]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: kill f2fs_drop_largest_extent
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57
58 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
59 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
60 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
61
62 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
63 typecheck(unsigned long long, b) && \
64 ((long long)((a) - (b)) > 0))
65
66 typedef u32 block_t; /*
67 * should not change u32, since it is the on-disk block
68 * address format, __le32.
69 */
70 typedef u32 nid_t;
71
72 struct f2fs_mount_info {
73 unsigned int opt;
74 };
75
76 #define F2FS_FEATURE_ENCRYPT 0x0001
77
78 #define F2FS_HAS_FEATURE(sb, mask) \
79 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
80 #define F2FS_SET_FEATURE(sb, mask) \
81 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
82 #define F2FS_CLEAR_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
84
85 #define CRCPOLY_LE 0xedb88320
86
87 static inline __u32 f2fs_crc32(void *buf, size_t len)
88 {
89 unsigned char *p = (unsigned char *)buf;
90 __u32 crc = F2FS_SUPER_MAGIC;
91 int i;
92
93 while (len--) {
94 crc ^= *p++;
95 for (i = 0; i < 8; i++)
96 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
97 }
98 return crc;
99 }
100
101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
102 {
103 return f2fs_crc32(buf, buf_size) == blk_crc;
104 }
105
106 /*
107 * For checkpoint manager
108 */
109 enum {
110 NAT_BITMAP,
111 SIT_BITMAP
112 };
113
114 enum {
115 CP_UMOUNT,
116 CP_FASTBOOT,
117 CP_SYNC,
118 CP_RECOVERY,
119 CP_DISCARD,
120 };
121
122 #define DEF_BATCHED_TRIM_SECTIONS 32
123 #define BATCHED_TRIM_SEGMENTS(sbi) \
124 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
125 #define BATCHED_TRIM_BLOCKS(sbi) \
126 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
127 #define DEF_CP_INTERVAL 60 /* 60 secs */
128
129 struct cp_control {
130 int reason;
131 __u64 trim_start;
132 __u64 trim_end;
133 __u64 trim_minlen;
134 __u64 trimmed;
135 };
136
137 /*
138 * For CP/NAT/SIT/SSA readahead
139 */
140 enum {
141 META_CP,
142 META_NAT,
143 META_SIT,
144 META_SSA,
145 META_POR,
146 };
147
148 /* for the list of ino */
149 enum {
150 ORPHAN_INO, /* for orphan ino list */
151 APPEND_INO, /* for append ino list */
152 UPDATE_INO, /* for update ino list */
153 MAX_INO_ENTRY, /* max. list */
154 };
155
156 struct ino_entry {
157 struct list_head list; /* list head */
158 nid_t ino; /* inode number */
159 };
160
161 /*
162 * for the list of directory inodes or gc inodes.
163 * NOTE: there are two slab users for this structure, if we add/modify/delete
164 * fields in structure for one of slab users, it may affect fields or size of
165 * other one, in this condition, it's better to split both of slab and related
166 * data structure.
167 */
168 struct inode_entry {
169 struct list_head list; /* list head */
170 struct inode *inode; /* vfs inode pointer */
171 };
172
173 /* for the list of blockaddresses to be discarded */
174 struct discard_entry {
175 struct list_head list; /* list head */
176 block_t blkaddr; /* block address to be discarded */
177 int len; /* # of consecutive blocks of the discard */
178 };
179
180 /* for the list of fsync inodes, used only during recovery */
181 struct fsync_inode_entry {
182 struct list_head list; /* list head */
183 struct inode *inode; /* vfs inode pointer */
184 block_t blkaddr; /* block address locating the last fsync */
185 block_t last_dentry; /* block address locating the last dentry */
186 block_t last_inode; /* block address locating the last inode */
187 };
188
189 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
190 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
191
192 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
193 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
194 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
195 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
196
197 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
198 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
199
200 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
201 {
202 int before = nats_in_cursum(rs);
203 rs->n_nats = cpu_to_le16(before + i);
204 return before;
205 }
206
207 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
208 {
209 int before = sits_in_cursum(rs);
210 rs->n_sits = cpu_to_le16(before + i);
211 return before;
212 }
213
214 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
215 int type)
216 {
217 if (type == NAT_JOURNAL)
218 return size <= MAX_NAT_JENTRIES(sum);
219 return size <= MAX_SIT_JENTRIES(sum);
220 }
221
222 /*
223 * ioctl commands
224 */
225 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
226 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
227 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
228
229 #define F2FS_IOCTL_MAGIC 0xf5
230 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
231 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
232 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
233 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
234 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
235 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
236 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
237 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
238
239 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
240 _IOR('f', 19, struct f2fs_encryption_policy)
241 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
242 _IOW('f', 20, __u8[16])
243 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
244 _IOW('f', 21, struct f2fs_encryption_policy)
245
246 /*
247 * should be same as XFS_IOC_GOINGDOWN.
248 * Flags for going down operation used by FS_IOC_GOINGDOWN
249 */
250 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
251 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
252 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
253 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
254 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
255
256 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
257 /*
258 * ioctl commands in 32 bit emulation
259 */
260 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
261 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
262 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
263 #endif
264
265 struct f2fs_defragment {
266 u64 start;
267 u64 len;
268 };
269
270 /*
271 * For INODE and NODE manager
272 */
273 /* for directory operations */
274 struct f2fs_str {
275 unsigned char *name;
276 u32 len;
277 };
278
279 struct f2fs_filename {
280 const struct qstr *usr_fname;
281 struct f2fs_str disk_name;
282 f2fs_hash_t hash;
283 #ifdef CONFIG_F2FS_FS_ENCRYPTION
284 struct f2fs_str crypto_buf;
285 #endif
286 };
287
288 #define FSTR_INIT(n, l) { .name = n, .len = l }
289 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
290 #define fname_name(p) ((p)->disk_name.name)
291 #define fname_len(p) ((p)->disk_name.len)
292
293 struct f2fs_dentry_ptr {
294 struct inode *inode;
295 const void *bitmap;
296 struct f2fs_dir_entry *dentry;
297 __u8 (*filename)[F2FS_SLOT_LEN];
298 int max;
299 };
300
301 static inline void make_dentry_ptr(struct inode *inode,
302 struct f2fs_dentry_ptr *d, void *src, int type)
303 {
304 d->inode = inode;
305
306 if (type == 1) {
307 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
308 d->max = NR_DENTRY_IN_BLOCK;
309 d->bitmap = &t->dentry_bitmap;
310 d->dentry = t->dentry;
311 d->filename = t->filename;
312 } else {
313 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
314 d->max = NR_INLINE_DENTRY;
315 d->bitmap = &t->dentry_bitmap;
316 d->dentry = t->dentry;
317 d->filename = t->filename;
318 }
319 }
320
321 /*
322 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
323 * as its node offset to distinguish from index node blocks.
324 * But some bits are used to mark the node block.
325 */
326 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
327 >> OFFSET_BIT_SHIFT)
328 enum {
329 ALLOC_NODE, /* allocate a new node page if needed */
330 LOOKUP_NODE, /* look up a node without readahead */
331 LOOKUP_NODE_RA, /*
332 * look up a node with readahead called
333 * by get_data_block.
