]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: fix to do sanity check with block address in main area
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 FAULT_KMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
97
98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101
102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
103 typecheck(unsigned long long, b) && \
104 ((long long)((a) - (b)) > 0))
105
106 typedef u32 block_t; /*
107 * should not change u32, since it is the on-disk block
108 * address format, __le32.
109 */
110 typedef u32 nid_t;
111
112 struct f2fs_mount_info {
113 unsigned int opt;
114 };
115
116 #define F2FS_FEATURE_ENCRYPT 0x0001
117 #define F2FS_FEATURE_BLKZONED 0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
120 #define F2FS_FEATURE_PRJQUOTA 0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
123 #define F2FS_FEATURE_QUOTA_INO 0x0080
124
125 #define F2FS_HAS_FEATURE(sb, mask) \
126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask) \
128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask) \
130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131
132 /*
133 * For checkpoint manager
134 */
135 enum {
136 NAT_BITMAP,
137 SIT_BITMAP
138 };
139
140 #define CP_UMOUNT 0x00000001
141 #define CP_FASTBOOT 0x00000002
142 #define CP_SYNC 0x00000004
143 #define CP_RECOVERY 0x00000008
144 #define CP_DISCARD 0x00000010
145 #define CP_TRIMMED 0x00000020
146
147 #define DEF_BATCHED_TRIM_SECTIONS 2048
148 #define BATCHED_TRIM_SEGMENTS(sbi) \
149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi) \
151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL 60 /* 60 secs */
157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
158
159 struct cp_control {
160 int reason;
161 __u64 trim_start;
162 __u64 trim_end;
163 __u64 trim_minlen;
164 };
165
166 /*
167 * indicate meta/data type
168 */
169 enum {
170 META_CP,
171 META_NAT,
172 META_SIT,
173 META_SSA,
174 META_POR,
175 DATA_GENERIC,
176 META_GENERIC,
177 };
178
179 /* for the list of ino */
180 enum {
181 ORPHAN_INO, /* for orphan ino list */
182 APPEND_INO, /* for append ino list */
183 UPDATE_INO, /* for update ino list */
184 FLUSH_INO, /* for multiple device flushing */
185 MAX_INO_ENTRY, /* max. list */
186 };
187
188 struct ino_entry {
189 struct list_head list; /* list head */
190 nid_t ino; /* inode number */
191 unsigned int dirty_device; /* dirty device bitmap */
192 };
193
194 /* for the list of inodes to be GCed */
195 struct inode_entry {
196 struct list_head list; /* list head */
197 struct inode *inode; /* vfs inode pointer */
198 };
199
200 /* for the bitmap indicate blocks to be discarded */
201 struct discard_entry {
202 struct list_head list; /* list head */
203 block_t start_blkaddr; /* start blockaddr of current segment */
204 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
205 };
206
207 /* default discard granularity of inner discard thread, unit: block count */
208 #define DEFAULT_DISCARD_GRANULARITY 16
209
210 /* max discard pend list number */
211 #define MAX_PLIST_NUM 512
212 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
213 (MAX_PLIST_NUM - 1) : (blk_num - 1))
214
215 enum {
216 D_PREP,
217 D_SUBMIT,
218 D_DONE,
219 };
220
221 struct discard_info {
222 block_t lstart; /* logical start address */
223 block_t len; /* length */
224 block_t start; /* actual start address in dev */
225 };
226
227 struct discard_cmd {
228 struct rb_node rb_node; /* rb node located in rb-tree */
229 union {
230 struct {
231 block_t lstart; /* logical start address */
232 block_t len; /* length */
233 block_t start; /* actual start address in dev */
234 };
235 struct discard_info di; /* discard info */
236
237 };
238 struct list_head list; /* command list */
239 struct completion wait; /* compleation */
240 struct block_device *bdev; /* bdev */
241 unsigned short ref; /* reference count */
242 unsigned char state; /* state */
243 int error; /* bio error */
244 };
245
246 enum {
247 DPOLICY_BG,
248 DPOLICY_FORCE,
249 DPOLICY_FSTRIM,
250 DPOLICY_UMOUNT,
251 MAX_DPOLICY,
252 };
253
254 struct discard_policy {
255 int type; /* type of discard */
256 unsigned int min_interval; /* used for candidates exist */
257 unsigned int max_interval; /* used for candidates not exist */
258 unsigned int max_requests; /* # of discards issued per round */
259 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
260 bool io_aware; /* issue discard in idle time */
261 bool sync; /* submit discard with REQ_SYNC flag */
262 unsigned int granularity; /* discard granularity */
263 };
264
265 struct discard_cmd_control {
266 struct task_struct *f2fs_issue_discard; /* discard thread */
267 struct list_head entry_list; /* 4KB discard entry list */
268 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
269 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
270 struct list_head wait_list; /* store on-flushing entries */
271 struct list_head fstrim_list; /* in-flight discard from fstrim */
272 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
273 unsigned int discard_wake; /* to wake up discard thread */
274 struct mutex cmd_lock;
275 unsigned int nr_discards; /* # of discards in the list */
276 unsigned int max_discards; /* max. discards to be issued */
277 unsigned int discard_granularity; /* discard granularity */
278 unsigned int undiscard_blks; /* # of undiscard blocks */
279 atomic_t issued_discard; /* # of issued discard */
280 atomic_t issing_discard; /* # of issing discard */
281 atomic_t discard_cmd_cnt; /* # of cached cmd count */
282 struct rb_root root; /* root of discard rb-tree */
283 };
284
285 /* for the list of fsync inodes, used only during recovery */
286 struct fsync_inode_entry {
287 struct list_head list; /* list head */
288 struct inode *inode; /* vfs inode pointer */
289 block_t blkaddr; /* block address locating the last fsync */
290 block_t last_dentry; /* block address locating the last dentry */
291 };
292
293 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
294 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
295
296 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
297 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
298 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
299 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
300
301 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
302 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
303
304 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
305 {
306 int before = nats_in_cursum(journal);
307
308 journal->n_nats = cpu_to_le16(before + i);
309 return before;
310 }
311
312 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
313 {
314 int before = sits_in_cursum(journal);
315
316 journal->n_sits = cpu_to_le16(before + i);
317 return before;
318 }
319
320 static inline bool __has_cursum_space(struct f2fs_journal *journal,
321 int size, int type)
322 {
323 if (type == NAT_JOURNAL)
324 return size <= MAX_NAT_JENTRIES(journal);
325 return size <= MAX_SIT_JENTRIES(journal);
326 }
327
328 /*
329 * ioctl commands
330 */
331 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
332 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
333 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
334
335 #define F2FS_IOCTL_MAGIC 0xf5
336 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
337 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
338 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
339 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
340 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
341 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
342 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
343 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
344 struct f2fs_defragment)
345 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
346 struct f2fs_move_range)
347 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
348 struct f2fs_flush_device)
349 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
350 struct f2fs_gc_range)
351 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
352
353 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
354 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
355 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
356
357 /*
358 * should be same as XFS_IOC_GOINGDOWN.
359 * Flags for going down operation used by FS_IOC_GOINGDOWN
360 */
361 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
362 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
363 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
364 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
365 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
366
367 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
368 /*
369 * ioctl commands in 32 bit emulation
370 */
371 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
372 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
373 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
374 #endif
375
376 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
377 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
378
379 struct f2fs_gc_range {
380 u32 sync;
381 u64 start;
382 u64 len;
383 };
384
385 struct f2fs_defragment {
386 u64 start;
387 u64 len;
388 };
389
390 struct f2fs_move_range {
391 u32 dst_fd; /* destination fd */
392 u64 pos_in; /* start position in src_fd */
393 u64 pos_out; /* start position in dst_fd */
394 u64 len; /* size to move */
395 };
396
397 struct f2fs_flush_device {
398 u32 dev_num; /* device number to flush */
399 u32 segments; /* # of segments to flush */
400 };
401
402 /* for inline stuff */
403 #define DEF_INLINE_RESERVED_SIZE 1
404 #define DEF_MIN_INLINE_SIZE 1
405 static inline int get_extra_isize(struct inode *inode);
406 static inline int get_inline_xattr_addrs(struct inode *inode);
407 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode)
408 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
409 (CUR_ADDRS_PER_INODE(inode) - \
410 F2FS_INLINE_XATTR_ADDRS(inode) - \
411 DEF_INLINE_RESERVED_SIZE))
412
413 /* for inline dir */
414 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
415 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
416 BITS_PER_BYTE + 1))
417 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
418 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
419 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
420 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
421 NR_INLINE_DENTRY(inode) + \
422 INLINE_DENTRY_BITMAP_SIZE(inode)))
423
424 /*
425 * For INODE and NODE manager
426 */
427 /* for directory operations */
428 struct f2fs_dentry_ptr {
429 struct inode *inode;
430 void *bitmap;
431 struct f2fs_dir_entry *dentry;
432 __u8 (*filename)[F2FS_SLOT_LEN];
433 int max;
434 int nr_bitmap;
435 };
436
437 static inline void make_dentry_ptr_block(struct inode *inode,
438 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
439 {
440 d->inode = inode;
441 d->max = NR_DENTRY_IN_BLOCK;
442 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
443 d->bitmap = &t->dentry_bitmap;
444 d->dentry = t->dentry;
445 d->filename = t->filename;
446 }
447
448 static inline void make_dentry_ptr_inline(struct inode *inode,
449 struct f2fs_dentry_ptr *d, void *t)
450 {
451 int entry_cnt = NR_INLINE_DENTRY(inode);
452 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
453 int reserved_size = INLINE_RESERVED_SIZE(inode);
454
455 d->inode = inode;
456 d->max = entry_cnt;
457 d->nr_bitmap = bitmap_size;
458 d->bitmap = t;
459 d->dentry = t + bitmap_size + reserved_size;
460 d->filename = t + bitmap_size + reserved_size +
461 SIZE_OF_DIR_ENTRY * entry_cnt;
462 }
463
464 /*
465 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
466 * as its node offset to distinguish from index node blocks.
467 * But some bits are used to mark the node block.
468 */
469 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
470 >> OFFSET_BIT_SHIFT)
471 enum {
472 ALLOC_NODE, /* allocate a new node page if needed */
473 LOOKUP_NODE, /* look up a node without readahead */
474 LOOKUP_NODE_RA, /*
475 * look up a node with readahead called
476 * by get_data_block.
477 */
478 };
479
480 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
481
482 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
483
484 /* vector size for gang look-up from extent cache that consists of radix tree */
485 #define EXT_TREE_VEC_SIZE 64
486
487 /* for in-memory extent cache entry */
488 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
489
490 /* number of extent info in extent cache we try to shrink */
491 #define EXTENT_CACHE_SHRINK_NUMBER 128
492
493 struct rb_entry {
494 struct rb_node rb_node; /* rb node located in rb-tree */
495 unsigned int ofs; /* start offset of the entry */
496 unsigned int len; /* length of the entry */
497 };
498
499 struct extent_info {
500 unsigned int fofs; /* start offset in a file */
501 unsigned int len; /* length of the extent */
502 u32 blk; /* start block address of the extent */
503 };
504
505 struct extent_node {
506 struct rb_node rb_node;
507 union {
508 struct {
509 unsigned int fofs;
510 unsigned int len;
511 u32 blk;
512 };
513 struct extent_info ei; /* extent info */
514
515 };
516 struct list_head list; /* node in global extent list of sbi */
517 struct extent_tree *et; /* extent tree pointer */
518 };
519
520 struct extent_tree {
521 nid_t ino; /* inode number */
522 struct rb_root root; /* root of extent info rb-tree */
523 struct extent_node *cached_en; /* recently accessed extent node */
524 struct extent_info largest; /* largested extent info */
525 struct list_head list; /* to be used by sbi->zombie_list */
526 rwlock_t lock; /* protect extent info rb-tree */
527 atomic_t node_cnt; /* # of extent node in rb-tree*/
528 bool largest_updated; /* largest extent updated */
529 };
530
531 /*
532 * This structure is taken from ext4_map_blocks.
