]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: clean up sysfs codes
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 #define CP_UMOUNT 0x00000001
129 #define CP_FASTBOOT 0x00000002
130 #define CP_SYNC 0x00000004
131 #define CP_RECOVERY 0x00000008
132 #define CP_DISCARD 0x00000010
133 #define CP_TRIMMED 0x00000020
134
135 #define DEF_BATCHED_TRIM_SECTIONS 2048
136 #define BATCHED_TRIM_SEGMENTS(sbi) \
137 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
138 #define BATCHED_TRIM_BLOCKS(sbi) \
139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
141 #define DISCARD_ISSUE_RATE 8
142 #define DEF_CP_INTERVAL 60 /* 60 secs */
143 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
144
145 struct cp_control {
146 int reason;
147 __u64 trim_start;
148 __u64 trim_end;
149 __u64 trim_minlen;
150 __u64 trimmed;
151 };
152
153 /*
154 * For CP/NAT/SIT/SSA readahead
155 */
156 enum {
157 META_CP,
158 META_NAT,
159 META_SIT,
160 META_SSA,
161 META_POR,
162 };
163
164 /* for the list of ino */
165 enum {
166 ORPHAN_INO, /* for orphan ino list */
167 APPEND_INO, /* for append ino list */
168 UPDATE_INO, /* for update ino list */
169 MAX_INO_ENTRY, /* max. list */
170 };
171
172 struct ino_entry {
173 struct list_head list; /* list head */
174 nid_t ino; /* inode number */
175 };
176
177 /* for the list of inodes to be GCed */
178 struct inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 };
182
183 /* for the bitmap indicate blocks to be discarded */
184 struct discard_entry {
185 struct list_head list; /* list head */
186 block_t start_blkaddr; /* start blockaddr of current segment */
187 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
188 };
189
190 /* max discard pend list number */
191 #define MAX_PLIST_NUM 512
192 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
193 (MAX_PLIST_NUM - 1) : (blk_num - 1))
194
195 enum {
196 D_PREP,
197 D_SUBMIT,
198 D_DONE,
199 };
200
201 struct discard_info {
202 block_t lstart; /* logical start address */
203 block_t len; /* length */
204 block_t start; /* actual start address in dev */
205 };
206
207 struct discard_cmd {
208 struct rb_node rb_node; /* rb node located in rb-tree */
209 union {
210 struct {
211 block_t lstart; /* logical start address */
212 block_t len; /* length */
213 block_t start; /* actual start address in dev */
214 };
215 struct discard_info di; /* discard info */
216
217 };
218 struct list_head list; /* command list */
219 struct completion wait; /* compleation */
220 struct block_device *bdev; /* bdev */
221 unsigned short ref; /* reference count */
222 unsigned char state; /* state */
223 int error; /* bio error */
224 };
225
226 struct discard_cmd_control {
227 struct task_struct *f2fs_issue_discard; /* discard thread */
228 struct list_head entry_list; /* 4KB discard entry list */
229 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
230 struct list_head wait_list; /* store on-flushing entries */
231 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
232 struct mutex cmd_lock;
233 unsigned int nr_discards; /* # of discards in the list */
234 unsigned int max_discards; /* max. discards to be issued */
235 unsigned int undiscard_blks; /* # of undiscard blocks */
236 atomic_t issued_discard; /* # of issued discard */
237 atomic_t issing_discard; /* # of issing discard */
238 atomic_t discard_cmd_cnt; /* # of cached cmd count */
239 struct rb_root root; /* root of discard rb-tree */
240 };
241
242 /* for the list of fsync inodes, used only during recovery */
243 struct fsync_inode_entry {
244 struct list_head list; /* list head */
245 struct inode *inode; /* vfs inode pointer */
246 block_t blkaddr; /* block address locating the last fsync */
247 block_t last_dentry; /* block address locating the last dentry */
248 };
249
250 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
251 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
252
253 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
254 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
255 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
256 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
257
258 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
259 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
260
261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
262 {
263 int before = nats_in_cursum(journal);
264
265 journal->n_nats = cpu_to_le16(before + i);
266 return before;
267 }
268
269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
270 {
271 int before = sits_in_cursum(journal);
272
273 journal->n_sits = cpu_to_le16(before + i);
274 return before;
275 }
276
277 static inline bool __has_cursum_space(struct f2fs_journal *journal,
278 int size, int type)
279 {
280 if (type == NAT_JOURNAL)
281 return size <= MAX_NAT_JENTRIES(journal);
282 return size <= MAX_SIT_JENTRIES(journal);
283 }
284
285 /*
286 * ioctl commands
287 */
288 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
289 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
290 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
291
292 #define F2FS_IOCTL_MAGIC 0xf5
293 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
295 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
297 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
298 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
299 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
300 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
301 struct f2fs_defragment)
302 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
303 struct f2fs_move_range)
304 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
305 struct f2fs_flush_device)
306
307 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
308 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
309 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
310
311 /*
312 * should be same as XFS_IOC_GOINGDOWN.
313 * Flags for going down operation used by FS_IOC_GOINGDOWN
314 */
315 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
316 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
317 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
318 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
319 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
320
321 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
322 /*
323 * ioctl commands in 32 bit emulation
324 */
325 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
326 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
327 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
328 #endif
329
330 struct f2fs_defragment {
331 u64 start;
332 u64 len;
333 };
334
335 struct f2fs_move_range {
336 u32 dst_fd; /* destination fd */
337 u64 pos_in; /* start position in src_fd */
338 u64 pos_out; /* start position in dst_fd */
339 u64 len; /* size to move */
340 };
341
342 struct f2fs_flush_device {
343 u32 dev_num; /* device number to flush */
344 u32 segments; /* # of segments to flush */
345 };
346
347 /*
348 * For INODE and NODE manager
349 */
350 /* for directory operations */
351 struct f2fs_dentry_ptr {
352 struct inode *inode;
353 const void *bitmap;
354 struct f2fs_dir_entry *dentry;
355 __u8 (*filename)[F2FS_SLOT_LEN];
356 int max;
357 };
358
359 static inline void make_dentry_ptr_block(struct inode *inode,
360 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
361 {
362 d->inode = inode;
363 d->max = NR_DENTRY_IN_BLOCK;
364 d->bitmap = &t->dentry_bitmap;
365 d->dentry = t->dentry;
366 d->filename = t->filename;
367 }
368
369 static inline void make_dentry_ptr_inline(struct inode *inode,
370 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
371 {
372 d->inode = inode;
373 d->max = NR_INLINE_DENTRY;
374 d->bitmap = &t->dentry_bitmap;
375 d->dentry = t->dentry;
376 d->filename = t->filename;
377 }
378
379 /*
380 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
381 * as its node offset to distinguish from index node blocks.
382 * But some bits are used to mark the node block.
383 */
384 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
385 >> OFFSET_BIT_SHIFT)
386 enum {
387 ALLOC_NODE, /* allocate a new node page if needed */
388 LOOKUP_NODE, /* look up a node without readahead */
389 LOOKUP_NODE_RA, /*
390 * look up a node with readahead called
391 * by get_data_block.
392 */
393 };
394
395 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
396
397 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
398
399 /* vector size for gang look-up from extent cache that consists of radix tree */
400 #define EXT_TREE_VEC_SIZE 64
401
402 /* for in-memory extent cache entry */
403 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
404
405 /* number of extent info in extent cache we try to shrink */
406 #define EXTENT_CACHE_SHRINK_NUMBER 128
407
408 struct rb_entry {
409 struct rb_node rb_node; /* rb node located in rb-tree */
410 unsigned int ofs; /* start offset of the entry */
411 unsigned int len; /* length of the entry */
412 };
413
414 struct extent_info {
415 unsigned int fofs; /* start offset in a file */
416 unsigned int len; /* length of the extent */
417 u32 blk; /* start block address of the extent */
418 };
419
420 struct extent_node {
421 struct rb_node rb_node;
422 union {
423 struct {
424 unsigned int fofs;
425 unsigned int len;
426 u32 blk;
427 };
428 struct extent_info ei; /* extent info */
429
430 };
431 struct list_head list; /* node in global extent list of sbi */
432 struct extent_tree *et; /* extent tree pointer */
433 };
434
435 struct extent_tree {
436 nid_t ino; /* inode number */
437 struct rb_root root; /* root of extent info rb-tree */
438 struct extent_node *cached_en; /* recently accessed extent node */
439 struct extent_info largest; /* largested extent info */
440 struct list_head list; /* to be used by sbi->zombie_list */
441 rwlock_t lock; /* protect extent info rb-tree */
442 atomic_t node_cnt; /* # of extent node in rb-tree*/
443 };
444
445 /*
446 * This structure is taken from ext4_map_blocks.
