]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: use bitmap in discard_entry
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 enum {
129 CP_UMOUNT,
130 CP_FASTBOOT,
131 CP_SYNC,
132 CP_RECOVERY,
133 CP_DISCARD,
134 };
135
136 #define DEF_BATCHED_TRIM_SECTIONS 2048
137 #define BATCHED_TRIM_SEGMENTS(sbi) \
138 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
139 #define BATCHED_TRIM_BLOCKS(sbi) \
140 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
141 #define MAX_DISCARD_BLOCKS(sbi) \
142 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
143 #define DISCARD_ISSUE_RATE 8
144 #define DEF_CP_INTERVAL 60 /* 60 secs */
145 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
146
147 struct cp_control {
148 int reason;
149 __u64 trim_start;
150 __u64 trim_end;
151 __u64 trim_minlen;
152 __u64 trimmed;
153 };
154
155 /*
156 * For CP/NAT/SIT/SSA readahead
157 */
158 enum {
159 META_CP,
160 META_NAT,
161 META_SIT,
162 META_SSA,
163 META_POR,
164 };
165
166 /* for the list of ino */
167 enum {
168 ORPHAN_INO, /* for orphan ino list */
169 APPEND_INO, /* for append ino list */
170 UPDATE_INO, /* for update ino list */
171 MAX_INO_ENTRY, /* max. list */
172 };
173
174 struct ino_entry {
175 struct list_head list; /* list head */
176 nid_t ino; /* inode number */
177 };
178
179 /* for the list of inodes to be GCed */
180 struct inode_entry {
181 struct list_head list; /* list head */
182 struct inode *inode; /* vfs inode pointer */
183 };
184
185 /* for the bitmap indicate blocks to be discarded */
186 struct discard_entry {
187 struct list_head list; /* list head */
188 block_t start_blkaddr; /* start blockaddr of current segment */
189 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
190 };
191
192 enum {
193 D_PREP,
194 D_SUBMIT,
195 D_DONE,
196 };
197
198 struct discard_cmd {
199 struct list_head list; /* command list */
200 struct completion wait; /* compleation */
201 struct block_device *bdev; /* bdev */
202 block_t lstart; /* logical start address */
203 block_t start; /* actual start address in dev */
204 block_t len; /* length */
205 int state; /* state */
206 int error; /* bio error */
207 };
208
209 struct discard_cmd_control {
210 struct task_struct *f2fs_issue_discard; /* discard thread */
211 struct list_head discard_entry_list; /* 4KB discard entry list */
212 int nr_discards; /* # of discards in the list */
213 struct list_head discard_cmd_list; /* discard cmd list */
214 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
215 struct mutex cmd_lock;
216 int max_discards; /* max. discards to be issued */
217 atomic_t issued_discard; /* # of issued discard */
218 atomic_t issing_discard; /* # of issing discard */
219 atomic_t discard_cmd_cnt; /* # of cached cmd count */
220 };
221
222 /* for the list of fsync inodes, used only during recovery */
223 struct fsync_inode_entry {
224 struct list_head list; /* list head */
225 struct inode *inode; /* vfs inode pointer */
226 block_t blkaddr; /* block address locating the last fsync */
227 block_t last_dentry; /* block address locating the last dentry */
228 };
229
230 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
231 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
232
233 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
234 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
235 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
236 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
237
238 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
239 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
240
241 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
242 {
243 int before = nats_in_cursum(journal);
244
245 journal->n_nats = cpu_to_le16(before + i);
246 return before;
247 }
248
249 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
250 {
251 int before = sits_in_cursum(journal);
252
253 journal->n_sits = cpu_to_le16(before + i);
254 return before;
255 }
256
257 static inline bool __has_cursum_space(struct f2fs_journal *journal,
258 int size, int type)
259 {
260 if (type == NAT_JOURNAL)
261 return size <= MAX_NAT_JENTRIES(journal);
262 return size <= MAX_SIT_JENTRIES(journal);
263 }
264
265 /*
266 * ioctl commands
267 */
268 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
269 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
270 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
271
272 #define F2FS_IOCTL_MAGIC 0xf5
273 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
274 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
275 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
276 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
277 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
278 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
279 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
280 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
281 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
282 struct f2fs_move_range)
283
284 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
285 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
286 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
287
288 /*
289 * should be same as XFS_IOC_GOINGDOWN.
290 * Flags for going down operation used by FS_IOC_GOINGDOWN
291 */
292 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
293 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
294 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
295 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
296 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
297
298 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
299 /*
300 * ioctl commands in 32 bit emulation
301 */
302 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
303 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
304 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
305 #endif
306
307 struct f2fs_defragment {
308 u64 start;
309 u64 len;
310 };
311
312 struct f2fs_move_range {
313 u32 dst_fd; /* destination fd */
314 u64 pos_in; /* start position in src_fd */
315 u64 pos_out; /* start position in dst_fd */
316 u64 len; /* size to move */
317 };
318
319 /*
320 * For INODE and NODE manager
321 */
322 /* for directory operations */
323 struct f2fs_dentry_ptr {
324 struct inode *inode;
325 const void *bitmap;
326 struct f2fs_dir_entry *dentry;
327 __u8 (*filename)[F2FS_SLOT_LEN];
328 int max;
329 };
330
331 static inline void make_dentry_ptr(struct inode *inode,
332 struct f2fs_dentry_ptr *d, void *src, int type)
333 {
334 d->inode = inode;
335
336 if (type == 1) {
337 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
338
339 d->max = NR_DENTRY_IN_BLOCK;
340 d->bitmap = &t->dentry_bitmap;
341 d->dentry = t->dentry;
342 d->filename = t->filename;
343 } else {
344 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
345
346 d->max = NR_INLINE_DENTRY;
347 d->bitmap = &t->dentry_bitmap;
348 d->dentry = t->dentry;
349 d->filename = t->filename;
350 }
351 }
352
353 /*
354 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
355 * as its node offset to distinguish from index node blocks.
356 * But some bits are used to mark the node block.
357 */
358 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
359 >> OFFSET_BIT_SHIFT)
360 enum {
361 ALLOC_NODE, /* allocate a new node page if needed */
362 LOOKUP_NODE, /* look up a node without readahead */
363 LOOKUP_NODE_RA, /*
364 * look up a node with readahead called
365 * by get_data_block.
366 */
367 };
368
369 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
370
371 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
372
373 /* vector size for gang look-up from extent cache that consists of radix tree */
374 #define EXT_TREE_VEC_SIZE 64
375
376 /* for in-memory extent cache entry */
377 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
378
379 /* number of extent info in extent cache we try to shrink */
380 #define EXTENT_CACHE_SHRINK_NUMBER 128
381
382 struct extent_info {
383 unsigned int fofs; /* start offset in a file */
384 u32 blk; /* start block address of the extent */
385 unsigned int len; /* length of the extent */
386 };
387
388 struct extent_node {
389 struct rb_node rb_node; /* rb node located in rb-tree */
390 struct list_head list; /* node in global extent list of sbi */
391 struct extent_info ei; /* extent info */
392 struct extent_tree *et; /* extent tree pointer */
393 };
394
395 struct extent_tree {
396 nid_t ino; /* inode number */
397 struct rb_root root; /* root of extent info rb-tree */
398 struct extent_node *cached_en; /* recently accessed extent node */
399 struct extent_info largest; /* largested extent info */
400 struct list_head list; /* to be used by sbi->zombie_list */
401 rwlock_t lock; /* protect extent info rb-tree */
402 atomic_t node_cnt; /* # of extent node in rb-tree*/
403 };
404
405 /*
406 * This structure is taken from ext4_map_blocks.
