments in main area */
829 unsigned int reserved_segments; /* # of reserved segments */
830 unsigned int ovp_segments; /* # of overprovision segments */
831
832 /* a threshold to reclaim prefree segments */
833 unsigned int rec_prefree_segments;
834
835 /* for batched trimming */
836 unsigned int trim_sections; /* # of sections to trim */
837
838 struct list_head sit_entry_set; /* sit entry set list */
839
840 unsigned int ipu_policy; /* in-place-update policy */
841 unsigned int min_ipu_util; /* in-place-update threshold */
842 unsigned int min_fsync_blocks; /* threshold for fsync */
843 unsigned int min_hot_blocks; /* threshold for hot block allocation */
844 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
845
846 /* for flush command control */
847 struct flush_cmd_control *fcc_info;
848
849 /* for discard command control */
850 struct discard_cmd_control *dcc_info;
851 };
852
853 /*
854 * For superblock
855 */
856 /*
857 * COUNT_TYPE for monitoring
858 *
859 * f2fs monitors the number of several block types such as on-writeback,
860 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
861 */
862 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
863 enum count_type {
864 F2FS_DIRTY_DENTS,
865 F2FS_DIRTY_DATA,
866 F2FS_DIRTY_QDATA,
867 F2FS_DIRTY_NODES,
868 F2FS_DIRTY_META,
869 F2FS_INMEM_PAGES,
870 F2FS_DIRTY_IMETA,
871 F2FS_WB_CP_DATA,
872 F2FS_WB_DATA,
873 NR_COUNT_TYPE,
874 };
875
876 /*
877 * The below are the page types of bios used in submit_bio().
878 * The available types are:
879 * DATA User data pages. It operates as async mode.
880 * NODE Node pages. It operates as async mode.
881 * META FS metadata pages such as SIT, NAT, CP.
882 * NR_PAGE_TYPE The number of page types.
883 * META_FLUSH Make sure the previous pages are written
884 * with waiting the bio's completion
885 * ... Only can be used with META.
886 */
887 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
888 enum page_type {
889 DATA,
890 NODE,
891 META,
892 NR_PAGE_TYPE,
893 META_FLUSH,
894 INMEM, /* the below types are used by tracepoints only. */
895 INMEM_DROP,
896 INMEM_INVALIDATE,
897 INMEM_REVOKE,
898 IPU,
899 OPU,
900 };
901
902 enum temp_type {
903 HOT = 0, /* must be zero for meta bio */
904 WARM,
905 COLD,
906 NR_TEMP_TYPE,
907 };
908
909 enum need_lock_type {
910 LOCK_REQ = 0,
911 LOCK_DONE,
912 LOCK_RETRY,
913 };
914
915 enum cp_reason_type {
916 CP_NO_NEEDED,
917 CP_NON_REGULAR,
918 CP_HARDLINK,
919 CP_SB_NEED_CP,
920 CP_WRONG_PINO,
921 CP_NO_SPC_ROLL,
922 CP_NODE_NEED_CP,
923 CP_FASTBOOT_MODE,
924 CP_SPEC_LOG_NUM,
925 };
926
927 enum iostat_type {
928 APP_DIRECT_IO, /* app direct IOs */
929 APP_BUFFERED_IO, /* app buffered IOs */
930 APP_WRITE_IO, /* app write IOs */
931 APP_MAPPED_IO, /* app mapped IOs */
932 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
933 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
934 FS_META_IO, /* meta IOs from kworker/reclaimer */
935 FS_GC_DATA_IO, /* data IOs from forground gc */
936 FS_GC_NODE_IO, /* node IOs from forground gc */
937 FS_CP_DATA_IO, /* data IOs from checkpoint */
938 FS_CP_NODE_IO, /* node IOs from checkpoint */
939 FS_CP_META_IO, /* meta IOs from checkpoint */
940 FS_DISCARD, /* discard */
941 NR_IO_TYPE,
942 };
943
944 struct f2fs_io_info {
945 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
946 nid_t ino; /* inode number */
947 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
948 enum temp_type temp; /* contains HOT/WARM/COLD */
949 int op; /* contains REQ_OP_ */
950 int op_flags; /* req_flag_bits */
951 block_t new_blkaddr; /* new block address to be written */
952 block_t old_blkaddr; /* old block address before Cow */
953 struct page *page; /* page to be written */
954 struct page *encrypted_page; /* encrypted page */
955 struct list_head list; /* serialize IOs */
956 bool submitted; /* indicate IO submission */
957 int need_lock; /* indicate we need to lock cp_rwsem */
958 bool in_list; /* indicate fio is in io_list */
959 enum iostat_type io_type; /* io type */
960 };
961
962 #define is_read_io(rw) ((rw) == READ)
963 struct f2fs_bio_info {
964 struct f2fs_sb_info *sbi; /* f2fs superblock */
965 struct bio *bio; /* bios to merge */
966 sector_t last_block_in_bio; /* last block number */
967 struct f2fs_io_info fio; /* store buffered io info. */
968 struct rw_semaphore io_rwsem; /* blocking op for bio */
969 spinlock_t io_lock; /* serialize DATA/NODE IOs */
970 struct list_head io_list; /* track fios */
971 };
972
973 #define FDEV(i) (sbi->devs[i])
974 #define RDEV(i) (raw_super->devs[i])
975 struct f2fs_dev_info {
976 struct block_device *bdev;
977 char path[MAX_PATH_LEN];
978 unsigned int total_segments;
979 block_t start_blk;
980 block_t end_blk;
981 #ifdef CONFIG_BLK_DEV_ZONED
982 unsigned int nr_blkz; /* Total number of zones */
983 u8 *blkz_type; /* Array of zones type */
984 #endif
985 };
986
987 enum inode_type {
988 DIR_INODE, /* for dirty dir inode */
989 FILE_INODE, /* for dirty regular/symlink inode */
990 DIRTY_META, /* for all dirtied inode metadata */
991 ATOMIC_FILE, /* for all atomic files */
992 NR_INODE_TYPE,
993 };
994
995 /* for inner inode cache management */
996 struct inode_management {
997 struct radix_tree_root ino_root; /* ino entry array */
998 spinlock_t ino_lock; /* for ino entry lock */
999 struct list_head ino_list; /* inode list head */
1000 unsigned long ino_num; /* number of entries */
1001 };
1002
1003 /* For s_flag in struct f2fs_sb_info */
1004 enum {
1005 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1006 SBI_IS_CLOSE, /* specify unmounting */
1007 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1008 SBI_POR_DOING, /* recovery is doing or not */
1009 SBI_NEED_SB_WRITE, /* need to recover superblock */
1010 SBI_NEED_CP, /* need to checkpoint */
1011 };
1012
1013 enum {
1014 CP_TIME,
1015 REQ_TIME,
1016 MAX_TIME,
1017 };
1018
1019 struct f2fs_sb_info {
1020 struct super_block *sb; /* pointer to VFS super block */
1021 struct proc_dir_entry *s_proc; /* proc entry */
1022 struct f2fs_super_block *raw_super; /* raw super block pointer */
1023 int valid_super_block; /* valid super block no */
1024 unsigned long s_flag; /* flags for sbi */
1025
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1028 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1029 #endif
1030
1031 /* for node-related operations */
1032 struct f2fs_nm_info *nm_info; /* node manager */
1033 struct inode *node_inode; /* cache node blocks */
1034
1035 /* for segment-related operations */
1036 struct f2fs_sm_info *sm_info; /* segment manager */
1037
1038 /* for bio operations */
1039 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1040 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1041 /* bio ordering for NODE/DATA */
1042 int write_io_size_bits; /* Write IO size bits */
1043 mempool_t *write_io_dummy; /* Dummy pages */
1044
1045 /* for checkpoint */
1046 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1047 int cur_cp_pack; /* remain current cp pack */
1048 spinlock_t cp_lock; /* for flag in ckpt */
1049 struct inode *meta_inode; /* cache meta blocks */
1050 struct mutex cp_mutex; /* checkpoint procedure lock */
1051 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1052 struct rw_semaphore node_write; /* locking node writes */
1053 struct rw_semaphore node_change; /* locking node change */
1054 wait_queue_head_t cp_wait;
1055 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1056 long interval_time[MAX_TIME]; /* to store thresholds */
1057
1058 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1059
1060 /* for orphan inode, use 0'th array */
1061 unsigned int max_orphans; /* max orphan inodes */
1062
1063 /* for inode management */
1064 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1065 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1066
1067 /* for extent tree cache */
1068 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1069 struct mutex extent_tree_lock; /* locking extent radix tree */
1070 struct list_head extent_list; /* lru list for shrinker */
1071 spinlock_t extent_lock; /* locking extent lru list */
1072 atomic_t total_ext_tree; /* extent tree count */
1073 struct list_head zombie_list; /* extent zombie tree list */
1074 atomic_t total_zombie_tree; /* extent zombie tree count */
1075 atomic_t total_ext_node; /* extent info count */
1076
1077 /* basic filesystem units */
1078 unsigned int log_sectors_per_block; /* log2 sectors per block */
1079 unsigned int log_blocksize; /* log2 block size */
1080 unsigned int blocksize; /* block size */
1081 unsigned int root_ino_num; /* root inode number*/
1082 unsigned int node_ino_num; /* node inode number*/
1083 unsigned int meta_ino_num; /* meta inode number*/
1084 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1085 unsigned int blocks_per_seg; /* blocks per segment */
1086 unsigned int segs_per_sec; /* segments per section */
1087 unsigned int secs_per_zone; /* sections per zone */
1088 unsigned int total_sections; /* total section count */
1089 unsigned int total_node_count; /* total node block count */
1090 unsigned int total_valid_node_count; /* valid node block count */
1091 loff_t max_file_blocks; /* max block index of file */