447 *
448 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
449 */
450 #define F2FS_MAP_NEW (1 << BH_New)
451 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
452 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
453 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
454 F2FS_MAP_UNWRITTEN)
455
456 struct f2fs_map_blocks {
457 block_t m_pblk;
458 block_t m_lblk;
459 unsigned int m_len;
460 unsigned int m_flags;
461 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
462 };
463
464 /* for flag in get_data_block */
465 #define F2FS_GET_BLOCK_READ 0
466 #define F2FS_GET_BLOCK_DIO 1
467 #define F2FS_GET_BLOCK_FIEMAP 2
468 #define F2FS_GET_BLOCK_BMAP 3
469 #define F2FS_GET_BLOCK_PRE_DIO 4
470 #define F2FS_GET_BLOCK_PRE_AIO 5
471
472 /*
473 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
474 */
475 #define FADVISE_COLD_BIT 0x01
476 #define FADVISE_LOST_PINO_BIT 0x02
477 #define FADVISE_ENCRYPT_BIT 0x04
478 #define FADVISE_ENC_NAME_BIT 0x08
479 #define FADVISE_KEEP_SIZE_BIT 0x10
480
481 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
482 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
483 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
484 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
485 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
486 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
487 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
488 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
489 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
490 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
491 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
492 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
493 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
494
495 #define DEF_DIR_LEVEL 0
496
497 struct f2fs_inode_info {
498 struct inode vfs_inode; /* serve a vfs inode */
499 unsigned long i_flags; /* keep an inode flags for ioctl */
500 unsigned char i_advise; /* use to give file attribute hints */
501 unsigned char i_dir_level; /* use for dentry level for large dir */
502 unsigned int i_current_depth; /* use only in directory structure */
503 unsigned int i_pino; /* parent inode number */
504 umode_t i_acl_mode; /* keep file acl mode temporarily */
505
506 /* Use below internally in f2fs*/
507 unsigned long flags; /* use to pass per-file flags */
508 struct rw_semaphore i_sem; /* protect fi info */
509 atomic_t dirty_pages; /* # of dirty pages */
510 f2fs_hash_t chash; /* hash value of given file name */
511 unsigned int clevel; /* maximum level of given file name */
512 struct task_struct *task; /* lookup and create consistency */
513 nid_t i_xattr_nid; /* node id that contains xattrs */
514 loff_t last_disk_size; /* lastly written file size */
515
516 struct list_head dirty_list; /* dirty list for dirs and files */
517 struct list_head gdirty_list; /* linked in global dirty list */
518 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
519 struct mutex inmem_lock; /* lock for inmemory pages */
520 struct extent_tree *extent_tree; /* cached extent_tree entry */
521 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
522 struct rw_semaphore i_mmap_sem;
523 };
524
525 static inline void get_extent_info(struct extent_info *ext,
526 struct f2fs_extent *i_ext)
527 {
528 ext->fofs = le32_to_cpu(i_ext->fofs);
529 ext->blk = le32_to_cpu(i_ext->blk);
530 ext->len = le32_to_cpu(i_ext->len);
531 }
532
533 static inline void set_raw_extent(struct extent_info *ext,
534 struct f2fs_extent *i_ext)
535 {
536 i_ext->fofs = cpu_to_le32(ext->fofs);
537 i_ext->blk = cpu_to_le32(ext->blk);
538 i_ext->len = cpu_to_le32(ext->len);
539 }
540
541 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
542 u32 blk, unsigned int len)
543 {
544 ei->fofs = fofs;
545 ei->blk = blk;
546 ei->len = len;
547 }
548
549 static inline bool __is_discard_mergeable(struct discard_info *back,
550 struct discard_info *front)
551 {
552 return back->lstart + back->len == front->lstart;
553 }
554
555 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
556 struct discard_info *back)
557 {
558 return __is_discard_mergeable(back, cur);
559 }
560
561 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
562 struct discard_info *front)
563 {
564 return __is_discard_mergeable(cur, front);
565 }
566
567 static inline bool __is_extent_mergeable(struct extent_info *back,
568 struct extent_info *front)
569 {
570 return (back->fofs + back->len == front->fofs &&
571 back->blk + back->len == front->blk);
572 }
573
574 static inline bool __is_back_mergeable(struct extent_info *cur,
575 struct extent_info *back)
576 {
577 return __is_extent_mergeable(back, cur);
578 }
579
580 static inline bool __is_front_mergeable(struct extent_info *cur,
581 struct extent_info *front)
582 {
583 return __is_extent_mergeable(cur, front);
584 }
585
586 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
587 static inline void __try_update_largest_extent(struct inode *inode,
588 struct extent_tree *et, struct extent_node *en)
589 {
590 if (en->ei.len > et->largest.len) {
591 et->largest = en->ei;
592 f2fs_mark_inode_dirty_sync(inode, true);
593 }
594 }
595
596 enum nid_list {
597 FREE_NID_LIST,
598 ALLOC_NID_LIST,
599 MAX_NID_LIST,
600 };
601
602 struct f2fs_nm_info {
603 block_t nat_blkaddr; /* base disk address of NAT */
604 nid_t max_nid; /* maximum possible node ids */
605 nid_t available_nids; /* # of available node ids */
606 nid_t next_scan_nid; /* the next nid to be scanned */
607 unsigned int ram_thresh; /* control the memory footprint */
608 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
609 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
610
611 /* NAT cache management */
612 struct radix_tree_root nat_root;/* root of the nat entry cache */
613 struct radix_tree_root nat_set_root;/* root of the nat set cache */
614 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
615 struct list_head nat_entries; /* cached nat entry list (clean) */
616 unsigned int nat_cnt; /* the # of cached nat entries */
617 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
618 unsigned int nat_blocks; /* # of nat blocks */
619
620 /* free node ids management */
621 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
622 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
623 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
624 spinlock_t nid_list_lock; /* protect nid lists ops */
625 struct mutex build_lock; /* lock for build free nids */
626 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
627 unsigned char *nat_block_bitmap;
628 unsigned short *free_nid_count; /* free nid count of NAT block */
629
630 /* for checkpoint */
631 char *nat_bitmap; /* NAT bitmap pointer */
632
633 unsigned int nat_bits_blocks; /* # of nat bits blocks */
634 unsigned char *nat_bits; /* NAT bits blocks */
635 unsigned char *full_nat_bits; /* full NAT pages */
636 unsigned char *empty_nat_bits; /* empty NAT pages */
637 #ifdef CONFIG_F2FS_CHECK_FS
638 char *nat_bitmap_mir; /* NAT bitmap mirror */
639 #endif
640 int bitmap_size; /* bitmap size */
641 };
642
643 /*
644 * this structure is used as one of function parameters.
645 * all the information are dedicated to a given direct node block determined
646 * by the data offset in a file.
647 */
648 struct dnode_of_data {
649 struct inode *inode; /* vfs inode pointer */
650 struct page *inode_page; /* its inode page, NULL is possible */
651 struct page *node_page; /* cached direct node page */
652 nid_t nid; /* node id of the direct node block */
653 unsigned int ofs_in_node; /* data offset in the node page */
654 bool inode_page_locked; /* inode page is locked or not */
655 bool node_changed; /* is node block changed */
656 char cur_level; /* level of hole node page */
657 char max_level; /* level of current page located */
658 block_t data_blkaddr; /* block address of the node block */
659 };
660
661 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
662 struct page *ipage, struct page *npage, nid_t nid)
663 {
664 memset(dn, 0, sizeof(*dn));
665 dn->inode = inode;
666 dn->inode_page = ipage;
667 dn->node_page = npage;
668 dn->nid = nid;
669 }
670
671 /*
672 * For SIT manager
673 *
674 * By default, there are 6 active log areas across the whole main area.
675 * When considering hot and cold data separation to reduce cleaning overhead,
676 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
677 * respectively.
678 * In the current design, you should not change the numbers intentionally.
679 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
680 * logs individually according to the underlying devices. (default: 6)
681 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
682 * data and 8 for node logs.
683 */
684 #define NR_CURSEG_DATA_TYPE (3)
685 #define NR_CURSEG_NODE_TYPE (3)
686 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
687
688 enum {
689 CURSEG_HOT_DATA = 0, /* directory entry blocks */
690 CURSEG_WARM_DATA, /* data blocks */
691 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
692 CURSEG_HOT_NODE, /* direct node blocks of directory files */
693 CURSEG_WARM_NODE, /* direct node blocks of normal files */
694 CURSEG_COLD_NODE, /* indirect node blocks */
695 NO_CHECK_TYPE,
696 };
697
698 struct flush_cmd {
699 struct completion wait;
700 struct llist_node llnode;
701 int ret;
702 };
703
704 struct flush_cmd_control {
705 struct task_struct *f2fs_issue_flush; /* flush thread */
706 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
707 atomic_t issued_flush; /* # of issued flushes */
708 atomic_t issing_flush; /* # of issing flushes */
709 struct llist_head issue_list; /* list for command issue */
710 struct llist_node *dispatch_list; /* list for command dispatch */
711 };
712
713 struct f2fs_sm_info {
714 struct sit_info *sit_info; /* whole segment information */
715 struct free_segmap_info *free_info; /* free segment information */
716 struct dirty_seglist_info *dirty_info; /* dirty segment information */
717 struct curseg_info *curseg_array; /* active segment information */
718
719 block_t seg0_blkaddr; /* block address of 0'th segment */
720 block_t main_blkaddr; /* start block address of main area */
721 block_t ssa_blkaddr; /* start block address of SSA area */
722
723 unsigned int segment_count; /* total # of segments */
724 unsigned int main_segments; /* # of segments in main area */
725 unsigned int reserved_segments; /* # of reserved segments */
726 unsigned int ovp_segments; /* # of overprovision segments */
727
728 /* a threshold to reclaim prefree segments */
729 unsigned int rec_prefree_segments;
730
731 /* for batched trimming */
732 unsigned int trim_sections; /* # of sections to trim */
733
734 struct list_head sit_entry_set; /* sit entry set list */
735
736 unsigned int ipu_policy; /* in-place-update policy */
737 unsigned int min_ipu_util; /* in-place-update threshold */
738 unsigned int min_fsync_blocks; /* threshold for fsync */
739 unsigned int min_hot_blocks; /* threshold for hot block allocation */
740
741 /* for flush command control */
742 struct flush_cmd_control *fcc_info;
743
744 /* for discard command control */
745 struct discard_cmd_control *dcc_info;
746 };
747
748 /*
749 * For superblock
750 */
751 /*
752 * COUNT_TYPE for monitoring
753 *
754 * f2fs monitors the number of several block types such as on-writeback,
755 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
756 */
757 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
758 enum count_type {
759 F2FS_DIRTY_DENTS,
760 F2FS_DIRTY_DATA,
761 F2FS_DIRTY_NODES,
762 F2FS_DIRTY_META,
763 F2FS_INMEM_PAGES,
764 F2FS_DIRTY_IMETA,
765 F2FS_WB_CP_DATA,
766 F2FS_WB_DATA,
767 NR_COUNT_TYPE,
768 };
769
770 /*
771 * The below are the page types of bios used in submit_bio().