407 *
408 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
409 */
410 #define F2FS_MAP_NEW (1 << BH_New)
411 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
412 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
413 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
414 F2FS_MAP_UNWRITTEN)
415
416 struct f2fs_map_blocks {
417 block_t m_pblk;
418 block_t m_lblk;
419 unsigned int m_len;
420 unsigned int m_flags;
421 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
422 };
423
424 /* for flag in get_data_block */
425 #define F2FS_GET_BLOCK_READ 0
426 #define F2FS_GET_BLOCK_DIO 1
427 #define F2FS_GET_BLOCK_FIEMAP 2
428 #define F2FS_GET_BLOCK_BMAP 3
429 #define F2FS_GET_BLOCK_PRE_DIO 4
430 #define F2FS_GET_BLOCK_PRE_AIO 5
431
432 /*
433 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
434 */
435 #define FADVISE_COLD_BIT 0x01
436 #define FADVISE_LOST_PINO_BIT 0x02
437 #define FADVISE_ENCRYPT_BIT 0x04
438 #define FADVISE_ENC_NAME_BIT 0x08
439 #define FADVISE_KEEP_SIZE_BIT 0x10
440
441 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
442 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
443 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
444 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
445 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
446 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
447 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
448 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
449 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
450 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
451 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
452 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
453 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
454
455 #define DEF_DIR_LEVEL 0
456
457 struct f2fs_inode_info {
458 struct inode vfs_inode; /* serve a vfs inode */
459 unsigned long i_flags; /* keep an inode flags for ioctl */
460 unsigned char i_advise; /* use to give file attribute hints */
461 unsigned char i_dir_level; /* use for dentry level for large dir */
462 unsigned int i_current_depth; /* use only in directory structure */
463 unsigned int i_pino; /* parent inode number */
464 umode_t i_acl_mode; /* keep file acl mode temporarily */
465
466 /* Use below internally in f2fs*/
467 unsigned long flags; /* use to pass per-file flags */
468 struct rw_semaphore i_sem; /* protect fi info */
469 atomic_t dirty_pages; /* # of dirty pages */
470 f2fs_hash_t chash; /* hash value of given file name */
471 unsigned int clevel; /* maximum level of given file name */
472 struct task_struct *task; /* lookup and create consistency */
473 nid_t i_xattr_nid; /* node id that contains xattrs */
474 loff_t last_disk_size; /* lastly written file size */
475
476 struct list_head dirty_list; /* dirty list for dirs and files */
477 struct list_head gdirty_list; /* linked in global dirty list */
478 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
479 struct mutex inmem_lock; /* lock for inmemory pages */
480 struct extent_tree *extent_tree; /* cached extent_tree entry */
481 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
482 };
483
484 static inline void get_extent_info(struct extent_info *ext,
485 struct f2fs_extent *i_ext)
486 {
487 ext->fofs = le32_to_cpu(i_ext->fofs);
488 ext->blk = le32_to_cpu(i_ext->blk);
489 ext->len = le32_to_cpu(i_ext->len);
490 }
491
492 static inline void set_raw_extent(struct extent_info *ext,
493 struct f2fs_extent *i_ext)
494 {
495 i_ext->fofs = cpu_to_le32(ext->fofs);
496 i_ext->blk = cpu_to_le32(ext->blk);
497 i_ext->len = cpu_to_le32(ext->len);
498 }
499
500 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
501 u32 blk, unsigned int len)
502 {
503 ei->fofs = fofs;
504 ei->blk = blk;
505 ei->len = len;
506 }
507
508 static inline bool __is_extent_mergeable(struct extent_info *back,
509 struct extent_info *front)
510 {
511 return (back->fofs + back->len == front->fofs &&
512 back->blk + back->len == front->blk);
513 }
514
515 static inline bool __is_back_mergeable(struct extent_info *cur,
516 struct extent_info *back)
517 {
518 return __is_extent_mergeable(back, cur);
519 }
520
521 static inline bool __is_front_mergeable(struct extent_info *cur,
522 struct extent_info *front)
523 {
524 return __is_extent_mergeable(cur, front);
525 }
526
527 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
528 static inline void __try_update_largest_extent(struct inode *inode,
529 struct extent_tree *et, struct extent_node *en)
530 {
531 if (en->ei.len > et->largest.len) {
532 et->largest = en->ei;
533 f2fs_mark_inode_dirty_sync(inode, true);
534 }
535 }
536
537 enum nid_list {
538 FREE_NID_LIST,
539 ALLOC_NID_LIST,
540 MAX_NID_LIST,
541 };
542
543 struct f2fs_nm_info {
544 block_t nat_blkaddr; /* base disk address of NAT */
545 nid_t max_nid; /* maximum possible node ids */
546 nid_t available_nids; /* # of available node ids */
547 nid_t next_scan_nid; /* the next nid to be scanned */
548 unsigned int ram_thresh; /* control the memory footprint */
549 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
550 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
551
552 /* NAT cache management */
553 struct radix_tree_root nat_root;/* root of the nat entry cache */
554 struct radix_tree_root nat_set_root;/* root of the nat set cache */
555 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
556 struct list_head nat_entries; /* cached nat entry list (clean) */
557 unsigned int nat_cnt; /* the # of cached nat entries */
558 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
559 unsigned int nat_blocks; /* # of nat blocks */
560
561 /* free node ids management */
562 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
563 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
564 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
565 spinlock_t nid_list_lock; /* protect nid lists ops */
566 struct mutex build_lock; /* lock for build free nids */
567 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
568 unsigned char *nat_block_bitmap;
569 unsigned short *free_nid_count; /* free nid count of NAT block */
570
571 /* for checkpoint */
572 char *nat_bitmap; /* NAT bitmap pointer */
573
574 unsigned int nat_bits_blocks; /* # of nat bits blocks */
575 unsigned char *nat_bits; /* NAT bits blocks */
576 unsigned char *full_nat_bits; /* full NAT pages */
577 unsigned char *empty_nat_bits; /* empty NAT pages */
578 #ifdef CONFIG_F2FS_CHECK_FS
579 char *nat_bitmap_mir; /* NAT bitmap mirror */
580 #endif
581 int bitmap_size; /* bitmap size */
582 };
583
584 /*
585 * this structure is used as one of function parameters.
586 * all the information are dedicated to a given direct node block determined
587 * by the data offset in a file.
588 */
589 struct dnode_of_data {
590 struct inode *inode; /* vfs inode pointer */
591 struct page *inode_page; /* its inode page, NULL is possible */
592 struct page *node_page; /* cached direct node page */
593 nid_t nid; /* node id of the direct node block */
594 unsigned int ofs_in_node; /* data offset in the node page */
595 bool inode_page_locked; /* inode page is locked or not */
596 bool node_changed; /* is node block changed */
597 char cur_level; /* level of hole node page */
598 char max_level; /* level of current page located */
599 block_t data_blkaddr; /* block address of the node block */
600 };
601
602 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
603 struct page *ipage, struct page *npage, nid_t nid)
604 {
605 memset(dn, 0, sizeof(*dn));
606 dn->inode = inode;
607 dn->inode_page = ipage;
608 dn->node_page = npage;
609 dn->nid = nid;
610 }
611
612 /*
613 * For SIT manager
614 *
615 * By default, there are 6 active log areas across the whole main area.
616 * When considering hot and cold data separation to reduce cleaning overhead,
617 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
618 * respectively.
619 * In the current design, you should not change the numbers intentionally.
620 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
621 * logs individually according to the underlying devices. (default: 6)
622 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
623 * data and 8 for node logs.
624 */
625 #define NR_CURSEG_DATA_TYPE (3)
626 #define NR_CURSEG_NODE_TYPE (3)
627 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
628
629 enum {
630 CURSEG_HOT_DATA = 0, /* directory entry blocks */
631 CURSEG_WARM_DATA, /* data blocks */
632 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
633 CURSEG_HOT_NODE, /* direct node blocks of directory files */
634 CURSEG_WARM_NODE, /* direct node blocks of normal files */
635 CURSEG_COLD_NODE, /* indirect node blocks */
636 NO_CHECK_TYPE,
637 };
638
639 struct flush_cmd {
640 struct completion wait;
641 struct llist_node llnode;
642 int ret;
643 };
644
645 struct flush_cmd_control {
646 struct task_struct *f2fs_issue_flush; /* flush thread */
647 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
648 atomic_t issued_flush; /* # of issued flushes */
649 atomic_t issing_flush; /* # of issing flushes */
650 struct llist_head issue_list; /* list for command issue */
651 struct llist_node *dispatch_list; /* list for command dispatch */
652 };
653
654 struct f2fs_sm_info {
655 struct sit_info *sit_info; /* whole segment information */
656 struct free_segmap_info *free_info; /* free segment information */
657 struct dirty_seglist_info *dirty_info; /* dirty segment information */
658 struct curseg_info *curseg_array; /* active segment information */
659
660 block_t seg0_blkaddr; /* block address of 0'th segment */
661 block_t main_blkaddr; /* start block address of main area */
662 block_t ssa_blkaddr; /* start block address of SSA area */
663
664 unsigned int segment_count; /* total # of segments */
665 unsigned int main_segments; /* # of segments in main area */
666 unsigned int reserved_segments; /* # of reserved segments */
667 unsigned int ovp_segments; /* # of overprovision segments */
668
669 /* a threshold to reclaim prefree segments */
670 unsigned int rec_prefree_segments;
671
672 /* for batched trimming */
673 unsigned int trim_sections; /* # of sections to trim */
674
675 struct list_head sit_entry_set; /* sit entry set list */
676
677 unsigned int ipu_policy; /* in-place-update policy */
678 unsigned int min_ipu_util; /* in-place-update threshold */
679 unsigned int min_fsync_blocks; /* threshold for fsync */
680
681 /* for flush command control */
682 struct flush_cmd_control *fcc_info;
683
684 /* for discard command control */
685 struct discard_cmd_control *dcc_info;
686 };
687
688 /*
689 * For superblock
690 */
691 /*
692 * COUNT_TYPE for monitoring
693 *
694 * f2fs monitors the number of several block types such as on-writeback,
695 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
696 */
697 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
698 enum count_type {
699 F2FS_DIRTY_DENTS,
700 F2FS_DIRTY_DATA,
701 F2FS_DIRTY_NODES,
702 F2FS_DIRTY_META,
703 F2FS_INMEM_PAGES,
704 F2FS_DIRTY_IMETA,
705 F2FS_WB_CP_DATA,
706 F2FS_WB_DATA,
707 NR_COUNT_TYPE,
708 };
709
710 /*
711 * The below are the page types of bios used in submit_bio().
712 * The available types are:
713 * DATA User data pages. It operates as async mode.
714 * NODE Node pages. It operates as async mode.