1092 int active_logs; /* # of active logs */
1093 int dir_level; /* directory level */
1094 int inline_xattr_size; /* inline xattr size */
1095 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1096
1097 block_t user_block_count; /* # of user blocks */
1098 block_t total_valid_block_count; /* # of valid blocks */
1099 block_t discard_blks; /* discard command candidats */
1100 block_t last_valid_block_count; /* for recovery */
1101 block_t reserved_blocks; /* configurable reserved blocks */
1102 block_t current_reserved_blocks; /* current reserved blocks */
1103
1104 u32 s_next_generation; /* for NFS support */
1105
1106 /* # of pages, see count_type */
1107 atomic_t nr_pages[NR_COUNT_TYPE];
1108 /* # of allocated blocks */
1109 struct percpu_counter alloc_valid_block_count;
1110
1111 /* writeback control */
1112 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1113
1114 /* valid inode count */
1115 struct percpu_counter total_valid_inode_count;
1116
1117 struct f2fs_mount_info mount_opt; /* mount options */
1118
1119 /* for cleaning operations */
1120 struct mutex gc_mutex; /* mutex for GC */
1121 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1122 unsigned int cur_victim_sec; /* current victim section num */
1123
1124 /* threshold for converting bg victims for fg */
1125 u64 fggc_threshold;
1126
1127 /* maximum # of trials to find a victim segment for SSR and GC */
1128 unsigned int max_victim_search;
1129
1130 /*
1131 * for stat information.
1132 * one is for the LFS mode, and the other is for the SSR mode.
1133 */
1134 #ifdef CONFIG_F2FS_STAT_FS
1135 struct f2fs_stat_info *stat_info; /* FS status information */
1136 unsigned int segment_count[2]; /* # of allocated segments */
1137 unsigned int block_count[2]; /* # of allocated blocks */
1138 atomic_t inplace_count; /* # of inplace update */
1139 atomic64_t total_hit_ext; /* # of lookup extent cache */
1140 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1141 atomic64_t read_hit_largest; /* # of hit largest extent node */
1142 atomic64_t read_hit_cached; /* # of hit cached extent node */
1143 atomic_t inline_xattr; /* # of inline_xattr inodes */
1144 atomic_t inline_inode; /* # of inline_data inodes */
1145 atomic_t inline_dir; /* # of inline_dentry inodes */
1146 atomic_t aw_cnt; /* # of atomic writes */
1147 atomic_t vw_cnt; /* # of volatile writes */
1148 atomic_t max_aw_cnt; /* max # of atomic writes */
1149 atomic_t max_vw_cnt; /* max # of volatile writes */
1150 int bg_gc; /* background gc calls */
1151 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1152 #endif
1153 spinlock_t stat_lock; /* lock for stat operations */
1154
1155 /* For app/fs IO statistics */
1156 spinlock_t iostat_lock;
1157 unsigned long long write_iostat[NR_IO_TYPE];
1158 bool iostat_enable;
1159
1160 /* For sysfs suppport */
1161 struct kobject s_kobj;
1162 struct completion s_kobj_unregister;
1163
1164 /* For shrinker support */
1165 struct list_head s_list;
1166 int s_ndevs; /* number of devices */
1167 struct f2fs_dev_info *devs; /* for device list */
1168 unsigned int dirty_device; /* for checkpoint data flush */
1169 spinlock_t dev_lock; /* protect dirty_device */
1170 struct mutex umount_mutex;
1171 unsigned int shrinker_run_no;
1172
1173 /* For write statistics */
1174 u64 sectors_written_start;
1175 u64 kbytes_written;
1176
1177 /* Reference to checksum algorithm driver via cryptoapi */
1178 struct crypto_shash *s_chksum_driver;
1179
1180 /* Precomputed FS UUID checksum for seeding other checksums */
1181 __u32 s_chksum_seed;
1182
1183 /* For fault injection */
1184 #ifdef CONFIG_F2FS_FAULT_INJECTION
1185 struct f2fs_fault_info fault_info;
1186 #endif
1187
1188 #ifdef CONFIG_QUOTA
1189 /* Names of quota files with journalled quota */
1190 char *s_qf_names[MAXQUOTAS];
1191 int s_jquota_fmt; /* Format of quota to use */
1192 #endif
1193 };
1194
1195 #ifdef CONFIG_F2FS_FAULT_INJECTION
1196 #define f2fs_show_injection_info(type) \
1197 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1198 KERN_INFO, fault_name[type], \
1199 __func__, __builtin_return_address(0))
1200 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1201 {
1202 struct f2fs_fault_info *ffi = &sbi->fault_info;
1203
1204 if (!ffi->inject_rate)
1205 return false;
1206
1207 if (!IS_FAULT_SET(ffi, type))
1208 return false;
1209
1210 atomic_inc(&ffi->inject_ops);
1211 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1212 atomic_set(&ffi->inject_ops, 0);
1213 return true;
1214 }
1215 return false;
1216 }
1217 #endif
1218
1219 /* For write statistics. Suppose sector size is 512 bytes,
1220 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1221 */
1222 #define BD_PART_WRITTEN(s) \
1223 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1224 (s)->sectors_written_start) >> 1)
1225
1226 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1227 {
1228 sbi->last_time[type] = jiffies;
1229 }
1230
1231 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1232 {
1233 unsigned long interval = sbi->interval_time[type] * HZ;
1234
1235 return time_after(jiffies, sbi->last_time[type] + interval);
1236 }
1237
1238 static inline bool is_idle(struct f2fs_sb_info *sbi)
1239 {
1240 struct block_device *bdev = sbi->sb->s_bdev;
1241 struct request_queue *q = bdev_get_queue(bdev);
1242 struct request_list *rl = &q->root_rl;
1243
1244 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1245 return 0;
1246
1247 return f2fs_time_over(sbi, REQ_TIME);
1248 }
1249
1250 /*
1251 * Inline functions
1252 */
1253 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1254 unsigned int length)
1255 {
1256 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1257 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1258 u32 retval;
1259 int err;
1260
1261 shash->tfm = sbi->s_chksum_driver;
1262 shash->flags = 0;
1263 *ctx = F2FS_SUPER_MAGIC;
1264
1265 err = crypto_shash_update(shash, address, length);
1266 BUG_ON(err);
1267
1268 retval = *ctx;
1269 barrier_data(ctx);
1270 return retval;
1271 }
1272
1273 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1274 void *buf, size_t buf_size)
1275 {
1276 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1277 }
1278
1279 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1280 const void *address, unsigned int length)
1281 {
1282 struct {
1283 struct shash_desc shash;
1284 char ctx[4];
1285 } desc;
1286 int err;
1287
1288 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1289
1290 desc.shash.tfm = sbi->s_chksum_driver;
1291 desc.shash.flags = 0;
1292 *(u32 *)desc.ctx = crc;
1293
1294 err = crypto_shash_update(&desc.shash, address, length);
1295 BUG_ON(err);
1296
1297 return *(u32 *)desc.ctx;
1298 }
1299
1300 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1301 {
1302 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1303 }
1304
1305 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1306 {
1307 return sb->s_fs_info;
1308 }
1309
1310 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1311 {
1312 return F2FS_SB(inode->i_sb);
1313 }
1314
1315 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1316 {
1317 return F2FS_I_SB(mapping->host);
1318 }
1319
1320 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1321 {
1322 return F2FS_M_SB(page->mapping);
1323 }
1324
1325 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1326 {
1327 return (struct f2fs_super_block *)(sbi->raw_super);
1328 }
1329
1330 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1331 {
1332 return (struct f2fs_checkpoint *)(sbi->ckpt);
1333 }
1334
1335 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1336 {
1337 return (struct f2fs_node *)page_address(page);
1338 }
1339
1340 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1341 {
1342 return &((struct f2fs_node *)page_address(page))->i;
1343 }
1344
1345 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1346 {
1347 return (struct f2fs_nm_info *)(sbi->nm_info);
1348 }
1349
1350 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1351 {
1352 return (struct f2fs_sm_info *)(sbi->sm_info);
1353 }
1354
1355 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1356 {
1357 return (struct sit_info *)(SM_I(sbi)->sit_info);
1358 }
1359
1360 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1361 {
1362 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1363 }
1364
1365 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1366 {
1367 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1368 }
1369
1370 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1371 {
1372 return sbi->meta_inode->i_mapping;
1373 }
1374
1375 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1376 {
1377 return sbi->node_inode->i_mapping;
1378 }
1379
1380 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1381 {
1382 return test_bit(type, &sbi->s_flag);
1383 }
1384
1385 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1386 {
1387 set_bit(type, &sbi->s_flag);
1388 }
1389
1390 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1391 {
1392 clear_bit(type, &sbi->s_flag);
1393 }
1394
1395 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1396 {
1397 return le64_to_cpu(cp->checkpoint_ver);
1398 }
1399
1400 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1401 {