334 */
335 };
336
337 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
338
339 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
340
341 /* vector size for gang look-up from extent cache that consists of radix tree */
342 #define EXT_TREE_VEC_SIZE 64
343
344 /* for in-memory extent cache entry */
345 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
346
347 /* number of extent info in extent cache we try to shrink */
348 #define EXTENT_CACHE_SHRINK_NUMBER 128
349
350 struct extent_info {
351 unsigned int fofs; /* start offset in a file */
352 u32 blk; /* start block address of the extent */
353 unsigned int len; /* length of the extent */
354 };
355
356 struct extent_node {
357 struct rb_node rb_node; /* rb node located in rb-tree */
358 struct list_head list; /* node in global extent list of sbi */
359 struct extent_info ei; /* extent info */
360 };
361
362 struct extent_tree {
363 nid_t ino; /* inode number */
364 struct rb_root root; /* root of extent info rb-tree */
365 struct extent_node *cached_en; /* recently accessed extent node */
366 struct extent_info largest; /* largested extent info */
367 rwlock_t lock; /* protect extent info rb-tree */
368 atomic_t refcount; /* reference count of rb-tree */
369 unsigned int count; /* # of extent node in rb-tree*/
370 };
371
372 /*
373 * This structure is taken from ext4_map_blocks.
374 *
375 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
376 */
377 #define F2FS_MAP_NEW (1 << BH_New)
378 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
379 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
380 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
381 F2FS_MAP_UNWRITTEN)
382
383 struct f2fs_map_blocks {
384 block_t m_pblk;
385 block_t m_lblk;
386 unsigned int m_len;
387 unsigned int m_flags;
388 };
389
390 /* for flag in get_data_block */
391 #define F2FS_GET_BLOCK_READ 0
392 #define F2FS_GET_BLOCK_DIO 1
393 #define F2FS_GET_BLOCK_FIEMAP 2
394 #define F2FS_GET_BLOCK_BMAP 3
395
396 /*
397 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
398 */
399 #define FADVISE_COLD_BIT 0x01
400 #define FADVISE_LOST_PINO_BIT 0x02
401 #define FADVISE_ENCRYPT_BIT 0x04
402 #define FADVISE_ENC_NAME_BIT 0x08
403
404 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
405 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
406 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
407 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
409 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
410 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
414 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
415
416 /* Encryption algorithms */
417 #define F2FS_ENCRYPTION_MODE_INVALID 0
418 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
419 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
420 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
421 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
422
423 #include "f2fs_crypto.h"
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 atomic_t dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
445
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448
449 struct extent_tree *extent_tree; /* cached extent_tree entry */
450
451 #ifdef CONFIG_F2FS_FS_ENCRYPTION
452 /* Encryption params */
453 struct f2fs_crypt_info *i_crypt_info;
454 #endif
455 };
456
457 static inline void get_extent_info(struct extent_info *ext,
458 struct f2fs_extent i_ext)
459 {
460 ext->fofs = le32_to_cpu(i_ext.fofs);
461 ext->blk = le32_to_cpu(i_ext.blk);
462 ext->len = le32_to_cpu(i_ext.len);
463 }
464
465 static inline void set_raw_extent(struct extent_info *ext,
466 struct f2fs_extent *i_ext)
467 {
468 i_ext->fofs = cpu_to_le32(ext->fofs);
469 i_ext->blk = cpu_to_le32(ext->blk);
470 i_ext->len = cpu_to_le32(ext->len);
471 }
472
473 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
474 u32 blk, unsigned int len)
475 {
476 ei->fofs = fofs;
477 ei->blk = blk;
478 ei->len = len;
479 }
480
481 static inline bool __is_extent_same(struct extent_info *ei1,
482 struct extent_info *ei2)
483 {
484 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
485 ei1->len == ei2->len);
486 }
487
488 static inline bool __is_extent_mergeable(struct extent_info *back,
489 struct extent_info *front)
490 {
491 return (back->fofs + back->len == front->fofs &&
492 back->blk + back->len == front->blk);
493 }
494
495 static inline bool __is_back_mergeable(struct extent_info *cur,
496 struct extent_info *back)
497 {
498 return __is_extent_mergeable(back, cur);
499 }
500
501 static inline bool __is_front_mergeable(struct extent_info *cur,
502 struct extent_info *front)
503 {
504 return __is_extent_mergeable(cur, front);
505 }
506
507 static inline void __try_update_largest_extent(struct extent_tree *et,
508 struct extent_node *en)
509 {
510 if (en->ei.len > et->largest.len)
511 et->largest = en->ei;
512 }
513
514 struct f2fs_nm_info {
515 block_t nat_blkaddr; /* base disk address of NAT */
516 nid_t max_nid; /* maximum possible node ids */
517 nid_t available_nids; /* maximum available node ids */
518 nid_t next_scan_nid; /* the next nid to be scanned */
519 unsigned int ram_thresh; /* control the memory footprint */
520 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
521
522 /* NAT cache management */
523 struct radix_tree_root nat_root;/* root of the nat entry cache */
524 struct radix_tree_root nat_set_root;/* root of the nat set cache */
525 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
526 struct list_head nat_entries; /* cached nat entry list (clean) */
527 unsigned int nat_cnt; /* the # of cached nat entries */
528 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
529
530 /* free node ids management */
531 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
532 struct list_head free_nid_list; /* a list for free nids */
533 spinlock_t free_nid_list_lock; /* protect free nid list */
534 unsigned int fcnt; /* the number of free node id */
535 struct mutex build_lock; /* lock for build free nids */
536
537 /* for checkpoint */
538 char *nat_bitmap; /* NAT bitmap pointer */
539 int bitmap_size; /* bitmap size */
540 };
541
542 /*
543 * this structure is used as one of function parameters.
544 * all the information are dedicated to a given direct node block determined
545 * by the data offset in a file.
546 */
547 struct dnode_of_data {
548 struct inode *inode; /* vfs inode pointer */
549 struct page *inode_page; /* its inode page, NULL is possible */
550 struct page *node_page; /* cached direct node page */
551 nid_t nid; /* node id of the direct node block */
552 unsigned int ofs_in_node; /* data offset in the node page */
553 bool inode_page_locked; /* inode page is locked or not */
554 block_t data_blkaddr; /* block address of the node block */
555 };
556
557 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
558 struct page *ipage, struct page *npage, nid_t nid)
559 {
560 memset(dn, 0, sizeof(*dn));
561 dn->inode = inode;
562 dn->inode_page = ipage;
563 dn->node_page = npage;
564 dn->nid = nid;
565 }
566
567 /*
568 * For SIT manager
569 *
570 * By default, there are 6 active log areas across the whole main area.
571 * When considering hot and cold data separation to reduce cleaning overhead,
572 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
573 * respectively.
574 * In the current design, you should not change the numbers intentionally.
575 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
576 * logs individually according to the underlying devices. (default: 6)
577 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
578 * data and 8 for node logs.
579 */
580 #define NR_CURSEG_DATA_TYPE (3)
581 #define NR_CURSEG_NODE_TYPE (3)
582 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
583
584 enum {
585 CURSEG_HOT_DATA = 0, /* directory entry blocks */
586 CURSEG_WARM_DATA, /* data blocks */
587 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
588 CURSEG_HOT_NODE, /* direct node blocks of directory files */
589 CURSEG_WARM_NODE, /* direct node blocks of normal files */
590 CURSEG_COLD_NODE, /* indirect node blocks */
591 NO_CHECK_TYPE,
592 CURSEG_DIRECT_IO, /* to use for the direct IO path */
593 };
594
595 struct flush_cmd {
596 struct completion wait;
597 struct llist_node llnode;
598 int ret;
599 };
600
601 struct flush_cmd_control {
602 struct task_struct *f2fs_issue_flush; /* flush thread */
603 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
604 struct llist_head issue_list; /* list for command issue */
605 struct llist_node *dispatch_list; /* list for command dispatch */
606 };
607
608 struct f2fs_sm_info {
609 struct sit_info *sit_info; /* whole segment information */
610 struct free_segmap_info *free_info; /* free segment information */
611 struct dirty_seglist_info *dirty_info; /* dirty segment information */
612 struct curseg_info *curseg_array; /* active segment information */
613
614 block_t seg0_blkaddr; /* block address of 0'th segment */
615 block_t main_blkaddr; /* start block address of main area */
616 block_t ssa_blkaddr; /* start block address of SSA area */
617
618 unsigned int segment_count; /* total # of segments */
619 unsigned int main_segments; /* # of segments in main area */
620 unsigned int reserved_segments; /* # of reserved segments */
621 unsigned int ovp_segments; /* # of overprovision segments */
622
623 /* a threshold to reclaim prefree segments */
624 unsigned int rec_prefree_segments;
625
626 /* for small discard management */
627 struct list_head discard_list; /* 4KB discard list */
628 int nr_discards; /* # of discards in the list */
629 int max_discards; /* max. discards to be issued */
630
631 /* for batched trimming */
632 unsigned int trim_sections; /* # of sections to trim */
633
634 struct list_head sit_entry_set; /* sit entry set list */
635
636 unsigned int ipu_policy; /* in-place-update policy */
637 unsigned int min_ipu_util; /* in-place-update threshold */
638 unsigned int min_fsync_blocks; /* threshold for fsync */
639
640 /* for flush command control */
641 struct flush_cmd_control *cmd_control_info;
642
643 };
644
645 /*
646 * For superblock
647 */
648 /*
649 * COUNT_TYPE for monitoring
650 *
651 * f2fs monitors the number of several block types such as on-writeback,
652 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
653 */
654 enum count_type {
655 F2FS_WRITEBACK,
656 F2FS_DIRTY_DENTS,
657 F2FS_DIRTY_NODES,
658 F2FS_DIRTY_META,
659 F2FS_INMEM_PAGES,
660 NR_COUNT_TYPE,
661 };
662
663 /*
664 * The below are the page types of bios used in submit_bio().