715 * META FS metadata pages such as SIT, NAT, CP.
716 * NR_PAGE_TYPE The number of page types.
717 * META_FLUSH Make sure the previous pages are written
718 * with waiting the bio's completion
719 * ... Only can be used with META.
720 */
721 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
722 enum page_type {
723 DATA,
724 NODE,
725 META,
726 NR_PAGE_TYPE,
727 META_FLUSH,
728 INMEM, /* the below types are used by tracepoints only. */
729 INMEM_DROP,
730 INMEM_INVALIDATE,
731 INMEM_REVOKE,
732 IPU,
733 OPU,
734 };
735
736 struct f2fs_io_info {
737 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
738 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
739 int op; /* contains REQ_OP_ */
740 int op_flags; /* req_flag_bits */
741 block_t new_blkaddr; /* new block address to be written */
742 block_t old_blkaddr; /* old block address before Cow */
743 struct page *page; /* page to be written */
744 struct page *encrypted_page; /* encrypted page */
745 bool submitted; /* indicate IO submission */
746 };
747
748 #define is_read_io(rw) (rw == READ)
749 struct f2fs_bio_info {
750 struct f2fs_sb_info *sbi; /* f2fs superblock */
751 struct bio *bio; /* bios to merge */
752 sector_t last_block_in_bio; /* last block number */
753 struct f2fs_io_info fio; /* store buffered io info. */
754 struct rw_semaphore io_rwsem; /* blocking op for bio */
755 };
756
757 #define FDEV(i) (sbi->devs[i])
758 #define RDEV(i) (raw_super->devs[i])
759 struct f2fs_dev_info {
760 struct block_device *bdev;
761 char path[MAX_PATH_LEN];
762 unsigned int total_segments;
763 block_t start_blk;
764 block_t end_blk;
765 #ifdef CONFIG_BLK_DEV_ZONED
766 unsigned int nr_blkz; /* Total number of zones */
767 u8 *blkz_type; /* Array of zones type */
768 #endif
769 };
770
771 enum inode_type {
772 DIR_INODE, /* for dirty dir inode */
773 FILE_INODE, /* for dirty regular/symlink inode */
774 DIRTY_META, /* for all dirtied inode metadata */
775 NR_INODE_TYPE,
776 };
777
778 /* for inner inode cache management */
779 struct inode_management {
780 struct radix_tree_root ino_root; /* ino entry array */
781 spinlock_t ino_lock; /* for ino entry lock */
782 struct list_head ino_list; /* inode list head */
783 unsigned long ino_num; /* number of entries */
784 };
785
786 /* For s_flag in struct f2fs_sb_info */
787 enum {
788 SBI_IS_DIRTY, /* dirty flag for checkpoint */
789 SBI_IS_CLOSE, /* specify unmounting */
790 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
791 SBI_POR_DOING, /* recovery is doing or not */
792 SBI_NEED_SB_WRITE, /* need to recover superblock */
793 SBI_NEED_CP, /* need to checkpoint */
794 };
795
796 enum {
797 CP_TIME,
798 REQ_TIME,
799 MAX_TIME,
800 };
801
802 struct f2fs_sb_info {
803 struct super_block *sb; /* pointer to VFS super block */
804 struct proc_dir_entry *s_proc; /* proc entry */
805 struct f2fs_super_block *raw_super; /* raw super block pointer */
806 int valid_super_block; /* valid super block no */
807 unsigned long s_flag; /* flags for sbi */
808
809 #ifdef CONFIG_BLK_DEV_ZONED
810 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
811 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
812 #endif
813
814 /* for node-related operations */
815 struct f2fs_nm_info *nm_info; /* node manager */
816 struct inode *node_inode; /* cache node blocks */
817
818 /* for segment-related operations */
819 struct f2fs_sm_info *sm_info; /* segment manager */
820
821 /* for bio operations */
822 struct f2fs_bio_info read_io; /* for read bios */
823 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
824 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
825 int write_io_size_bits; /* Write IO size bits */
826 mempool_t *write_io_dummy; /* Dummy pages */
827
828 /* for checkpoint */
829 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
830 int cur_cp_pack; /* remain current cp pack */
831 spinlock_t cp_lock; /* for flag in ckpt */
832 struct inode *meta_inode; /* cache meta blocks */
833 struct mutex cp_mutex; /* checkpoint procedure lock */
834 struct rw_semaphore cp_rwsem; /* blocking FS operations */
835 struct rw_semaphore node_write; /* locking node writes */
836 struct rw_semaphore node_change; /* locking node change */
837 wait_queue_head_t cp_wait;
838 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
839 long interval_time[MAX_TIME]; /* to store thresholds */
840
841 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
842
843 /* for orphan inode, use 0'th array */
844 unsigned int max_orphans; /* max orphan inodes */
845
846 /* for inode management */
847 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
848 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
849
850 /* for extent tree cache */
851 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
852 struct mutex extent_tree_lock; /* locking extent radix tree */
853 struct list_head extent_list; /* lru list for shrinker */
854 spinlock_t extent_lock; /* locking extent lru list */
855 atomic_t total_ext_tree; /* extent tree count */
856 struct list_head zombie_list; /* extent zombie tree list */
857 atomic_t total_zombie_tree; /* extent zombie tree count */
858 atomic_t total_ext_node; /* extent info count */
859
860 /* basic filesystem units */
861 unsigned int log_sectors_per_block; /* log2 sectors per block */
862 unsigned int log_blocksize; /* log2 block size */
863 unsigned int blocksize; /* block size */
864 unsigned int root_ino_num; /* root inode number*/
865 unsigned int node_ino_num; /* node inode number*/
866 unsigned int meta_ino_num; /* meta inode number*/
867 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
868 unsigned int blocks_per_seg; /* blocks per segment */
869 unsigned int segs_per_sec; /* segments per section */
870 unsigned int secs_per_zone; /* sections per zone */
871 unsigned int total_sections; /* total section count */
872 unsigned int total_node_count; /* total node block count */
873 unsigned int total_valid_node_count; /* valid node block count */
874 loff_t max_file_blocks; /* max block index of file */
875 int active_logs; /* # of active logs */
876 int dir_level; /* directory level */
877
878 block_t user_block_count; /* # of user blocks */
879 block_t total_valid_block_count; /* # of valid blocks */
880 block_t discard_blks; /* discard command candidats */
881 block_t last_valid_block_count; /* for recovery */
882 u32 s_next_generation; /* for NFS support */
883
884 /* # of pages, see count_type */
885 atomic_t nr_pages[NR_COUNT_TYPE];
886 /* # of allocated blocks */
887 struct percpu_counter alloc_valid_block_count;
888
889 /* valid inode count */
890 struct percpu_counter total_valid_inode_count;
891
892 struct f2fs_mount_info mount_opt; /* mount options */
893
894 /* for cleaning operations */
895 struct mutex gc_mutex; /* mutex for GC */
896 struct f2fs_gc_kthread *gc_thread; /* GC thread */
897 unsigned int cur_victim_sec; /* current victim section num */
898
899 /* threshold for converting bg victims for fg */
900 u64 fggc_threshold;
901
902 /* maximum # of trials to find a victim segment for SSR and GC */
903 unsigned int max_victim_search;
904
905 /*
906 * for stat information.
907 * one is for the LFS mode, and the other is for the SSR mode.
908 */
909 #ifdef CONFIG_F2FS_STAT_FS
910 struct f2fs_stat_info *stat_info; /* FS status information */
911 unsigned int segment_count[2]; /* # of allocated segments */
912 unsigned int block_count[2]; /* # of allocated blocks */
913 atomic_t inplace_count; /* # of inplace update */
914 atomic64_t total_hit_ext; /* # of lookup extent cache */
915 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
916 atomic64_t read_hit_largest; /* # of hit largest extent node */
917 atomic64_t read_hit_cached; /* # of hit cached extent node */
918 atomic_t inline_xattr; /* # of inline_xattr inodes */
919 atomic_t inline_inode; /* # of inline_data inodes */
920 atomic_t inline_dir; /* # of inline_dentry inodes */
921 atomic_t aw_cnt; /* # of atomic writes */
922 atomic_t vw_cnt; /* # of volatile writes */
923 atomic_t max_aw_cnt; /* max # of atomic writes */
924 atomic_t max_vw_cnt; /* max # of volatile writes */
925 int bg_gc; /* background gc calls */
926 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
927 #endif
928 unsigned int last_victim[2]; /* last victim segment # */
929 spinlock_t stat_lock; /* lock for stat operations */
930
931 /* For sysfs suppport */
932 struct kobject s_kobj;
933 struct completion s_kobj_unregister;
934
935 /* For shrinker support */
936 struct list_head s_list;
937 int s_ndevs; /* number of devices */
938 struct f2fs_dev_info *devs; /* for device list */
939 struct mutex umount_mutex;
940 unsigned int shrinker_run_no;
941
942 /* For write statistics */
943 u64 sectors_written_start;
944 u64 kbytes_written;
945
946 /* Reference to checksum algorithm driver via cryptoapi */
947 struct crypto_shash *s_chksum_driver;
948
949 /* For fault injection */
950 #ifdef CONFIG_F2FS_FAULT_INJECTION
951 struct f2fs_fault_info fault_info;
952 #endif
953 };
954
955 #ifdef CONFIG_F2FS_FAULT_INJECTION
956 #define f2fs_show_injection_info(type) \
957 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
958 KERN_INFO, fault_name[type], \
959 __func__, __builtin_return_address(0))
960 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
961 {
962 struct f2fs_fault_info *ffi = &sbi->fault_info;
963
964 if (!ffi->inject_rate)
965 return false;
966
967 if (!IS_FAULT_SET(ffi, type))
968 return false;
969
970 atomic_inc(&ffi->inject_ops);
971 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
972 atomic_set(&ffi->inject_ops, 0);
973 return true;
974 }
975 return false;
976 }
977 #endif
978
979 /* For write statistics. Suppose sector size is 512 bytes,
980 * and the return value is in kbytes. s is of struct f2fs_sb_info.