1402 if (type < F2FS_MAX_QUOTAS)
1403 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1404 return 0;
1405 }
1406
1407 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1408 {
1409 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1410 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1411 }
1412
1413 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1414 {
1415 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1416
1417 return ckpt_flags & f;
1418 }
1419
1420 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1421 {
1422 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1423 }
1424
1425 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1426 {
1427 unsigned int ckpt_flags;
1428
1429 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1430 ckpt_flags |= f;
1431 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1432 }
1433
1434 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1435 {
1436 unsigned long flags;
1437
1438 spin_lock_irqsave(&sbi->cp_lock, flags);
1439 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1440 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1441 }
1442
1443 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1444 {
1445 unsigned int ckpt_flags;
1446
1447 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1448 ckpt_flags &= (~f);
1449 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1450 }
1451
1452 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1453 {
1454 unsigned long flags;
1455
1456 spin_lock_irqsave(&sbi->cp_lock, flags);
1457 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1458 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1459 }
1460
1461 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1462 {
1463 unsigned long flags;
1464
1465 set_sbi_flag(sbi, SBI_NEED_FSCK);
1466
1467 if (lock)
1468 spin_lock_irqsave(&sbi->cp_lock, flags);
1469 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1470 kfree(NM_I(sbi)->nat_bits);
1471 NM_I(sbi)->nat_bits = NULL;
1472 if (lock)
1473 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1474 }
1475
1476 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1477 struct cp_control *cpc)
1478 {
1479 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1480
1481 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1482 }
1483
1484 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1485 {
1486 down_read(&sbi->cp_rwsem);
1487 }
1488
1489 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1490 {
1491 return down_read_trylock(&sbi->cp_rwsem);
1492 }
1493
1494 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1495 {
1496 up_read(&sbi->cp_rwsem);
1497 }
1498
1499 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1500 {
1501 down_write(&sbi->cp_rwsem);
1502 }
1503
1504 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1505 {
1506 up_write(&sbi->cp_rwsem);
1507 }
1508
1509 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1510 {
1511 int reason = CP_SYNC;
1512
1513 if (test_opt(sbi, FASTBOOT))
1514 reason = CP_FASTBOOT;
1515 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1516 reason = CP_UMOUNT;
1517 return reason;
1518 }
1519
1520 static inline bool __remain_node_summaries(int reason)
1521 {
1522 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1523 }
1524
1525 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1526 {
1527 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1528 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1529 }
1530
1531 /*
1532 * Check whether the given nid is within node id range.
1533 */
1534 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1535 {
1536 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1537 return -EINVAL;
1538 if (unlikely(nid >= NM_I(sbi)->max_nid))
1539 return -EINVAL;
1540 return 0;
1541 }
1542
1543 /*
1544 * Check whether the inode has blocks or not
1545 */
1546 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1547 {
1548 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1549
1550 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1551 }
1552
1553 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1554 {
1555 return ofs == XATTR_NODE_OFFSET;
1556 }
1557
1558 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1559 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1560 struct inode *inode, blkcnt_t *count)
1561 {
1562 blkcnt_t diff = 0, release = 0;
1563 block_t avail_user_block_count;
1564 int ret;
1565
1566 ret = dquot_reserve_block(inode, *count);
1567 if (ret)
1568 return ret;
1569
1570 #ifdef CONFIG_F2FS_FAULT_INJECTION
1571 if (time_to_inject(sbi, FAULT_BLOCK)) {
1572 f2fs_show_injection_info(FAULT_BLOCK);
1573 release = *count;
1574 goto enospc;
1575 }
1576 #endif
1577 /*
1578 * let's increase this in prior to actual block count change in order
1579 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1580 */
1581 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1582
1583 spin_lock(&sbi->stat_lock);
1584 sbi->total_valid_block_count += (block_t)(*count);
1585 avail_user_block_count = sbi->user_block_count -
1586 sbi->current_reserved_blocks;
1587 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1588 diff = sbi->total_valid_block_count - avail_user_block_count;
1589 *count -= diff;
1590 release = diff;
1591 sbi->total_valid_block_count = avail_user_block_count;
1592 if (!*count) {
1593 spin_unlock(&sbi->stat_lock);
1594 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1595 goto enospc;
1596 }
1597 }
1598 spin_unlock(&sbi->stat_lock);
1599
1600 if (release)
1601 dquot_release_reservation_block(inode, release);
1602 f2fs_i_blocks_write(inode, *count, true, true);
1603 return 0;
1604
1605 enospc:
1606 dquot_release_reservation_block(inode, release);
1607 return -ENOSPC;
1608 }
1609
1610 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1611 struct inode *inode,
1612 block_t count)
1613 {
1614 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1615
1616 spin_lock(&sbi->stat_lock);
1617 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1618 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1619 sbi->total_valid_block_count -= (block_t)count;
1620 if (sbi->reserved_blocks &&
1621 sbi->current_reserved_blocks < sbi->reserved_blocks)
1622 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1623 sbi->current_reserved_blocks + count);
1624 spin_unlock(&sbi->stat_lock);
1625 f2fs_i_blocks_write(inode, count, false, true);
1626 }
1627
1628 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1629 {
1630 atomic_inc(&sbi->nr_pages[count_type]);
1631
1632 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1633 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1634 return;
1635
1636 set_sbi_flag(sbi, SBI_IS_DIRTY);
1637 }
1638
1639 static inline void inode_inc_dirty_pages(struct inode *inode)
1640 {
1641 atomic_inc(&F2FS_I(inode)->dirty_pages);
1642 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1643 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1644 if (IS_NOQUOTA(inode))
1645 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1646 }
1647
1648 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1649 {
1650 atomic_dec(&sbi->nr_pages[count_type]);
1651 }
1652
1653 static inline void inode_dec_dirty_pages(struct inode *inode)
1654 {
1655 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1656 !S_ISLNK(inode->i_mode))
1657 return;
1658
1659 atomic_dec(&F2FS_I(inode)->dirty_pages);
1660 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1661 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1662 if (IS_NOQUOTA(inode))
1663 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1664 }
1665
1666 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1667 {
1668 return atomic_read(&sbi->nr_pages[count_type]);
1669 }
1670
1671 static inline int get_dirty_pages(struct inode *inode)
1672 {
1673 return atomic_read(&F2FS_I(inode)->dirty_pages);
1674 }
1675
1676 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1677 {
1678 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1679 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1680 sbi->log_blocks_per_seg;
1681
1682 return segs / sbi->segs_per_sec;
1683 }
1684
1685 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1686 {
1687 return sbi->total_valid_block_count;
1688 }
1689
1690 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1691 {
1692 return sbi->discard_blks;
1693 }
1694
1695 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1696 {
1697 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1698
1699 /* return NAT or SIT bitmap */
1700 if (flag == NAT_BITMAP)
1701 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1702 else if (flag == SIT_BITMAP)
1703 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1704
1705 return 0;
1706 }
1707
1708 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1709 {
1710 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1711 }
1712
1713 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1714 {
1715 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1716 int offset;
1717
1718 if (__cp_payload(sbi) > 0) {
1719 if (flag == NAT_BITMAP)
1720 return &ckpt->sit_nat_version_bitmap;
1721 else
1722 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1723 } else {
1724 offset = (flag == NAT_BITMAP) ?