772 * The available types are:
773 * DATA User data pages. It operates as async mode.
774 * NODE Node pages. It operates as async mode.
775 * META FS metadata pages such as SIT, NAT, CP.
776 * NR_PAGE_TYPE The number of page types.
777 * META_FLUSH Make sure the previous pages are written
778 * with waiting the bio's completion
779 * ... Only can be used with META.
780 */
781 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
782 enum page_type {
783 DATA,
784 NODE,
785 META,
786 NR_PAGE_TYPE,
787 META_FLUSH,
788 INMEM, /* the below types are used by tracepoints only. */
789 INMEM_DROP,
790 INMEM_INVALIDATE,
791 INMEM_REVOKE,
792 IPU,
793 OPU,
794 };
795
796 enum temp_type {
797 HOT = 0, /* must be zero for meta bio */
798 WARM,
799 COLD,
800 NR_TEMP_TYPE,
801 };
802
803 enum need_lock_type {
804 LOCK_REQ = 0,
805 LOCK_DONE,
806 LOCK_RETRY,
807 };
808
809 struct f2fs_io_info {
810 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
811 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
812 enum temp_type temp; /* contains HOT/WARM/COLD */
813 int op; /* contains REQ_OP_ */
814 int op_flags; /* req_flag_bits */
815 block_t new_blkaddr; /* new block address to be written */
816 block_t old_blkaddr; /* old block address before Cow */
817 struct page *page; /* page to be written */
818 struct page *encrypted_page; /* encrypted page */
819 struct list_head list; /* serialize IOs */
820 bool submitted; /* indicate IO submission */
821 int need_lock; /* indicate we need to lock cp_rwsem */
822 bool in_list; /* indicate fio is in io_list */
823 };
824
825 #define is_read_io(rw) ((rw) == READ)
826 struct f2fs_bio_info {
827 struct f2fs_sb_info *sbi; /* f2fs superblock */
828 struct bio *bio; /* bios to merge */
829 sector_t last_block_in_bio; /* last block number */
830 struct f2fs_io_info fio; /* store buffered io info. */
831 struct rw_semaphore io_rwsem; /* blocking op for bio */
832 spinlock_t io_lock; /* serialize DATA/NODE IOs */
833 struct list_head io_list; /* track fios */
834 };
835
836 #define FDEV(i) (sbi->devs[i])
837 #define RDEV(i) (raw_super->devs[i])
838 struct f2fs_dev_info {
839 struct block_device *bdev;
840 char path[MAX_PATH_LEN];
841 unsigned int total_segments;
842 block_t start_blk;
843 block_t end_blk;
844 #ifdef CONFIG_BLK_DEV_ZONED
845 unsigned int nr_blkz; /* Total number of zones */
846 u8 *blkz_type; /* Array of zones type */
847 #endif
848 };
849
850 enum inode_type {
851 DIR_INODE, /* for dirty dir inode */
852 FILE_INODE, /* for dirty regular/symlink inode */
853 DIRTY_META, /* for all dirtied inode metadata */
854 NR_INODE_TYPE,
855 };
856
857 /* for inner inode cache management */
858 struct inode_management {
859 struct radix_tree_root ino_root; /* ino entry array */
860 spinlock_t ino_lock; /* for ino entry lock */
861 struct list_head ino_list; /* inode list head */
862 unsigned long ino_num; /* number of entries */
863 };
864
865 /* For s_flag in struct f2fs_sb_info */
866 enum {
867 SBI_IS_DIRTY, /* dirty flag for checkpoint */
868 SBI_IS_CLOSE, /* specify unmounting */
869 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
870 SBI_POR_DOING, /* recovery is doing or not */
871 SBI_NEED_SB_WRITE, /* need to recover superblock */
872 SBI_NEED_CP, /* need to checkpoint */
873 };
874
875 enum {
876 CP_TIME,
877 REQ_TIME,
878 MAX_TIME,
879 };
880
881 struct f2fs_sb_info {
882 struct super_block *sb; /* pointer to VFS super block */
883 struct proc_dir_entry *s_proc; /* proc entry */
884 struct f2fs_super_block *raw_super; /* raw super block pointer */
885 int valid_super_block; /* valid super block no */
886 unsigned long s_flag; /* flags for sbi */
887
888 #ifdef CONFIG_BLK_DEV_ZONED
889 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
890 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
891 #endif
892
893 /* for node-related operations */
894 struct f2fs_nm_info *nm_info; /* node manager */
895 struct inode *node_inode; /* cache node blocks */
896
897 /* for segment-related operations */
898 struct f2fs_sm_info *sm_info; /* segment manager */
899
900 /* for bio operations */
901 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
902 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
903 /* bio ordering for NODE/DATA */
904 int write_io_size_bits; /* Write IO size bits */
905 mempool_t *write_io_dummy; /* Dummy pages */
906
907 /* for checkpoint */
908 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
909 int cur_cp_pack; /* remain current cp pack */
910 spinlock_t cp_lock; /* for flag in ckpt */
911 struct inode *meta_inode; /* cache meta blocks */
912 struct mutex cp_mutex; /* checkpoint procedure lock */
913 struct rw_semaphore cp_rwsem; /* blocking FS operations */
914 struct rw_semaphore node_write; /* locking node writes */
915 struct rw_semaphore node_change; /* locking node change */
916 wait_queue_head_t cp_wait;
917 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
918 long interval_time[MAX_TIME]; /* to store thresholds */
919
920 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
921
922 /* for orphan inode, use 0'th array */
923 unsigned int max_orphans; /* max orphan inodes */
924
925 /* for inode management */
926 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
927 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
928
929 /* for extent tree cache */
930 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
931 struct mutex extent_tree_lock; /* locking extent radix tree */
932 struct list_head extent_list; /* lru list for shrinker */
933 spinlock_t extent_lock; /* locking extent lru list */
934 atomic_t total_ext_tree; /* extent tree count */
935 struct list_head zombie_list; /* extent zombie tree list */
936 atomic_t total_zombie_tree; /* extent zombie tree count */
937 atomic_t total_ext_node; /* extent info count */
938
939 /* basic filesystem units */
940 unsigned int log_sectors_per_block; /* log2 sectors per block */
941 unsigned int log_blocksize; /* log2 block size */
942 unsigned int blocksize; /* block size */
943 unsigned int root_ino_num; /* root inode number*/
944 unsigned int node_ino_num; /* node inode number*/
945 unsigned int meta_ino_num; /* meta inode number*/
946 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
947 unsigned int blocks_per_seg; /* blocks per segment */
948 unsigned int segs_per_sec; /* segments per section */
949 unsigned int secs_per_zone; /* sections per zone */
950 unsigned int total_sections; /* total section count */
951 unsigned int total_node_count; /* total node block count */
952 unsigned int total_valid_node_count; /* valid node block count */
953 loff_t max_file_blocks; /* max block index of file */
954 int active_logs; /* # of active logs */
955 int dir_level; /* directory level */
956
957 block_t user_block_count; /* # of user blocks */
958 block_t total_valid_block_count; /* # of valid blocks */
959 block_t discard_blks; /* discard command candidats */
960 block_t last_valid_block_count; /* for recovery */
961 u32 s_next_generation; /* for NFS support */
962
963 /* # of pages, see count_type */
964 atomic_t nr_pages[NR_COUNT_TYPE];
965 /* # of allocated blocks */
966 struct percpu_counter alloc_valid_block_count;
967
968 /* writeback control */
969 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
970
971 /* valid inode count */
972 struct percpu_counter total_valid_inode_count;
973
974 struct f2fs_mount_info mount_opt; /* mount options */
975
976 /* for cleaning operations */
977 struct mutex gc_mutex; /* mutex for GC */
978 struct f2fs_gc_kthread *gc_thread; /* GC thread */
979 unsigned int cur_victim_sec; /* current victim section num */
980
981 /* threshold for converting bg victims for fg */
982 u64 fggc_threshold;
983
984 /* maximum # of trials to find a victim segment for SSR and GC */
985 unsigned int max_victim_search;
986
987 /*
988 * for stat information.
989 * one is for the LFS mode, and the other is for the SSR mode.