533 *
534 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
535 */
536 #define F2FS_MAP_NEW (1 << BH_New)
537 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
538 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
539 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
540 F2FS_MAP_UNWRITTEN)
541
542 struct f2fs_map_blocks {
543 block_t m_pblk;
544 block_t m_lblk;
545 unsigned int m_len;
546 unsigned int m_flags;
547 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
548 };
549
550 /* for flag in get_data_block */
551 enum {
552 F2FS_GET_BLOCK_DEFAULT,
553 F2FS_GET_BLOCK_FIEMAP,
554 F2FS_GET_BLOCK_BMAP,
555 F2FS_GET_BLOCK_PRE_DIO,
556 F2FS_GET_BLOCK_PRE_AIO,
557 };
558
559 /*
560 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
561 */
562 #define FADVISE_COLD_BIT 0x01
563 #define FADVISE_LOST_PINO_BIT 0x02
564 #define FADVISE_ENCRYPT_BIT 0x04
565 #define FADVISE_ENC_NAME_BIT 0x08
566 #define FADVISE_KEEP_SIZE_BIT 0x10
567
568 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
569 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
570 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
571 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
572 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
573 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
574 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
575 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
576 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
577 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
578 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
579 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
580 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
581
582 #define DEF_DIR_LEVEL 0
583
584 struct f2fs_inode_info {
585 struct inode vfs_inode; /* serve a vfs inode */
586 unsigned long i_flags; /* keep an inode flags for ioctl */
587 unsigned char i_advise; /* use to give file attribute hints */
588 unsigned char i_dir_level; /* use for dentry level for large dir */
589 unsigned int i_current_depth; /* use only in directory structure */
590 unsigned int i_pino; /* parent inode number */
591 umode_t i_acl_mode; /* keep file acl mode temporarily */
592
593 /* Use below internally in f2fs*/
594 unsigned long flags; /* use to pass per-file flags */
595 struct rw_semaphore i_sem; /* protect fi info */
596 atomic_t dirty_pages; /* # of dirty pages */
597 f2fs_hash_t chash; /* hash value of given file name */
598 unsigned int clevel; /* maximum level of given file name */
599 struct task_struct *task; /* lookup and create consistency */
600 struct task_struct *cp_task; /* separate cp/wb IO stats*/
601 nid_t i_xattr_nid; /* node id that contains xattrs */
602 loff_t last_disk_size; /* lastly written file size */
603
604 #ifdef CONFIG_QUOTA
605 struct dquot *i_dquot[MAXQUOTAS];
606
607 /* quota space reservation, managed internally by quota code */
608 qsize_t i_reserved_quota;
609 #endif
610 struct list_head dirty_list; /* dirty list for dirs and files */
611 struct list_head gdirty_list; /* linked in global dirty list */
612 struct list_head inmem_ilist; /* list for inmem inodes */
613 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
614 struct task_struct *inmem_task; /* store inmemory task */
615 struct mutex inmem_lock; /* lock for inmemory pages */
616 struct extent_tree *extent_tree; /* cached extent_tree entry */
617 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
618 struct rw_semaphore i_mmap_sem;
619 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
620
621 int i_extra_isize; /* size of extra space located in i_addr */
622 kprojid_t i_projid; /* id for project quota */
623 int i_inline_xattr_size; /* inline xattr size */
624 };
625
626 static inline void get_extent_info(struct extent_info *ext,
627 struct f2fs_extent *i_ext)
628 {
629 ext->fofs = le32_to_cpu(i_ext->fofs);
630 ext->blk = le32_to_cpu(i_ext->blk);
631 ext->len = le32_to_cpu(i_ext->len);
632 }
633
634 static inline void set_raw_extent(struct extent_info *ext,
635 struct f2fs_extent *i_ext)
636 {
637 i_ext->fofs = cpu_to_le32(ext->fofs);
638 i_ext->blk = cpu_to_le32(ext->blk);
639 i_ext->len = cpu_to_le32(ext->len);
640 }
641
642 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
643 u32 blk, unsigned int len)
644 {
645 ei->fofs = fofs;
646 ei->blk = blk;
647 ei->len = len;
648 }
649
650 static inline bool __is_discard_mergeable(struct discard_info *back,
651 struct discard_info *front)
652 {
653 return back->lstart + back->len == front->lstart;
654 }
655
656 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
657 struct discard_info *back)
658 {
659 return __is_discard_mergeable(back, cur);
660 }
661
662 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
663 struct discard_info *front)
664 {
665 return __is_discard_mergeable(cur, front);
666 }
667
668 static inline bool __is_extent_mergeable(struct extent_info *back,
669 struct extent_info *front)
670 {
671 return (back->fofs + back->len == front->fofs &&
672 back->blk + back->len == front->blk);
673 }
674
675 static inline bool __is_back_mergeable(struct extent_info *cur,
676 struct extent_info *back)
677 {
678 return __is_extent_mergeable(back, cur);
679 }
680
681 static inline bool __is_front_mergeable(struct extent_info *cur,
682 struct extent_info *front)
683 {
684 return __is_extent_mergeable(cur, front);
685 }
686
687 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
688 static inline void __try_update_largest_extent(struct extent_tree *et,
689 struct extent_node *en)
690 {
691 if (en->ei.len > et->largest.len) {
692 et->largest = en->ei;
693 et->largest_updated = true;
694 }
695 }
696
697 /*
698 * For free nid management
699 */
700 enum nid_state {
701 FREE_NID, /* newly added to free nid list */
702 PREALLOC_NID, /* it is preallocated */
703 MAX_NID_STATE,
704 };
705
706 struct f2fs_nm_info {
707 block_t nat_blkaddr; /* base disk address of NAT */
708 nid_t max_nid; /* maximum possible node ids */
709 nid_t available_nids; /* # of available node ids */
710 nid_t next_scan_nid; /* the next nid to be scanned */
711 unsigned int ram_thresh; /* control the memory footprint */
712 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
713 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
714
715 /* NAT cache management */
716 struct radix_tree_root nat_root;/* root of the nat entry cache */
717 struct radix_tree_root nat_set_root;/* root of the nat set cache */
718 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
719 struct list_head nat_entries; /* cached nat entry list (clean) */
720 unsigned int nat_cnt; /* the # of cached nat entries */
721 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
722 unsigned int nat_blocks; /* # of nat blocks */
723
724 /* free node ids management */
725 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
726 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
727 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
728 spinlock_t nid_list_lock; /* protect nid lists ops */
729 struct mutex build_lock; /* lock for build free nids */
730 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
731 unsigned char *nat_block_bitmap;
732 unsigned short *free_nid_count; /* free nid count of NAT block */
733
734 /* for checkpoint */
735 char *nat_bitmap; /* NAT bitmap pointer */
736
737 unsigned int nat_bits_blocks; /* # of nat bits blocks */
738 unsigned char *nat_bits; /* NAT bits blocks */
739 unsigned char *full_nat_bits; /* full NAT pages */
740 unsigned char *empty_nat_bits; /* empty NAT pages */
741 #ifdef CONFIG_F2FS_CHECK_FS
742 char *nat_bitmap_mir; /* NAT bitmap mirror */
743 #endif
744 int bitmap_size; /* bitmap size */
745 };
746
747 /*
748 * this structure is used as one of function parameters.
749 * all the information are dedicated to a given direct node block determined
750 * by the data offset in a file.
751 */
752 struct dnode_of_data {
753 struct inode *inode; /* vfs inode pointer */
754 struct page *inode_page; /* its inode page, NULL is possible */
755 struct page *node_page; /* cached direct node page */
756 nid_t nid; /* node id of the direct node block */
757 unsigned int ofs_in_node; /* data offset in the node page */
758 bool inode_page_locked; /* inode page is locked or not */
759 bool node_changed; /* is node block changed */
760 char cur_level; /* level of hole node page */
761 char max_level; /* level of current page located */
762 block_t data_blkaddr; /* block address of the node block */
763 };
764
765 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
766 struct page *ipage, struct page *npage, nid_t nid)
767 {
768 memset(dn, 0, sizeof(*dn));
769 dn->inode = inode;
770 dn->inode_page = ipage;
771 dn->node_page = npage;
772 dn->nid = nid;
773 }
774
775 /*
776 * For SIT manager
777 *
778 * By default, there are 6 active log areas across the whole main area.
779 * When considering hot and cold data separation to reduce cleaning overhead,
780 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
781 * respectively.
782 * In the current design, you should not change the numbers intentionally.
783 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
784 * logs individually according to the underlying devices. (default: 6)
785 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
786 * data and 8 for node logs.
787 */
788 #define NR_CURSEG_DATA_TYPE (3)
789 #define NR_CURSEG_NODE_TYPE (3)
790 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
791
792 enum {
793 CURSEG_HOT_DATA = 0, /* directory entry blocks */
794 CURSEG_WARM_DATA, /* data blocks */
795 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
796 CURSEG_HOT_NODE, /* direct node blocks of directory files */
797 CURSEG_WARM_NODE, /* direct node blocks of normal files */
798 CURSEG_COLD_NODE, /* indirect node blocks */
799 NO_CHECK_TYPE,
800 };
801
802 struct flush_cmd {
803 struct completion wait;
804 struct llist_node llnode;
805 nid_t ino;
806 int ret;
807 };
808
809 struct flush_cmd_control {
810 struct task_struct *f2fs_issue_flush; /* flush thread */
811 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
812 atomic_t issued_flush; /* # of issued flushes */
813 atomic_t issing_flush; /* # of issing flushes */
814 struct llist_head issue_list; /* list for command issue */
815 struct llist_node *dispatch_list; /* list for command dispatch */
816 };
817
818 struct f2fs_sm_info {
819 struct sit_info *sit_info; /* whole segment information */
820 struct free_segmap_info *free_info; /* free segment information */
821 struct dirty_seglist_info *dirty_info; /* dirty segment information */
822 struct curseg_info *curseg_array; /* active segment information */
823
824 struct rw_semaphore curseg_lock; /* for preventing curseg change */
825
826 block_t seg0_blkaddr; /* block address of 0'th segment */
827 block_t main_blkaddr; /* start block address of main area */
828 block_t ssa_blkaddr; /* start block address of SSA area */
829
830 unsigned int segment_count; /* total # of segments */
831 unsigned int main_segments; /* # of segments in main area */
832 unsigned int reserved_segments; /* # of reserved segments */
833 unsigned int ovp_segments; /* # of overprovision segments */
834
835 /* a threshold to reclaim prefree segments */
836 unsigned int rec_prefree_segments;
837
838 /* for batched trimming */
839 unsigned int trim_sections; /* # of sections to trim */
840
841 struct list_head sit_entry_set; /* sit entry set list */
842
843 unsigned int ipu_policy; /* in-place-update policy */
844 unsigned int min_ipu_util; /* in-place-update threshold */
845 unsigned int min_fsync_blocks; /* threshold for fsync */
846 unsigned int min_hot_blocks; /* threshold for hot block allocation */
847 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
848
849 /* for flush command control */
850 struct flush_cmd_control *fcc_info;
851
852 /* for discard command control */
853 struct discard_cmd_control *dcc_info;
854 };
855
856 /*
857 * For superblock
858 */
859 /*
860 * COUNT_TYPE for monitoring
861 *
862 * f2fs monitors the number of several block types such as on-writeback,
863 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
864 */
865 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
866 enum count_type {
867 F2FS_DIRTY_DENTS,
868 F2FS_DIRTY_DATA,
869 F2FS_DIRTY_QDATA,
870 F2FS_DIRTY_NODES,
871 F2FS_DIRTY_META,
872 F2FS_INMEM_PAGES,
873 F2FS_DIRTY_IMETA,
874 F2FS_WB_CP_DATA,
875 F2FS_WB_DATA,
876 NR_COUNT_TYPE,
877 };
878
879 /*
880 * The below are the page types of bios used in submit_bio().