1725 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1726 return &ckpt->sit_nat_version_bitmap + offset;
1727 }
1728 }
1729
1730 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1731 {
1732 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1733
1734 if (sbi->cur_cp_pack == 2)
1735 start_addr += sbi->blocks_per_seg;
1736 return start_addr;
1737 }
1738
1739 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1740 {
1741 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1742
1743 if (sbi->cur_cp_pack == 1)
1744 start_addr += sbi->blocks_per_seg;
1745 return start_addr;
1746 }
1747
1748 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1749 {
1750 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1751 }
1752
1753 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1754 {
1755 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1756 }
1757
1758 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1759 struct inode *inode, bool is_inode)
1760 {
1761 block_t valid_block_count;
1762 unsigned int valid_node_count;
1763 bool quota = inode && !is_inode;
1764
1765 if (quota) {
1766 int ret = dquot_reserve_block(inode, 1);
1767 if (ret)
1768 return ret;
1769 }
1770
1771 #ifdef CONFIG_F2FS_FAULT_INJECTION
1772 if (time_to_inject(sbi, FAULT_BLOCK)) {
1773 f2fs_show_injection_info(FAULT_BLOCK);
1774 goto enospc;
1775 }
1776 #endif
1777
1778 spin_lock(&sbi->stat_lock);
1779
1780 valid_block_count = sbi->total_valid_block_count + 1;
1781 if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1782 sbi->user_block_count)) {
1783 spin_unlock(&sbi->stat_lock);
1784 goto enospc;
1785 }
1786
1787 valid_node_count = sbi->total_valid_node_count + 1;
1788 if (unlikely(valid_node_count > sbi->total_node_count)) {
1789 spin_unlock(&sbi->stat_lock);
1790 goto enospc;
1791 }
1792
1793 sbi->total_valid_node_count++;
1794 sbi->total_valid_block_count++;
1795 spin_unlock(&sbi->stat_lock);
1796
1797 if (inode) {
1798 if (is_inode)
1799 f2fs_mark_inode_dirty_sync(inode, true);
1800 else
1801 f2fs_i_blocks_write(inode, 1, true, true);
1802 }
1803
1804 percpu_counter_inc(&sbi->alloc_valid_block_count);
1805 return 0;
1806
1807 enospc:
1808 if (quota)
1809 dquot_release_reservation_block(inode, 1);
1810 return -ENOSPC;
1811 }
1812
1813 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1814 struct inode *inode, bool is_inode)
1815 {
1816 spin_lock(&sbi->stat_lock);
1817
1818 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1819 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1820 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1821
1822 sbi->total_valid_node_count--;
1823 sbi->total_valid_block_count--;
1824 if (sbi->reserved_blocks &&
1825 sbi->current_reserved_blocks < sbi->reserved_blocks)
1826 sbi->current_reserved_blocks++;
1827
1828 spin_unlock(&sbi->stat_lock);
1829
1830 if (!is_inode)
1831 f2fs_i_blocks_write(inode, 1, false, true);
1832 }
1833
1834 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1835 {
1836 return sbi->total_valid_node_count;
1837 }
1838
1839 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1840 {
1841 percpu_counter_inc(&sbi->total_valid_inode_count);
1842 }
1843
1844 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1845 {
1846 percpu_counter_dec(&sbi->total_valid_inode_count);
1847 }
1848
1849 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1850 {
1851 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1852 }
1853
1854 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1855 pgoff_t index, bool for_write)
1856 {
1857 #ifdef CONFIG_F2FS_FAULT_INJECTION
1858 struct page *page = find_lock_page(mapping, index);
1859
1860 if (page)
1861 return page;
1862
1863 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1864 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1865 return NULL;
1866 }
1867 #endif
1868 if (!for_write)
1869 return grab_cache_page(mapping, index);
1870 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1871 }
1872
1873 static inline struct page *f2fs_pagecache_get_page(
1874 struct address_space *mapping, pgoff_t index,
1875 int fgp_flags, gfp_t gfp_mask)
1876 {
1877 #ifdef CONFIG_F2FS_FAULT_INJECTION
1878 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1879 f2fs_show_injection_info(FAULT_PAGE_GET);
1880 return NULL;
1881 }
1882 #endif
1883 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1884 }
1885
1886 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1887 {
1888 char *src_kaddr = kmap(src);
1889 char *dst_kaddr = kmap(dst);
1890
1891 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1892 kunmap(dst);
1893 kunmap(src);
1894 }
1895
1896 static inline void f2fs_put_page(struct page *page, int unlock)
1897 {
1898 if (!page)
1899 return;
1900
1901 if (unlock) {
1902 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1903 unlock_page(page);
1904 }
1905 put_page(page);
1906 }
1907
1908 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1909 {
1910 if (dn->node_page)
1911 f2fs_put_page(dn->node_page, 1);
1912 if (dn->inode_page && dn->node_page != dn->inode_page)
1913 f2fs_put_page(dn->inode_page, 0);
1914 dn->node_page = NULL;
1915 dn->inode_page = NULL;
1916 }
1917
1918 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1919 size_t size)
1920 {
1921 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1922 }
1923
1924 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1925 gfp_t flags)
1926 {
1927 void *entry;
1928
1929 entry = kmem_cache_alloc(cachep, flags);
1930 if (!entry)
1931 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1932 return entry;
1933 }
1934
1935 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1936 int npages, bool no_fail)
1937 {
1938 struct bio *bio;
1939
1940 if (no_fail) {
1941 /* No failure on bio allocation */
1942 bio = bio_alloc(GFP_NOIO, npages);
1943 if (!bio)
1944 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1945 return bio;
1946 }
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1949 f2fs_show_injection_info(FAULT_ALLOC_BIO);
1950 return NULL;
1951 }
1952 #endif
1953 return bio_alloc(GFP_KERNEL, npages);
1954 }
1955
1956 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1957 unsigned long index, void *item)
1958 {
1959 while (radix_tree_insert(root, index, item))
1960 cond_resched();
1961 }
1962
1963 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1964
1965 static inline bool IS_INODE(struct page *page)
1966 {
1967 struct f2fs_node *p = F2FS_NODE(page);
1968
1969 return RAW_IS_INODE(p);
1970 }
1971
1972 static inline int offset_in_addr(struct f2fs_inode *i)
1973 {
1974 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1975 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1976 }
1977
1978 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1979 {
1980 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1981 }
1982
1983 static inline int f2fs_has_extra_attr(struct inode *inode);
1984 static inline block_t datablock_addr(struct inode *inode,
1985 struct page *node_page, unsigned int offset)
1986 {
1987 struct f2fs_node *raw_node;
1988 __le32 *addr_array;
1989 int base = 0;
1990 bool is_inode = IS_INODE(node_page);
1991
1992 raw_node = F2FS_NODE(node_page);
1993
1994 /* from GC path only */
1995 if (!inode) {
1996 if (is_inode)
1997 base = offset_in_addr(&raw_node->i);
1998 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1999 base = get_extra_isize(inode);
2000 }
2001
2002 addr_array = blkaddr_in_node(raw_node);
2003 return le32_to_cpu(addr_array[base + offset]);
2004 }
2005
2006 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2007 {
2008 int mask;
2009
2010 addr += (nr >> 3);
2011 mask = 1 << (7 - (nr & 0x07));
2012 return mask & *addr;
2013 }
2014
2015 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2016 {
2017 int mask;
2018
2019 addr += (nr >> 3);
2020 mask = 1 << (7 - (nr & 0x07));
2021 *addr |= mask;
2022 }
2023
2024 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2025 {
2026 int mask;
2027
2028 addr += (nr >> 3);
2029 mask = 1 << (7 - (nr & 0x07));
2030 *addr &= ~mask;
2031 }
2032
2033 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2034 {
2035 int mask;
2036 int ret;
2037
2038 addr += (nr >> 3);
2039 mask = 1 << (7 - (nr & 0x07));
2040 ret = mask & *addr;
2041 *addr |= mask;
2042 return ret;
2043 }
2044
2045 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2046 {
2047 int mask;
2048 int ret;
2049
2050 addr += (nr >> 3);
2051 mask = 1 << (7 - (nr & 0x07));
2052 ret = mask & *addr;
2053 *addr &= ~mask;
2054 return ret;
2055 }
2056
2057 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2058 {
2059 int mask;
2060
2061 addr += (nr >> 3);
2062 mask = 1 << (7 - (nr & 0x07));
2063 *addr ^= mask;
2064 }
2065
2066 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2067 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2068 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2069
2070 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2071 {
2072 if (S_ISDIR(mode))
2073 return flags;
2074 else if (S_ISREG(mode))
2075 return flags & F2FS_REG_FLMASK;
2076 else
2077 return flags & F2FS_OTHER_FLMASK;
2078 }
2079
2080 /* used for f2fs_inode_info->flags */
2081 enum {
2082 FI_NEW_INODE, /* indicate newly allocated inode */
2083 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2084 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2085 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2086 FI_INC_LINK, /* need to increment i_nlink */
2087 FI_ACL_MODE, /* indicate acl mode */
2088 FI_NO_ALLOC, /* should not allocate any blocks */
2089 FI_FREE_NID, /* free allocated nide */
2090 FI_NO_EXTENT, /* not to use the extent cache */
2091 FI_INLINE_XATTR, /* used for inline xattr */
2092 FI_INLINE_DATA, /* used for inline data*/
2093 FI_INLINE_DENTRY, /* used for inline dentry */
2094 FI_APPEND_WRITE, /* inode has appended data */
2095 FI_UPDATE_WRITE, /* inode has in-place-update data */