981 */
982 #define BD_PART_WRITTEN(s) \
983 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
984 s->sectors_written_start) >> 1)
985
986 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
987 {
988 sbi->last_time[type] = jiffies;
989 }
990
991 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
992 {
993 struct timespec ts = {sbi->interval_time[type], 0};
994 unsigned long interval = timespec_to_jiffies(&ts);
995
996 return time_after(jiffies, sbi->last_time[type] + interval);
997 }
998
999 static inline bool is_idle(struct f2fs_sb_info *sbi)
1000 {
1001 struct block_device *bdev = sbi->sb->s_bdev;
1002 struct request_queue *q = bdev_get_queue(bdev);
1003 struct request_list *rl = &q->root_rl;
1004
1005 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1006 return 0;
1007
1008 return f2fs_time_over(sbi, REQ_TIME);
1009 }
1010
1011 /*
1012 * Inline functions
1013 */
1014 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1015 unsigned int length)
1016 {
1017 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1018 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1019 int err;
1020
1021 shash->tfm = sbi->s_chksum_driver;
1022 shash->flags = 0;
1023 *ctx = F2FS_SUPER_MAGIC;
1024
1025 err = crypto_shash_update(shash, address, length);
1026 BUG_ON(err);
1027
1028 return *ctx;
1029 }
1030
1031 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1032 void *buf, size_t buf_size)
1033 {
1034 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1035 }
1036
1037 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1038 {
1039 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1040 }
1041
1042 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1043 {
1044 return sb->s_fs_info;
1045 }
1046
1047 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1048 {
1049 return F2FS_SB(inode->i_sb);
1050 }
1051
1052 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1053 {
1054 return F2FS_I_SB(mapping->host);
1055 }
1056
1057 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1058 {
1059 return F2FS_M_SB(page->mapping);
1060 }
1061
1062 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1063 {
1064 return (struct f2fs_super_block *)(sbi->raw_super);
1065 }
1066
1067 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1068 {
1069 return (struct f2fs_checkpoint *)(sbi->ckpt);
1070 }
1071
1072 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1073 {
1074 return (struct f2fs_node *)page_address(page);
1075 }
1076
1077 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1078 {
1079 return &((struct f2fs_node *)page_address(page))->i;
1080 }
1081
1082 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1083 {
1084 return (struct f2fs_nm_info *)(sbi->nm_info);
1085 }
1086
1087 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1088 {
1089 return (struct f2fs_sm_info *)(sbi->sm_info);
1090 }
1091
1092 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1093 {
1094 return (struct sit_info *)(SM_I(sbi)->sit_info);
1095 }
1096
1097 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1098 {
1099 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1100 }
1101
1102 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1103 {
1104 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1105 }
1106
1107 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1108 {
1109 return sbi->meta_inode->i_mapping;
1110 }
1111
1112 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1113 {
1114 return sbi->node_inode->i_mapping;
1115 }
1116
1117 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1118 {
1119 return test_bit(type, &sbi->s_flag);
1120 }
1121
1122 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1123 {
1124 set_bit(type, &sbi->s_flag);
1125 }
1126
1127 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1128 {
1129 clear_bit(type, &sbi->s_flag);
1130 }
1131
1132 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1133 {
1134 return le64_to_cpu(cp->checkpoint_ver);
1135 }
1136
1137 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1138 {
1139 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1140 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1141 }
1142
1143 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1144 {
1145 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1146
1147 return ckpt_flags & f;
1148 }
1149
1150 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1151 {
1152 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1153 }
1154
1155 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1156 {
1157 unsigned int ckpt_flags;
1158
1159 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1160 ckpt_flags |= f;
1161 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1162 }
1163
1164 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1165 {
1166 spin_lock(&sbi->cp_lock);
1167 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1168 spin_unlock(&sbi->cp_lock);
1169 }
1170
1171 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1172 {
1173 unsigned int ckpt_flags;
1174
1175 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1176 ckpt_flags &= (~f);
1177 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1178 }
1179
1180 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1181 {
1182 spin_lock(&sbi->cp_lock);
1183 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1184 spin_unlock(&sbi->cp_lock);
1185 }
1186
1187 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1188 {
1189 set_sbi_flag(sbi, SBI_NEED_FSCK);
1190
1191 if (lock)
1192 spin_lock(&sbi->cp_lock);
1193 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1194 kfree(NM_I(sbi)->nat_bits);
1195 NM_I(sbi)->nat_bits = NULL;
1196 if (lock)
1197 spin_unlock(&sbi->cp_lock);
1198 }
1199
1200 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1201 struct cp_control *cpc)
1202 {
1203 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1204
1205 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1206 }
1207
1208 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1209 {
1210 down_read(&sbi->cp_rwsem);
1211 }
1212
1213 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1214 {
1215 up_read(&sbi->cp_rwsem);
1216 }
1217
1218 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1219 {
1220 down_write(&sbi->cp_rwsem);
1221 }
1222
1223 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1224 {
1225 up_write(&sbi->cp_rwsem);
1226 }
1227
1228 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1229 {
1230 int reason = CP_SYNC;
1231
1232 if (test_opt(sbi, FASTBOOT))
1233 reason = CP_FASTBOOT;
1234 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1235 reason = CP_UMOUNT;
1236 return reason;
1237 }
1238
1239 static inline bool __remain_node_summaries(int reason)
1240 {
1241 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1242 }
1243
1244 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1245 {
1246 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1247 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1248 }
1249
1250 /*
1251 * Check whether the given nid is within node id range.
1252 */
1253 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1254 {
1255 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1256 return -EINVAL;
1257 if (unlikely(nid >= NM_I(sbi)->max_nid))
1258 return -EINVAL;
1259 return 0;
1260 }
1261
1262 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1263
1264 /*
1265 * Check whether the inode has blocks or not
1266 */
1267 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1268 {
1269 if (F2FS_I(inode)->i_xattr_nid)
1270 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1271 else
1272 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1273 }
1274
1275 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1276 {
1277 return ofs == XATTR_NODE_OFFSET;
1278 }
1279
1280 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1281 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1282 struct inode *inode, blkcnt_t *count)
1283 {
1284 blkcnt_t diff;
1285
1286 #ifdef CONFIG_F2FS_FAULT_INJECTION
1287 if (time_to_inject(sbi, FAULT_BLOCK)) {
1288 f2fs_show_injection_info(FAULT_BLOCK);
1289 return false;
1290 }
1291 #endif
1292 /*
1293 * let's increase this in prior to actual block count change in order
1294 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1295 */
1296 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1297
1298 spin_lock(&sbi->stat_lock);
1299 sbi->total_valid_block_count += (block_t)(*count);
1300 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1301 diff = sbi->total_valid_block_count - sbi->user_block_count;
1302 *count -= diff;
1303 sbi->total_valid_block_count = sbi->user_block_count;
1304 if (!*count) {
1305 spin_unlock(&sbi->stat_lock);
1306 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1307 return false;
1308 }
1309 }
1310 spin_unlock(&sbi->stat_lock);
1311
1312 f2fs_i_blocks_write(inode, *count, true);
1313 return true;
1314 }
1315
1316 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1317 struct inode *inode,
1318 blkcnt_t count)
1319 {
1320 spin_lock(&sbi->stat_lock);
1321 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1322 f2fs_bug_on(sbi, inode->i_blocks < count);
1323 sbi->total_valid_block_count -= (block_t)count;
1324 spin_unlock(&sbi->stat_lock);
1325 f2fs_i_blocks_write(inode, count, false);
1326 }
1327
1328 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1329 {
1330 atomic_inc(&sbi->nr_pages[count_type]);
1331
1332 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1333 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1334 return;
1335
1336 set_sbi_flag(sbi, SBI_IS_DIRTY);
1337 }
1338
1339 static inline void inode_inc_dirty_pages(struct inode *inode)
1340 {
1341 atomic_inc(&F2FS_I(inode)->dirty_pages);
1342 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1343 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1344 }
1345
1346 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1347 {
1348 atomic_dec(&sbi->nr_pages[count_type]);
1349 }
1350
1351 static inline void inode_dec_dirty_pages(struct inode *inode)
1352 {
1353 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1354 !S_ISLNK(inode->i_mode))
1355 return;
1356
1357 atomic_dec(&F2FS_I(inode)->dirty_pages);
1358 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1359 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1360 }
1361
1362 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1363 {
1364 return atomic_read(&sbi->nr_pages[count_type]);
1365 }
1366
1367 static inline int get_dirty_pages(struct inode *inode)
1368 {
1369 return atomic_read(&F2FS_I(inode)->dirty_pages);
1370 }
1371
1372 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1373 {
1374 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1375 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1376 sbi->log_blocks_per_seg;
1377
1378 return segs / sbi->segs_per_sec;
1379 }
1380
1381 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1382 {
1383 return sbi->total_valid_block_count;
1384 }
1385
1386 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1387 {
1388 return sbi->discard_blks;
1389 }
1390
1391 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1392 {
1393 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1394
1395 /* return NAT or SIT bitmap */
1396 if (flag == NAT_BITMAP)
1397 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1398 else if (flag == SIT_BITMAP)
1399 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1400
1401 return 0;
1402 }
1403
1404 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1405 {
1406 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1407 }
1408
1409 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1410 {
1411 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1412 int offset;
1413
1414 if (__cp_payload(sbi) > 0) {
1415 if (flag == NAT_BITMAP)
1416 return &ckpt->sit_nat_version_bitmap;
1417 else
1418 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1419 } else {
1420 offset = (flag == NAT_BITMAP) ?