990 */
991 #ifdef CONFIG_F2FS_STAT_FS
992 struct f2fs_stat_info *stat_info; /* FS status information */
993 unsigned int segment_count[2]; /* # of allocated segments */
994 unsigned int block_count[2]; /* # of allocated blocks */
995 atomic_t inplace_count; /* # of inplace update */
996 atomic64_t total_hit_ext; /* # of lookup extent cache */
997 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
998 atomic64_t read_hit_largest; /* # of hit largest extent node */
999 atomic64_t read_hit_cached; /* # of hit cached extent node */
1000 atomic_t inline_xattr; /* # of inline_xattr inodes */
1001 atomic_t inline_inode; /* # of inline_data inodes */
1002 atomic_t inline_dir; /* # of inline_dentry inodes */
1003 atomic_t aw_cnt; /* # of atomic writes */
1004 atomic_t vw_cnt; /* # of volatile writes */
1005 atomic_t max_aw_cnt; /* max # of atomic writes */
1006 atomic_t max_vw_cnt; /* max # of volatile writes */
1007 int bg_gc; /* background gc calls */
1008 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1009 #endif
1010 spinlock_t stat_lock; /* lock for stat operations */
1011
1012 /* For sysfs suppport */
1013 struct kobject s_kobj;
1014 struct completion s_kobj_unregister;
1015
1016 /* For shrinker support */
1017 struct list_head s_list;
1018 int s_ndevs; /* number of devices */
1019 struct f2fs_dev_info *devs; /* for device list */
1020 struct mutex umount_mutex;
1021 unsigned int shrinker_run_no;
1022
1023 /* For write statistics */
1024 u64 sectors_written_start;
1025 u64 kbytes_written;
1026
1027 /* Reference to checksum algorithm driver via cryptoapi */
1028 struct crypto_shash *s_chksum_driver;
1029
1030 /* For fault injection */
1031 #ifdef CONFIG_F2FS_FAULT_INJECTION
1032 struct f2fs_fault_info fault_info;
1033 #endif
1034 };
1035
1036 #ifdef CONFIG_F2FS_FAULT_INJECTION
1037 #define f2fs_show_injection_info(type) \
1038 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1039 KERN_INFO, fault_name[type], \
1040 __func__, __builtin_return_address(0))
1041 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1042 {
1043 struct f2fs_fault_info *ffi = &sbi->fault_info;
1044
1045 if (!ffi->inject_rate)
1046 return false;
1047
1048 if (!IS_FAULT_SET(ffi, type))
1049 return false;
1050
1051 atomic_inc(&ffi->inject_ops);
1052 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1053 atomic_set(&ffi->inject_ops, 0);
1054 return true;
1055 }
1056 return false;
1057 }
1058 #endif
1059
1060 /* For write statistics. Suppose sector size is 512 bytes,
1061 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1062 */
1063 #define BD_PART_WRITTEN(s) \
1064 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1065 (s)->sectors_written_start) >> 1)
1066
1067 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1068 {
1069 sbi->last_time[type] = jiffies;
1070 }
1071
1072 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1073 {
1074 struct timespec ts = {sbi->interval_time[type], 0};
1075 unsigned long interval = timespec_to_jiffies(&ts);
1076
1077 return time_after(jiffies, sbi->last_time[type] + interval);
1078 }
1079
1080 static inline bool is_idle(struct f2fs_sb_info *sbi)
1081 {
1082 struct block_device *bdev = sbi->sb->s_bdev;
1083 struct request_queue *q = bdev_get_queue(bdev);
1084 struct request_list *rl = &q->root_rl;
1085
1086 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1087 return 0;
1088
1089 return f2fs_time_over(sbi, REQ_TIME);
1090 }
1091
1092 /*
1093 * Inline functions
1094 */
1095 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1096 unsigned int length)
1097 {
1098 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1099 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1100 int err;
1101
1102 shash->tfm = sbi->s_chksum_driver;
1103 shash->flags = 0;
1104 *ctx = F2FS_SUPER_MAGIC;
1105
1106 err = crypto_shash_update(shash, address, length);
1107 BUG_ON(err);
1108
1109 return *ctx;
1110 }
1111
1112 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1113 void *buf, size_t buf_size)
1114 {
1115 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1116 }
1117
1118 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1119 {
1120 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1121 }
1122
1123 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1124 {
1125 return sb->s_fs_info;
1126 }
1127
1128 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1129 {
1130 return F2FS_SB(inode->i_sb);
1131 }
1132
1133 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1134 {
1135 return F2FS_I_SB(mapping->host);
1136 }
1137
1138 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1139 {
1140 return F2FS_M_SB(page->mapping);
1141 }
1142
1143 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1144 {
1145 return (struct f2fs_super_block *)(sbi->raw_super);
1146 }
1147
1148 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1149 {
1150 return (struct f2fs_checkpoint *)(sbi->ckpt);
1151 }
1152
1153 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1154 {
1155 return (struct f2fs_node *)page_address(page);
1156 }
1157
1158 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1159 {
1160 return &((struct f2fs_node *)page_address(page))->i;
1161 }
1162
1163 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1164 {
1165 return (struct f2fs_nm_info *)(sbi->nm_info);
1166 }
1167
1168 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1169 {
1170 return (struct f2fs_sm_info *)(sbi->sm_info);
1171 }
1172
1173 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1174 {
1175 return (struct sit_info *)(SM_I(sbi)->sit_info);
1176 }
1177
1178 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1179 {
1180 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1181 }
1182
1183 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1184 {
1185 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1186 }
1187
1188 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1189 {
1190 return sbi->meta_inode->i_mapping;
1191 }
1192
1193 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1194 {
1195 return sbi->node_inode->i_mapping;
1196 }
1197
1198 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1199 {
1200 return test_bit(type, &sbi->s_flag);
1201 }
1202
1203 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1204 {
1205 set_bit(type, &sbi->s_flag);
1206 }
1207
1208 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1209 {
1210 clear_bit(type, &sbi->s_flag);
1211 }
1212
1213 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1214 {
1215 return le64_to_cpu(cp->checkpoint_ver);
1216 }
1217
1218 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1219 {
1220 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1221 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1222 }
1223
1224 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1225 {
1226 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1227
1228 return ckpt_flags & f;
1229 }
1230
1231 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1232 {
1233 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1234 }
1235
1236 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1237 {
1238 unsigned int ckpt_flags;
1239
1240 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1241 ckpt_flags |= f;
1242 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1243 }
1244
1245 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1246 {
1247 spin_lock(&sbi->cp_lock);
1248 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1249 spin_unlock(&sbi->cp_lock);
1250 }
1251
1252 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1253 {
1254 unsigned int ckpt_flags;
1255
1256 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1257 ckpt_flags &= (~f);
1258 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1259 }
1260
1261 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1262 {
1263 spin_lock(&sbi->cp_lock);
1264 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1265 spin_unlock(&sbi->cp_lock);
1266 }
1267
1268 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1269 {
1270 set_sbi_flag(sbi, SBI_NEED_FSCK);
1271
1272 if (lock)
1273 spin_lock(&sbi->cp_lock);
1274 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1275 kfree(NM_I(sbi)->nat_bits);
1276 NM_I(sbi)->nat_bits = NULL;
1277 if (lock)
1278 spin_unlock(&sbi->cp_lock);
1279 }
1280
1281 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1282 struct cp_control *cpc)
1283 {
1284 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1285
1286 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1287 }
1288
1289 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1290 {
1291 down_read(&sbi->cp_rwsem);
1292 }
1293
1294 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1295 {
1296 return down_read_trylock(&sbi->cp_rwsem);
1297 }
1298
1299 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1300 {
1301 up_read(&sbi->cp_rwsem);
1302 }
1303
1304 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1305 {
1306 down_write(&sbi->cp_rwsem);
1307 }
1308
1309 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1310 {
1311 up_write(&sbi->cp_rwsem);
1312 }
1313
1314 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1315 {
1316 int reason = CP_SYNC;
1317
1318 if (test_opt(sbi, FASTBOOT))
1319 reason = CP_FASTBOOT;
1320 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1321 reason = CP_UMOUNT;
1322 return reason;
1323 }
1324
1325 static inline bool __remain_node_summaries(int reason)
1326 {
1327 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1328 }
1329
1330 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1331 {
1332 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1333 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1334 }
1335
1336 /*
1337 * Check whether the given nid is within node id range.