2096 FI_NEED_IPU, /* used for ipu per file */
2097 FI_ATOMIC_FILE, /* indicate atomic file */
2098 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2099 FI_VOLATILE_FILE, /* indicate volatile file */
2100 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2101 FI_DROP_CACHE, /* drop dirty page cache */
2102 FI_DATA_EXIST, /* indicate data exists */
2103 FI_INLINE_DOTS, /* indicate inline dot dentries */
2104 FI_DO_DEFRAG, /* indicate defragment is running */
2105 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2106 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2107 FI_HOT_DATA, /* indicate file is hot */
2108 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2109 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2110 };
2111
2112 static inline void __mark_inode_dirty_flag(struct inode *inode,
2113 int flag, bool set)
2114 {
2115 switch (flag) {
2116 case FI_INLINE_XATTR:
2117 case FI_INLINE_DATA:
2118 case FI_INLINE_DENTRY:
2119 if (set)
2120 return;
2121 case FI_DATA_EXIST:
2122 case FI_INLINE_DOTS:
2123 f2fs_mark_inode_dirty_sync(inode, true);
2124 }
2125 }
2126
2127 static inline void set_inode_flag(struct inode *inode, int flag)
2128 {
2129 if (!test_bit(flag, &F2FS_I(inode)->flags))
2130 set_bit(flag, &F2FS_I(inode)->flags);
2131 __mark_inode_dirty_flag(inode, flag, true);
2132 }
2133
2134 static inline int is_inode_flag_set(struct inode *inode, int flag)
2135 {
2136 return test_bit(flag, &F2FS_I(inode)->flags);
2137 }
2138
2139 static inline void clear_inode_flag(struct inode *inode, int flag)
2140 {
2141 if (test_bit(flag, &F2FS_I(inode)->flags))
2142 clear_bit(flag, &F2FS_I(inode)->flags);
2143 __mark_inode_dirty_flag(inode, flag, false);
2144 }
2145
2146 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2147 {
2148 F2FS_I(inode)->i_acl_mode = mode;
2149 set_inode_flag(inode, FI_ACL_MODE);
2150 f2fs_mark_inode_dirty_sync(inode, false);
2151 }
2152
2153 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2154 {
2155 if (inc)
2156 inc_nlink(inode);
2157 else
2158 drop_nlink(inode);
2159 f2fs_mark_inode_dirty_sync(inode, true);
2160 }
2161
2162 static inline void f2fs_i_blocks_write(struct inode *inode,
2163 block_t diff, bool add, bool claim)
2164 {
2165 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2166 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2167
2168 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2169 if (add) {
2170 if (claim)
2171 dquot_claim_block(inode, diff);
2172 else
2173 dquot_alloc_block_nofail(inode, diff);
2174 } else {
2175 dquot_free_block(inode, diff);
2176 }
2177
2178 f2fs_mark_inode_dirty_sync(inode, true);
2179 if (clean || recover)
2180 set_inode_flag(inode, FI_AUTO_RECOVER);
2181 }
2182
2183 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2184 {
2185 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2186 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2187
2188 if (i_size_read(inode) == i_size)
2189 return;
2190
2191 i_size_write(inode, i_size);
2192 f2fs_mark_inode_dirty_sync(inode, true);
2193 if (clean || recover)
2194 set_inode_flag(inode, FI_AUTO_RECOVER);
2195 }
2196
2197 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2198 {
2199 F2FS_I(inode)->i_current_depth = depth;
2200 f2fs_mark_inode_dirty_sync(inode, true);
2201 }
2202
2203 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2204 {
2205 F2FS_I(inode)->i_xattr_nid = xnid;
2206 f2fs_mark_inode_dirty_sync(inode, true);
2207 }
2208
2209 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2210 {
2211 F2FS_I(inode)->i_pino = pino;
2212 f2fs_mark_inode_dirty_sync(inode, true);
2213 }
2214
2215 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2216 {
2217 struct f2fs_inode_info *fi = F2FS_I(inode);
2218
2219 if (ri->i_inline & F2FS_INLINE_XATTR)
2220 set_bit(FI_INLINE_XATTR, &fi->flags);
2221 if (ri->i_inline & F2FS_INLINE_DATA)
2222 set_bit(FI_INLINE_DATA, &fi->flags);
2223 if (ri->i_inline & F2FS_INLINE_DENTRY)
2224 set_bit(FI_INLINE_DENTRY, &fi->flags);
2225 if (ri->i_inline & F2FS_DATA_EXIST)
2226 set_bit(FI_DATA_EXIST, &fi->flags);
2227 if (ri->i_inline & F2FS_INLINE_DOTS)
2228 set_bit(FI_INLINE_DOTS, &fi->flags);
2229 if (ri->i_inline & F2FS_EXTRA_ATTR)
2230 set_bit(FI_EXTRA_ATTR, &fi->flags);
2231 }
2232
2233 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2234 {
2235 ri->i_inline = 0;
2236
2237 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2238 ri->i_inline |= F2FS_INLINE_XATTR;
2239 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2240 ri->i_inline |= F2FS_INLINE_DATA;
2241 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2242 ri->i_inline |= F2FS_INLINE_DENTRY;
2243 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2244 ri->i_inline |= F2FS_DATA_EXIST;
2245 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2246 ri->i_inline |= F2FS_INLINE_DOTS;
2247 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2248 ri->i_inline |= F2FS_EXTRA_ATTR;
2249 }
2250
2251 static inline int f2fs_has_extra_attr(struct inode *inode)
2252 {
2253 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2254 }
2255
2256 static inline int f2fs_has_inline_xattr(struct inode *inode)
2257 {
2258 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2259 }
2260
2261 static inline unsigned int addrs_per_inode(struct inode *inode)
2262 {
2263 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2264 }
2265
2266 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2267 {
2268 struct f2fs_inode *ri = F2FS_INODE(page);
2269
2270 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2271 F2FS_INLINE_XATTR_ADDRS(inode)]);
2272 }
2273
2274 static inline int inline_xattr_size(struct inode *inode)
2275 {
2276 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2277 }
2278
2279 static inline int f2fs_has_inline_data(struct inode *inode)
2280 {
2281 return is_inode_flag_set(inode, FI_INLINE_DATA);
2282 }
2283
2284 static inline int f2fs_exist_data(struct inode *inode)
2285 {
2286 return is_inode_flag_set(inode, FI_DATA_EXIST);
2287 }
2288
2289 static inline int f2fs_has_inline_dots(struct inode *inode)
2290 {
2291 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2292 }
2293
2294 static inline bool f2fs_is_atomic_file(struct inode *inode)
2295 {
2296 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2297 }
2298
2299 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2300 {
2301 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2302 }
2303
2304 static inline bool f2fs_is_volatile_file(struct inode *inode)
2305 {
2306 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2307 }
2308
2309 static inline bool f2fs_is_first_block_written(struct inode *inode)
2310 {
2311 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2312 }
2313
2314 static inline bool f2fs_is_drop_cache(struct inode *inode)
2315 {
2316 return is_inode_flag_set(inode, FI_DROP_CACHE);
2317 }
2318
2319 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2320 {
2321 struct f2fs_inode *ri = F2FS_INODE(page);
2322 int extra_size = get_extra_isize(inode);
2323
2324 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2325 }
2326
2327 static inline int f2fs_has_inline_dentry(struct inode *inode)
2328 {
2329 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2330 }
2331
2332 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2333 {
2334 if (!f2fs_has_inline_dentry(dir))
2335 kunmap(page);
2336 }
2337
2338 static inline int is_file(struct inode *inode, int type)
2339 {
2340 return F2FS_I(inode)->i_advise & type;
2341 }
2342
2343 static inline void set_file(struct inode *inode, int type)
2344 {
2345 F2FS_I(inode)->i_advise |= type;
2346 f2fs_mark_inode_dirty_sync(inode, true);
2347 }
2348
2349 static inline void clear_file(struct inode *inode, int type)
2350 {
2351 F2FS_I(inode)->i_advise &= ~type;
2352 f2fs_mark_inode_dirty_sync(inode, true);
2353 }
2354
2355 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2356 {
2357 bool ret;
2358
2359 if (dsync) {
2360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2361
2362 spin_lock(&sbi->inode_lock[DIRTY_META]);
2363 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2364 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2365 return ret;
2366 }
2367 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2368 file_keep_isize(inode) ||
2369 i_size_read(inode) & PAGE_MASK)
2370 return false;
2371
2372 down_read(&F2FS_I(inode)->i_sem);
2373 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2374 up_read(&F2FS_I(inode)->i_sem);
2375
2376 return ret;
2377 }
2378
2379 static inline int f2fs_readonly(struct super_block *sb)
2380 {
2381 return sb->s_flags & SB_RDONLY;
2382 }
2383
2384 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2385 {
2386 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2387 }
2388
2389 static inline bool is_dot_dotdot(const struct qstr *str)
2390 {
2391 if (str->len == 1 && str->name[0] == '.')
2392 return true;
2393
2394 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2395 return true;
2396
2397 return false;
2398 }
2399
2400 static inline bool f2fs_may_extent_tree(struct inode *inode)
2401 {
2402 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2403 is_inode_flag_set(inode, FI_NO_EXTENT))
2404 return false;
2405
2406 return S_ISREG(inode->i_mode);
2407 }
2408
2409 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2410 size_t size, gfp_t flags)
2411 {
2412 #ifdef CONFIG_F2FS_FAULT_INJECTION
2413 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2414 f2fs_show_injection_info(FAULT_KMALLOC);
2415 return NULL;
2416 }
2417 #endif
2418 return kmalloc(size, flags);
2419 }
2420
2421 static inline int get_extra_isize(struct inode *inode)
2422 {
2423 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2424 }
2425
2426 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2427 static inline int get_inline_xattr_addrs(struct inode *inode)
2428 {
2429 return F2FS_I(inode)->i_inline_xattr_size;