881 * The available types are:
882 * DATA User data pages. It operates as async mode.
883 * NODE Node pages. It operates as async mode.
884 * META FS metadata pages such as SIT, NAT, CP.
885 * NR_PAGE_TYPE The number of page types.
886 * META_FLUSH Make sure the previous pages are written
887 * with waiting the bio's completion
888 * ... Only can be used with META.
889 */
890 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
891 enum page_type {
892 DATA,
893 NODE,
894 META,
895 NR_PAGE_TYPE,
896 META_FLUSH,
897 INMEM, /* the below types are used by tracepoints only. */
898 INMEM_DROP,
899 INMEM_INVALIDATE,
900 INMEM_REVOKE,
901 IPU,
902 OPU,
903 };
904
905 enum temp_type {
906 HOT = 0, /* must be zero for meta bio */
907 WARM,
908 COLD,
909 NR_TEMP_TYPE,
910 };
911
912 enum need_lock_type {
913 LOCK_REQ = 0,
914 LOCK_DONE,
915 LOCK_RETRY,
916 };
917
918 enum cp_reason_type {
919 CP_NO_NEEDED,
920 CP_NON_REGULAR,
921 CP_HARDLINK,
922 CP_SB_NEED_CP,
923 CP_WRONG_PINO,
924 CP_NO_SPC_ROLL,
925 CP_NODE_NEED_CP,
926 CP_FASTBOOT_MODE,
927 CP_SPEC_LOG_NUM,
928 };
929
930 enum iostat_type {
931 APP_DIRECT_IO, /* app direct IOs */
932 APP_BUFFERED_IO, /* app buffered IOs */
933 APP_WRITE_IO, /* app write IOs */
934 APP_MAPPED_IO, /* app mapped IOs */
935 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
936 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
937 FS_META_IO, /* meta IOs from kworker/reclaimer */
938 FS_GC_DATA_IO, /* data IOs from forground gc */
939 FS_GC_NODE_IO, /* node IOs from forground gc */
940 FS_CP_DATA_IO, /* data IOs from checkpoint */
941 FS_CP_NODE_IO, /* node IOs from checkpoint */
942 FS_CP_META_IO, /* meta IOs from checkpoint */
943 FS_DISCARD, /* discard */
944 NR_IO_TYPE,
945 };
946
947 struct f2fs_io_info {
948 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
949 nid_t ino; /* inode number */
950 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
951 enum temp_type temp; /* contains HOT/WARM/COLD */
952 int op; /* contains REQ_OP_ */
953 int op_flags; /* req_flag_bits */
954 block_t new_blkaddr; /* new block address to be written */
955 block_t old_blkaddr; /* old block address before Cow */
956 struct page *page; /* page to be written */
957 struct page *encrypted_page; /* encrypted page */
958 struct list_head list; /* serialize IOs */
959 bool submitted; /* indicate IO submission */
960 int need_lock; /* indicate we need to lock cp_rwsem */
961 bool in_list; /* indicate fio is in io_list */
962 bool is_meta; /* indicate borrow meta inode mapping or not */
963 enum iostat_type io_type; /* io type */
964 };
965
966 #define is_read_io(rw) ((rw) == READ)
967 struct f2fs_bio_info {
968 struct f2fs_sb_info *sbi; /* f2fs superblock */
969 struct bio *bio; /* bios to merge */
970 sector_t last_block_in_bio; /* last block number */
971 struct f2fs_io_info fio; /* store buffered io info. */
972 struct rw_semaphore io_rwsem; /* blocking op for bio */
973 spinlock_t io_lock; /* serialize DATA/NODE IOs */
974 struct list_head io_list; /* track fios */
975 };
976
977 #define FDEV(i) (sbi->devs[i])
978 #define RDEV(i) (raw_super->devs[i])
979 struct f2fs_dev_info {
980 struct block_device *bdev;
981 char path[MAX_PATH_LEN];
982 unsigned int total_segments;
983 block_t start_blk;
984 block_t end_blk;
985 #ifdef CONFIG_BLK_DEV_ZONED
986 unsigned int nr_blkz; /* Total number of zones */
987 u8 *blkz_type; /* Array of zones type */
988 #endif
989 };
990
991 enum inode_type {
992 DIR_INODE, /* for dirty dir inode */
993 FILE_INODE, /* for dirty regular/symlink inode */
994 DIRTY_META, /* for all dirtied inode metadata */
995 ATOMIC_FILE, /* for all atomic files */
996 NR_INODE_TYPE,
997 };
998
999 /* for inner inode cache management */
1000 struct inode_management {
1001 struct radix_tree_root ino_root; /* ino entry array */
1002 spinlock_t ino_lock; /* for ino entry lock */
1003 struct list_head ino_list; /* inode list head */
1004 unsigned long ino_num; /* number of entries */
1005 };
1006
1007 /* For s_flag in struct f2fs_sb_info */
1008 enum {
1009 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1010 SBI_IS_CLOSE, /* specify unmounting */
1011 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1012 SBI_POR_DOING, /* recovery is doing or not */
1013 SBI_NEED_SB_WRITE, /* need to recover superblock */
1014 SBI_NEED_CP, /* need to checkpoint */
1015 };
1016
1017 enum {
1018 CP_TIME,
1019 REQ_TIME,
1020 MAX_TIME,
1021 };
1022
1023 struct f2fs_sb_info {
1024 struct super_block *sb; /* pointer to VFS super block */
1025 struct proc_dir_entry *s_proc; /* proc entry */
1026 struct f2fs_super_block *raw_super; /* raw super block pointer */
1027 int valid_super_block; /* valid super block no */
1028 unsigned long s_flag; /* flags for sbi */
1029
1030 #ifdef CONFIG_BLK_DEV_ZONED
1031 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1032 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1033 #endif
1034
1035 /* for node-related operations */
1036 struct f2fs_nm_info *nm_info; /* node manager */
1037 struct inode *node_inode; /* cache node blocks */
1038
1039 /* for segment-related operations */
1040 struct f2fs_sm_info *sm_info; /* segment manager */
1041
1042 /* for bio operations */
1043 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1044 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1045 /* bio ordering for NODE/DATA */
1046 int write_io_size_bits; /* Write IO size bits */
1047 mempool_t *write_io_dummy; /* Dummy pages */
1048
1049 /* for checkpoint */
1050 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1051 int cur_cp_pack; /* remain current cp pack */
1052 spinlock_t cp_lock; /* for flag in ckpt */
1053 struct inode *meta_inode; /* cache meta blocks */
1054 struct mutex cp_mutex; /* checkpoint procedure lock */
1055 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1056 struct rw_semaphore node_write; /* locking node writes */
1057 struct rw_semaphore node_change; /* locking node change */
1058 wait_queue_head_t cp_wait;
1059 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1060 long interval_time[MAX_TIME]; /* to store thresholds */
1061
1062 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1063
1064 /* for orphan inode, use 0'th array */
1065 unsigned int max_orphans; /* max orphan inodes */
1066
1067 /* for inode management */
1068 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1069 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1070
1071 /* for extent tree cache */
1072 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1073 struct mutex extent_tree_lock; /* locking extent radix tree */
1074 struct list_head extent_list; /* lru list for shrinker */
1075 spinlock_t extent_lock; /* locking extent lru list */
1076 atomic_t total_ext_tree; /* extent tree count */
1077 struct list_head zombie_list; /* extent zombie tree list */
1078 atomic_t total_zombie_tree; /* extent zombie tree count */
1079 atomic_t total_ext_node; /* extent info count */
1080
1081 /* basic filesystem units */
1082 unsigned int log_sectors_per_block; /* log2 sectors per block */
1083 unsigned int log_blocksize; /* log2 block size */
1084 unsigned int blocksize; /* block size */
1085 unsigned int root_ino_num; /* root inode number*/
1086 unsigned int node_ino_num; /* node inode number*/
1087 unsigned int meta_ino_num; /* meta inode number*/
1088 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1089 unsigned int blocks_per_seg; /* blocks per segment */
1090 unsigned int segs_per_sec; /* segments per section */
1091 unsigned int secs_per_zone; /* sections per zone */
1092 unsigned int total_sections; /* total section count */
1093 unsigned int total_node_count; /* total node block count */
1094 unsigned int total_valid_node_count; /* valid node block count */
1095 loff_t max_file_blocks; /* max block index of file */
1096 int active_logs; /* # of active logs */
1097 int dir_level; /* directory level */
1098 int inline_xattr_size; /* inline xattr size */
1099 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1100
1101 block_t user_block_count; /* # of user blocks */
1102 block_t total_valid_block_count; /* # of valid blocks */
1103 block_t discard_blks; /* discard command candidats */
1104 block_t last_valid_block_count; /* for recovery */
1105 block_t reserved_blocks; /* configurable reserved blocks */
1106 block_t current_reserved_blocks; /* current reserved blocks */
1107
1108 u32 s_next_generation; /* for NFS support */
1109
1110 /* # of pages, see count_type */
1111 atomic_t nr_pages[NR_COUNT_TYPE];
1112 /* # of allocated blocks */
1113 struct percpu_counter alloc_valid_block_count;
1114
1115 /* writeback control */
1116 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1117
1118 /* valid inode count */
1119 struct percpu_counter total_valid_inode_count;
1120
1121 struct f2fs_mount_info mount_opt; /* mount options */
1122
1123 /* for cleaning operations */
1124 struct mutex gc_mutex; /* mutex for GC */
1125 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1126 unsigned int cur_victim_sec; /* current victim section num */
1127
1128 /* threshold for converting bg victims for fg */
1129 u64 fggc_threshold;
1130
1131 /* maximum # of trials to find a victim segment for SSR and GC */
1132 unsigned int max_victim_search;
1133
1134 /*
1135 * for stat information.