1338 */
1339 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1340 {
1341 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1342 return -EINVAL;
1343 if (unlikely(nid >= NM_I(sbi)->max_nid))
1344 return -EINVAL;
1345 return 0;
1346 }
1347
1348 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1349
1350 /*
1351 * Check whether the inode has blocks or not
1352 */
1353 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1354 {
1355 if (F2FS_I(inode)->i_xattr_nid)
1356 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1357 else
1358 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1359 }
1360
1361 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1362 {
1363 return ofs == XATTR_NODE_OFFSET;
1364 }
1365
1366 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1367 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1368 struct inode *inode, blkcnt_t *count)
1369 {
1370 blkcnt_t diff;
1371
1372 #ifdef CONFIG_F2FS_FAULT_INJECTION
1373 if (time_to_inject(sbi, FAULT_BLOCK)) {
1374 f2fs_show_injection_info(FAULT_BLOCK);
1375 return false;
1376 }
1377 #endif
1378 /*
1379 * let's increase this in prior to actual block count change in order
1380 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1381 */
1382 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1383
1384 spin_lock(&sbi->stat_lock);
1385 sbi->total_valid_block_count += (block_t)(*count);
1386 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1387 diff = sbi->total_valid_block_count - sbi->user_block_count;
1388 *count -= diff;
1389 sbi->total_valid_block_count = sbi->user_block_count;
1390 if (!*count) {
1391 spin_unlock(&sbi->stat_lock);
1392 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1393 return false;
1394 }
1395 }
1396 spin_unlock(&sbi->stat_lock);
1397
1398 f2fs_i_blocks_write(inode, *count, true);
1399 return true;
1400 }
1401
1402 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1403 struct inode *inode,
1404 blkcnt_t count)
1405 {
1406 spin_lock(&sbi->stat_lock);
1407 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1408 f2fs_bug_on(sbi, inode->i_blocks < count);
1409 sbi->total_valid_block_count -= (block_t)count;
1410 spin_unlock(&sbi->stat_lock);
1411 f2fs_i_blocks_write(inode, count, false);
1412 }
1413
1414 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1415 {
1416 atomic_inc(&sbi->nr_pages[count_type]);
1417
1418 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1419 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1420 return;
1421
1422 set_sbi_flag(sbi, SBI_IS_DIRTY);
1423 }
1424
1425 static inline void inode_inc_dirty_pages(struct inode *inode)
1426 {
1427 atomic_inc(&F2FS_I(inode)->dirty_pages);
1428 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1429 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1430 }
1431
1432 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1433 {
1434 atomic_dec(&sbi->nr_pages[count_type]);
1435 }
1436
1437 static inline void inode_dec_dirty_pages(struct inode *inode)
1438 {
1439 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1440 !S_ISLNK(inode->i_mode))
1441 return;
1442
1443 atomic_dec(&F2FS_I(inode)->dirty_pages);
1444 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1445 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1446 }
1447
1448 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1449 {
1450 return atomic_read(&sbi->nr_pages[count_type]);
1451 }
1452
1453 static inline int get_dirty_pages(struct inode *inode)
1454 {
1455 return atomic_read(&F2FS_I(inode)->dirty_pages);
1456 }
1457
1458 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1459 {
1460 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1461 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1462 sbi->log_blocks_per_seg;
1463
1464 return segs / sbi->segs_per_sec;
1465 }
1466
1467 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1468 {
1469 return sbi->total_valid_block_count;
1470 }
1471
1472 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1473 {
1474 return sbi->discard_blks;
1475 }
1476
1477 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1478 {
1479 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1480
1481 /* return NAT or SIT bitmap */
1482 if (flag == NAT_BITMAP)
1483 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1484 else if (flag == SIT_BITMAP)
1485 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1486
1487 return 0;
1488 }
1489
1490 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1491 {
1492 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1493 }
1494
1495 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1496 {
1497 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1498 int offset;
1499
1500 if (__cp_payload(sbi) > 0) {
1501 if (flag == NAT_BITMAP)
1502 return &ckpt->sit_nat_version_bitmap;
1503 else
1504 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1505 } else {
1506 offset = (flag == NAT_BITMAP) ?
1507 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1508 return &ckpt->sit_nat_version_bitmap + offset;
1509 }
1510 }
1511
1512 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1513 {
1514 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1515
1516 if (sbi->cur_cp_pack == 2)
1517 start_addr += sbi->blocks_per_seg;
1518 return start_addr;
1519 }
1520
1521 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1522 {
1523 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1524
1525 if (sbi->cur_cp_pack == 1)
1526 start_addr += sbi->blocks_per_seg;
1527 return start_addr;
1528 }
1529
1530 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1531 {
1532 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1533 }
1534
1535 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1536 {
1537 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1538 }
1539
1540 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1541 struct inode *inode)
1542 {
1543 block_t valid_block_count;
1544 unsigned int valid_node_count;
1545
1546 spin_lock(&sbi->stat_lock);
1547
1548 valid_block_count = sbi->total_valid_block_count + 1;
1549 if (unlikely(valid_block_count > sbi->user_block_count)) {
1550 spin_unlock(&sbi->stat_lock);
1551 return false;
1552 }
1553
1554 valid_node_count = sbi->total_valid_node_count + 1;
1555 if (unlikely(valid_node_count > sbi->total_node_count)) {
1556 spin_unlock(&sbi->stat_lock);
1557 return false;
1558 }
1559
1560 if (inode)
1561 f2fs_i_blocks_write(inode, 1, true);
1562
1563 sbi->total_valid_node_count++;
1564 sbi->total_valid_block_count++;
1565 spin_unlock(&sbi->stat_lock);
1566
1567 percpu_counter_inc(&sbi->alloc_valid_block_count);
1568 return true;
1569 }
1570
1571 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1572 struct inode *inode)
1573 {
1574 spin_lock(&sbi->stat_lock);
1575
1576 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1577 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1578 f2fs_bug_on(sbi, !inode->i_blocks);
1579
1580 f2fs_i_blocks_write(inode, 1, false);
1581 sbi->total_valid_node_count--;
1582 sbi->total_valid_block_count--;
1583
1584 spin_unlock(&sbi->stat_lock);
1585 }
1586
1587 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1588 {
1589 return sbi->total_valid_node_count;
1590 }
1591
1592 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1593 {
1594 percpu_counter_inc(&sbi->total_valid_inode_count);
1595 }
1596
1597 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1598 {
1599 percpu_counter_dec(&sbi->total_valid_inode_count);
1600 }
1601
1602 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1603 {
1604 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1605 }
1606
1607 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1608 pgoff_t index, bool for_write)
1609 {
1610 #ifdef CONFIG_F2FS_FAULT_INJECTION
1611 struct page *page = find_lock_page(mapping, index);
1612
1613 if (page)
1614 return page;
1615
1616 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1617 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1618 return NULL;
1619 }
1620 #endif
1621 if (!for_write)
1622 return grab_cache_page(mapping, index);
1623 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1624 }
1625
1626 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1627 {
1628 char *src_kaddr = kmap(src);
1629 char *dst_kaddr = kmap(dst);
1630
1631 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1632 kunmap(dst);
1633 kunmap(src);
1634 }
1635
1636 static inline void f2fs_put_page(struct page *page, int unlock)
1637 {
1638 if (!page)
1639 return;
1640
1641 if (unlock) {
1642 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1643 unlock_page(page);
1644 }
1645 put_page(page);
1646 }
1647
1648 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1649 {
1650 if (dn->node_page)
1651 f2fs_put_page(dn->node_page, 1);
1652 if (dn->inode_page && dn->node_page != dn->inode_page)
1653 f2fs_put_page(dn->inode_page, 0);
1654 dn->node_page = NULL;
1655 dn->inode_page = NULL;
1656 }
1657
1658 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1659 size_t size)
1660 {
1661 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1662 }
1663
1664 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1665 gfp_t flags)
1666 {
1667 void *entry;
1668
1669 entry = kmem_cache_alloc(cachep, flags);
1670 if (!entry)
1671 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1672 return entry;
1673 }
1674
1675 static inline struct bio *f2fs_bio_alloc(int npages)
1676 {
1677 struct bio *bio;
1678
1679 /* No failure on bio allocation */
1680 bio = bio_alloc(GFP_NOIO, npages);
1681 if (!bio)
1682 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1683 return bio;
1684 }
1685
1686 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1687 unsigned long index, void *item)
1688 {
1689 while (radix_tree_insert(root, index, item))
1690 cond_resched();
1691 }
1692
1693 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1694
1695 static inline bool IS_INODE(struct page *page)
1696 {
1697 struct f2fs_node *p = F2FS_NODE(page);
1698
1699 return RAW_IS_INODE(p);
1700 }
1701
1702 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1703 {
1704 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1705 }
1706
1707 static inline block_t datablock_addr(struct page *node_page,
1708 unsigned int offset)
1709 {
1710 struct f2fs_node *raw_node;
1711 __le32 *addr_array;
1712