2430 }
2431
2432 #define get_inode_mode(i) \
2433 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2434 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2435
2436 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2437 (offsetof(struct f2fs_inode, i_extra_end) - \
2438 offsetof(struct f2fs_inode, i_extra_isize)) \
2439
2440 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2441 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2442 ((offsetof(typeof(*f2fs_inode), field) + \
2443 sizeof((f2fs_inode)->field)) \
2444 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2445
2446 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2447 {
2448 int i;
2449
2450 spin_lock(&sbi->iostat_lock);
2451 for (i = 0; i < NR_IO_TYPE; i++)
2452 sbi->write_iostat[i] = 0;
2453 spin_unlock(&sbi->iostat_lock);
2454 }
2455
2456 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2457 enum iostat_type type, unsigned long long io_bytes)
2458 {
2459 if (!sbi->iostat_enable)
2460 return;
2461 spin_lock(&sbi->iostat_lock);
2462 sbi->write_iostat[type] += io_bytes;
2463
2464 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2465 sbi->write_iostat[APP_BUFFERED_IO] =
2466 sbi->write_iostat[APP_WRITE_IO] -
2467 sbi->write_iostat[APP_DIRECT_IO];
2468 spin_unlock(&sbi->iostat_lock);
2469 }
2470
2471 /*
2472 * file.c
2473 */
2474 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2475 void truncate_data_blocks(struct dnode_of_data *dn);
2476 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2477 int f2fs_truncate(struct inode *inode);
2478 int f2fs_getattr(const struct path *path, struct kstat *stat,
2479 u32 request_mask, unsigned int flags);
2480 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2481 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2482 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2483 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2484 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2485
2486 /*
2487 * inode.c
2488 */
2489 void f2fs_set_inode_flags(struct inode *inode);
2490 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2491 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2492 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2493 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2494 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2495 int update_inode(struct inode *inode, struct page *node_page);
2496 int update_inode_page(struct inode *inode);
2497 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2498 void f2fs_evict_inode(struct inode *inode);
2499 void handle_failed_inode(struct inode *inode);
2500
2501 /*
2502 * namei.c
2503 */
2504 struct dentry *f2fs_get_parent(struct dentry *child);
2505
2506 /*
2507 * dir.c
2508 */
2509 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2510 unsigned char get_de_type(struct f2fs_dir_entry *de);
2511 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2512 f2fs_hash_t namehash, int *max_slots,
2513 struct f2fs_dentry_ptr *d);
2514 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2515 unsigned int start_pos, struct fscrypt_str *fstr);
2516 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2517 struct f2fs_dentry_ptr *d);
2518 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2519 const struct qstr *new_name,
2520 const struct qstr *orig_name, struct page *dpage);
2521 void update_parent_metadata(struct inode *dir, struct inode *inode,
2522 unsigned int current_depth);
2523 int room_for_filename(const void *bitmap, int slots, int max_slots);
2524 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2525 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2526 struct fscrypt_name *fname, struct page **res_page);
2527 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2528 const struct qstr *child, struct page **res_page);
2529 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2530 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2531 struct page **page);
2532 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2533 struct page *page, struct inode *inode);
2534 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2535 const struct qstr *name, f2fs_hash_t name_hash,
2536 unsigned int bit_pos);
2537 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2538 const struct qstr *orig_name,
2539 struct inode *inode, nid_t ino, umode_t mode);
2540 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2541 struct inode *inode, nid_t ino, umode_t mode);
2542 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2543 struct inode *inode, nid_t ino, umode_t mode);
2544 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2545 struct inode *dir, struct inode *inode);
2546 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2547 bool f2fs_empty_dir(struct inode *dir);
2548
2549 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2550 {
2551 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2552 inode, inode->i_ino, inode->i_mode);
2553 }
2554
2555 /*
2556 * super.c
2557 */
2558 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2559 void f2fs_inode_synced(struct inode *inode);
2560 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2561 void f2fs_quota_off_umount(struct super_block *sb);
2562 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2563 int f2fs_sync_fs(struct super_block *sb, int sync);
2564 extern __printf(3, 4)
2565 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2566 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2567
2568 /*
2569 * hash.c
2570 */
2571 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2572 struct fscrypt_name *fname);
2573
2574 /*
2575 * node.c
2576 */
2577 struct dnode_of_data;
2578 struct node_info;
2579
2580 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2581 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2582 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2583 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2584 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2585 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2586 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2587 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2588 int truncate_xattr_node(struct inode *inode);
2589 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2590 int remove_inode_page(struct inode *inode);
2591 struct page *new_inode_page(struct inode *inode);
2592 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2593 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2594 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2595 struct page *get_node_page_ra(struct page *parent, int start);
2596 void move_node_page(struct page *node_page, int gc_type);
2597 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2598 struct writeback_control *wbc, bool atomic);
2599 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2600 bool do_balance, enum iostat_type io_type);
2601 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2602 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2603 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2604 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2605 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2606 void recover_inline_xattr(struct inode *inode, struct page *page);
2607 int recover_xattr_data(struct inode *inode, struct page *page,
2608 block_t blkaddr);
2609 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2610 int restore_node_summary(struct f2fs_sb_info *sbi,
2611 unsigned int segno, struct f2fs_summary_block *sum);
2612 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2613 int build_node_manager(struct f2fs_sb_info *sbi);
2614 void destroy_node_manager(struct f2fs_sb_info *sbi);
2615 int __init create_node_manager_caches(void);
2616 void destroy_node_manager_caches(void);
2617
2618 /*
2619 * segment.c
2620 */
2621 bool need_SSR(struct f2fs_sb_info *sbi);
2622 void register_inmem_page(struct inode *inode, struct page *page);
2623 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2624 void drop_inmem_pages(struct inode *inode);
2625 void drop_inmem_page(struct inode *inode, struct page *page);
2626 int commit_inmem_pages(struct inode *inode);
2627 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2628 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2629 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2630 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2631 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2632 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2633 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2634 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2635 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2636 unsigned int granularity);
2637 void stop_discard_thread(struct f2fs_sb_info *sbi);
2638 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2639 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2640 void release_discard_addrs(struct f2fs_sb_info *sbi);
2641 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2642 void allocate_new_segments(struct f2fs_sb_info *sbi);
2643 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2644 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2645 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2646 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2647 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2648 enum iostat_type io_type);
2649 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2650 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2651 int rewrite_data_page(struct f2fs_io_info *fio);
2652 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2653 block_t old_blkaddr, block_t new_blkaddr,
2654 bool recover_curseg, bool recover_newaddr);
2655 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2656 block_t old_addr, block_t new_addr,
2657 unsigned char version, bool recover_curseg,