665 * The available types are:
666 * DATA User data pages. It operates as async mode.
667 * NODE Node pages. It operates as async mode.
668 * META FS metadata pages such as SIT, NAT, CP.
669 * NR_PAGE_TYPE The number of page types.
670 * META_FLUSH Make sure the previous pages are written
671 * with waiting the bio's completion
672 * ... Only can be used with META.
673 */
674 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
675 enum page_type {
676 DATA,
677 NODE,
678 META,
679 NR_PAGE_TYPE,
680 META_FLUSH,
681 INMEM, /* the below types are used by tracepoints only. */
682 INMEM_DROP,
683 IPU,
684 OPU,
685 };
686
687 struct f2fs_io_info {
688 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
689 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
690 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
691 block_t blk_addr; /* block address to be written */
692 struct page *page; /* page to be written */
693 struct page *encrypted_page; /* encrypted page */
694 };
695
696 #define is_read_io(rw) (((rw) & 1) == READ)
697 struct f2fs_bio_info {
698 struct f2fs_sb_info *sbi; /* f2fs superblock */
699 struct bio *bio; /* bios to merge */
700 sector_t last_block_in_bio; /* last block number */
701 struct f2fs_io_info fio; /* store buffered io info. */
702 struct rw_semaphore io_rwsem; /* blocking op for bio */
703 };
704
705 /* for inner inode cache management */
706 struct inode_management {
707 struct radix_tree_root ino_root; /* ino entry array */
708 spinlock_t ino_lock; /* for ino entry lock */
709 struct list_head ino_list; /* inode list head */
710 unsigned long ino_num; /* number of entries */
711 };
712
713 /* For s_flag in struct f2fs_sb_info */
714 enum {
715 SBI_IS_DIRTY, /* dirty flag for checkpoint */
716 SBI_IS_CLOSE, /* specify unmounting */
717 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
718 SBI_POR_DOING, /* recovery is doing or not */
719 };
720
721 struct f2fs_sb_info {
722 struct super_block *sb; /* pointer to VFS super block */
723 struct proc_dir_entry *s_proc; /* proc entry */
724 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
725 struct f2fs_super_block *raw_super; /* raw super block pointer */
726 int s_flag; /* flags for sbi */
727
728 /* for node-related operations */
729 struct f2fs_nm_info *nm_info; /* node manager */
730 struct inode *node_inode; /* cache node blocks */
731
732 /* for segment-related operations */
733 struct f2fs_sm_info *sm_info; /* segment manager */
734
735 /* for bio operations */
736 struct f2fs_bio_info read_io; /* for read bios */
737 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
738
739 /* for checkpoint */
740 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
741 struct inode *meta_inode; /* cache meta blocks */
742 struct mutex cp_mutex; /* checkpoint procedure lock */
743 struct rw_semaphore cp_rwsem; /* blocking FS operations */
744 struct rw_semaphore node_write; /* locking node writes */
745 struct mutex writepages; /* mutex for writepages() */
746 wait_queue_head_t cp_wait;
747 long cp_expires, cp_interval; /* next expected periodic cp */
748
749 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
750
751 /* for orphan inode, use 0'th array */
752 unsigned int max_orphans; /* max orphan inodes */
753
754 /* for directory inode management */
755 struct list_head dir_inode_list; /* dir inode list */
756 spinlock_t dir_inode_lock; /* for dir inode list lock */
757
758 /* for extent tree cache */
759 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
760 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
761 struct list_head extent_list; /* lru list for shrinker */
762 spinlock_t extent_lock; /* locking extent lru list */
763 int total_ext_tree; /* extent tree count */
764 atomic_t total_ext_node; /* extent info count */
765
766 /* basic filesystem units */
767 unsigned int log_sectors_per_block; /* log2 sectors per block */
768 unsigned int log_blocksize; /* log2 block size */
769 unsigned int blocksize; /* block size */
770 unsigned int root_ino_num; /* root inode number*/
771 unsigned int node_ino_num; /* node inode number*/
772 unsigned int meta_ino_num; /* meta inode number*/
773 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
774 unsigned int blocks_per_seg; /* blocks per segment */
775 unsigned int segs_per_sec; /* segments per section */
776 unsigned int secs_per_zone; /* sections per zone */
777 unsigned int total_sections; /* total section count */
778 unsigned int total_node_count; /* total node block count */
779 unsigned int total_valid_node_count; /* valid node block count */
780 unsigned int total_valid_inode_count; /* valid inode count */
781 int active_logs; /* # of active logs */
782 int dir_level; /* directory level */
783
784 block_t user_block_count; /* # of user blocks */
785 block_t total_valid_block_count; /* # of valid blocks */
786 block_t alloc_valid_block_count; /* # of allocated blocks */
787 block_t discard_blks; /* discard command candidats */
788 block_t last_valid_block_count; /* for recovery */
789 u32 s_next_generation; /* for NFS support */
790 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
791
792 struct f2fs_mount_info mount_opt; /* mount options */
793
794 /* for cleaning operations */
795 struct mutex gc_mutex; /* mutex for GC */
796 struct f2fs_gc_kthread *gc_thread; /* GC thread */
797 unsigned int cur_victim_sec; /* current victim section num */
798
799 /* maximum # of trials to find a victim segment for SSR and GC */
800 unsigned int max_victim_search;
801
802 /*
803 * for stat information.
804 * one is for the LFS mode, and the other is for the SSR mode.