1421 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1422 return &ckpt->sit_nat_version_bitmap + offset;
1423 }
1424 }
1425
1426 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1427 {
1428 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1429
1430 if (sbi->cur_cp_pack == 2)
1431 start_addr += sbi->blocks_per_seg;
1432 return start_addr;
1433 }
1434
1435 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1436 {
1437 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1438
1439 if (sbi->cur_cp_pack == 1)
1440 start_addr += sbi->blocks_per_seg;
1441 return start_addr;
1442 }
1443
1444 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1445 {
1446 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1447 }
1448
1449 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1450 {
1451 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1452 }
1453
1454 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1455 struct inode *inode)
1456 {
1457 block_t valid_block_count;
1458 unsigned int valid_node_count;
1459
1460 spin_lock(&sbi->stat_lock);
1461
1462 valid_block_count = sbi->total_valid_block_count + 1;
1463 if (unlikely(valid_block_count > sbi->user_block_count)) {
1464 spin_unlock(&sbi->stat_lock);
1465 return false;
1466 }
1467
1468 valid_node_count = sbi->total_valid_node_count + 1;
1469 if (unlikely(valid_node_count > sbi->total_node_count)) {
1470 spin_unlock(&sbi->stat_lock);
1471 return false;
1472 }
1473
1474 if (inode)
1475 f2fs_i_blocks_write(inode, 1, true);
1476
1477 sbi->total_valid_node_count++;
1478 sbi->total_valid_block_count++;
1479 spin_unlock(&sbi->stat_lock);
1480
1481 percpu_counter_inc(&sbi->alloc_valid_block_count);
1482 return true;
1483 }
1484
1485 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1486 struct inode *inode)
1487 {
1488 spin_lock(&sbi->stat_lock);
1489
1490 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1491 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1492 f2fs_bug_on(sbi, !inode->i_blocks);
1493
1494 f2fs_i_blocks_write(inode, 1, false);
1495 sbi->total_valid_node_count--;
1496 sbi->total_valid_block_count--;
1497
1498 spin_unlock(&sbi->stat_lock);
1499 }
1500
1501 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1502 {
1503 return sbi->total_valid_node_count;
1504 }
1505
1506 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1507 {
1508 percpu_counter_inc(&sbi->total_valid_inode_count);
1509 }
1510
1511 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1512 {
1513 percpu_counter_dec(&sbi->total_valid_inode_count);
1514 }
1515
1516 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1517 {
1518 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1519 }
1520
1521 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1522 pgoff_t index, bool for_write)
1523 {
1524 #ifdef CONFIG_F2FS_FAULT_INJECTION
1525 struct page *page = find_lock_page(mapping, index);
1526
1527 if (page)
1528 return page;
1529
1530 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1531 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1532 return NULL;
1533 }
1534 #endif
1535 if (!for_write)
1536 return grab_cache_page(mapping, index);
1537 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1538 }
1539
1540 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1541 {
1542 char *src_kaddr = kmap(src);
1543 char *dst_kaddr = kmap(dst);
1544
1545 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1546 kunmap(dst);
1547 kunmap(src);
1548 }
1549
1550 static inline void f2fs_put_page(struct page *page, int unlock)
1551 {
1552 if (!page)
1553 return;
1554
1555 if (unlock) {
1556 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1557 unlock_page(page);
1558 }
1559 put_page(page);
1560 }
1561
1562 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1563 {
1564 if (dn->node_page)
1565 f2fs_put_page(dn->node_page, 1);
1566 if (dn->inode_page && dn->node_page != dn->inode_page)
1567 f2fs_put_page(dn->inode_page, 0);
1568 dn->node_page = NULL;
1569 dn->inode_page = NULL;
1570 }
1571
1572 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1573 size_t size)
1574 {
1575 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1576 }
1577
1578 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1579 gfp_t flags)
1580 {
1581 void *entry;
1582
1583 entry = kmem_cache_alloc(cachep, flags);
1584 if (!entry)
1585 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1586 return entry;
1587 }
1588
1589 static inline struct bio *f2fs_bio_alloc(int npages)
1590 {
1591 struct bio *bio;
1592
1593 /* No failure on bio allocation */
1594 bio = bio_alloc(GFP_NOIO, npages);
1595 if (!bio)
1596 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1597 return bio;
1598 }
1599
1600 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1601 unsigned long index, void *item)
1602 {
1603 while (radix_tree_insert(root, index, item))
1604 cond_resched();
1605 }
1606
1607 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1608
1609 static inline bool IS_INODE(struct page *page)
1610 {
1611 struct f2fs_node *p = F2FS_NODE(page);
1612
1613 return RAW_IS_INODE(p);
1614 }
1615
1616 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1617 {
1618 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1619 }
1620
1621 static inline block_t datablock_addr(struct page *node_page,
1622 unsigned int offset)
1623 {
1624 struct f2fs_node *raw_node;
1625 __le32 *addr_array;
1626
1627 raw_node = F2FS_NODE(node_page);
1628 addr_array = blkaddr_in_node(raw_node);
1629 return le32_to_cpu(addr_array[offset]);
1630 }
1631
1632 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1633 {
1634 int mask;
1635
1636 addr += (nr >> 3);
1637 mask = 1 << (7 - (nr & 0x07));
1638 return mask & *addr;
1639 }
1640
1641 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1642 {
1643 int mask;
1644
1645 addr += (nr >> 3);
1646 mask = 1 << (7 - (nr & 0x07));
1647 *addr |= mask;
1648 }
1649
1650 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1651 {
1652 int mask;
1653
1654 addr += (nr >> 3);
1655 mask = 1 << (7 - (nr & 0x07));
1656 *addr &= ~mask;
1657 }
1658
1659 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1660 {
1661 int mask;
1662 int ret;
1663
1664 addr += (nr >> 3);
1665 mask = 1 << (7 - (nr & 0x07));
1666 ret = mask & *addr;
1667 *addr |= mask;
1668 return ret;
1669 }
1670
1671 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1672 {
1673 int mask;
1674 int ret;
1675
1676 addr += (nr >> 3);
1677 mask = 1 << (7 - (nr & 0x07));
1678 ret = mask & *addr;
1679 *addr &= ~mask;
1680 return ret;
1681 }
1682
1683 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1684 {
1685 int mask;
1686
1687 addr += (nr >> 3);
1688 mask = 1 << (7 - (nr & 0x07));
1689 *addr ^= mask;
1690 }
1691
1692 /* used for f2fs_inode_info->flags */
1693 enum {
1694 FI_NEW_INODE, /* indicate newly allocated inode */
1695 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1696 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1697 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1698 FI_INC_LINK, /* need to increment i_nlink */
1699 FI_ACL_MODE, /* indicate acl mode */
1700 FI_NO_ALLOC, /* should not allocate any blocks */
1701 FI_FREE_NID, /* free allocated nide */
1702 FI_NO_EXTENT, /* not to use the extent cache */
1703 FI_INLINE_XATTR, /* used for inline xattr */
1704 FI_INLINE_DATA, /* used for inline data*/
1705 FI_INLINE_DENTRY, /* used for inline dentry */
1706 FI_APPEND_WRITE, /* inode has appended data */
1707 FI_UPDATE_WRITE, /* inode has in-place-update data */
1708 FI_NEED_IPU, /* used for ipu per file */
1709 FI_ATOMIC_FILE, /* indicate atomic file */
1710 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1711 FI_VOLATILE_FILE, /* indicate volatile file */
1712 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1713 FI_DROP_CACHE, /* drop dirty page cache */