1136 * one is for the LFS mode, and the other is for the SSR mode.
1137 */
1138 #ifdef CONFIG_F2FS_STAT_FS
1139 struct f2fs_stat_info *stat_info; /* FS status information */
1140 unsigned int segment_count[2]; /* # of allocated segments */
1141 unsigned int block_count[2]; /* # of allocated blocks */
1142 atomic_t inplace_count; /* # of inplace update */
1143 atomic64_t total_hit_ext; /* # of lookup extent cache */
1144 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1145 atomic64_t read_hit_largest; /* # of hit largest extent node */
1146 atomic64_t read_hit_cached; /* # of hit cached extent node */
1147 atomic_t inline_xattr; /* # of inline_xattr inodes */
1148 atomic_t inline_inode; /* # of inline_data inodes */
1149 atomic_t inline_dir; /* # of inline_dentry inodes */
1150 atomic_t aw_cnt; /* # of atomic writes */
1151 atomic_t vw_cnt; /* # of volatile writes */
1152 atomic_t max_aw_cnt; /* max # of atomic writes */
1153 atomic_t max_vw_cnt; /* max # of volatile writes */
1154 int bg_gc; /* background gc calls */
1155 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1156 #endif
1157 spinlock_t stat_lock; /* lock for stat operations */
1158
1159 /* For app/fs IO statistics */
1160 spinlock_t iostat_lock;
1161 unsigned long long write_iostat[NR_IO_TYPE];
1162 bool iostat_enable;
1163
1164 /* For sysfs suppport */
1165 struct kobject s_kobj;
1166 struct completion s_kobj_unregister;
1167
1168 /* For shrinker support */
1169 struct list_head s_list;
1170 int s_ndevs; /* number of devices */
1171 struct f2fs_dev_info *devs; /* for device list */
1172 unsigned int dirty_device; /* for checkpoint data flush */
1173 spinlock_t dev_lock; /* protect dirty_device */
1174 struct mutex umount_mutex;
1175 unsigned int shrinker_run_no;
1176
1177 /* For write statistics */
1178 u64 sectors_written_start;
1179 u64 kbytes_written;
1180
1181 /* Reference to checksum algorithm driver via cryptoapi */
1182 struct crypto_shash *s_chksum_driver;
1183
1184 /* Precomputed FS UUID checksum for seeding other checksums */
1185 __u32 s_chksum_seed;
1186
1187 /* For fault injection */
1188 #ifdef CONFIG_F2FS_FAULT_INJECTION
1189 struct f2fs_fault_info fault_info;
1190 #endif
1191
1192 #ifdef CONFIG_QUOTA
1193 /* Names of quota files with journalled quota */
1194 char *s_qf_names[MAXQUOTAS];
1195 int s_jquota_fmt; /* Format of quota to use */
1196 #endif
1197 };
1198
1199 #ifdef CONFIG_F2FS_FAULT_INJECTION
1200 #define f2fs_show_injection_info(type) \
1201 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1202 KERN_INFO, fault_name[type], \
1203 __func__, __builtin_return_address(0))
1204 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1205 {
1206 struct f2fs_fault_info *ffi = &sbi->fault_info;
1207
1208 if (!ffi->inject_rate)
1209 return false;
1210
1211 if (!IS_FAULT_SET(ffi, type))
1212 return false;
1213
1214 atomic_inc(&ffi->inject_ops);
1215 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1216 atomic_set(&ffi->inject_ops, 0);
1217 return true;
1218 }
1219 return false;
1220 }
1221 #endif
1222
1223 /* For write statistics. Suppose sector size is 512 bytes,
1224 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1225 */
1226 #define BD_PART_WRITTEN(s) \
1227 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1228 (s)->sectors_written_start) >> 1)
1229
1230 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1231 {
1232 sbi->last_time[type] = jiffies;
1233 }
1234
1235 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1236 {
1237 unsigned long interval = sbi->interval_time[type] * HZ;
1238
1239 return time_after(jiffies, sbi->last_time[type] + interval);
1240 }
1241
1242 static inline bool is_idle(struct f2fs_sb_info *sbi)
1243 {
1244 struct block_device *bdev = sbi->sb->s_bdev;
1245 struct request_queue *q = bdev_get_queue(bdev);
1246 struct request_list *rl = &q->root_rl;
1247
1248 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1249 return 0;
1250
1251 return f2fs_time_over(sbi, REQ_TIME);
1252 }
1253
1254 /*
1255 * Inline functions
1256 */
1257 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1258 unsigned int length)
1259 {
1260 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1261 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1262 u32 retval;
1263 int err;
1264
1265 shash->tfm = sbi->s_chksum_driver;
1266 shash->flags = 0;
1267 *ctx = F2FS_SUPER_MAGIC;
1268
1269 err = crypto_shash_update(shash, address, length);
1270 BUG_ON(err);
1271
1272 retval = *ctx;
1273 barrier_data(ctx);
1274 return retval;
1275 }
1276
1277 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1278 void *buf, size_t buf_size)
1279 {
1280 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1281 }
1282
1283 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1284 const void *address, unsigned int length)
1285 {
1286 struct {
1287 struct shash_desc shash;
1288 char ctx[4];
1289 } desc;
1290 int err;
1291
1292 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1293
1294 desc.shash.tfm = sbi->s_chksum_driver;
1295 desc.shash.flags = 0;
1296 *(u32 *)desc.ctx = crc;
1297
1298 err = crypto_shash_update(&desc.shash, address, length);
1299 BUG_ON(err);
1300
1301 return *(u32 *)desc.ctx;
1302 }
1303
1304 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1305 {
1306 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1307 }
1308
1309 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1310 {
1311 return sb->s_fs_info;
1312 }
1313
1314 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1315 {
1316 return F2FS_SB(inode->i_sb);
1317 }
1318
1319 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1320 {
1321 return F2FS_I_SB(mapping->host);
1322 }
1323
1324 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1325 {
1326 return F2FS_M_SB(page->mapping);
1327 }
1328
1329 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1330 {
1331 return (struct f2fs_super_block *)(sbi->raw_super);
1332 }
1333
1334 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1335 {
1336 return (struct f2fs_checkpoint *)(sbi->ckpt);
1337 }
1338
1339 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1340 {
1341 return (struct f2fs_node *)page_address(page);
1342 }
1343
1344 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1345 {
1346 return &((struct f2fs_node *)page_address(page))->i;
1347 }
1348
1349 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1350 {
1351 return (struct f2fs_nm_info *)(sbi->nm_info);
1352 }
1353
1354 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1355 {
1356 return (struct f2fs_sm_info *)(sbi->sm_info);
1357 }
1358
1359 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1360 {
1361 return (struct sit_info *)(SM_I(sbi)->sit_info);
1362 }
1363
1364 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1365 {
1366 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1367 }
1368
1369 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1370 {
1371 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1372 }
1373
1374 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1375 {
1376 return sbi->meta_inode->i_mapping;
1377 }
1378
1379 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1380 {
1381 return sbi->node_inode->i_mapping;
1382 }
1383
1384 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1385 {
1386 return test_bit(type, &sbi->s_flag);
1387 }
1388
1389 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1390 {
1391 set_bit(type, &sbi->s_flag);
1392 }
1393
1394 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1395 {
1396 clear_bit(type, &sbi->s_flag);
1397 }
1398
1399 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1400 {
1401 return le64_to_cpu(cp->checkpoint_ver);
1402 }
1403
1404 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1405 {
1406 if (type < F2FS_MAX_QUOTAS)
1407 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1408 return 0;
1409 }
1410
1411 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1412 {
1413 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1414 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1415 }
1416
1417 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1418 {
1419 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1420
1421 return ckpt_flags & f;
1422 }
1423
1424 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1425 {
1426 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1427 }
1428
1429 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1430 {
1431 unsigned int ckpt_flags;
1432
1433 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1434 ckpt_flags |= f;
1435 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1436 }
1437
1438 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1439 {
1440 unsigned long flags;
1441
1442 spin_lock_irqsave(&sbi->cp_lock, flags);
1443 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1444 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1445 }
1446
1447 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1448 {
1449 unsigned int ckpt_flags;
1450
1451 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1452 ckpt_flags &= (~f);
1453 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1454 }
1455
1456 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1457 {
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&sbi->cp_lock, flags);
1461 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1462 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1463 }
1464
1465 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1466 {
1467 unsigned long flags;
1468
1469 set_sbi_flag(sbi, SBI_NEED_FSCK);
1470
1471 if (lock)
1472 spin_lock_irqsave(&sbi->cp_lock, flags);
1473 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1474 kfree(NM_I(sbi)->nat_bits);
1475 NM_I(sbi)->nat_bits = NULL;
1476 if (lock)
1477 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1478 }
1479
1480 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1481 struct cp_control *cpc)
1482 {
1483 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1484
1485 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1486 }
1487
1488 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1489 {
1490 down_read(&sbi->cp_rwsem);
1491 }
1492
1493 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1494 {
1495 return down_read_trylock(&sbi->cp_rwsem);
1496 }
1497
1498 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1499 {
1500 up_read(&sbi->cp_rwsem);
1501 }
1502
1503 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1504 {
1505 down_write(&sbi->cp_rwsem);
1506 }
1507
1508 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1509 {
1510 up_write(&sbi->cp_rwsem);
1511 }
1512
1513 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1514 {
1515 int reason = CP_SYNC;
1516
1517 if (test_opt(sbi, FASTBOOT))
1518 reason = CP_FASTBOOT;
1519 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1520 reason = CP_UMOUNT;
1521 return reason;
1522 }
1523
1524 static inline bool __remain_node_summaries(int reason)
1525 {
1526 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1527 }
1528
1529 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1530 {
1531 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1532 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1533 }
1534
1535 /*
1536 * Check whether the inode has blocks or not
1537 */
1538 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1539 {
1540 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1541
1542 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1543 }
1544
1545 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1546 {
1547 return ofs == XATTR_NODE_OFFSET;
1548 }
1549
1550 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1551 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1552 struct inode *inode, blkcnt_t *count)
1553 {
1554 blkcnt_t diff = 0, release = 0;
1555 block_t avail_user_block_count;
1556 int ret;
1557
1558 ret = dquot_reserve_block(inode, *count);
1559 if (ret)
1560 return ret;
1561
1562 #ifdef CONFIG_F2FS_FAULT_INJECTION
1563 if (time_to_inject(sbi, FAULT_BLOCK)) {
1564 f2fs_show_injection_info(FAULT_BLOCK);
1565 release = *count;
1566 goto enospc;
1567 }
1568 #endif
1569 /*
1570 * let's increase this in prior to actual block count change in order
1571 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1572 */
1573 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1574
1575 spin_lock(&sbi->stat_lock);
1576 sbi->total_valid_block_count += (block_t)(*count);
1577 avail_user_block_count = sbi->user_block_count -
1578 sbi->current_reserved_blocks;
1579 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1580 diff = sbi->total_valid_block_count - avail_user_block_count;
1581 *count -= diff;
1582 release = diff;
1583 sbi->total_valid_block_count = avail_user_block_count;
1584 if (!*count) {
1585 spin_unlock(&sbi->stat_lock);
1586 goto enospc;
1587 }
1588 }
1589 spin_unlock(&sbi->stat_lock);
1590
1591 if (unlikely(release)) {
1592 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1593 dquot_release_reservation_block(inode, release);
1594 }
1595 f2fs_i_blocks_write(inode, *count, true, true);
1596 return 0;
1597
1598 enospc:
1599 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1600 dquot_release_reservation_block(inode, release);
1601 return -ENOSPC;
1602 }
1603
1604 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1605 struct inode *inode,
1606 block_t count)
1607 {
1608 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1609
1610 spin_lock(&sbi->stat_lock);
1611 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1612 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1613 sbi->total_valid_block_count -= (block_t)count;
1614 if (sbi->reserved_blocks &&
1615 sbi->current_reserved_blocks < sbi->reserved_blocks)
1616 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1617 sbi->current_reserved_blocks + count);
1618 spin_unlock(&sbi->stat_lock);
1619 f2fs_i_blocks_write(inode, count, false, true);
1620 }
1621
1622 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1623 {
1624 atomic_inc(&sbi->nr_pages[count_type]);
1625
1626 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1627 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1628 return;
1629
1630 set_sbi_flag(sbi, SBI_IS_DIRTY);
1631 }
1632
1633 static inline void inode_inc_dirty_pages(struct inode *inode)
1634 {
1635 atomic_inc(&F2FS_I(inode)->dirty_pages);
1636 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1637 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1638 if (IS_NOQUOTA(inode))
1639 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1640 }
1641
1642 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1643 {
1644 atomic_dec(&sbi->nr_pages[count_type]);
1645 }
1646
1647 static inline void inode_dec_dirty_pages(struct inode *inode)
1648 {
1649 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1650 !S_ISLNK(inode->i_mode))
1651 return;
1652
1653 atomic_dec(&F2FS_I(inode)->dirty_pages);
1654 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1655 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1656 if (IS_NOQUOTA(inode))
1657 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1658 }
1659
1660 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1661 {
1662 return atomic_read(&sbi->nr_pages[count_type]);
1663 }
1664
1665 static inline int get_dirty_pages(struct inode *inode)
1666 {
1667 return atomic_read(&F2FS_I(inode)->dirty_pages);
1668 }
1669
1670 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1671 {
1672 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1673 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1674 sbi->log_blocks_per_seg;
1675
1676 return segs / sbi->segs_per_sec;
1677 }
1678
1679 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1680 {
1681 return sbi->total_valid_block_count;
1682 }
1683
1684 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1685 {
1686 return sbi->discard_blks;
1687 }
1688
1689 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1690 {
1691 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1692
1693 /* return NAT or SIT bitmap */
1694 if (flag == NAT_BITMAP)
1695 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1696 else if (flag == SIT_BITMAP)
1697 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1698
1699 return 0;
1700 }
1701
1702 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1703 {
1704 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1705 }
1706
1707 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1708 {
1709 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1710 int offset;
1711
1712 if (__cp_payload(sbi) > 0) {
1713 if (flag == NAT_BITMAP)
1714 return &ckpt->sit_nat_version_bitmap;
1715 else
1716 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1717 } else {
1718 offset = (flag == NAT_BITMAP) ?