805 */
806 #ifdef CONFIG_F2FS_STAT_FS
807 struct f2fs_stat_info *stat_info; /* FS status information */
808 unsigned int segment_count[2]; /* # of allocated segments */
809 unsigned int block_count[2]; /* # of allocated blocks */
810 atomic_t inplace_count; /* # of inplace update */
811 atomic64_t total_hit_ext; /* # of lookup extent cache */
812 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
813 atomic64_t read_hit_largest; /* # of hit largest extent node */
814 atomic64_t read_hit_cached; /* # of hit cached extent node */
815 atomic_t inline_xattr; /* # of inline_xattr inodes */
816 atomic_t inline_inode; /* # of inline_data inodes */
817 atomic_t inline_dir; /* # of inline_dentry inodes */
818 int bg_gc; /* background gc calls */
819 unsigned int n_dirty_dirs; /* # of dir inodes */
820 #endif
821 unsigned int last_victim[2]; /* last victim segment # */
822 spinlock_t stat_lock; /* lock for stat operations */
823
824 /* For sysfs suppport */
825 struct kobject s_kobj;
826 struct completion s_kobj_unregister;
827
828 /* For shrinker support */
829 struct list_head s_list;
830 struct mutex umount_mutex;
831 unsigned int shrinker_run_no;
832 };
833
834 /*
835 * Inline functions
836 */
837 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
838 {
839 return container_of(inode, struct f2fs_inode_info, vfs_inode);
840 }
841
842 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
843 {
844 return sb->s_fs_info;
845 }
846
847 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
848 {
849 return F2FS_SB(inode->i_sb);
850 }
851
852 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
853 {
854 return F2FS_I_SB(mapping->host);
855 }
856
857 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
858 {
859 return F2FS_M_SB(page->mapping);
860 }
861
862 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
863 {
864 return (struct f2fs_super_block *)(sbi->raw_super);
865 }
866
867 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
868 {
869 return (struct f2fs_checkpoint *)(sbi->ckpt);
870 }
871
872 static inline struct f2fs_node *F2FS_NODE(struct page *page)
873 {
874 return (struct f2fs_node *)page_address(page);
875 }
876
877 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
878 {
879 return &((struct f2fs_node *)page_address(page))->i;
880 }
881
882 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
883 {
884 return (struct f2fs_nm_info *)(sbi->nm_info);
885 }
886
887 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
888 {
889 return (struct f2fs_sm_info *)(sbi->sm_info);
890 }
891
892 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
893 {
894 return (struct sit_info *)(SM_I(sbi)->sit_info);
895 }
896
897 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
898 {
899 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
900 }
901
902 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
903 {
904 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
905 }
906
907 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
908 {
909 return sbi->meta_inode->i_mapping;
910 }
911
912 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
913 {
914 return sbi->node_inode->i_mapping;
915 }
916
917 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
918 {
919 return sbi->s_flag & (0x01 << type);
920 }
921
922 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
923 {
924 sbi->s_flag |= (0x01 << type);
925 }
926
927 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
928 {
929 sbi->s_flag &= ~(0x01 << type);
930 }
931
932 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
933 {
934 return le64_to_cpu(cp->checkpoint_ver);
935 }
936
937 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
938 {
939 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
940 return ckpt_flags & f;
941 }
942
943 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
944 {
945 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
946 ckpt_flags |= f;
947 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
948 }
949
950 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
951 {
952 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
953 ckpt_flags &= (~f);
954 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
955 }
956
957 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
958 {
959 down_read(&sbi->cp_rwsem);
960 }
961
962 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
963 {
964 up_read(&sbi->cp_rwsem);
965 }
966
967 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
968 {
969 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
970 }
971
972 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
973 {
974 up_write(&sbi->cp_rwsem);
975 }
976
977 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
978 {
979 int reason = CP_SYNC;
980
981 if (test_opt(sbi, FASTBOOT))
982 reason = CP_FASTBOOT;
983 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
984 reason = CP_UMOUNT;
985 return reason;
986 }
987
988 static inline bool __remain_node_summaries(int reason)
989 {
990 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
991 }
992
993 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
994 {
995 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
996 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
997 }
998
999 /*
1000 * Check whether the given nid is within node id range.
1001 */
1002 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1003 {
1004 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1005 return -EINVAL;
1006 if (unlikely(nid >= NM_I(sbi)->max_nid))
1007 return -EINVAL;
1008 return 0;
1009 }
1010
1011 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1012
1013 /*
1014 * Check whether the inode has blocks or not
1015 */
1016 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1017 {
1018 if (F2FS_I(inode)->i_xattr_nid)
1019 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1020 else
1021 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1022 }
1023
1024 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1025 {
1026 return ofs == XATTR_NODE_OFFSET;
1027 }
1028
1029 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1030 struct inode *inode, blkcnt_t count)
1031 {
1032 block_t valid_block_count;
1033
1034 spin_lock(&sbi->stat_lock);
1035 valid_block_count =
1036 sbi->total_valid_block_count + (block_t)count;
1037 if (unlikely(valid_block_count > sbi->user_block_count)) {
1038 spin_unlock(&sbi->stat_lock);
1039 return false;
1040 }
1041 inode->i_blocks += count;
1042 sbi->total_valid_block_count = valid_block_count;
1043 sbi->alloc_valid_block_count += (block_t)count;
1044 spin_unlock(&sbi->stat_lock);
1045 return true;
1046 }
1047
1048 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1049 struct inode *inode,
1050 blkcnt_t count)
1051 {
1052 spin_lock(&sbi->stat_lock);
1053 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1054 f2fs_bug_on(sbi, inode->i_blocks < count);
1055 inode->i_blocks -= count;
1056 sbi->total_valid_block_count -= (block_t)count;
1057 spin_unlock(&sbi->stat_lock);
1058 }
1059
1060 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1061 {
1062 atomic_inc(&sbi->nr_pages[count_type]);
1063 set_sbi_flag(sbi, SBI_IS_DIRTY);
1064 }
1065
1066 static inline void inode_inc_dirty_pages(struct inode *inode)
1067 {
1068 atomic_inc(&F2FS_I(inode)->dirty_pages);
1069 if (S_ISDIR(inode->i_mode))
1070 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1071 }
1072
1073 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1074 {
1075 atomic_dec(&sbi->nr_pages[count_type]);
1076 }
1077
1078 static inline void inode_dec_dirty_pages(struct inode *inode)
1079 {
1080 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1081 !S_ISLNK(inode->i_mode))
1082 return;
1083
1084 atomic_dec(&F2FS_I(inode)->dirty_pages);
1085
1086 if (S_ISDIR(inode->i_mode))
1087 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1088 }
1089
1090 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1091 {
1092 return atomic_read(&sbi->nr_pages[count_type]);
1093 }
1094
1095 static inline int get_dirty_pages(struct inode *inode)
1096 {
1097 return atomic_read(&F2FS_I(inode)->dirty_pages);
1098 }
1099
1100 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1101 {
1102 unsigned int pages_per_sec = sbi->segs_per_sec *
1103 (1 << sbi->log_blocks_per_seg);
1104 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1105 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1106 }
1107
1108 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1109 {
1110 return sbi->total_valid_block_count;
1111 }
1112
1113 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1114 {
1115 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1116
1117 /* return NAT or SIT bitmap */
1118 if (flag == NAT_BITMAP)
1119 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1120 else if (flag == SIT_BITMAP)
1121 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1122
1123 return 0;
1124 }
1125
1126 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1127 {
1128 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1129 }
1130
1131 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1132 {
1133 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1134 int offset;
1135
1136 if (__cp_payload(sbi) > 0) {
1137 if (flag == NAT_BITMAP)
1138 return &ckpt->sit_nat_version_bitmap;
1139 else
1140 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1141 } else {
1142 offset = (flag == NAT_BITMAP) ?