1714 FI_DATA_EXIST, /* indicate data exists */
1715 FI_INLINE_DOTS, /* indicate inline dot dentries */
1716 FI_DO_DEFRAG, /* indicate defragment is running */
1717 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1718 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1719 };
1720
1721 static inline void __mark_inode_dirty_flag(struct inode *inode,
1722 int flag, bool set)
1723 {
1724 switch (flag) {
1725 case FI_INLINE_XATTR:
1726 case FI_INLINE_DATA:
1727 case FI_INLINE_DENTRY:
1728 if (set)
1729 return;
1730 case FI_DATA_EXIST:
1731 case FI_INLINE_DOTS:
1732 f2fs_mark_inode_dirty_sync(inode, true);
1733 }
1734 }
1735
1736 static inline void set_inode_flag(struct inode *inode, int flag)
1737 {
1738 if (!test_bit(flag, &F2FS_I(inode)->flags))
1739 set_bit(flag, &F2FS_I(inode)->flags);
1740 __mark_inode_dirty_flag(inode, flag, true);
1741 }
1742
1743 static inline int is_inode_flag_set(struct inode *inode, int flag)
1744 {
1745 return test_bit(flag, &F2FS_I(inode)->flags);
1746 }
1747
1748 static inline void clear_inode_flag(struct inode *inode, int flag)
1749 {
1750 if (test_bit(flag, &F2FS_I(inode)->flags))
1751 clear_bit(flag, &F2FS_I(inode)->flags);
1752 __mark_inode_dirty_flag(inode, flag, false);
1753 }
1754
1755 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1756 {
1757 F2FS_I(inode)->i_acl_mode = mode;
1758 set_inode_flag(inode, FI_ACL_MODE);
1759 f2fs_mark_inode_dirty_sync(inode, false);
1760 }
1761
1762 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1763 {
1764 if (inc)
1765 inc_nlink(inode);
1766 else
1767 drop_nlink(inode);
1768 f2fs_mark_inode_dirty_sync(inode, true);
1769 }
1770
1771 static inline void f2fs_i_blocks_write(struct inode *inode,
1772 blkcnt_t diff, bool add)
1773 {
1774 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1775 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1776
1777 inode->i_blocks = add ? inode->i_blocks + diff :
1778 inode->i_blocks - diff;
1779 f2fs_mark_inode_dirty_sync(inode, true);
1780 if (clean || recover)
1781 set_inode_flag(inode, FI_AUTO_RECOVER);
1782 }
1783
1784 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1785 {
1786 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1787 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1788
1789 if (i_size_read(inode) == i_size)
1790 return;
1791
1792 i_size_write(inode, i_size);
1793 f2fs_mark_inode_dirty_sync(inode, true);
1794 if (clean || recover)
1795 set_inode_flag(inode, FI_AUTO_RECOVER);
1796 }
1797
1798 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1799 {
1800 F2FS_I(inode)->i_current_depth = depth;
1801 f2fs_mark_inode_dirty_sync(inode, true);
1802 }
1803
1804 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1805 {
1806 F2FS_I(inode)->i_xattr_nid = xnid;
1807 f2fs_mark_inode_dirty_sync(inode, true);
1808 }
1809
1810 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1811 {
1812 F2FS_I(inode)->i_pino = pino;
1813 f2fs_mark_inode_dirty_sync(inode, true);
1814 }
1815
1816 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1817 {
1818 struct f2fs_inode_info *fi = F2FS_I(inode);
1819
1820 if (ri->i_inline & F2FS_INLINE_XATTR)
1821 set_bit(FI_INLINE_XATTR, &fi->flags);
1822 if (ri->i_inline & F2FS_INLINE_DATA)
1823 set_bit(FI_INLINE_DATA, &fi->flags);
1824 if (ri->i_inline & F2FS_INLINE_DENTRY)
1825 set_bit(FI_INLINE_DENTRY, &fi->flags);
1826 if (ri->i_inline & F2FS_DATA_EXIST)
1827 set_bit(FI_DATA_EXIST, &fi->flags);
1828 if (ri->i_inline & F2FS_INLINE_DOTS)
1829 set_bit(FI_INLINE_DOTS, &fi->flags);
1830 }
1831
1832 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1833 {
1834 ri->i_inline = 0;
1835
1836 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1837 ri->i_inline |= F2FS_INLINE_XATTR;
1838 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1839 ri->i_inline |= F2FS_INLINE_DATA;
1840 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1841 ri->i_inline |= F2FS_INLINE_DENTRY;
1842 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1843 ri->i_inline |= F2FS_DATA_EXIST;
1844 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1845 ri->i_inline |= F2FS_INLINE_DOTS;
1846 }
1847
1848 static inline int f2fs_has_inline_xattr(struct inode *inode)
1849 {
1850 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1851 }
1852
1853 static inline unsigned int addrs_per_inode(struct inode *inode)
1854 {
1855 if (f2fs_has_inline_xattr(inode))
1856 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1857 return DEF_ADDRS_PER_INODE;
1858 }
1859
1860 static inline void *inline_xattr_addr(struct page *page)
1861 {
1862 struct f2fs_inode *ri = F2FS_INODE(page);
1863
1864 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1865 F2FS_INLINE_XATTR_ADDRS]);
1866 }
1867
1868 static inline int inline_xattr_size(struct inode *inode)
1869 {
1870 if (f2fs_has_inline_xattr(inode))
1871 return F2FS_INLINE_XATTR_ADDRS << 2;
1872 else
1873 return 0;
1874 }
1875
1876 static inline int f2fs_has_inline_data(struct inode *inode)
1877 {
1878 return is_inode_flag_set(inode, FI_INLINE_DATA);
1879 }
1880
1881 static inline int f2fs_exist_data(struct inode *inode)
1882 {
1883 return is_inode_flag_set(inode, FI_DATA_EXIST);
1884 }
1885
1886 static inline int f2fs_has_inline_dots(struct inode *inode)
1887 {
1888 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1889 }
1890
1891 static inline bool f2fs_is_atomic_file(struct inode *inode)
1892 {
1893 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1894 }
1895
1896 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1897 {
1898 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1899 }
1900
1901 static inline bool f2fs_is_volatile_file(struct inode *inode)
1902 {
1903 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1904 }
1905
1906 static inline bool f2fs_is_first_block_written(struct inode *inode)
1907 {
1908 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1909 }
1910
1911 static inline bool f2fs_is_drop_cache(struct inode *inode)
1912 {
1913 return is_inode_flag_set(inode, FI_DROP_CACHE);
1914 }
1915
1916 static inline void *inline_data_addr(struct page *page)
1917 {
1918 struct f2fs_inode *ri = F2FS_INODE(page);
1919
1920 return (void *)&(ri->i_addr[1]);
1921 }
1922
1923 static inline int f2fs_has_inline_dentry(struct inode *inode)
1924 {
1925 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1926 }
1927
1928 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1929 {
1930 if (!f2fs_has_inline_dentry(dir))
1931 kunmap(page);
1932 }
1933
1934 static inline int is_file(struct inode *inode, int type)
1935 {
1936 return F2FS_I(inode)->i_advise & type;
1937 }
1938
1939 static inline void set_file(struct inode *inode, int type)
1940 {
1941 F2FS_I(inode)->i_advise |= type;
1942 f2fs_mark_inode_dirty_sync(inode, true);
1943 }
1944
1945 static inline void clear_file(struct inode *inode, int type)
1946 {
1947 F2FS_I(inode)->i_advise &= ~type;
1948 f2fs_mark_inode_dirty_sync(inode, true);
1949 }
1950
1951 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1952 {
1953 if (dsync) {
1954 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1955 bool ret;
1956
1957 spin_lock(&sbi->inode_lock[DIRTY_META]);
1958 ret = list_empty(&F2FS_I(inode)->gdirty_list);
1959 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1960 return ret;
1961 }
1962 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1963 file_keep_isize(inode) ||
1964 i_size_read(inode) & PAGE_MASK)
1965 return false;
1966 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1967 }
1968
1969 static inline int f2fs_readonly(struct super_block *sb)
1970 {
1971 return sb->s_flags & MS_RDONLY;
1972 }
1973
1974 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1975 {
1976 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1977 }
1978
1979 static inline bool is_dot_dotdot(const struct qstr *str)
1980 {
1981 if (str->len == 1 && str->name[0] == '.')