1719 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1720 return &ckpt->sit_nat_version_bitmap + offset;
1721 }
1722 }
1723
1724 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1725 {
1726 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1727
1728 if (sbi->cur_cp_pack == 2)
1729 start_addr += sbi->blocks_per_seg;
1730 return start_addr;
1731 }
1732
1733 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1734 {
1735 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1736
1737 if (sbi->cur_cp_pack == 1)
1738 start_addr += sbi->blocks_per_seg;
1739 return start_addr;
1740 }
1741
1742 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1743 {
1744 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1745 }
1746
1747 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1748 {
1749 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1750 }
1751
1752 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1753 struct inode *inode, bool is_inode)
1754 {
1755 block_t valid_block_count;
1756 unsigned int valid_node_count;
1757 bool quota = inode && !is_inode;
1758
1759 if (quota) {
1760 int ret = dquot_reserve_block(inode, 1);
1761 if (ret)
1762 return ret;
1763 }
1764
1765 #ifdef CONFIG_F2FS_FAULT_INJECTION
1766 if (time_to_inject(sbi, FAULT_BLOCK)) {
1767 f2fs_show_injection_info(FAULT_BLOCK);
1768 goto enospc;
1769 }
1770 #endif
1771
1772 spin_lock(&sbi->stat_lock);
1773
1774 valid_block_count = sbi->total_valid_block_count + 1;
1775 if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1776 sbi->user_block_count)) {
1777 spin_unlock(&sbi->stat_lock);
1778 goto enospc;
1779 }
1780
1781 valid_node_count = sbi->total_valid_node_count + 1;
1782 if (unlikely(valid_node_count > sbi->total_node_count)) {
1783 spin_unlock(&sbi->stat_lock);
1784 goto enospc;
1785 }
1786
1787 sbi->total_valid_node_count++;
1788 sbi->total_valid_block_count++;
1789 spin_unlock(&sbi->stat_lock);
1790
1791 if (inode) {
1792 if (is_inode)
1793 f2fs_mark_inode_dirty_sync(inode, true);
1794 else
1795 f2fs_i_blocks_write(inode, 1, true, true);
1796 }
1797
1798 percpu_counter_inc(&sbi->alloc_valid_block_count);
1799 return 0;
1800
1801 enospc:
1802 if (quota)
1803 dquot_release_reservation_block(inode, 1);
1804 return -ENOSPC;
1805 }
1806
1807 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1808 struct inode *inode, bool is_inode)
1809 {
1810 spin_lock(&sbi->stat_lock);
1811
1812 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1813 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1814 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1815
1816 sbi->total_valid_node_count--;
1817 sbi->total_valid_block_count--;
1818 if (sbi->reserved_blocks &&
1819 sbi->current_reserved_blocks < sbi->reserved_blocks)
1820 sbi->current_reserved_blocks++;
1821
1822 spin_unlock(&sbi->stat_lock);
1823
1824 if (!is_inode)
1825 f2fs_i_blocks_write(inode, 1, false, true);
1826 }
1827
1828 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1829 {
1830 return sbi->total_valid_node_count;
1831 }
1832
1833 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1834 {
1835 percpu_counter_inc(&sbi->total_valid_inode_count);
1836 }
1837
1838 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1839 {
1840 percpu_counter_dec(&sbi->total_valid_inode_count);
1841 }
1842
1843 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1844 {
1845 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1846 }
1847
1848 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1849 pgoff_t index, bool for_write)
1850 {
1851 #ifdef CONFIG_F2FS_FAULT_INJECTION
1852 struct page *page;
1853
1854 if (!for_write)
1855 page = find_get_page_flags(mapping, index,
1856 FGP_LOCK | FGP_ACCESSED);
1857 else
1858 page = find_lock_page(mapping, index);
1859 if (page)
1860 return page;
1861
1862 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1863 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1864 return NULL;
1865 }
1866 #endif
1867 if (!for_write)
1868 return grab_cache_page(mapping, index);
1869 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1870 }
1871
1872 static inline struct page *f2fs_pagecache_get_page(
1873 struct address_space *mapping, pgoff_t index,
1874 int fgp_flags, gfp_t gfp_mask)
1875 {
1876 #ifdef CONFIG_F2FS_FAULT_INJECTION
1877 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1878 f2fs_show_injection_info(FAULT_PAGE_GET);
1879 return NULL;
1880 }
1881 #endif
1882 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1883 }
1884
1885 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1886 {
1887 char *src_kaddr = kmap(src);
1888 char *dst_kaddr = kmap(dst);
1889
1890 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1891 kunmap(dst);
1892 kunmap(src);
1893 }
1894
1895 static inline void f2fs_put_page(struct page *page, int unlock)
1896 {
1897 if (!page)
1898 return;
1899
1900 if (unlock) {
1901 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1902 unlock_page(page);
1903 }
1904 put_page(page);
1905 }
1906
1907 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1908 {
1909 if (dn->node_page)
1910 f2fs_put_page(dn->node_page, 1);
1911 if (dn->inode_page && dn->node_page != dn->inode_page)
1912 f2fs_put_page(dn->inode_page, 0);
1913 dn->node_page = NULL;
1914 dn->inode_page = NULL;
1915 }
1916
1917 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1918 size_t size)
1919 {
1920 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1921 }
1922
1923 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1924 gfp_t flags)
1925 {
1926 void *entry;
1927
1928 entry = kmem_cache_alloc(cachep, flags);
1929 if (!entry)
1930 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1931 return entry;
1932 }
1933
1934 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1935 int npages, bool no_fail)
1936 {
1937 struct bio *bio;
1938
1939 if (no_fail) {
1940 /* No failure on bio allocation */
1941 bio = bio_alloc(GFP_NOIO, npages);
1942 if (!bio)
1943 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1944 return bio;
1945 }
1946 #ifdef CONFIG_F2FS_FAULT_INJECTION
1947 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1948 f2fs_show_injection_info(FAULT_ALLOC_BIO);
1949 return NULL;
1950 }
1951 #endif
1952 return bio_alloc(GFP_KERNEL, npages);
1953 }
1954
1955 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1956 unsigned long index, void *item)
1957 {
1958 while (radix_tree_insert(root, index, item))
1959 cond_resched();
1960 }
1961
1962 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1963
1964 static inline bool IS_INODE(struct page *page)
1965 {
1966 struct f2fs_node *p = F2FS_NODE(page);
1967
1968 return RAW_IS_INODE(p);
1969 }
1970
1971 static inline int offset_in_addr(struct f2fs_inode *i)
1972 {
1973 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1974 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1975 }
1976
1977 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1978 {
1979 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1980 }
1981
1982 static inline int f2fs_has_extra_attr(struct inode *inode);
1983 static inline block_t datablock_addr(struct inode *inode,
1984 struct page *node_page, unsigned int offset)
1985 {
1986 struct f2fs_node *raw_node;
1987 __le32 *addr_array;
1988 int base = 0;
1989 bool is_inode = IS_INODE(node_page);
1990
1991 raw_node = F2FS_NODE(node_page);
1992
1993 /* from GC path only */
1994 if (!inode) {
1995 if (is_inode)
1996 base = offset_in_addr(&raw_node->i);
1997 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1998 base = get_extra_isize(inode);
1999 }
2000
2001 addr_array = blkaddr_in_node(raw_node);
2002 return le32_to_cpu(addr_array[base + offset]);
2003 }
2004
2005 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2006 {
2007 int mask;
2008
2009 addr += (nr >> 3);
2010 mask = 1 << (7 - (nr & 0x07));
2011 return mask & *addr;
2012 }
2013
2014 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2015 {
2016 int mask;
2017
2018 addr += (nr >> 3);
2019 mask = 1 << (7 - (nr & 0x07));
2020 *addr |= mask;
2021 }
2022
2023 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2024 {
2025 int mask;
2026
2027 addr += (nr >> 3);
2028 mask = 1 << (7 - (nr & 0x07));
2029 *addr &= ~mask;
2030 }
2031
2032 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2033 {
2034 int mask;
2035 int ret;
2036
2037 addr += (nr >> 3);
2038 mask = 1 << (7 - (nr & 0x07));
2039 ret = mask & *addr;
2040 *addr |= mask;
2041 return ret;
2042 }
2043
2044 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2045 {
2046 int mask;
2047 int ret;
2048
2049 addr += (nr >> 3);
2050 mask = 1 << (7 - (nr & 0x07));
2051 ret = mask & *addr;
2052 *addr &= ~mask;
2053 return ret;
2054 }
2055
2056 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2057 {
2058 int mask;
2059
2060 addr += (nr >> 3);
2061 mask = 1 << (7 - (nr & 0x07));
2062 *addr ^= mask;
2063 }
2064
2065 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2066 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2067 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2068
2069 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2070 {
2071 if (S_ISDIR(mode))
2072 return flags;
2073 else if (S_ISREG(mode))
2074 return flags & F2FS_REG_FLMASK;
2075 else
2076 return flags & F2FS_OTHER_FLMASK;
2077 }
2078
2079 /* used for f2fs_inode_info->flags */
2080 enum {
2081 FI_NEW_INODE, /* indicate newly allocated inode */