1713 raw_node = F2FS_NODE(node_page);
1714 addr_array = blkaddr_in_node(raw_node);
1715 return le32_to_cpu(addr_array[offset]);
1716 }
1717
1718 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1719 {
1720 int mask;
1721
1722 addr += (nr >> 3);
1723 mask = 1 << (7 - (nr & 0x07));
1724 return mask & *addr;
1725 }
1726
1727 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1728 {
1729 int mask;
1730
1731 addr += (nr >> 3);
1732 mask = 1 << (7 - (nr & 0x07));
1733 *addr |= mask;
1734 }
1735
1736 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1737 {
1738 int mask;
1739
1740 addr += (nr >> 3);
1741 mask = 1 << (7 - (nr & 0x07));
1742 *addr &= ~mask;
1743 }
1744
1745 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1746 {
1747 int mask;
1748 int ret;
1749
1750 addr += (nr >> 3);
1751 mask = 1 << (7 - (nr & 0x07));
1752 ret = mask & *addr;
1753 *addr |= mask;
1754 return ret;
1755 }
1756
1757 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1758 {
1759 int mask;
1760 int ret;
1761
1762 addr += (nr >> 3);
1763 mask = 1 << (7 - (nr & 0x07));
1764 ret = mask & *addr;
1765 *addr &= ~mask;
1766 return ret;
1767 }
1768
1769 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1770 {
1771 int mask;
1772
1773 addr += (nr >> 3);
1774 mask = 1 << (7 - (nr & 0x07));
1775 *addr ^= mask;
1776 }
1777
1778 /* used for f2fs_inode_info->flags */
1779 enum {
1780 FI_NEW_INODE, /* indicate newly allocated inode */
1781 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1782 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1783 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1784 FI_INC_LINK, /* need to increment i_nlink */
1785 FI_ACL_MODE, /* indicate acl mode */
1786 FI_NO_ALLOC, /* should not allocate any blocks */
1787 FI_FREE_NID, /* free allocated nide */
1788 FI_NO_EXTENT, /* not to use the extent cache */
1789 FI_INLINE_XATTR, /* used for inline xattr */
1790 FI_INLINE_DATA, /* used for inline data*/
1791 FI_INLINE_DENTRY, /* used for inline dentry */
1792 FI_APPEND_WRITE, /* inode has appended data */
1793 FI_UPDATE_WRITE, /* inode has in-place-update data */
1794 FI_NEED_IPU, /* used for ipu per file */
1795 FI_ATOMIC_FILE, /* indicate atomic file */
1796 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1797 FI_VOLATILE_FILE, /* indicate volatile file */
1798 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1799 FI_DROP_CACHE, /* drop dirty page cache */
1800 FI_DATA_EXIST, /* indicate data exists */
1801 FI_INLINE_DOTS, /* indicate inline dot dentries */
1802 FI_DO_DEFRAG, /* indicate defragment is running */
1803 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1804 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1805 FI_HOT_DATA, /* indicate file is hot */
1806 };
1807
1808 static inline void __mark_inode_dirty_flag(struct inode *inode,
1809 int flag, bool set)
1810 {
1811 switch (flag) {
1812 case FI_INLINE_XATTR:
1813 case FI_INLINE_DATA:
1814 case FI_INLINE_DENTRY:
1815 if (set)
1816 return;
1817 case FI_DATA_EXIST:
1818 case FI_INLINE_DOTS:
1819 f2fs_mark_inode_dirty_sync(inode, true);
1820 }
1821 }
1822
1823 static inline void set_inode_flag(struct inode *inode, int flag)
1824 {
1825 if (!test_bit(flag, &F2FS_I(inode)->flags))
1826 set_bit(flag, &F2FS_I(inode)->flags);
1827 __mark_inode_dirty_flag(inode, flag, true);
1828 }
1829
1830 static inline int is_inode_flag_set(struct inode *inode, int flag)
1831 {
1832 return test_bit(flag, &F2FS_I(inode)->flags);
1833 }
1834
1835 static inline void clear_inode_flag(struct inode *inode, int flag)
1836 {
1837 if (test_bit(flag, &F2FS_I(inode)->flags))
1838 clear_bit(flag, &F2FS_I(inode)->flags);
1839 __mark_inode_dirty_flag(inode, flag, false);
1840 }
1841
1842 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1843 {
1844 F2FS_I(inode)->i_acl_mode = mode;
1845 set_inode_flag(inode, FI_ACL_MODE);
1846 f2fs_mark_inode_dirty_sync(inode, false);
1847 }
1848
1849 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1850 {
1851 if (inc)
1852 inc_nlink(inode);
1853 else
1854 drop_nlink(inode);
1855 f2fs_mark_inode_dirty_sync(inode, true);
1856 }
1857
1858 static inline void f2fs_i_blocks_write(struct inode *inode,
1859 blkcnt_t diff, bool add)
1860 {
1861 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1862 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1863
1864 inode->i_blocks = add ? inode->i_blocks + diff :
1865 inode->i_blocks - diff;
1866 f2fs_mark_inode_dirty_sync(inode, true);
1867 if (clean || recover)
1868 set_inode_flag(inode, FI_AUTO_RECOVER);
1869 }
1870
1871 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1872 {
1873 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1874 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1875
1876 if (i_size_read(inode) == i_size)
1877 return;
1878
1879 i_size_write(inode, i_size);
1880 f2fs_mark_inode_dirty_sync(inode, true);
1881 if (clean || recover)
1882 set_inode_flag(inode, FI_AUTO_RECOVER);
1883 }
1884
1885 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1886 {
1887 F2FS_I(inode)->i_current_depth = depth;
1888 f2fs_mark_inode_dirty_sync(inode, true);
1889 }
1890
1891 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1892 {
1893 F2FS_I(inode)->i_xattr_nid = xnid;
1894 f2fs_mark_inode_dirty_sync(inode, true);
1895 }
1896
1897 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1898 {
1899 F2FS_I(inode)->i_pino = pino;
1900 f2fs_mark_inode_dirty_sync(inode, true);
1901 }
1902
1903 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1904 {
1905 struct f2fs_inode_info *fi = F2FS_I(inode);
1906
1907 if (ri->i_inline & F2FS_INLINE_XATTR)
1908 set_bit(FI_INLINE_XATTR, &fi->flags);
1909 if (ri->i_inline & F2FS_INLINE_DATA)
1910 set_bit(FI_INLINE_DATA, &fi->flags);
1911 if (ri->i_inline & F2FS_INLINE_DENTRY)
1912 set_bit(FI_INLINE_DENTRY, &fi->flags);
1913 if (ri->i_inline & F2FS_DATA_EXIST)
1914 set_bit(FI_DATA_EXIST, &fi->flags);
1915 if (ri->i_inline & F2FS_INLINE_DOTS)
1916 set_bit(FI_INLINE_DOTS, &fi->flags);
1917 }
1918
1919 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1920 {
1921 ri->i_inline = 0;
1922
1923 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1924 ri->i_inline |= F2FS_INLINE_XATTR;
1925 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1926 ri->i_inline |= F2FS_INLINE_DATA;
1927 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1928 ri->i_inline |= F2FS_INLINE_DENTRY;
1929 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1930 ri->i_inline |= F2FS_DATA_EXIST;
1931 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1932 ri->i_inline |= F2FS_INLINE_DOTS;
1933 }
1934
1935 static inline int f2fs_has_inline_xattr(struct inode *inode)
1936 {
1937 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1938 }
1939
1940 static inline unsigned int addrs_per_inode(struct inode *inode)
1941 {
1942 if (f2fs_has_inline_xattr(inode))
1943 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1944 return DEF_ADDRS_PER_INODE;
1945 }
1946
1947 static inline void *inline_xattr_addr(struct page *page)
1948 {
1949 struct f2fs_inode *ri = F2FS_INODE(page);
1950
1951 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1952 F2FS_INLINE_XATTR_ADDRS]);
1953 }
1954
1955 static inline int inline_xattr_size(struct inode *inode)
1956 {
1957 if (f2fs_has_inline_xattr(inode))
1958 return F2FS_INLINE_XATTR_ADDRS << 2;
1959 else
1960 return 0;
1961 }
1962
1963 static inline int f2fs_has_inline_data(struct inode *inode)
1964 {
1965 return is_inode_flag_set(inode, FI_INLINE_DATA);
1966 }
1967
1968 static inline int f2fs_exist_data(struct inode *inode)
1969 {
1970 return is_inode_flag_set(inode, FI_DATA_EXIST);
1971 }
1972
1973 static inline int f2fs_has_inline_dots(struct inode *inode)
1974 {
1975 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1976 }
1977
1978 static inline bool f2fs_is_atomic_file(struct inode *inode)
1979 {
1980 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1981 }
1982
1983 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1984 {
1985 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1986 }
1987
1988 static inline bool f2fs_is_volatile_file(struct inode *inode)
1989 {
1990 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1991 }
1992
1993 static inline bool f2fs_is_first_block_written(struct inode *inode)
1994 {
1995 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1996 }
1997
1998 static inline bool f2fs_is_drop_cache(struct inode *inode)
1999 {
2000 return is_inode_flag_set(inode, FI_DROP_CACHE);
2001 }
2002
2003 static inline void *inline_data_addr(struct page *page)
2004 {
2005 struct f2fs_inode *ri = F2FS_INODE(page);
2006
2007 return (void *)&(ri->i_addr[1]);
2008 }
2009
2010 static inline int f2fs_has_inline_dentry(struct inode *inode)
2011 {
2012 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2013 }
2014
2015 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2016 {
2017 if (!f2fs_has_inline_dentry(dir))
2018 kunmap(page);
2019 }
2020
2021 static inline int is_file(struct inode *inode, int type)
2022 {
2023 return F2FS_I(inode)->i_advise & type;
2024 }
2025
2026 static inline void set_file(struct inode *inode, int type)
2027 {
2028 F2FS_I(inode)->i_advise |= type;
2029 f2fs_mark_inode_dirty_sync(inode, true);
2030 }
2031
2032 static inline void clear_file(struct inode *inode, int type)
2033 {
2034 F2FS_I(inode)->i_advise &= ~type;
2035 f2fs_mark_inode_dirty_sync(inode, true);
2036 }
2037
2038 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2039 {
2040 if (dsync) {
2041 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2042 bool ret;
2043
2044 spin_lock(&sbi->inode_lock[DIRTY_META]);
2045 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2046 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2047 return ret;
2048 }
2049 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2050 file_keep_isize(inode) ||
2051 i_size_read(inode) & PAGE_MASK)
2052 return false;
2053 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2054 }
2055
2056 static inline int f2fs_readonly(struct super_block *sb)
2057 {
2058 return sb->s_flags & MS_RDONLY;
2059 }
2060
2061 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2062 {
2063 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2064 }
2065
2066 static inline bool is_dot_dotdot(const struct qstr *str)
2067 {
2068 if (str->len == 1 && str->name[0] == '.')