1982 return true;
1983
1984 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1985 return true;
1986
1987 return false;
1988 }
1989
1990 static inline bool f2fs_may_extent_tree(struct inode *inode)
1991 {
1992 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1993 is_inode_flag_set(inode, FI_NO_EXTENT))
1994 return false;
1995
1996 return S_ISREG(inode->i_mode);
1997 }
1998
1999 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2000 size_t size, gfp_t flags)
2001 {
2002 #ifdef CONFIG_F2FS_FAULT_INJECTION
2003 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2004 f2fs_show_injection_info(FAULT_KMALLOC);
2005 return NULL;
2006 }
2007 #endif
2008 return kmalloc(size, flags);
2009 }
2010
2011 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2012 {
2013 void *ret;
2014
2015 ret = kmalloc(size, flags | __GFP_NOWARN);
2016 if (!ret)
2017 ret = __vmalloc(size, flags, PAGE_KERNEL);
2018 return ret;
2019 }
2020
2021 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2022 {
2023 void *ret;
2024
2025 ret = kzalloc(size, flags | __GFP_NOWARN);
2026 if (!ret)
2027 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2028 return ret;
2029 }
2030
2031 #define get_inode_mode(i) \
2032 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2033 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2034
2035 /*
2036 * file.c
2037 */
2038 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2039 void truncate_data_blocks(struct dnode_of_data *dn);
2040 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2041 int f2fs_truncate(struct inode *inode);
2042 int f2fs_getattr(const struct path *path, struct kstat *stat,
2043 u32 request_mask, unsigned int flags);
2044 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2045 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2046 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2047 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2048 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2049
2050 /*
2051 * inode.c
2052 */
2053 void f2fs_set_inode_flags(struct inode *inode);
2054 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2055 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2056 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2057 int update_inode(struct inode *inode, struct page *node_page);
2058 int update_inode_page(struct inode *inode);
2059 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2060 void f2fs_evict_inode(struct inode *inode);
2061 void handle_failed_inode(struct inode *inode);
2062
2063 /*
2064 * namei.c
2065 */
2066 struct dentry *f2fs_get_parent(struct dentry *child);
2067
2068 /*
2069 * dir.c
2070 */
2071 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2072 unsigned char get_de_type(struct f2fs_dir_entry *de);
2073 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2074 f2fs_hash_t namehash, int *max_slots,
2075 struct f2fs_dentry_ptr *d);
2076 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2077 unsigned int start_pos, struct fscrypt_str *fstr);
2078 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2079 struct f2fs_dentry_ptr *d);
2080 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2081 const struct qstr *new_name,
2082 const struct qstr *orig_name, struct page *dpage);
2083 void update_parent_metadata(struct inode *dir, struct inode *inode,
2084 unsigned int current_depth);
2085 int room_for_filename(const void *bitmap, int slots, int max_slots);
2086 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2087 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2088 struct fscrypt_name *fname, struct page **res_page);
2089 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2090 const struct qstr *child, struct page **res_page);
2091 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2092 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2093 struct page **page);
2094 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2095 struct page *page, struct inode *inode);
2096 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2097 const struct qstr *name, f2fs_hash_t name_hash,
2098 unsigned int bit_pos);
2099 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2100 const struct qstr *orig_name,
2101 struct inode *inode, nid_t ino, umode_t mode);
2102 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2103 struct inode *inode, nid_t ino, umode_t mode);
2104 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2105 struct inode *inode, nid_t ino, umode_t mode);
2106 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2107 struct inode *dir, struct inode *inode);
2108 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2109 bool f2fs_empty_dir(struct inode *dir);
2110
2111 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2112 {
2113 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2114 inode, inode->i_ino, inode->i_mode);
2115 }
2116
2117 /*
2118 * super.c
2119 */
2120 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2121 void f2fs_inode_synced(struct inode *inode);
2122 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2123 int f2fs_sync_fs(struct super_block *sb, int sync);
2124 extern __printf(3, 4)
2125 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2126 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2127
2128 /*
2129 * hash.c
2130 */
2131 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2132
2133 /*
2134 * node.c
2135 */
2136 struct dnode_of_data;
2137 struct node_info;
2138
2139 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2140 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2141 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2142 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2143 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2144 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2145 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2146 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2147 int truncate_xattr_node(struct inode *inode, struct page *page);
2148 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2149 int remove_inode_page(struct inode *inode);
2150 struct page *new_inode_page(struct inode *inode);
2151 struct page *new_node_page(struct dnode_of_data *dn,
2152 unsigned int ofs, struct page *ipage);
2153 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2154 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2155 struct page *get_node_page_ra(struct page *parent, int start);
2156 void move_node_page(struct page *node_page, int gc_type);
2157 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2158 struct writeback_control *wbc, bool atomic);
2159 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2160 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2161 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2162 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2163 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2164 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2165 void recover_inline_xattr(struct inode *inode, struct page *page);
2166 int recover_xattr_data(struct inode *inode, struct page *page,
2167 block_t blkaddr);
2168 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2169 int restore_node_summary(struct f2fs_sb_info *sbi,
2170 unsigned int segno, struct f2fs_summary_block *sum);
2171 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2172 int build_node_manager(struct f2fs_sb_info *sbi);
2173 void destroy_node_manager(struct f2fs_sb_info *sbi);
2174 int __init create_node_manager_caches(void);
2175 void destroy_node_manager_caches(void);
2176
2177 /*
2178 * segment.c
2179 */
2180 void register_inmem_page(struct inode *inode, struct page *page);
2181 void drop_inmem_pages(struct inode *inode);
2182 void drop_inmem_page(struct inode *inode, struct page *page);
2183 int commit_inmem_pages(struct inode *inode);
2184 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2185 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2186 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2187 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2188 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2189 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2190 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2191 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2192 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2193 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2194 void release_discard_addrs(struct f2fs_sb_info *sbi);
2195 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2196 void allocate_new_segments(struct f2fs_sb_info *sbi);
2197 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2198 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2199 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2200 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2201 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2202 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2203 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2204 void rewrite_data_page(struct f2fs_io_info *fio);
2205 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2206 block_t old_blkaddr, block_t new_blkaddr,
2207 bool recover_curseg, bool recover_newaddr);
2208 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2209 block_t old_addr, block_t new_addr,
2210 unsigned char version, bool recover_curseg,
2211 bool recover_newaddr);
2212 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2213 block_t old_blkaddr, block_t *new_blkaddr,
2214 struct f2fs_summary *sum, int type);
2215 void f2fs_wait_on_page_writeback(struct page *page,
2216 enum page_type type, bool ordered);
2217 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2218 block_t blkaddr);
2219 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2220 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2221 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2222 unsigned int val, int alloc);
2223 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2224 int build_segment_manager(struct f2fs_sb_info *sbi);
2225 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2226 int __init create_segment_manager_caches(void);
2227 void destroy_segment_manager_caches(void);
2228
2229 /*
2230 * checkpoint.c
2231 */
2232 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2233 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2234 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2235 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2236 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2237 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2238 int type, bool sync);
2239 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2241 long nr_to_write);
2242 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2243 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2244 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2245 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2246 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2247 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2248 void release_orphan_inode(struct f2fs_sb_info *sbi);
2249 void add_orphan_inode(struct inode *inode);
2250 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2251 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2252 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2253 void update_dirty_page(struct inode *inode, struct page *page);
2254 void remove_dirty_inode(struct inode *inode);
2255 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2256 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2257 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2258 int __init create_checkpoint_caches(void);
2259 void destroy_checkpoint_caches(void);
2260
2261 /*
2262 * data.c
2263 */
2264 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2265 int rw);
2266 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2267 struct inode *inode, nid_t ino, pgoff_t idx,
2268 enum page_type type, int rw);
2269 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2270 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2271 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2272 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2273 block_t blk_addr, struct bio *bio);
2274 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2275 void set_data_blkaddr(struct dnode_of_data *dn);
2276 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2277 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2278 int reserve_new_block(struct dnode_of_data *dn);
2279 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2280 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2281 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2282 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2283 int op_flags, bool for_write);
2284 struct page *find_data_page(struct inode *inode, pgoff_t index);
2285 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2286 bool for_write);
2287 struct page *get_new_data_page(struct inode *inode,
2288 struct page *ipage, pgoff_t index, bool new_i_size);
2289 int do_write_data_page(struct f2fs_io_info *fio);
2290 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2291 int create, int flag);
2292 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2293 u64 start, u64 len);