2082 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2083 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2084 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2085 FI_INC_LINK, /* need to increment i_nlink */
2086 FI_ACL_MODE, /* indicate acl mode */
2087 FI_NO_ALLOC, /* should not allocate any blocks */
2088 FI_FREE_NID, /* free allocated nide */
2089 FI_NO_EXTENT, /* not to use the extent cache */
2090 FI_INLINE_XATTR, /* used for inline xattr */
2091 FI_INLINE_DATA, /* used for inline data*/
2092 FI_INLINE_DENTRY, /* used for inline dentry */
2093 FI_APPEND_WRITE, /* inode has appended data */
2094 FI_UPDATE_WRITE, /* inode has in-place-update data */
2095 FI_NEED_IPU, /* used for ipu per file */
2096 FI_ATOMIC_FILE, /* indicate atomic file */
2097 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2098 FI_VOLATILE_FILE, /* indicate volatile file */
2099 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2100 FI_DROP_CACHE, /* drop dirty page cache */
2101 FI_DATA_EXIST, /* indicate data exists */
2102 FI_INLINE_DOTS, /* indicate inline dot dentries */
2103 FI_DO_DEFRAG, /* indicate defragment is running */
2104 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2105 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2106 FI_HOT_DATA, /* indicate file is hot */
2107 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2108 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2109 };
2110
2111 static inline void __mark_inode_dirty_flag(struct inode *inode,
2112 int flag, bool set)
2113 {
2114 switch (flag) {
2115 case FI_INLINE_XATTR:
2116 case FI_INLINE_DATA:
2117 case FI_INLINE_DENTRY:
2118 if (set)
2119 return;
2120 case FI_DATA_EXIST:
2121 case FI_INLINE_DOTS:
2122 f2fs_mark_inode_dirty_sync(inode, true);
2123 }
2124 }
2125
2126 static inline void set_inode_flag(struct inode *inode, int flag)
2127 {
2128 if (!test_bit(flag, &F2FS_I(inode)->flags))
2129 set_bit(flag, &F2FS_I(inode)->flags);
2130 __mark_inode_dirty_flag(inode, flag, true);
2131 }
2132
2133 static inline int is_inode_flag_set(struct inode *inode, int flag)
2134 {
2135 return test_bit(flag, &F2FS_I(inode)->flags);
2136 }
2137
2138 static inline void clear_inode_flag(struct inode *inode, int flag)
2139 {
2140 if (test_bit(flag, &F2FS_I(inode)->flags))
2141 clear_bit(flag, &F2FS_I(inode)->flags);
2142 __mark_inode_dirty_flag(inode, flag, false);
2143 }
2144
2145 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2146 {
2147 F2FS_I(inode)->i_acl_mode = mode;
2148 set_inode_flag(inode, FI_ACL_MODE);
2149 f2fs_mark_inode_dirty_sync(inode, false);
2150 }
2151
2152 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2153 {
2154 if (inc)
2155 inc_nlink(inode);
2156 else
2157 drop_nlink(inode);
2158 f2fs_mark_inode_dirty_sync(inode, true);
2159 }
2160
2161 static inline void f2fs_i_blocks_write(struct inode *inode,
2162 block_t diff, bool add, bool claim)
2163 {
2164 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2165 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2166
2167 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2168 if (add) {
2169 if (claim)
2170 dquot_claim_block(inode, diff);
2171 else
2172 dquot_alloc_block_nofail(inode, diff);
2173 } else {
2174 dquot_free_block(inode, diff);
2175 }
2176
2177 f2fs_mark_inode_dirty_sync(inode, true);
2178 if (clean || recover)
2179 set_inode_flag(inode, FI_AUTO_RECOVER);
2180 }
2181
2182 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2183 {
2184 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2185 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2186
2187 if (i_size_read(inode) == i_size)
2188 return;
2189
2190 i_size_write(inode, i_size);
2191 f2fs_mark_inode_dirty_sync(inode, true);
2192 if (clean || recover)
2193 set_inode_flag(inode, FI_AUTO_RECOVER);
2194 }
2195
2196 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2197 {
2198 F2FS_I(inode)->i_current_depth = depth;
2199 f2fs_mark_inode_dirty_sync(inode, true);
2200 }
2201
2202 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2203 {
2204 F2FS_I(inode)->i_xattr_nid = xnid;
2205 f2fs_mark_inode_dirty_sync(inode, true);
2206 }
2207
2208 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2209 {
2210 F2FS_I(inode)->i_pino = pino;
2211 f2fs_mark_inode_dirty_sync(inode, true);
2212 }
2213
2214 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2215 {
2216 struct f2fs_inode_info *fi = F2FS_I(inode);
2217
2218 if (ri->i_inline & F2FS_INLINE_XATTR)
2219 set_bit(FI_INLINE_XATTR, &fi->flags);
2220 if (ri->i_inline & F2FS_INLINE_DATA)
2221 set_bit(FI_INLINE_DATA, &fi->flags);
2222 if (ri->i_inline & F2FS_INLINE_DENTRY)
2223 set_bit(FI_INLINE_DENTRY, &fi->flags);
2224 if (ri->i_inline & F2FS_DATA_EXIST)
2225 set_bit(FI_DATA_EXIST, &fi->flags);
2226 if (ri->i_inline & F2FS_INLINE_DOTS)
2227 set_bit(FI_INLINE_DOTS, &fi->flags);
2228 if (ri->i_inline & F2FS_EXTRA_ATTR)
2229 set_bit(FI_EXTRA_ATTR, &fi->flags);
2230 }
2231
2232 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2233 {
2234 ri->i_inline = 0;
2235
2236 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2237 ri->i_inline |= F2FS_INLINE_XATTR;
2238 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2239 ri->i_inline |= F2FS_INLINE_DATA;
2240 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2241 ri->i_inline |= F2FS_INLINE_DENTRY;
2242 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2243 ri->i_inline |= F2FS_DATA_EXIST;
2244 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2245 ri->i_inline |= F2FS_INLINE_DOTS;
2246 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2247 ri->i_inline |= F2FS_EXTRA_ATTR;
2248 }
2249
2250 static inline int f2fs_has_extra_attr(struct inode *inode)
2251 {
2252 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2253 }
2254
2255 static inline int f2fs_has_inline_xattr(struct inode *inode)
2256 {
2257 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2258 }
2259
2260 static inline unsigned int addrs_per_inode(struct inode *inode)
2261 {
2262 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2263 }
2264
2265 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2266 {
2267 struct f2fs_inode *ri = F2FS_INODE(page);
2268
2269 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2270 F2FS_INLINE_XATTR_ADDRS(inode)]);
2271 }
2272
2273 static inline int inline_xattr_size(struct inode *inode)
2274 {
2275 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2276 }
2277
2278 static inline int f2fs_has_inline_data(struct inode *inode)
2279 {
2280 return is_inode_flag_set(inode, FI_INLINE_DATA);
2281 }
2282
2283 static inline int f2fs_exist_data(struct inode *inode)
2284 {
2285 return is_inode_flag_set(inode, FI_DATA_EXIST);
2286 }
2287
2288 static inline int f2fs_has_inline_dots(struct inode *inode)
2289 {
2290 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2291 }
2292
2293 static inline bool f2fs_is_atomic_file(struct inode *inode)
2294 {
2295 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2296 }
2297
2298 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2299 {
2300 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2301 }
2302
2303 static inline bool f2fs_is_volatile_file(struct inode *inode)
2304 {
2305 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2306 }
2307
2308 static inline bool f2fs_is_first_block_written(struct inode *inode)
2309 {
2310 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2311 }
2312
2313 static inline bool f2fs_is_drop_cache(struct inode *inode)
2314 {
2315 return is_inode_flag_set(inode, FI_DROP_CACHE);
2316 }
2317
2318 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2319 {
2320 struct f2fs_inode *ri = F2FS_INODE(page);
2321 int extra_size = get_extra_isize(inode);
2322
2323 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2324 }
2325
2326 static inline int f2fs_has_inline_dentry(struct inode *inode)
2327 {
2328 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2329 }
2330
2331 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2332 {
2333 if (!f2fs_has_inline_dentry(dir))
2334 kunmap(page);
2335 }
2336
2337 static inline int is_file(struct inode *inode, int type)
2338 {
2339 return F2FS_I(inode)->i_advise & type;
2340 }
2341
2342 static inline void set_file(struct inode *inode, int type)
2343 {
2344 F2FS_I(inode)->i_advise |= type;
2345 f2fs_mark_inode_dirty_sync(inode, true);
2346 }
2347
2348 static inline void clear_file(struct inode *inode, int type)
2349 {
2350 F2FS_I(inode)->i_advise &= ~type;
2351 f2fs_mark_inode_dirty_sync(inode, true);
2352 }
2353
2354 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2355 {
2356 bool ret;
2357
2358 if (dsync) {
2359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2360
2361 spin_lock(&sbi->inode_lock[DIRTY_META]);
2362 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2363 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2364 return ret;
2365 }
2366 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2367 file_keep_isize(inode) ||
2368 i_size_read(inode) & PAGE_MASK)
2369 return false;
2370
2371 down_read(&F2FS_I(inode)->i_sem);
2372 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2373 up_read(&F2FS_I(inode)->i_sem);
2374
2375 return ret;
2376 }
2377
2378 static inline int f2fs_readonly(struct super_block *sb)
2379 {
2380 return sb->s_flags & SB_RDONLY;
2381 }
2382
2383 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2384 {
2385 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2386 }
2387
2388 static inline bool is_dot_dotdot(const struct qstr *str)
2389 {
2390 if (str->len == 1 && str->name[0] == '.')