2658 bool recover_newaddr);
2659 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2660 block_t old_blkaddr, block_t *new_blkaddr,
2661 struct f2fs_summary *sum, int type,
2662 struct f2fs_io_info *fio, bool add_list);
2663 void f2fs_wait_on_page_writeback(struct page *page,
2664 enum page_type type, bool ordered);
2665 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2666 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2667 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2668 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2669 unsigned int val, int alloc);
2670 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2671 int build_segment_manager(struct f2fs_sb_info *sbi);
2672 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2673 int __init create_segment_manager_caches(void);
2674 void destroy_segment_manager_caches(void);
2675
2676 /*
2677 * checkpoint.c
2678 */
2679 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2680 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2681 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2682 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2683 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2684 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2685 int type, bool sync);
2686 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2687 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2688 long nr_to_write, enum iostat_type io_type);
2689 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2690 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2691 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2692 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2693 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2694 unsigned int devidx, int type);
2695 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2696 unsigned int devidx, int type);
2697 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2698 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2699 void release_orphan_inode(struct f2fs_sb_info *sbi);
2700 void add_orphan_inode(struct inode *inode);
2701 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2702 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2703 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2704 void update_dirty_page(struct inode *inode, struct page *page);
2705 void remove_dirty_inode(struct inode *inode);
2706 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2707 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2708 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2709 int __init create_checkpoint_caches(void);
2710 void destroy_checkpoint_caches(void);
2711
2712 /*
2713 * data.c
2714 */
2715 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2716 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2717 struct inode *inode, nid_t ino, pgoff_t idx,
2718 enum page_type type);
2719 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2720 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2721 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2722 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2723 block_t blk_addr, struct bio *bio);
2724 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2725 void set_data_blkaddr(struct dnode_of_data *dn);
2726 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2727 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2728 int reserve_new_block(struct dnode_of_data *dn);
2729 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2730 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2731 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2732 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2733 int op_flags, bool for_write);
2734 struct page *find_data_page(struct inode *inode, pgoff_t index);
2735 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2736 bool for_write);
2737 struct page *get_new_data_page(struct inode *inode,
2738 struct page *ipage, pgoff_t index, bool new_i_size);
2739 int do_write_data_page(struct f2fs_io_info *fio);
2740 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2741 int create, int flag);
2742 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2743 u64 start, u64 len);
2744 void f2fs_set_page_dirty_nobuffers(struct page *page);
2745 int __f2fs_write_data_pages(struct address_space *mapping,
2746 struct writeback_control *wbc,
2747 enum iostat_type io_type);
2748 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2749 unsigned int length);
2750 int f2fs_release_page(struct page *page, gfp_t wait);
2751 #ifdef CONFIG_MIGRATION
2752 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2753 struct page *page, enum migrate_mode mode);
2754 #endif
2755
2756 /*
2757 * gc.c
2758 */
2759 int start_gc_thread(struct f2fs_sb_info *sbi);
2760 void stop_gc_thread(struct f2fs_sb_info *sbi);
2761 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2762 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2763 unsigned int segno);
2764 void build_gc_manager(struct f2fs_sb_info *sbi);
2765
2766 /*
2767 * recovery.c
2768 */
2769 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2770 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2771
2772 /*
2773 * debug.c
2774 */
2775 #ifdef CONFIG_F2FS_STAT_FS
2776 struct f2fs_stat_info {
2777 struct list_head stat_list;
2778 struct f2fs_sb_info *sbi;
2779 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2780 int main_area_segs, main_area_sections, main_area_zones;
2781 unsigned long long hit_largest, hit_cached, hit_rbtree;
2782 unsigned long long hit_total, total_ext;
2783 int ext_tree, zombie_tree, ext_node;
2784 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2785 int ndirty_data, ndirty_qdata;
2786 int inmem_pages;
2787 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2788 int nats, dirty_nats, sits, dirty_sits;
2789 int free_nids, avail_nids, alloc_nids;
2790 int total_count, utilization;
2791 int bg_gc, nr_wb_cp_data, nr_wb_data;
2792 int nr_flushing, nr_flushed, flush_list_empty;
2793 int nr_discarding, nr_discarded;
2794 int nr_discard_cmd;
2795 unsigned int undiscard_blks;
2796 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2797 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2798 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2799 unsigned int bimodal, avg_vblocks;
2800 int util_free, util_valid, util_invalid;
2801 int rsvd_segs, overp_segs;
2802 int dirty_count, node_pages, meta_pages;
2803 int prefree_count, call_count, cp_count, bg_cp_count;
2804 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2805 int bg_node_segs, bg_data_segs;
2806 int tot_blks, data_blks, node_blks;
2807 int bg_data_blks, bg_node_blks;
2808 int curseg[NR_CURSEG_TYPE];
2809 int cursec[NR_CURSEG_TYPE];
2810 int curzone[NR_CURSEG_TYPE];
2811
2812 unsigned int segment_count[2];
2813 unsigned int block_count[2];
2814 unsigned int inplace_count;
2815 unsigned long long base_mem, cache_mem, page_mem;
2816 };
2817
2818 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2819 {
2820 return (struct f2fs_stat_info *)sbi->stat_info;
2821 }
2822
2823 #define stat_inc_cp_count(si) ((si)->cp_count++)
2824 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2825 #define stat_inc_call_count(si) ((si)->call_count++)
2826 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2827 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2828 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2829 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2830 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2831 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2832 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2833 #define stat_inc_inline_xattr(inode) \
2834 do { \
2835 if (f2fs_has_inline_xattr(inode)) \
2836 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2837 } while (0)
2838 #define stat_dec_inline_xattr(inode) \
2839 do { \
2840 if (f2fs_has_inline_xattr(inode)) \
2841 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2842 } while (0)
2843 #define stat_inc_inline_inode(inode) \
2844 do { \
2845 if (f2fs_has_inline_data(inode)) \
2846 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2847 } while (0)
2848 #define stat_dec_inline_inode(inode) \
2849 do { \
2850 if (f2fs_has_inline_data(inode)) \
2851 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2852 } while (0)
2853 #define stat_inc_inline_dir(inode) \
2854 do { \
2855 if (f2fs_has_inline_dentry(inode)) \
2856 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2857 } while (0)
2858 #define stat_dec_inline_dir(inode) \
2859 do { \
2860 if (f2fs_has_inline_dentry(inode)) \
2861 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2862 } while (0)
2863 #define stat_inc_seg_type(sbi, curseg) \
2864 ((sbi)->segment_count[(curseg)->alloc_type]++)
2865 #define stat_inc_block_count(sbi, curseg) \
2866 ((sbi)->block_count[(curseg)->alloc_type]++)
2867 #define stat_inc_inplace_blocks(sbi) \
2868 (atomic_inc(&(sbi)->inplace_count))
2869 #define stat_inc_atomic_write(inode) \
2870 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2871 #define stat_dec_atomic_write(inode) \
2872 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2873 #define stat_update_max_atomic_write(inode) \
2874 do { \
2875 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2876 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2877 if (cur > max) \
2878 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2879 } while (0)
2880 #define stat_inc_volatile_write(inode) \
2881 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2882 #define stat_dec_volatile_write(inode) \
2883 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2884 #define stat_update_max_volatile_write(inode) \
2885 do { \
2886 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2887 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2888 if (cur > max) \