2069 return true;
2070
2071 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2072 return true;
2073
2074 return false;
2075 }
2076
2077 static inline bool f2fs_may_extent_tree(struct inode *inode)
2078 {
2079 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2080 is_inode_flag_set(inode, FI_NO_EXTENT))
2081 return false;
2082
2083 return S_ISREG(inode->i_mode);
2084 }
2085
2086 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2087 size_t size, gfp_t flags)
2088 {
2089 #ifdef CONFIG_F2FS_FAULT_INJECTION
2090 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2091 f2fs_show_injection_info(FAULT_KMALLOC);
2092 return NULL;
2093 }
2094 #endif
2095 return kmalloc(size, flags);
2096 }
2097
2098 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2099 {
2100 void *ret;
2101
2102 ret = kmalloc(size, flags | __GFP_NOWARN);
2103 if (!ret)
2104 ret = __vmalloc(size, flags, PAGE_KERNEL);
2105 return ret;
2106 }
2107
2108 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2109 {
2110 void *ret;
2111
2112 ret = kzalloc(size, flags | __GFP_NOWARN);
2113 if (!ret)
2114 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2115 return ret;
2116 }
2117
2118 #define get_inode_mode(i) \
2119 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2120 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2121
2122 /*
2123 * file.c
2124 */
2125 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2126 void truncate_data_blocks(struct dnode_of_data *dn);
2127 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2128 int f2fs_truncate(struct inode *inode);
2129 int f2fs_getattr(const struct path *path, struct kstat *stat,
2130 u32 request_mask, unsigned int flags);
2131 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2132 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2133 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2134 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2135 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2136
2137 /*
2138 * inode.c
2139 */
2140 void f2fs_set_inode_flags(struct inode *inode);
2141 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2142 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2143 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2144 int update_inode(struct inode *inode, struct page *node_page);
2145 int update_inode_page(struct inode *inode);
2146 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2147 void f2fs_evict_inode(struct inode *inode);
2148 void handle_failed_inode(struct inode *inode);
2149
2150 /*
2151 * namei.c
2152 */
2153 struct dentry *f2fs_get_parent(struct dentry *child);
2154
2155 /*
2156 * dir.c
2157 */
2158 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2159 unsigned char get_de_type(struct f2fs_dir_entry *de);
2160 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2161 f2fs_hash_t namehash, int *max_slots,
2162 struct f2fs_dentry_ptr *d);
2163 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2164 unsigned int start_pos, struct fscrypt_str *fstr);
2165 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2166 struct f2fs_dentry_ptr *d);
2167 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2168 const struct qstr *new_name,
2169 const struct qstr *orig_name, struct page *dpage);
2170 void update_parent_metadata(struct inode *dir, struct inode *inode,
2171 unsigned int current_depth);
2172 int room_for_filename(const void *bitmap, int slots, int max_slots);
2173 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2174 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2175 struct fscrypt_name *fname, struct page **res_page);
2176 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2177 const struct qstr *child, struct page **res_page);
2178 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2179 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2180 struct page **page);
2181 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2182 struct page *page, struct inode *inode);
2183 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2184 const struct qstr *name, f2fs_hash_t name_hash,
2185 unsigned int bit_pos);
2186 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2187 const struct qstr *orig_name,
2188 struct inode *inode, nid_t ino, umode_t mode);
2189 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2190 struct inode *inode, nid_t ino, umode_t mode);
2191 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2192 struct inode *inode, nid_t ino, umode_t mode);
2193 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2194 struct inode *dir, struct inode *inode);
2195 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2196 bool f2fs_empty_dir(struct inode *dir);
2197
2198 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2199 {
2200 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2201 inode, inode->i_ino, inode->i_mode);
2202 }
2203
2204 /*
2205 * super.c
2206 */
2207 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2208 void f2fs_inode_synced(struct inode *inode);
2209 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2210 int f2fs_sync_fs(struct super_block *sb, int sync);
2211 extern __printf(3, 4)
2212 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2213 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2214
2215 /*
2216 * hash.c
2217 */
2218 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2219 struct fscrypt_name *fname);
2220
2221 /*
2222 * node.c
2223 */
2224 struct dnode_of_data;
2225 struct node_info;
2226
2227 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2228 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2229 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2231 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2232 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2233 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2234 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2235 int truncate_xattr_node(struct inode *inode, struct page *page);
2236 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2237 int remove_inode_page(struct inode *inode);
2238 struct page *new_inode_page(struct inode *inode);
2239 struct page *new_node_page(struct dnode_of_data *dn,
2240 unsigned int ofs, struct page *ipage);
2241 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2242 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2243 struct page *get_node_page_ra(struct page *parent, int start);
2244 void move_node_page(struct page *node_page, int gc_type);
2245 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2246 struct writeback_control *wbc, bool atomic);
2247 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2248 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2249 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2250 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2251 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2252 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2253 void recover_inline_xattr(struct inode *inode, struct page *page);
2254 int recover_xattr_data(struct inode *inode, struct page *page,
2255 block_t blkaddr);
2256 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2257 int restore_node_summary(struct f2fs_sb_info *sbi,
2258 unsigned int segno, struct f2fs_summary_block *sum);
2259 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2260 int build_node_manager(struct f2fs_sb_info *sbi);
2261 void destroy_node_manager(struct f2fs_sb_info *sbi);
2262 int __init create_node_manager_caches(void);
2263 void destroy_node_manager_caches(void);
2264
2265 /*
2266 * segment.c
2267 */
2268 void register_inmem_page(struct inode *inode, struct page *page);
2269 void drop_inmem_pages(struct inode *inode);
2270 void drop_inmem_page(struct inode *inode, struct page *page);
2271 int commit_inmem_pages(struct inode *inode);
2272 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2273 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2274 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2275 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2276 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2277 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2278 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2279 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2280 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2281 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2282 void release_discard_addrs(struct f2fs_sb_info *sbi);
2283 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2284 void allocate_new_segments(struct f2fs_sb_info *sbi);
2285 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2286 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2287 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2288 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2289 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2290 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2291 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2292 int rewrite_data_page(struct f2fs_io_info *fio);
2293 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2294 block_t old_blkaddr, block_t new_blkaddr,
2295 bool recover_curseg, bool recover_newaddr);
2296 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2297 block_t old_addr, block_t new_addr,
2298 unsigned char version, bool recover_curseg,
2299 bool recover_newaddr);
2300 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2301 block_t old_blkaddr, block_t *new_blkaddr,
2302 struct f2fs_summary *sum, int type,
2303 struct f2fs_io_info *fio, bool add_list);
2304 void f2fs_wait_on_page_writeback(struct page *page,
2305 enum page_type type, bool ordered);
2306 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2307 block_t blkaddr);
2308 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2309 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2310 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2311 unsigned int val, int alloc);
2312 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2313 int build_segment_manager(struct f2fs_sb_info *sbi);
2314 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2315 int __init create_segment_manager_caches(void);
2316 void destroy_segment_manager_caches(void);
2317
2318 /*
2319 * checkpoint.c
2320 */
2321 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2322 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2323 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2324 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2325 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2326 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2327 int type, bool sync);
2328 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2329 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2330 long nr_to_write);
2331 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2332 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2333 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2334 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2335 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2336 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2337 void release_orphan_inode(struct f2fs_sb_info *sbi);
2338 void add_orphan_inode(struct inode *inode);
2339 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2340 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2341 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2342 void update_dirty_page(struct inode *inode, struct page *page);
2343 void remove_dirty_inode(struct inode *inode);
2344 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2345 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2346 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2347 int __init create_checkpoint_caches(void);
2348 void destroy_checkpoint_caches(void);
2349
2350 /*
2351 * data.c
2352 */
2353 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2354 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2355 struct inode *inode, nid_t ino, pgoff_t idx,
2356 enum page_type type);
2357 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2358 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2359 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2360 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2361 block_t blk_addr, struct bio *bio);
2362 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2363 void set_data_blkaddr(struct dnode_of_data *dn);
2364 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2365 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2366 int reserve_new_block(struct dnode_of_data *dn);
2367 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2368 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2369 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2370 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2371 int op_flags, bool for_write);
2372 struct page *find_data_page(struct inode *inode, pgoff_t index);
2373 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2374 bool for_write);
2375 struct page *get_new_data_page(struct inode *inode,
2376 struct page *ipage, pgoff_t index, bool new_i_size);
2377 int do_write_data_page(struct f2fs_io_info *fio);
2378 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2379 int create, int flag);
2380 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2381 u64 start, u64 len);
2382 void f2fs_set_page_dirty_nobuffers(struct page *page);
2383 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2384 unsigned int length);
2385 int f2fs_release_page(struct page *page, gfp_t wait);
2386 #ifdef CONFIG_MIGRATION
2387 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2388 struct page *page, enum migrate_mode mode);
2389 #endif
2390
2391 /*
2392 * gc.c
2393 */
2394 int start_gc_thread(struct f2fs_sb_info *sbi);
2395 void stop_gc_thread(struct f2fs_sb_info *sbi);