2391 return true;
2392
2393 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2394 return true;
2395
2396 return false;
2397 }
2398
2399 static inline bool f2fs_may_extent_tree(struct inode *inode)
2400 {
2401 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2402 is_inode_flag_set(inode, FI_NO_EXTENT))
2403 return false;
2404
2405 return S_ISREG(inode->i_mode);
2406 }
2407
2408 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2409 size_t size, gfp_t flags)
2410 {
2411 #ifdef CONFIG_F2FS_FAULT_INJECTION
2412 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2413 f2fs_show_injection_info(FAULT_KMALLOC);
2414 return NULL;
2415 }
2416 #endif
2417 return kmalloc(size, flags);
2418 }
2419
2420 static inline int get_extra_isize(struct inode *inode)
2421 {
2422 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2423 }
2424
2425 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2426 static inline int get_inline_xattr_addrs(struct inode *inode)
2427 {
2428 return F2FS_I(inode)->i_inline_xattr_size;
2429 }
2430
2431 #define get_inode_mode(i) \
2432 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2433 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2434
2435 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2436 (offsetof(struct f2fs_inode, i_extra_end) - \
2437 offsetof(struct f2fs_inode, i_extra_isize)) \
2438
2439 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2440 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2441 ((offsetof(typeof(*f2fs_inode), field) + \
2442 sizeof((f2fs_inode)->field)) \
2443 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2444
2445 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2446 {
2447 int i;
2448
2449 spin_lock(&sbi->iostat_lock);
2450 for (i = 0; i < NR_IO_TYPE; i++)
2451 sbi->write_iostat[i] = 0;
2452 spin_unlock(&sbi->iostat_lock);
2453 }
2454
2455 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2456 enum iostat_type type, unsigned long long io_bytes)
2457 {
2458 if (!sbi->iostat_enable)
2459 return;
2460 spin_lock(&sbi->iostat_lock);
2461 sbi->write_iostat[type] += io_bytes;
2462
2463 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2464 sbi->write_iostat[APP_BUFFERED_IO] =
2465 sbi->write_iostat[APP_WRITE_IO] -
2466 sbi->write_iostat[APP_DIRECT_IO];
2467 spin_unlock(&sbi->iostat_lock);
2468 }
2469
2470 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \
2471 (!is_read_io(fio->op) || fio->is_meta))
2472
2473 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2474 block_t blkaddr, int type);
2475 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2476 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2477 block_t blkaddr, int type)
2478 {
2479 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2480 f2fs_msg(sbi->sb, KERN_ERR,
2481 "invalid blkaddr: %u, type: %d, run fsck to fix.",
2482 blkaddr, type);
2483 f2fs_bug_on(sbi, 1);
2484 }
2485 }
2486
2487 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2488 {
2489 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2490 return false;
2491 return true;
2492 }
2493
2494 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2495 block_t blkaddr)
2496 {
2497 if (!__is_valid_data_blkaddr(blkaddr))
2498 return false;
2499 verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2500 return true;
2501 }
2502
2503 /*
2504 * file.c
2505 */
2506 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2507 void truncate_data_blocks(struct dnode_of_data *dn);
2508 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2509 int f2fs_truncate(struct inode *inode);
2510 int f2fs_getattr(const struct path *path, struct kstat *stat,
2511 u32 request_mask, unsigned int flags);
2512 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2513 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2514 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2515 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2516 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2517
2518 /*
2519 * inode.c
2520 */
2521 void f2fs_set_inode_flags(struct inode *inode);
2522 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2523 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2524 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2525 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2526 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2527 int update_inode(struct inode *inode, struct page *node_page);
2528 int update_inode_page(struct inode *inode);
2529 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2530 void f2fs_evict_inode(struct inode *inode);
2531 void handle_failed_inode(struct inode *inode);
2532
2533 /*
2534 * namei.c
2535 */
2536 struct dentry *f2fs_get_parent(struct dentry *child);
2537
2538 /*
2539 * dir.c
2540 */
2541 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2542 unsigned char get_de_type(struct f2fs_dir_entry *de);
2543 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2544 f2fs_hash_t namehash, int *max_slots,
2545 struct f2fs_dentry_ptr *d);
2546 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2547 unsigned int start_pos, struct fscrypt_str *fstr);
2548 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2549 struct f2fs_dentry_ptr *d);
2550 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2551 const struct qstr *new_name,
2552 const struct qstr *orig_name, struct page *dpage);
2553 void update_parent_metadata(struct inode *dir, struct inode *inode,
2554 unsigned int current_depth);
2555 int room_for_filename(const void *bitmap, int slots, int max_slots);
2556 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2557 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2558 struct fscrypt_name *fname, struct page **res_page);
2559 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2560 const struct qstr *child, struct page **res_page);
2561 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2562 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2563 struct page **page);
2564 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2565 struct page *page, struct inode *inode);
2566 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2567 const struct qstr *name, f2fs_hash_t name_hash,
2568 unsigned int bit_pos);
2569 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2570 const struct qstr *orig_name,
2571 struct inode *inode, nid_t ino, umode_t mode);
2572 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2573 struct inode *inode, nid_t ino, umode_t mode);
2574 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2575 struct inode *inode, nid_t ino, umode_t mode);
2576 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2577 struct inode *dir, struct inode *inode);
2578 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2579 bool f2fs_empty_dir(struct inode *dir);
2580
2581 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2582 {
2583 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2584 inode, inode->i_ino, inode->i_mode);
2585 }
2586
2587 /*
2588 * super.c
2589 */
2590 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2591 void f2fs_inode_synced(struct inode *inode);
2592 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2593 void f2fs_quota_off_umount(struct super_block *sb);
2594 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2595 int f2fs_sync_fs(struct super_block *sb, int sync);
2596 extern __printf(3, 4)
2597 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2598 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2599
2600 /*
2601 * hash.c
2602 */
2603 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2604 struct fscrypt_name *fname);
2605
2606 /*
2607 * node.c
2608 */
2609 struct dnode_of_data;
2610 struct node_info;
2611
2612 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2613 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2614 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2615 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2616 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2617 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2618 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2619 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2620 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2621 int truncate_xattr_node(struct inode *inode);
2622 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2623 int remove_inode_page(struct inode *inode);
2624 struct page *new_inode_page(struct inode *inode);
2625 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2626 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2627 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2628 struct page *get_node_page_ra(struct page *parent, int start);
2629 void move_node_page(struct page *node_page, int gc_type);
2630 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2631 struct writeback_control *wbc, bool atomic);
2632 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2633 bool do_balance, enum iostat_type io_type);
2634 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2635 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2636 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2637 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2638 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2639 void recover_inline_xattr(struct inode *inode, struct page *page);
2640 int recover_xattr_data(struct inode *inode, struct page *page,
2641 block_t blkaddr);
2642 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2643 int restore_node_summary(struct f2fs_sb_info *sbi,
2644 unsigned int segno, struct f2fs_summary_block *sum);
2645 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2646 int build_node_manager(struct f2fs_sb_info *sbi);
2647 void destroy_node_manager(struct f2fs_sb_info *sbi);
2648 int __init create_node_manager_caches(void);
2649 void destroy_node_manager_caches(void);
2650
2651 /*
2652 * segment.c
2653 */
2654 bool need_SSR(struct f2fs_sb_info *sbi);
2655 void register_inmem_page(struct inode *inode, struct page *page);
2656 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2657 void drop_inmem_pages(struct inode *inode);
2658 void drop_inmem_page(struct inode *inode, struct page *page);
2659 int commit_inmem_pages(struct inode *inode);
2660 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2661 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2662 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2663 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2664 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2665 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2666 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2667 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2668 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2669 unsigned int granularity);
2670 void stop_discard_thread(struct f2fs_sb_info *sbi);
2671 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2672 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2673 void release_discard_addrs(struct f2fs_sb_info *sbi);
2674 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2675 void allocate_new_segments(struct f2fs_sb_info *sbi);
2676 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2677 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2678 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2679 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2680 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2681 enum iostat_type io_type);
2682 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2683 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2684 int rewrite_data_page(struct f2fs_io_info *fio);
2685 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2686 block_t old_blkaddr, block_t new_blkaddr,
2687 bool recover_curseg, bool recover_newaddr);
2688 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2689 block_t old_addr, block_t new_addr,
2690 unsigned char version, bool recover_curseg,
2691 bool recover_newaddr);
2692 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2693 block_t old_blkaddr, block_t *new_blkaddr,
2694 struct f2fs_summary *sum, int type,
2695 struct f2fs_io_info *fio, bool add_list);
2696 void f2fs_wait_on_page_writeback(struct page *page,
2697 enum page_type type, bool ordered);
2698 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2699 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2700 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2701 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2702 unsigned int val, int alloc);
2703 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2704 int build_segment_manager(struct f2fs_sb_info *sbi);
2705 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2706 int __init create_segment_manager_caches(void);
2707 void destroy_segment_manager_caches(void);
2708
2709 /*
2710 * checkpoint.c
2711 */
2712 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2713 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2714 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2715 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2716 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2717 block_t blkaddr, int type);
2718 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2719 int type, bool sync);
2720 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2721 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2722 long nr_to_write, enum iostat_type io_type);
2723 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2724 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2725 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2726 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2727 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2728 unsigned int devidx, int type);
2729 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2730 unsigned int devidx, int type);
2731 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2732 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2733 void release_orphan_inode(struct f2fs_sb_info *sbi);
2734 void add_orphan_inode(struct inode *inode);
2735 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2736 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2737 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2738 void update_dirty_page(struct inode *inode, struct page *page);
2739 void remove_dirty_inode(struct inode *inode);
2740 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2741 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2742 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2743 int __init create_checkpoint_caches(void);
2744 void destroy_checkpoint_caches(void);
2745
2746 /*
2747 * data.c
2748 */
2749 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2750 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2751 struct inode *inode, nid_t ino, pgoff_t idx,
2752 enum page_type type);
2753 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2754 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2755 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2756 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2757 block_t blk_addr, struct bio *bio);
2758 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2759 void set_data_blkaddr(struct dnode_of_data *dn);
2760 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2761 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2762 int reserve_new_block(struct dnode_of_data *dn);
2763 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2764 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2765 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2766 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2767 int op_flags, bool for_write);
2768 struct page *find_data_page(struct inode *inode, pgoff_t index);
2769 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2770 bool for_write);
2771 struct page *get_new_data_page(struct inode *inode,