1143 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1144 return &ckpt->sit_nat_version_bitmap + offset;
1145 }
1146 }
1147
1148 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1149 {
1150 block_t start_addr;
1151 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1152 unsigned long long ckpt_version = cur_cp_version(ckpt);
1153
1154 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1155
1156 /*
1157 * odd numbered checkpoint should at cp segment 0
1158 * and even segment must be at cp segment 1
1159 */
1160 if (!(ckpt_version & 1))
1161 start_addr += sbi->blocks_per_seg;
1162
1163 return start_addr;
1164 }
1165
1166 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1167 {
1168 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1169 }
1170
1171 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1172 struct inode *inode)
1173 {
1174 block_t valid_block_count;
1175 unsigned int valid_node_count;
1176
1177 spin_lock(&sbi->stat_lock);
1178
1179 valid_block_count = sbi->total_valid_block_count + 1;
1180 if (unlikely(valid_block_count > sbi->user_block_count)) {
1181 spin_unlock(&sbi->stat_lock);
1182 return false;
1183 }
1184
1185 valid_node_count = sbi->total_valid_node_count + 1;
1186 if (unlikely(valid_node_count > sbi->total_node_count)) {
1187 spin_unlock(&sbi->stat_lock);
1188 return false;
1189 }
1190
1191 if (inode)
1192 inode->i_blocks++;
1193
1194 sbi->alloc_valid_block_count++;
1195 sbi->total_valid_node_count++;
1196 sbi->total_valid_block_count++;
1197 spin_unlock(&sbi->stat_lock);
1198
1199 return true;
1200 }
1201
1202 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1203 struct inode *inode)
1204 {
1205 spin_lock(&sbi->stat_lock);
1206
1207 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1208 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1209 f2fs_bug_on(sbi, !inode->i_blocks);
1210
1211 inode->i_blocks--;
1212 sbi->total_valid_node_count--;
1213 sbi->total_valid_block_count--;
1214
1215 spin_unlock(&sbi->stat_lock);
1216 }
1217
1218 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1219 {
1220 return sbi->total_valid_node_count;
1221 }
1222
1223 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1224 {
1225 spin_lock(&sbi->stat_lock);
1226 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1227 sbi->total_valid_inode_count++;
1228 spin_unlock(&sbi->stat_lock);
1229 }
1230
1231 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1232 {
1233 spin_lock(&sbi->stat_lock);
1234 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1235 sbi->total_valid_inode_count--;
1236 spin_unlock(&sbi->stat_lock);
1237 }
1238
1239 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1240 {
1241 return sbi->total_valid_inode_count;
1242 }
1243
1244 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1245 pgoff_t index, bool for_write)
1246 {
1247 if (!for_write)
1248 return grab_cache_page(mapping, index);
1249 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1250 }
1251
1252 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1253 {
1254 char *src_kaddr = kmap(src);
1255 char *dst_kaddr = kmap(dst);
1256
1257 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1258 kunmap(dst);
1259 kunmap(src);
1260 }
1261
1262 static inline void f2fs_put_page(struct page *page, int unlock)
1263 {
1264 if (!page)
1265 return;
1266
1267 if (unlock) {
1268 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1269 unlock_page(page);
1270 }
1271 page_cache_release(page);
1272 }
1273
1274 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1275 {
1276 if (dn->node_page)
1277 f2fs_put_page(dn->node_page, 1);
1278 if (dn->inode_page && dn->node_page != dn->inode_page)
1279 f2fs_put_page(dn->inode_page, 0);
1280 dn->node_page = NULL;
1281 dn->inode_page = NULL;
1282 }
1283
1284 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1285 size_t size)
1286 {
1287 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1288 }
1289
1290 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1291 gfp_t flags)
1292 {
1293 void *entry;
1294
1295 entry = kmem_cache_alloc(cachep, flags);
1296 if (!entry)
1297 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1298 return entry;
1299 }
1300
1301 static inline struct bio *f2fs_bio_alloc(int npages)
1302 {
1303 struct bio *bio;
1304
1305 /* No failure on bio allocation */
1306 bio = bio_alloc(GFP_NOIO, npages);
1307 if (!bio)
1308 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1309 return bio;
1310 }
1311
1312 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1313 unsigned long index, void *item)
1314 {
1315 while (radix_tree_insert(root, index, item))
1316 cond_resched();
1317 }
1318
1319 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1320
1321 static inline bool IS_INODE(struct page *page)
1322 {
1323 struct f2fs_node *p = F2FS_NODE(page);
1324 return RAW_IS_INODE(p);
1325 }
1326
1327 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1328 {
1329 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1330 }
1331
1332 static inline block_t datablock_addr(struct page *node_page,
1333 unsigned int offset)
1334 {
1335 struct f2fs_node *raw_node;
1336 __le32 *addr_array;
1337 raw_node = F2FS_NODE(node_page);
1338 addr_array = blkaddr_in_node(raw_node);
1339 return le32_to_cpu(addr_array[offset]);
1340 }
1341
1342 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1343 {
1344 int mask;
1345
1346 addr += (nr >> 3);
1347 mask = 1 << (7 - (nr & 0x07));
1348 return mask & *addr;
1349 }
1350
1351 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1352 {
1353 int mask;
1354
1355 addr += (nr >> 3);
1356 mask = 1 << (7 - (nr & 0x07));
1357 *addr |= mask;
1358 }
1359
1360 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1361 {
1362 int mask;
1363
1364 addr += (nr >> 3);
1365 mask = 1 << (7 - (nr & 0x07));
1366 *addr &= ~mask;
1367 }
1368
1369 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1370 {
1371 int mask;
1372 int ret;
1373
1374 addr += (nr >> 3);
1375 mask = 1 << (7 - (nr & 0x07));
1376 ret = mask & *addr;
1377 *addr |= mask;
1378 return ret;
1379 }
1380
1381 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1382 {
1383 int mask;
1384 int ret;
1385
1386 addr += (nr >> 3);
1387 mask = 1 << (7 - (nr & 0x07));
1388 ret = mask & *addr;
1389 *addr &= ~mask;
1390 return ret;
1391 }
1392
1393 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1394 {
1395 int mask;
1396
1397 addr += (nr >> 3);
1398 mask = 1 << (7 - (nr & 0x07));
1399 *addr ^= mask;
1400 }
1401
1402 /* used for f2fs_inode_info->flags */
1403 enum {
1404 FI_NEW_INODE, /* indicate newly allocated inode */
1405 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1406 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1407 FI_INC_LINK, /* need to increment i_nlink */
1408 FI_ACL_MODE, /* indicate acl mode */
1409 FI_NO_ALLOC, /* should not allocate any blocks */
1410 FI_FREE_NID, /* free allocated nide */
1411 FI_UPDATE_DIR, /* should update inode block for consistency */
1412 FI_DELAY_IPUT, /* used for the recovery */
1413 FI_NO_EXTENT, /* not to use the extent cache */
1414 FI_INLINE_XATTR, /* used for inline xattr */
1415 FI_INLINE_DATA, /* used for inline data*/
1416 FI_INLINE_DENTRY, /* used for inline dentry */
1417 FI_APPEND_WRITE, /* inode has appended data */
1418 FI_UPDATE_WRITE, /* inode has in-place-update data */
1419 FI_NEED_IPU, /* used for ipu per file */
1420 FI_ATOMIC_FILE, /* indicate atomic file */
1421 FI_VOLATILE_FILE, /* indicate volatile file */
1422 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1423 FI_DROP_CACHE, /* drop dirty page cache */
1424 FI_DATA_EXIST, /* indicate data exists */
1425 FI_INLINE_DOTS, /* indicate inline dot dentries */
1426 FI_DO_DEFRAG, /* indicate defragment is running */
1427 };
1428
1429 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1430 {
1431 if (!test_bit(flag, &fi->flags))
1432 set_bit(flag, &fi->flags);
1433 }
1434
1435 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1436 {
1437 return test_bit(flag, &fi->flags);
1438 }
1439
1440 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1441 {
1442 if (test_bit(flag, &fi->flags))
1443 clear_bit(flag, &fi->flags);
1444 }
1445
1446 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1447 {
1448 fi->i_acl_mode = mode;
1449 set_inode_flag(fi, FI_ACL_MODE);
1450 }
1451
1452 static inline void get_inline_info(struct f2fs_inode_info *fi,
1453 struct f2fs_inode *ri)
1454 {
1455 if (ri->i_inline & F2FS_INLINE_XATTR)
1456 set_inode_flag(fi, FI_INLINE_XATTR);
1457 if (ri->i_inline & F2FS_INLINE_DATA)
1458 set_inode_flag(fi, FI_INLINE_DATA);
1459 if (ri->i_inline & F2FS_INLINE_DENTRY)
1460 set_inode_flag(fi, FI_INLINE_DENTRY);
1461 if (ri->i_inline & F2FS_DATA_EXIST)
1462 set_inode_flag(fi, FI_DATA_EXIST);
1463 if (ri->i_inline & F2FS_INLINE_DOTS)
1464 set_inode_flag(fi, FI_INLINE_DOTS);
1465 }
1466
1467 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1468 struct f2fs_inode *ri)
1469 {
1470 ri->i_inline = 0;
1471
1472 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1473 ri->i_inline |= F2FS_INLINE_XATTR;
1474 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1475 ri->i_inline |= F2FS_INLINE_DATA;
1476 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1477 ri->i_inline |= F2FS_INLINE_DENTRY;