2396 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2397 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2398 unsigned int segno);
2399 void build_gc_manager(struct f2fs_sb_info *sbi);
2400
2401 /*
2402 * recovery.c
2403 */
2404 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2405 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2406
2407 /*
2408 * debug.c
2409 */
2410 #ifdef CONFIG_F2FS_STAT_FS
2411 struct f2fs_stat_info {
2412 struct list_head stat_list;
2413 struct f2fs_sb_info *sbi;
2414 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2415 int main_area_segs, main_area_sections, main_area_zones;
2416 unsigned long long hit_largest, hit_cached, hit_rbtree;
2417 unsigned long long hit_total, total_ext;
2418 int ext_tree, zombie_tree, ext_node;
2419 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2420 int inmem_pages;
2421 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2422 int nats, dirty_nats, sits, dirty_sits;
2423 int free_nids, avail_nids, alloc_nids;
2424 int total_count, utilization;
2425 int bg_gc, nr_wb_cp_data, nr_wb_data;
2426 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2427 int nr_discard_cmd;
2428 unsigned int undiscard_blks;
2429 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2430 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2431 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2432 unsigned int bimodal, avg_vblocks;
2433 int util_free, util_valid, util_invalid;
2434 int rsvd_segs, overp_segs;
2435 int dirty_count, node_pages, meta_pages;
2436 int prefree_count, call_count, cp_count, bg_cp_count;
2437 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2438 int bg_node_segs, bg_data_segs;
2439 int tot_blks, data_blks, node_blks;
2440 int bg_data_blks, bg_node_blks;
2441 int curseg[NR_CURSEG_TYPE];
2442 int cursec[NR_CURSEG_TYPE];
2443 int curzone[NR_CURSEG_TYPE];
2444
2445 unsigned int segment_count[2];
2446 unsigned int block_count[2];
2447 unsigned int inplace_count;
2448 unsigned long long base_mem, cache_mem, page_mem;
2449 };
2450
2451 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2452 {
2453 return (struct f2fs_stat_info *)sbi->stat_info;
2454 }
2455
2456 #define stat_inc_cp_count(si) ((si)->cp_count++)
2457 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2458 #define stat_inc_call_count(si) ((si)->call_count++)
2459 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2460 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2461 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2462 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2463 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2464 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2465 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2466 #define stat_inc_inline_xattr(inode) \
2467 do { \
2468 if (f2fs_has_inline_xattr(inode)) \
2469 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2470 } while (0)
2471 #define stat_dec_inline_xattr(inode) \
2472 do { \
2473 if (f2fs_has_inline_xattr(inode)) \
2474 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2475 } while (0)
2476 #define stat_inc_inline_inode(inode) \
2477 do { \
2478 if (f2fs_has_inline_data(inode)) \
2479 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2480 } while (0)
2481 #define stat_dec_inline_inode(inode) \
2482 do { \
2483 if (f2fs_has_inline_data(inode)) \
2484 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2485 } while (0)
2486 #define stat_inc_inline_dir(inode) \
2487 do { \
2488 if (f2fs_has_inline_dentry(inode)) \
2489 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2490 } while (0)
2491 #define stat_dec_inline_dir(inode) \
2492 do { \
2493 if (f2fs_has_inline_dentry(inode)) \
2494 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2495 } while (0)
2496 #define stat_inc_seg_type(sbi, curseg) \
2497 ((sbi)->segment_count[(curseg)->alloc_type]++)
2498 #define stat_inc_block_count(sbi, curseg) \
2499 ((sbi)->block_count[(curseg)->alloc_type]++)
2500 #define stat_inc_inplace_blocks(sbi) \
2501 (atomic_inc(&(sbi)->inplace_count))
2502 #define stat_inc_atomic_write(inode) \
2503 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2504 #define stat_dec_atomic_write(inode) \
2505 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2506 #define stat_update_max_atomic_write(inode) \
2507 do { \
2508 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2509 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2510 if (cur > max) \
2511 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2512 } while (0)
2513 #define stat_inc_volatile_write(inode) \
2514 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2515 #define stat_dec_volatile_write(inode) \
2516 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2517 #define stat_update_max_volatile_write(inode) \
2518 do { \
2519 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2520 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2521 if (cur > max) \
2522 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2523 } while (0)
2524 #define stat_inc_seg_count(sbi, type, gc_type) \
2525 do { \
2526 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2527 si->tot_segs++; \
2528 if ((type) == SUM_TYPE_DATA) { \
2529 si->data_segs++; \
2530 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2531 } else { \
2532 si->node_segs++; \
2533 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2534 } \
2535 } while (0)
2536
2537 #define stat_inc_tot_blk_count(si, blks) \
2538 ((si)->tot_blks += (blks))
2539
2540 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2541 do { \
2542 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2543 stat_inc_tot_blk_count(si, blks); \
2544 si->data_blks += (blks); \
2545 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2546 } while (0)
2547
2548 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2549 do { \
2550 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2551 stat_inc_tot_blk_count(si, blks); \
2552 si->node_blks += (blks); \
2553 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2554 } while (0)
2555
2556 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2557 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2558 int __init f2fs_create_root_stats(void);
2559 void f2fs_destroy_root_stats(void);
2560 #else
2561 #define stat_inc_cp_count(si) do { } while (0)
2562 #define stat_inc_bg_cp_count(si) do { } while (0)
2563 #define stat_inc_call_count(si) do { } while (0)
2564 #define stat_inc_bggc_count(si) do { } while (0)
2565 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2566 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2567 #define stat_inc_total_hit(sb) do { } while (0)
2568 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2569 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2570 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2571 #define stat_inc_inline_xattr(inode) do { } while (0)
2572 #define stat_dec_inline_xattr(inode) do { } while (0)
2573 #define stat_inc_inline_inode(inode) do { } while (0)
2574 #define stat_dec_inline_inode(inode) do { } while (0)
2575 #define stat_inc_inline_dir(inode) do { } while (0)
2576 #define stat_dec_inline_dir(inode) do { } while (0)
2577 #define stat_inc_atomic_write(inode) do { } while (0)
2578 #define stat_dec_atomic_write(inode) do { } while (0)
2579 #define stat_update_max_atomic_write(inode) do { } while (0)
2580 #define stat_inc_volatile_write(inode) do { } while (0)
2581 #define stat_dec_volatile_write(inode) do { } while (0)
2582 #define stat_update_max_volatile_write(inode) do { } while (0)
2583 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2584 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2585 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2586 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2587 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2588 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2589 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2590
2591 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2592 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2593 static inline int __init f2fs_create_root_stats(void) { return 0; }
2594 static inline void f2fs_destroy_root_stats(void) { }
2595 #endif
2596
2597 extern const struct file_operations f2fs_dir_operations;
2598 extern const struct file_operations f2fs_file_operations;
2599 extern const struct inode_operations f2fs_file_inode_operations;
2600 extern const struct address_space_operations f2fs_dblock_aops;
2601 extern const struct address_space_operations f2fs_node_aops;
2602 extern const struct address_space_operations f2fs_meta_aops;
2603 extern const struct inode_operations f2fs_dir_inode_operations;
2604 extern const struct inode_operations f2fs_symlink_inode_operations;
2605 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2606 extern const struct inode_operations f2fs_special_inode_operations;
2607 extern struct kmem_cache *inode_entry_slab;
2608
2609 /*
2610 * inline.c
2611 */
2612 bool f2fs_may_inline_data(struct inode *inode);
2613 bool f2fs_may_inline_dentry(struct inode *inode);
2614 void read_inline_data(struct page *page, struct page *ipage);
2615 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2616 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2617 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2618 int f2fs_convert_inline_inode(struct inode *inode);
2619 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2620 bool recover_inline_data(struct inode *inode, struct page *npage);
2621 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2622 struct fscrypt_name *fname, struct page **res_page);
2623 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2624 struct page *ipage);
2625 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2626 const struct qstr *orig_name,
2627 struct inode *inode, nid_t ino, umode_t mode);
2628 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2629 struct inode *dir, struct inode *inode);
2630 bool f2fs_empty_inline_dir(struct inode *dir);
2631 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2632 struct fscrypt_str *fstr);
2633 int f2fs_inline_data_fiemap(struct inode *inode,
2634 struct fiemap_extent_info *fieinfo,
2635 __u64 start, __u64 len);
2636
2637 /*
2638 * shrinker.c
2639 */
2640 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2641 struct shrink_control *sc);
2642 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2643 struct shrink_control *sc);
2644 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2645 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2646
2647 /*
2648 * extent_cache.c
2649 */
2650 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2651 struct rb_entry *cached_re, unsigned int ofs);
2652 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2653 struct rb_root *root, struct rb_node **parent,
2654 unsigned int ofs);
2655 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2656 struct rb_entry *cached_re, unsigned int ofs,
2657 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2658 struct rb_node ***insert_p, struct rb_node **insert_parent,
2659 bool force);
2660 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2661 struct rb_root *root);
2662 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2663 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2664 void f2fs_drop_extent_tree(struct inode *inode);
2665 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2666 void f2fs_destroy_extent_tree(struct inode *inode);
2667 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2668 struct extent_info *ei);
2669 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2670 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2671 pgoff_t fofs, block_t blkaddr, unsigned int len);
2672 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2673 int __init create_extent_cache(void);
2674 void destroy_extent_cache(void);
2675
2676 /*
2677 * crypto support
2678 */
2679 static inline bool f2fs_encrypted_inode(struct inode *inode)
2680 {
2681 return file_is_encrypt(inode);
2682 }
2683
2684 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2685 {
2686 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2687 file_set_encrypt(inode);
2688 #endif
2689 }
2690
2691 static inline bool f2fs_bio_encrypted(struct bio *bio)
2692 {
2693 return bio->bi_private != NULL;
2694 }
2695
2696 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2697 {
2698 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2699 }
2700
2701 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2702 {
2703 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2704 }
2705
2706 #ifdef CONFIG_BLK_DEV_ZONED
2707 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2708 struct block_device *bdev, block_t blkaddr)
2709 {
2710 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2711 int i;
2712
2713 for (i = 0; i < sbi->s_ndevs; i++)
2714 if (FDEV(i).bdev == bdev)
2715 return FDEV(i).blkz_type[zno];
2716 return -EINVAL;
2717 }
2718 #endif
2719
2720 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2721 {
2722 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2723
2724 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2725 }
2726
2727 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2728 {
2729 clear_opt(sbi, ADAPTIVE);
2730 clear_opt(sbi, LFS);
2731
2732 switch (mt) {
2733 case F2FS_MOUNT_ADAPTIVE:
2734 set_opt(sbi, ADAPTIVE);
2735 break;
2736 case F2FS_MOUNT_LFS:
2737 set_opt(sbi, LFS);
2738 break;
2739 }
2740 }
2741
2742 static inline bool f2fs_may_encrypt(struct inode *inode)
2743 {
2744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2745 umode_t mode = inode->i_mode;
2746
2747 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2748 #else
2749 return 0;
2750 #endif
2751 }
2752
2753 #endif