2772 struct page *ipage, pgoff_t index, bool new_i_size);
2773 int do_write_data_page(struct f2fs_io_info *fio);
2774 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2775 int create, int flag);
2776 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2777 u64 start, u64 len);
2778 void f2fs_set_page_dirty_nobuffers(struct page *page);
2779 int __f2fs_write_data_pages(struct address_space *mapping,
2780 struct writeback_control *wbc,
2781 enum iostat_type io_type);
2782 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2783 unsigned int length);
2784 int f2fs_release_page(struct page *page, gfp_t wait);
2785 #ifdef CONFIG_MIGRATION
2786 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2787 struct page *page, enum migrate_mode mode);
2788 #endif
2789
2790 /*
2791 * gc.c
2792 */
2793 int start_gc_thread(struct f2fs_sb_info *sbi);
2794 void stop_gc_thread(struct f2fs_sb_info *sbi);
2795 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2796 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2797 unsigned int segno);
2798 void build_gc_manager(struct f2fs_sb_info *sbi);
2799
2800 /*
2801 * recovery.c
2802 */
2803 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2804 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2805
2806 /*
2807 * debug.c
2808 */
2809 #ifdef CONFIG_F2FS_STAT_FS
2810 struct f2fs_stat_info {
2811 struct list_head stat_list;
2812 struct f2fs_sb_info *sbi;
2813 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2814 int main_area_segs, main_area_sections, main_area_zones;
2815 unsigned long long hit_largest, hit_cached, hit_rbtree;
2816 unsigned long long hit_total, total_ext;
2817 int ext_tree, zombie_tree, ext_node;
2818 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2819 int ndirty_data, ndirty_qdata;
2820 int inmem_pages;
2821 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2822 int nats, dirty_nats, sits, dirty_sits;
2823 int free_nids, avail_nids, alloc_nids;
2824 int total_count, utilization;
2825 int bg_gc, nr_wb_cp_data, nr_wb_data;
2826 int nr_flushing, nr_flushed, flush_list_empty;
2827 int nr_discarding, nr_discarded;
2828 int nr_discard_cmd;
2829 unsigned int undiscard_blks;
2830 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2831 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2832 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2833 unsigned int bimodal, avg_vblocks;
2834 int util_free, util_valid, util_invalid;
2835 int rsvd_segs, overp_segs;
2836 int dirty_count, node_pages, meta_pages;
2837 int prefree_count, call_count, cp_count, bg_cp_count;
2838 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2839 int bg_node_segs, bg_data_segs;
2840 int tot_blks, data_blks, node_blks;
2841 int bg_data_blks, bg_node_blks;
2842 int curseg[NR_CURSEG_TYPE];
2843 int cursec[NR_CURSEG_TYPE];
2844 int curzone[NR_CURSEG_TYPE];
2845
2846 unsigned int segment_count[2];
2847 unsigned int block_count[2];
2848 unsigned int inplace_count;
2849 unsigned long long base_mem, cache_mem, page_mem;
2850 };
2851
2852 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2853 {
2854 return (struct f2fs_stat_info *)sbi->stat_info;
2855 }
2856
2857 #define stat_inc_cp_count(si) ((si)->cp_count++)
2858 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2859 #define stat_inc_call_count(si) ((si)->call_count++)
2860 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2861 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2862 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2863 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2864 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2865 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2866 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2867 #define stat_inc_inline_xattr(inode) \
2868 do { \
2869 if (f2fs_has_inline_xattr(inode)) \
2870 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2871 } while (0)
2872 #define stat_dec_inline_xattr(inode) \
2873 do { \
2874 if (f2fs_has_inline_xattr(inode)) \
2875 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2876 } while (0)
2877 #define stat_inc_inline_inode(inode) \
2878 do { \
2879 if (f2fs_has_inline_data(inode)) \
2880 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2881 } while (0)
2882 #define stat_dec_inline_inode(inode) \
2883 do { \
2884 if (f2fs_has_inline_data(inode)) \
2885 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2886 } while (0)
2887 #define stat_inc_inline_dir(inode) \
2888 do { \
2889 if (f2fs_has_inline_dentry(inode)) \
2890 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2891 } while (0)
2892 #define stat_dec_inline_dir(inode) \
2893 do { \
2894 if (f2fs_has_inline_dentry(inode)) \
2895 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2896 } while (0)
2897 #define stat_inc_seg_type(sbi, curseg) \
2898 ((sbi)->segment_count[(curseg)->alloc_type]++)
2899 #define stat_inc_block_count(sbi, curseg) \
2900 ((sbi)->block_count[(curseg)->alloc_type]++)
2901 #define stat_inc_inplace_blocks(sbi) \
2902 (atomic_inc(&(sbi)->inplace_count))
2903 #define stat_inc_atomic_write(inode) \
2904 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2905 #define stat_dec_atomic_write(inode) \
2906 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2907 #define stat_update_max_atomic_write(inode) \
2908 do { \
2909 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2910 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2911 if (cur > max) \
2912 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2913 } while (0)
2914 #define stat_inc_volatile_write(inode) \
2915 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2916 #define stat_dec_volatile_write(inode) \
2917 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2918 #define stat_update_max_volatile_write(inode) \
2919 do { \
2920 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2921 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2922 if (cur > max) \
2923 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2924 } while (0)
2925 #define stat_inc_seg_count(sbi, type, gc_type) \
2926 do { \
2927 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2928 si->tot_segs++; \
2929 if ((type) == SUM_TYPE_DATA) { \
2930 si->data_segs++; \
2931 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2932 } else { \
2933 si->node_segs++; \
2934 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2935 } \
2936 } while (0)
2937
2938 #define stat_inc_tot_blk_count(si, blks) \
2939 ((si)->tot_blks += (blks))
2940
2941 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2942 do { \
2943 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2944 stat_inc_tot_blk_count(si, blks); \
2945 si->data_blks += (blks); \
2946 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2947 } while (0)
2948
2949 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2950 do { \
2951 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2952 stat_inc_tot_blk_count(si, blks); \
2953 si->node_blks += (blks); \
2954 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2955 } while (0)
2956
2957 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2958 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2959 int __init f2fs_create_root_stats(void);
2960 void f2fs_destroy_root_stats(void);
2961 #else
2962 #define stat_inc_cp_count(si) do { } while (0)
2963 #define stat_inc_bg_cp_count(si) do { } while (0)
2964 #define stat_inc_call_count(si) do { } while (0)
2965 #define stat_inc_bggc_count(si) do { } while (0)
2966 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2967 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2968 #define stat_inc_total_hit(sb) do { } while (0)
2969 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2970 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2971 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2972 #define stat_inc_inline_xattr(inode) do { } while (0)
2973 #define stat_dec_inline_xattr(inode) do { } while (0)
2974 #define stat_inc_inline_inode(inode) do { } while (0)
2975 #define stat_dec_inline_inode(inode) do { } while (0)
2976 #define stat_inc_inline_dir(inode) do { } while (0)
2977 #define stat_dec_inline_dir(inode) do { } while (0)
2978 #define stat_inc_atomic_write(inode) do { } while (0)
2979 #define stat_dec_atomic_write(inode) do { } while (0)
2980 #define stat_update_max_atomic_write(inode) do { } while (0)
2981 #define stat_inc_volatile_write(inode) do { } while (0)
2982 #define stat_dec_volatile_write(inode) do { } while (0)
2983 #define stat_update_max_volatile_write(inode) do { } while (0)
2984 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2985 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2986 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2987 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2988 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2989 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2990 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2991
2992 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2993 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2994 static inline int __init f2fs_create_root_stats(void) { return 0; }
2995 static inline void f2fs_destroy_root_stats(void) { }
2996 #endif
2997
2998 extern const struct file_operations f2fs_dir_operations;
2999 extern const struct file_operations f2fs_file_operations;
3000 extern const struct inode_operations f2fs_file_inode_operations;
3001 extern const struct address_space_operations f2fs_dblock_aops;
3002 extern const struct address_space_operations f2fs_node_aops;
3003 extern const struct address_space_operations f2fs_meta_aops;
3004 extern const struct inode_operations f2fs_dir_inode_operations;
3005 extern const struct inode_operations f2fs_symlink_inode_operations;
3006 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3007 extern const struct inode_operations f2fs_special_inode_operations;
3008 extern struct kmem_cache *inode_entry_slab;
3009
3010 /*
3011 * inline.c
3012 */
3013 bool f2fs_may_inline_data(struct inode *inode);
3014 bool f2fs_may_inline_dentry(struct inode *inode);
3015 void read_inline_data(struct page *page, struct page *ipage);
3016 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3017 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3018 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3019 int f2fs_convert_inline_inode(struct inode *inode);
3020 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3021 bool recover_inline_data(struct inode *inode, struct page *npage);
3022 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3023 struct fscrypt_name *fname, struct page **res_page);
3024 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3025 struct page *ipage);
3026 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3027 const struct qstr *orig_name,
3028 struct inode *inode, nid_t ino, umode_t mode);
3029 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3030 struct inode *dir, struct inode *inode);
3031 bool f2fs_empty_inline_dir(struct inode *dir);
3032 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3033 struct fscrypt_str *fstr);
3034 int f2fs_inline_data_fiemap(struct inode *inode,
3035 struct fiemap_extent_info *fieinfo,
3036 __u64 start, __u64 len);
3037
3038 /*
3039 * shrinker.c
3040 */
3041 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3042 struct shrink_control *sc);
3043 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3044 struct shrink_control *sc);
3045 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3046 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3047
3048 /*
3049 * extent_cache.c
3050 */
3051 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3052 struct rb_entry *cached_re, unsigned int ofs);
3053 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3054 struct rb_root *root, struct rb_node **parent,
3055 unsigned int ofs);
3056 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3057 struct rb_entry *cached_re, unsigned int ofs,
3058 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3059 struct rb_node ***insert_p, struct rb_node **insert_parent,
3060 bool force);
3061 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3062 struct rb_root *root);
3063 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3064 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3065 void f2fs_drop_extent_tree(struct inode *inode);
3066 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3067 void f2fs_destroy_extent_tree(struct inode *inode);
3068 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3069 struct extent_info *ei);
3070 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3071 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3072 pgoff_t fofs, block_t blkaddr, unsigned int len);
3073 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3074 int __init create_extent_cache(void);
3075 void destroy_extent_cache(void);
3076
3077 /*
3078 * sysfs.c
3079 */
3080 int __init f2fs_init_sysfs(void);
3081 void f2fs_exit_sysfs(void);
3082 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3083 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3084
3085 /*
3086 * crypto support
3087 */
3088 static inline bool f2fs_encrypted_inode(struct inode *inode)
3089 {
3090 return file_is_encrypt(inode);
3091 }
3092
3093 static inline bool f2fs_encrypted_file(struct inode *inode)
3094 {
3095 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3096 }
3097
3098 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3099 {
3100 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3101 file_set_encrypt(inode);
3102 inode->i_flags |= S_ENCRYPTED;
3103 #endif
3104 }
3105
3106 static inline bool f2fs_bio_encrypted(struct bio *bio)
3107 {
3108 return bio->bi_private != NULL;
3109 }
3110
3111 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3112 {
3113 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3114 }
3115
3116 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3117 {
3118 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3119 }
3120
3121 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3122 {
3123 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3124 }
3125
3126 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3127 {
3128 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3129 }
3130
3131 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3132 {
3133 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3134 }
3135
3136 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3137 {
3138 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3139 }
3140
3141 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3142 {
3143 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3144 }
3145
3146 #ifdef CONFIG_BLK_DEV_ZONED
3147 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3148 struct block_device *bdev, block_t blkaddr)
3149 {
3150 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3151 int i;
3152
3153 for (i = 0; i < sbi->s_ndevs; i++)
3154 if (FDEV(i).bdev == bdev)
3155 return FDEV(i).blkz_type[zno];
3156 return -EINVAL;
3157 }
3158 #endif
3159
3160 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3161 {
3162 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3163
3164 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3165 }
3166
3167 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3168 {
3169 clear_opt(sbi, ADAPTIVE);
3170 clear_opt(sbi, LFS);
3171
3172 switch (mt) {
3173 case F2FS_MOUNT_ADAPTIVE:
3174 set_opt(sbi, ADAPTIVE);
3175 break;
3176 case F2FS_MOUNT_LFS:
3177 set_opt(sbi, LFS);
3178 break;
3179 }
3180 }
3181
3182 static inline bool f2fs_may_encrypt(struct inode *inode)
3183 {
3184 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3185 umode_t mode = inode->i_mode;
3186
3187 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3188 #else
3189 return 0;
3190 #endif
3191 }
3192
3193 #endif