1478 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1479 ri->i_inline |= F2FS_DATA_EXIST;
1480 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1481 ri->i_inline |= F2FS_INLINE_DOTS;
1482 }
1483
1484 static inline int f2fs_has_inline_xattr(struct inode *inode)
1485 {
1486 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1487 }
1488
1489 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1490 {
1491 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1492 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1493 return DEF_ADDRS_PER_INODE;
1494 }
1495
1496 static inline void *inline_xattr_addr(struct page *page)
1497 {
1498 struct f2fs_inode *ri = F2FS_INODE(page);
1499 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1500 F2FS_INLINE_XATTR_ADDRS]);
1501 }
1502
1503 static inline int inline_xattr_size(struct inode *inode)
1504 {
1505 if (f2fs_has_inline_xattr(inode))
1506 return F2FS_INLINE_XATTR_ADDRS << 2;
1507 else
1508 return 0;
1509 }
1510
1511 static inline int f2fs_has_inline_data(struct inode *inode)
1512 {
1513 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1514 }
1515
1516 static inline void f2fs_clear_inline_inode(struct inode *inode)
1517 {
1518 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1519 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1520 }
1521
1522 static inline int f2fs_exist_data(struct inode *inode)
1523 {
1524 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1525 }
1526
1527 static inline int f2fs_has_inline_dots(struct inode *inode)
1528 {
1529 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1530 }
1531
1532 static inline bool f2fs_is_atomic_file(struct inode *inode)
1533 {
1534 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1535 }
1536
1537 static inline bool f2fs_is_volatile_file(struct inode *inode)
1538 {
1539 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1540 }
1541
1542 static inline bool f2fs_is_first_block_written(struct inode *inode)
1543 {
1544 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1545 }
1546
1547 static inline bool f2fs_is_drop_cache(struct inode *inode)
1548 {
1549 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1550 }
1551
1552 static inline void *inline_data_addr(struct page *page)
1553 {
1554 struct f2fs_inode *ri = F2FS_INODE(page);
1555 return (void *)&(ri->i_addr[1]);
1556 }
1557
1558 static inline int f2fs_has_inline_dentry(struct inode *inode)
1559 {
1560 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1561 }
1562
1563 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1564 {
1565 if (!f2fs_has_inline_dentry(dir))
1566 kunmap(page);
1567 }
1568
1569 static inline int is_file(struct inode *inode, int type)
1570 {
1571 return F2FS_I(inode)->i_advise & type;
1572 }
1573
1574 static inline void set_file(struct inode *inode, int type)
1575 {
1576 F2FS_I(inode)->i_advise |= type;
1577 }
1578
1579 static inline void clear_file(struct inode *inode, int type)
1580 {
1581 F2FS_I(inode)->i_advise &= ~type;
1582 }
1583
1584 static inline int f2fs_readonly(struct super_block *sb)
1585 {
1586 return sb->s_flags & MS_RDONLY;
1587 }
1588
1589 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1590 {
1591 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1592 }
1593
1594 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1595 {
1596 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1597 sbi->sb->s_flags |= MS_RDONLY;
1598 }
1599
1600 static inline bool is_dot_dotdot(const struct qstr *str)
1601 {
1602 if (str->len == 1 && str->name[0] == '.')
1603 return true;
1604
1605 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1606 return true;
1607
1608 return false;
1609 }
1610
1611 static inline bool f2fs_may_extent_tree(struct inode *inode)
1612 {
1613 mode_t mode = inode->i_mode;
1614
1615 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1616 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1617 return false;
1618
1619 return S_ISREG(mode);
1620 }
1621
1622 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1623 {
1624 void *ret;
1625
1626 ret = kmalloc(size, flags | __GFP_NOWARN);
1627 if (!ret)
1628 ret = __vmalloc(size, flags, PAGE_KERNEL);
1629 return ret;
1630 }
1631
1632 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1633 {
1634 void *ret;
1635
1636 ret = kzalloc(size, flags | __GFP_NOWARN);
1637 if (!ret)
1638 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1639 return ret;
1640 }
1641
1642 #define get_inode_mode(i) \
1643 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1644 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1645
1646 /* get offset of first page in next direct node */
1647 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1648 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1649 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1650 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1651
1652 /*
1653 * file.c
1654 */
1655 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1656 void truncate_data_blocks(struct dnode_of_data *);
1657 int truncate_blocks(struct inode *, u64, bool);
1658 int f2fs_truncate(struct inode *, bool);
1659 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1660 int f2fs_setattr(struct dentry *, struct iattr *);
1661 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1662 int truncate_data_blocks_range(struct dnode_of_data *, int);
1663 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1664 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1665
1666 /*
1667 * inode.c
1668 */
1669 void f2fs_set_inode_flags(struct inode *);
1670 struct inode *f2fs_iget(struct super_block *, unsigned long);
1671 int try_to_free_nats(struct f2fs_sb_info *, int);
1672 void update_inode(struct inode *, struct page *);
1673 void update_inode_page(struct inode *);
1674 int f2fs_write_inode(struct inode *, struct writeback_control *);
1675 void f2fs_evict_inode(struct inode *);
1676 void handle_failed_inode(struct inode *);
1677
1678 /*
1679 * namei.c
1680 */
1681 struct dentry *f2fs_get_parent(struct dentry *child);
1682
1683 /*
1684 * dir.c
1685 */
1686 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1687 void set_de_type(struct f2fs_dir_entry *, umode_t);
1688
1689 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1690 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1691 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1692 unsigned int, struct f2fs_str *);
1693 void do_make_empty_dir(struct inode *, struct inode *,
1694 struct f2fs_dentry_ptr *);
1695 struct page *init_inode_metadata(struct inode *, struct inode *,
1696 const struct qstr *, struct page *);
1697 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1698 int room_for_filename(const void *, int, int);
1699 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1700 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1701 struct page **);
1702 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1703 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1704 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1705 struct page *, struct inode *);
1706 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1707 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1708 const struct qstr *, f2fs_hash_t , unsigned int);
1709 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1710 umode_t);
1711 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1712 struct inode *);
1713 int f2fs_do_tmpfile(struct inode *, struct inode *);
1714 bool f2fs_empty_dir(struct inode *);
1715
1716 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1717 {
1718 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1719 inode, inode->i_ino, inode->i_mode);
1720 }
1721
1722 /*
1723 * super.c
1724 */
1725 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1726 int f2fs_sync_fs(struct super_block *, int);
1727 extern __printf(3, 4)
1728 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1729
1730 /*
1731 * hash.c
1732 */
1733 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1734
1735 /*
1736 * node.c
1737 */
1738 struct dnode_of_data;
1739 struct node_info;
1740
1741 bool available_free_memory(struct f2fs_sb_info *, int);
1742 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1743 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1744 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1745 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1746 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1747 int truncate_inode_blocks(struct inode *, pgoff_t);
1748 int truncate_xattr_node(struct inode *, struct page *);
1749 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1750 int remove_inode_page(struct inode *);
1751 struct page *new_inode_page(struct inode *);
1752 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1753 void ra_node_page(struct f2fs_sb_info *, nid_t);
1754 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1755 struct page *get_node_page_ra(struct page *, int);
1756 void sync_inode_page(struct dnode_of_data *);
1757 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1758 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1759 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1760 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1761 int try_to_free_nids(struct f2fs_sb_info *, int);