2889 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2890 } while (0)
2891 #define stat_inc_seg_count(sbi, type, gc_type) \
2892 do { \
2893 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2894 si->tot_segs++; \
2895 if ((type) == SUM_TYPE_DATA) { \
2896 si->data_segs++; \
2897 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2898 } else { \
2899 si->node_segs++; \
2900 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2901 } \
2902 } while (0)
2903
2904 #define stat_inc_tot_blk_count(si, blks) \
2905 ((si)->tot_blks += (blks))
2906
2907 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2908 do { \
2909 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2910 stat_inc_tot_blk_count(si, blks); \
2911 si->data_blks += (blks); \
2912 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2913 } while (0)
2914
2915 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2916 do { \
2917 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2918 stat_inc_tot_blk_count(si, blks); \
2919 si->node_blks += (blks); \
2920 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2921 } while (0)
2922
2923 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2924 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2925 int __init f2fs_create_root_stats(void);
2926 void f2fs_destroy_root_stats(void);
2927 #else
2928 #define stat_inc_cp_count(si) do { } while (0)
2929 #define stat_inc_bg_cp_count(si) do { } while (0)
2930 #define stat_inc_call_count(si) do { } while (0)
2931 #define stat_inc_bggc_count(si) do { } while (0)
2932 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2933 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2934 #define stat_inc_total_hit(sb) do { } while (0)
2935 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2936 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2937 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2938 #define stat_inc_inline_xattr(inode) do { } while (0)
2939 #define stat_dec_inline_xattr(inode) do { } while (0)
2940 #define stat_inc_inline_inode(inode) do { } while (0)
2941 #define stat_dec_inline_inode(inode) do { } while (0)
2942 #define stat_inc_inline_dir(inode) do { } while (0)
2943 #define stat_dec_inline_dir(inode) do { } while (0)
2944 #define stat_inc_atomic_write(inode) do { } while (0)
2945 #define stat_dec_atomic_write(inode) do { } while (0)
2946 #define stat_update_max_atomic_write(inode) do { } while (0)
2947 #define stat_inc_volatile_write(inode) do { } while (0)
2948 #define stat_dec_volatile_write(inode) do { } while (0)
2949 #define stat_update_max_volatile_write(inode) do { } while (0)
2950 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2951 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2952 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2953 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2954 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2955 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2956 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2957
2958 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2959 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2960 static inline int __init f2fs_create_root_stats(void) { return 0; }
2961 static inline void f2fs_destroy_root_stats(void) { }
2962 #endif
2963
2964 extern const struct file_operations f2fs_dir_operations;
2965 extern const struct file_operations f2fs_file_operations;
2966 extern const struct inode_operations f2fs_file_inode_operations;
2967 extern const struct address_space_operations f2fs_dblock_aops;
2968 extern const struct address_space_operations f2fs_node_aops;
2969 extern const struct address_space_operations f2fs_meta_aops;
2970 extern const struct inode_operations f2fs_dir_inode_operations;
2971 extern const struct inode_operations f2fs_symlink_inode_operations;
2972 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2973 extern const struct inode_operations f2fs_special_inode_operations;
2974 extern struct kmem_cache *inode_entry_slab;
2975
2976 /*
2977 * inline.c
2978 */
2979 bool f2fs_may_inline_data(struct inode *inode);
2980 bool f2fs_may_inline_dentry(struct inode *inode);
2981 void read_inline_data(struct page *page, struct page *ipage);
2982 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2983 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2984 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2985 int f2fs_convert_inline_inode(struct inode *inode);
2986 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2987 bool recover_inline_data(struct inode *inode, struct page *npage);
2988 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2989 struct fscrypt_name *fname, struct page **res_page);
2990 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2991 struct page *ipage);
2992 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2993 const struct qstr *orig_name,
2994 struct inode *inode, nid_t ino, umode_t mode);
2995 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2996 struct inode *dir, struct inode *inode);
2997 bool f2fs_empty_inline_dir(struct inode *dir);
2998 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2999 struct fscrypt_str *fstr);
3000 int f2fs_inline_data_fiemap(struct inode *inode,
3001 struct fiemap_extent_info *fieinfo,
3002 __u64 start, __u64 len);
3003
3004 /*
3005 * shrinker.c
3006 */
3007 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3008 struct shrink_control *sc);
3009 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3010 struct shrink_control *sc);
3011 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3012 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3013
3014 /*
3015 * extent_cache.c
3016 */
3017 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3018 struct rb_entry *cached_re, unsigned int ofs);
3019 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3020 struct rb_root *root, struct rb_node **parent,
3021 unsigned int ofs);
3022 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3023 struct rb_entry *cached_re, unsigned int ofs,
3024 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3025 struct rb_node ***insert_p, struct rb_node **insert_parent,
3026 bool force);
3027 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3028 struct rb_root *root);
3029 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3030 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3031 void f2fs_drop_extent_tree(struct inode *inode);
3032 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3033 void f2fs_destroy_extent_tree(struct inode *inode);
3034 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3035 struct extent_info *ei);
3036 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3037 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3038 pgoff_t fofs, block_t blkaddr, unsigned int len);
3039 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3040 int __init create_extent_cache(void);
3041 void destroy_extent_cache(void);
3042
3043 /*
3044 * sysfs.c
3045 */
3046 int __init f2fs_init_sysfs(void);
3047 void f2fs_exit_sysfs(void);
3048 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3049 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3050
3051 /*
3052 * crypto support
3053 */
3054 static inline bool f2fs_encrypted_inode(struct inode *inode)
3055 {
3056 return file_is_encrypt(inode);
3057 }
3058
3059 static inline bool f2fs_encrypted_file(struct inode *inode)
3060 {
3061 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3062 }
3063
3064 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3065 {
3066 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3067 file_set_encrypt(inode);
3068 inode->i_flags |= S_ENCRYPTED;
3069 #endif
3070 }
3071
3072 static inline bool f2fs_bio_encrypted(struct bio *bio)
3073 {
3074 return bio->bi_private != NULL;
3075 }
3076
3077 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3078 {
3079 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3080 }
3081
3082 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3083 {
3084 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3085 }
3086
3087 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3088 {
3089 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3090 }
3091
3092 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3093 {
3094 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3095 }
3096
3097 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3098 {
3099 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3100 }
3101
3102 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3103 {
3104 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3105 }
3106
3107 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3108 {
3109 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3110 }
3111
3112 #ifdef CONFIG_BLK_DEV_ZONED
3113 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3114 struct block_device *bdev, block_t blkaddr)
3115 {
3116 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3117 int i;
3118
3119 for (i = 0; i < sbi->s_ndevs; i++)
3120 if (FDEV(i).bdev == bdev)
3121 return FDEV(i).blkz_type[zno];
3122 return -EINVAL;
3123 }
3124 #endif
3125
3126 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3127 {
3128 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3129
3130 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3131 }
3132
3133 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3134 {
3135 clear_opt(sbi, ADAPTIVE);
3136 clear_opt(sbi, LFS);
3137
3138 switch (mt) {
3139 case F2FS_MOUNT_ADAPTIVE:
3140 set_opt(sbi, ADAPTIVE);
3141 break;
3142 case F2FS_MOUNT_LFS:
3143 set_opt(sbi, LFS);
3144 break;
3145 }
3146 }
3147
3148 static inline bool f2fs_may_encrypt(struct inode *inode)
3149 {
3150 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3151 umode_t mode = inode->i_mode;
3152
3153 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3154 #else
3155 return 0;
3156 #endif
3157 }
3158
3159 #endif