2294 void f2fs_set_page_dirty_nobuffers(struct page *page);
2295 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2296 unsigned int length);
2297 int f2fs_release_page(struct page *page, gfp_t wait);
2298 #ifdef CONFIG_MIGRATION
2299 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2300 struct page *page, enum migrate_mode mode);
2301 #endif
2302
2303 /*
2304 * gc.c
2305 */
2306 int start_gc_thread(struct f2fs_sb_info *sbi);
2307 void stop_gc_thread(struct f2fs_sb_info *sbi);
2308 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2309 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2310 void build_gc_manager(struct f2fs_sb_info *sbi);
2311
2312 /*
2313 * recovery.c
2314 */
2315 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2316 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2317
2318 /*
2319 * debug.c
2320 */
2321 #ifdef CONFIG_F2FS_STAT_FS
2322 struct f2fs_stat_info {
2323 struct list_head stat_list;
2324 struct f2fs_sb_info *sbi;
2325 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2326 int main_area_segs, main_area_sections, main_area_zones;
2327 unsigned long long hit_largest, hit_cached, hit_rbtree;
2328 unsigned long long hit_total, total_ext;
2329 int ext_tree, zombie_tree, ext_node;
2330 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2331 int inmem_pages;
2332 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2333 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2334 int total_count, utilization;
2335 int bg_gc, nr_wb_cp_data, nr_wb_data;
2336 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2337 int nr_discard_cmd;
2338 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2339 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2340 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2341 unsigned int bimodal, avg_vblocks;
2342 int util_free, util_valid, util_invalid;
2343 int rsvd_segs, overp_segs;
2344 int dirty_count, node_pages, meta_pages;
2345 int prefree_count, call_count, cp_count, bg_cp_count;
2346 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2347 int bg_node_segs, bg_data_segs;
2348 int tot_blks, data_blks, node_blks;
2349 int bg_data_blks, bg_node_blks;
2350 int curseg[NR_CURSEG_TYPE];
2351 int cursec[NR_CURSEG_TYPE];
2352 int curzone[NR_CURSEG_TYPE];
2353
2354 unsigned int segment_count[2];
2355 unsigned int block_count[2];
2356 unsigned int inplace_count;
2357 unsigned long long base_mem, cache_mem, page_mem;
2358 };
2359
2360 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2361 {
2362 return (struct f2fs_stat_info *)sbi->stat_info;
2363 }
2364
2365 #define stat_inc_cp_count(si) ((si)->cp_count++)
2366 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2367 #define stat_inc_call_count(si) ((si)->call_count++)
2368 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2369 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2370 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2371 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2372 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2373 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2374 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2375 #define stat_inc_inline_xattr(inode) \
2376 do { \
2377 if (f2fs_has_inline_xattr(inode)) \
2378 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2379 } while (0)
2380 #define stat_dec_inline_xattr(inode) \
2381 do { \
2382 if (f2fs_has_inline_xattr(inode)) \
2383 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2384 } while (0)
2385 #define stat_inc_inline_inode(inode) \
2386 do { \
2387 if (f2fs_has_inline_data(inode)) \
2388 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2389 } while (0)
2390 #define stat_dec_inline_inode(inode) \
2391 do { \
2392 if (f2fs_has_inline_data(inode)) \
2393 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2394 } while (0)
2395 #define stat_inc_inline_dir(inode) \
2396 do { \
2397 if (f2fs_has_inline_dentry(inode)) \
2398 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2399 } while (0)
2400 #define stat_dec_inline_dir(inode) \
2401 do { \
2402 if (f2fs_has_inline_dentry(inode)) \
2403 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2404 } while (0)
2405 #define stat_inc_seg_type(sbi, curseg) \
2406 ((sbi)->segment_count[(curseg)->alloc_type]++)
2407 #define stat_inc_block_count(sbi, curseg) \
2408 ((sbi)->block_count[(curseg)->alloc_type]++)
2409 #define stat_inc_inplace_blocks(sbi) \
2410 (atomic_inc(&(sbi)->inplace_count))
2411 #define stat_inc_atomic_write(inode) \
2412 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2413 #define stat_dec_atomic_write(inode) \
2414 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2415 #define stat_update_max_atomic_write(inode) \
2416 do { \
2417 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2418 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2419 if (cur > max) \
2420 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2421 } while (0)
2422 #define stat_inc_volatile_write(inode) \
2423 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2424 #define stat_dec_volatile_write(inode) \
2425 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2426 #define stat_update_max_volatile_write(inode) \
2427 do { \
2428 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2429 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2430 if (cur > max) \
2431 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2432 } while (0)
2433 #define stat_inc_seg_count(sbi, type, gc_type) \
2434 do { \
2435 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2436 (si)->tot_segs++; \
2437 if (type == SUM_TYPE_DATA) { \
2438 si->data_segs++; \
2439 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2440 } else { \
2441 si->node_segs++; \
2442 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2443 } \
2444 } while (0)
2445
2446 #define stat_inc_tot_blk_count(si, blks) \
2447 (si->tot_blks += (blks))
2448
2449 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2450 do { \
2451 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2452 stat_inc_tot_blk_count(si, blks); \
2453 si->data_blks += (blks); \
2454 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2455 } while (0)
2456
2457 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2458 do { \
2459 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2460 stat_inc_tot_blk_count(si, blks); \
2461 si->node_blks += (blks); \
2462 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2463 } while (0)
2464
2465 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2466 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2467 int __init f2fs_create_root_stats(void);
2468 void f2fs_destroy_root_stats(void);
2469 #else
2470 #define stat_inc_cp_count(si)
2471 #define stat_inc_bg_cp_count(si)
2472 #define stat_inc_call_count(si)
2473 #define stat_inc_bggc_count(si)
2474 #define stat_inc_dirty_inode(sbi, type)
2475 #define stat_dec_dirty_inode(sbi, type)
2476 #define stat_inc_total_hit(sb)
2477 #define stat_inc_rbtree_node_hit(sb)
2478 #define stat_inc_largest_node_hit(sbi)
2479 #define stat_inc_cached_node_hit(sbi)
2480 #define stat_inc_inline_xattr(inode)
2481 #define stat_dec_inline_xattr(inode)
2482 #define stat_inc_inline_inode(inode)
2483 #define stat_dec_inline_inode(inode)
2484 #define stat_inc_inline_dir(inode)
2485 #define stat_dec_inline_dir(inode)
2486 #define stat_inc_atomic_write(inode)
2487 #define stat_dec_atomic_write(inode)
2488 #define stat_update_max_atomic_write(inode)
2489 #define stat_inc_volatile_write(inode)
2490 #define stat_dec_volatile_write(inode)
2491 #define stat_update_max_volatile_write(inode)
2492 #define stat_inc_seg_type(sbi, curseg)
2493 #define stat_inc_block_count(sbi, curseg)
2494 #define stat_inc_inplace_blocks(sbi)
2495 #define stat_inc_seg_count(sbi, type, gc_type)
2496 #define stat_inc_tot_blk_count(si, blks)
2497 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2498 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2499
2500 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2501 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2502 static inline int __init f2fs_create_root_stats(void) { return 0; }
2503 static inline void f2fs_destroy_root_stats(void) { }
2504 #endif
2505
2506 extern const struct file_operations f2fs_dir_operations;
2507 extern const struct file_operations f2fs_file_operations;
2508 extern const struct inode_operations f2fs_file_inode_operations;
2509 extern const struct address_space_operations f2fs_dblock_aops;
2510 extern const struct address_space_operations f2fs_node_aops;
2511 extern const struct address_space_operations f2fs_meta_aops;
2512 extern const struct inode_operations f2fs_dir_inode_operations;
2513 extern const struct inode_operations f2fs_symlink_inode_operations;
2514 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2515 extern const struct inode_operations f2fs_special_inode_operations;
2516 extern struct kmem_cache *inode_entry_slab;
2517
2518 /*
2519 * inline.c
2520 */
2521 bool f2fs_may_inline_data(struct inode *inode);
2522 bool f2fs_may_inline_dentry(struct inode *inode);
2523 void read_inline_data(struct page *page, struct page *ipage);
2524 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2525 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2526 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2527 int f2fs_convert_inline_inode(struct inode *inode);
2528 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2529 bool recover_inline_data(struct inode *inode, struct page *npage);
2530 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2531 struct fscrypt_name *fname, struct page **res_page);
2532 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2533 struct page *ipage);
2534 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2535 const struct qstr *orig_name,
2536 struct inode *inode, nid_t ino, umode_t mode);
2537 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2538 struct inode *dir, struct inode *inode);
2539 bool f2fs_empty_inline_dir(struct inode *dir);
2540 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2541 struct fscrypt_str *fstr);
2542 int f2fs_inline_data_fiemap(struct inode *inode,
2543 struct fiemap_extent_info *fieinfo,
2544 __u64 start, __u64 len);
2545
2546 /*
2547 * shrinker.c
2548 */
2549 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2550 struct shrink_control *sc);
2551 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2552 struct shrink_control *sc);
2553 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2554 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2555
2556 /*
2557 * extent_cache.c
2558 */
2559 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2560 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2561 void f2fs_drop_extent_tree(struct inode *inode);
2562 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2563 void f2fs_destroy_extent_tree(struct inode *inode);
2564 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2565 struct extent_info *ei);
2566 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2567 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2568 pgoff_t fofs, block_t blkaddr, unsigned int len);
2569 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2570 int __init create_extent_cache(void);
2571 void destroy_extent_cache(void);
2572
2573 /*
2574 * crypto support
2575 */
2576 static inline bool f2fs_encrypted_inode(struct inode *inode)
2577 {
2578 return file_is_encrypt(inode);
2579 }
2580
2581 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2582 {
2583 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2584 file_set_encrypt(inode);
2585 #endif
2586 }
2587
2588 static inline bool f2fs_bio_encrypted(struct bio *bio)
2589 {
2590 return bio->bi_private != NULL;
2591 }
2592
2593 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2594 {
2595 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2596 }
2597
2598 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2599 {
2600 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2601 }
2602
2603 #ifdef CONFIG_BLK_DEV_ZONED
2604 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2605 struct block_device *bdev, block_t blkaddr)
2606 {
2607 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2608 int i;
2609
2610 for (i = 0; i < sbi->s_ndevs; i++)
2611 if (FDEV(i).bdev == bdev)
2612 return FDEV(i).blkz_type[zno];
2613 return -EINVAL;
2614 }
2615 #endif
2616
2617 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2618 {
2619 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2620
2621 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2622 }
2623
2624 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2625 {
2626 clear_opt(sbi, ADAPTIVE);
2627 clear_opt(sbi, LFS);
2628
2629 switch (mt) {
2630 case F2FS_MOUNT_ADAPTIVE:
2631 set_opt(sbi, ADAPTIVE);
2632 break;
2633 case F2FS_MOUNT_LFS:
2634 set_opt(sbi, LFS);
2635 break;
2636 }
2637 }
2638
2639 static inline bool f2fs_may_encrypt(struct inode *inode)
2640 {
2641 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2642 umode_t mode = inode->i_mode;
2643
2644 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2645 #else
2646 return 0;
2647 #endif
2648 }
2649
2650 #endif