1762 void recover_inline_xattr(struct inode *, struct page *);
1763 void recover_xattr_data(struct inode *, struct page *, block_t);
1764 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1765 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1766 struct f2fs_summary_block *);
1767 void flush_nat_entries(struct f2fs_sb_info *);
1768 int build_node_manager(struct f2fs_sb_info *);
1769 void destroy_node_manager(struct f2fs_sb_info *);
1770 int __init create_node_manager_caches(void);
1771 void destroy_node_manager_caches(void);
1772
1773 /*
1774 * segment.c
1775 */
1776 void register_inmem_page(struct inode *, struct page *);
1777 int commit_inmem_pages(struct inode *, bool);
1778 void f2fs_balance_fs(struct f2fs_sb_info *);
1779 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1780 int f2fs_issue_flush(struct f2fs_sb_info *);
1781 int create_flush_cmd_control(struct f2fs_sb_info *);
1782 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1783 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1784 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1785 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1786 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1787 void release_discard_addrs(struct f2fs_sb_info *);
1788 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1789 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1790 void allocate_new_segments(struct f2fs_sb_info *);
1791 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1792 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1793 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1794 void write_meta_page(struct f2fs_sb_info *, struct page *);
1795 void write_node_page(unsigned int, struct f2fs_io_info *);
1796 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1797 void rewrite_data_page(struct f2fs_io_info *);
1798 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1799 block_t, block_t, unsigned char, bool);
1800 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1801 block_t, block_t *, struct f2fs_summary *, int);
1802 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1803 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1804 void write_data_summaries(struct f2fs_sb_info *, block_t);
1805 void write_node_summaries(struct f2fs_sb_info *, block_t);
1806 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1807 int, unsigned int, int);
1808 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1809 int build_segment_manager(struct f2fs_sb_info *);
1810 void destroy_segment_manager(struct f2fs_sb_info *);
1811 int __init create_segment_manager_caches(void);
1812 void destroy_segment_manager_caches(void);
1813
1814 /*
1815 * checkpoint.c
1816 */
1817 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1818 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1819 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1820 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1821 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1822 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1823 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1824 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1825 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1826 void release_dirty_inode(struct f2fs_sb_info *);
1827 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1828 int acquire_orphan_inode(struct f2fs_sb_info *);
1829 void release_orphan_inode(struct f2fs_sb_info *);
1830 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1831 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1832 int recover_orphan_inodes(struct f2fs_sb_info *);
1833 int get_valid_checkpoint(struct f2fs_sb_info *);
1834 void update_dirty_page(struct inode *, struct page *);
1835 void add_dirty_dir_inode(struct inode *);
1836 void remove_dirty_dir_inode(struct inode *);
1837 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1838 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1839 void init_ino_entry_info(struct f2fs_sb_info *);
1840 int __init create_checkpoint_caches(void);
1841 void destroy_checkpoint_caches(void);
1842
1843 /*
1844 * data.c
1845 */
1846 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1847 int f2fs_submit_page_bio(struct f2fs_io_info *);
1848 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1849 void set_data_blkaddr(struct dnode_of_data *);
1850 int reserve_new_block(struct dnode_of_data *);
1851 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1852 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1853 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1854 struct page *find_data_page(struct inode *, pgoff_t);
1855 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1856 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1857 int do_write_data_page(struct f2fs_io_info *);
1858 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1859 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1860 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1861 int f2fs_release_page(struct page *, gfp_t);
1862
1863 /*
1864 * gc.c
1865 */
1866 int start_gc_thread(struct f2fs_sb_info *);
1867 void stop_gc_thread(struct f2fs_sb_info *);
1868 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1869 int f2fs_gc(struct f2fs_sb_info *, bool);
1870 void build_gc_manager(struct f2fs_sb_info *);
1871
1872 /*
1873 * recovery.c
1874 */
1875 int recover_fsync_data(struct f2fs_sb_info *);
1876 bool space_for_roll_forward(struct f2fs_sb_info *);
1877
1878 /*
1879 * debug.c
1880 */
1881 #ifdef CONFIG_F2FS_STAT_FS
1882 struct f2fs_stat_info {
1883 struct list_head stat_list;
1884 struct f2fs_sb_info *sbi;
1885 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1886 int main_area_segs, main_area_sections, main_area_zones;
1887 unsigned long long hit_largest, hit_cached, hit_rbtree;
1888 unsigned long long hit_total, total_ext;
1889 int ext_tree, ext_node;
1890 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1891 int nats, dirty_nats, sits, dirty_sits, fnids;
1892 int total_count, utilization;
1893 int bg_gc, inmem_pages, wb_pages;
1894 int inline_xattr, inline_inode, inline_dir;
1895 unsigned int valid_count, valid_node_count, valid_inode_count;
1896 unsigned int bimodal, avg_vblocks;
1897 int util_free, util_valid, util_invalid;
1898 int rsvd_segs, overp_segs;
1899 int dirty_count, node_pages, meta_pages;
1900 int prefree_count, call_count, cp_count;
1901 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1902 int bg_node_segs, bg_data_segs;
1903 int tot_blks, data_blks, node_blks;
1904 int bg_data_blks, bg_node_blks;
1905 int curseg[NR_CURSEG_TYPE];
1906 int cursec[NR_CURSEG_TYPE];
1907 int curzone[NR_CURSEG_TYPE];
1908
1909 unsigned int segment_count[2];
1910 unsigned int block_count[2];
1911 unsigned int inplace_count;
1912 unsigned long long base_mem, cache_mem, page_mem;
1913 };
1914
1915 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1916 {
1917 return (struct f2fs_stat_info *)sbi->stat_info;
1918 }
1919
1920 #define stat_inc_cp_count(si) ((si)->cp_count++)
1921 #define stat_inc_call_count(si) ((si)->call_count++)
1922 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1923 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1924 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1925 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1926 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1927 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1928 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1929 #define stat_inc_inline_xattr(inode) \
1930 do { \
1931 if (f2fs_has_inline_xattr(inode)) \
1932 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1933 } while (0)
1934 #define stat_dec_inline_xattr(inode) \
1935 do { \
1936 if (f2fs_has_inline_xattr(inode)) \
1937 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1938 } while (0)
1939 #define stat_inc_inline_inode(inode) \
1940 do { \
1941 if (f2fs_has_inline_data(inode)) \
1942 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1943 } while (0)
1944 #define stat_dec_inline_inode(inode) \
1945 do { \
1946 if (f2fs_has_inline_data(inode)) \
1947 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1948 } while (0)
1949 #define stat_inc_inline_dir(inode) \
1950 do { \
1951 if (f2fs_has_inline_dentry(inode)) \
1952 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1953 } while (0)
1954 #define stat_dec_inline_dir(inode) \
1955 do { \
1956 if (f2fs_has_inline_dentry(inode)) \
1957 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1958 } while (0)
1959 #define stat_inc_seg_type(sbi, curseg) \
1960 ((sbi)->segment_count[(curseg)->alloc_type]++)
1961 #define stat_inc_block_count(sbi, curseg) \
1962 ((sbi)->block_count[(curseg)->alloc_type]++)
1963 #define stat_inc_inplace_blocks(sbi) \
1964 (atomic_inc(&(sbi)->inplace_count))
1965 #define stat_inc_seg_count(sbi, type, gc_type) \
1966 do { \
1967 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1968 (si)->tot_segs++; \
1969 if (type == SUM_TYPE_DATA) { \
1970 si->data_segs++; \
1971 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1972 } else { \
1973 si->node_segs++; \
1974 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1975 } \
1976 } while (0)
1977
1978 #define stat_inc_tot_blk_count(si, blks) \
1979 (si->tot_blks += (blks))
1980
1981 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1982 do { \
1983 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1984 stat_inc_tot_blk_count(si, blks); \
1985 si->data_blks += (blks); \
1986 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1987 } while (0)
1988
1989 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1990 do { \
1991 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1992 stat_inc_tot_blk_count(si, blks); \
1993 si->node_blks += (blks); \
1994 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1995 } while (0)
1996
1997 int f2fs_build_stats(struct f2fs_sb_info *);
1998 void f2fs_destroy_stats(struct f2fs_sb_info *);
1999 int __init f2fs_create_root_stats(void);
2000 void f2fs_destroy_root_stats(void);
2001 #else
2002 #define stat_inc_cp_count(si)
2003 #define stat_inc_call_count(si)
2004 #define stat_inc_bggc_count(si)
2005 #define stat_inc_dirty_dir(sbi)
2006 #define stat_dec_dirty_dir(sbi)
2007 #define stat_inc_total_hit(sb)
2008 #define stat_inc_rbtree_node_hit(sb)
2009 #define stat_inc_largest_node_hit(sbi)
2010 #define stat_inc_cached_node_hit(sbi)
2011 #define stat_inc_inline_xattr(inode)
2012 #define stat_dec_inline_xattr(inode)
2013 #define stat_inc_inline_inode(inode)
2014 #define stat_dec_inline_inode(inode)
2015 #define stat_inc_inline_dir(inode)
2016 #define stat_dec_inline_dir(inode)
2017 #define stat_inc_seg_type(sbi, curseg)
2018 #define stat_inc_block_count(sbi, curseg)
2019 #define stat_inc_inplace_blocks(sbi)
2020 #define stat_inc_seg_count(sbi, type, gc_type)
2021 #define stat_inc_tot_blk_count(si, blks)
2022 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2023 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2024
2025 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2026 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2027 static inline int __init f2fs_create_root_stats(void) { return 0; }
2028 static inline void f2fs_destroy_root_stats(void) { }
2029 #endif
2030
2031 extern const struct file_operations f2fs_dir_operations;
2032 extern const struct file_operations f2fs_file_operations;
2033 extern const struct inode_operations f2fs_file_inode_operations;
2034 extern const struct address_space_operations f2fs_dblock_aops;
2035 extern const struct address_space_operations f2fs_node_aops;
2036 extern const struct address_space_operations f2fs_meta_aops;
2037 extern const struct inode_operations f2fs_dir_inode_operations;
2038 extern const struct inode_operations f2fs_symlink_inode_operations;
2039 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2040 extern const struct inode_operations f2fs_special_inode_operations;
2041 extern struct kmem_cache *inode_entry_slab;
2042
2043 /*
2044 * inline.c
2045 */
2046 bool f2fs_may_inline_data(struct inode *);
2047 bool f2fs_may_inline_dentry(struct inode *);
2048 void read_inline_data(struct page *, struct page *);
2049 bool truncate_inline_inode(struct page *, u64);
2050 int f2fs_read_inline_data(struct inode *, struct page *);
2051 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2052 int f2fs_convert_inline_inode(struct inode *);
2053 int f2fs_write_inline_data(struct inode *, struct page *);
2054 bool recover_inline_data(struct inode *, struct page *);
2055 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2056 struct f2fs_filename *, struct page **);
2057 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2058 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2059 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2060 nid_t, umode_t);
2061 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2062 struct inode *, struct inode *);
2063 bool f2fs_empty_inline_dir(struct inode *);
2064 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2065 struct f2fs_str *);
2066 int f2fs_inline_data_fiemap(struct inode *,
2067 struct fiemap_extent_info *, __u64, __u64);
2068
2069 /*
2070 * shrinker.c
2071 */
2072 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2073 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2074 void f2fs_join_shrinker(struct f2fs_sb_info *);
2075 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2076
2077 /*
2078 * extent_cache.c
2079 */
2080 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2081 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2082 unsigned int f2fs_destroy_extent_node(struct inode *);
2083 void f2fs_destroy_extent_tree(struct inode *);
2084 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2085 void f2fs_update_extent_cache(struct dnode_of_data *);
2086 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2087 pgoff_t, block_t, unsigned int);
2088 void init_extent_cache_info(struct f2fs_sb_info *);
2089 int __init create_extent_cache(void);
2090 void destroy_extent_cache(void);
2091
2092 /*
2093 * crypto support
2094 */
2095 static inline int f2fs_encrypted_inode(struct inode *inode)
2096 {
2097 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2098 return file_is_encrypt(inode);
2099 #else
2100 return 0;
2101 #endif
2102 }
2103
2104 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2105 {
2106 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2107 file_set_encrypt(inode);
2108 #endif
2109 }
2110
2111 static inline bool f2fs_bio_encrypted(struct bio *bio)
2112 {
2113 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2114 return unlikely(bio->bi_private != NULL);
2115 #else
2116 return false;
2117 #endif
2118 }
2119
2120 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2121 {
2122 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2123 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 static inline bool f2fs_may_encrypt(struct inode *inode)
2130 {
2131 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2132 mode_t mode = inode->i_mode;
2133
2134 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2135 #else
2136 return 0;
2137 #endif
2138 }
2139
2140 /* crypto_policy.c */
2141 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2142 struct inode *);
2143 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2144 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2145 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2146
2147 /* crypt.c */
2148 extern struct kmem_cache *f2fs_crypt_info_cachep;
2149 bool f2fs_valid_contents_enc_mode(uint32_t);
2150 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2151 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2152 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2153 struct page *f2fs_encrypt(struct inode *, struct page *);
2154 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2155 int f2fs_decrypt_one(struct inode *, struct page *);
2156 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2157
2158 /* crypto_key.c */
2159 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2160 int _f2fs_get_encryption_info(struct inode *inode);
2161
2162 /* crypto_fname.c */
2163 bool f2fs_valid_filenames_enc_mode(uint32_t);
2164 u32 f2fs_fname_crypto_round_up(u32, u32);
2165 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2166 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2167 const struct f2fs_str *, struct f2fs_str *);
2168 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2169 struct f2fs_str *);
2170
2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2172 void f2fs_restore_and_release_control_page(struct page **);
2173 void f2fs_restore_control_page(struct page *);
2174
2175 int __init f2fs_init_crypto(void);
2176 int f2fs_crypto_initialize(void);
2177 void f2fs_exit_crypto(void);
2178
2179 int f2fs_has_encryption_key(struct inode *);
2180
2181 static inline int f2fs_get_encryption_info(struct inode *inode)
2182 {
2183 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2184
2185 if (!ci ||
2186 (ci->ci_keyring_key &&
2187 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2188 (1 << KEY_FLAG_REVOKED) |
2189 (1 << KEY_FLAG_DEAD)))))
2190 return _f2fs_get_encryption_info(inode);
2191 return 0;
2192 }
2193
2194 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2195 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2196 int lookup, struct f2fs_filename *);
2197 void f2fs_fname_free_filename(struct f2fs_filename *);
2198 #else
2199 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2200 static inline void f2fs_restore_control_page(struct page *p) { }
2201
2202 static inline int __init f2fs_init_crypto(void) { return 0; }
2203 static inline void f2fs_exit_crypto(void) { }
2204
2205 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2206 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2207 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2208
2209 static inline int f2fs_fname_setup_filename(struct inode *dir,
2210 const struct qstr *iname,
2211 int lookup, struct f2fs_filename *fname)
2212 {
2213 memset(fname, 0, sizeof(struct f2fs_filename));
2214 fname->usr_fname = iname;
2215 fname->disk_name.name = (unsigned char *)iname->name;
2216 fname->disk_name.len = iname->len;
2217 return 0;
2218 }
2219
2220 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2221 #endif
2222 #endif