]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: check blkaddr more accuratly before issue a bio
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27
28 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
29 #include <linux/fscrypt.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 enum {
45 FAULT_KMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
97
98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101
102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
103 typecheck(unsigned long long, b) && \
104 ((long long)((a) - (b)) > 0))
105
106 typedef u32 block_t; /*
107 * should not change u32, since it is the on-disk block
108 * address format, __le32.
109 */
110 typedef u32 nid_t;
111
112 struct f2fs_mount_info {
113 unsigned int opt;
114 };
115
116 #define F2FS_FEATURE_ENCRYPT 0x0001
117 #define F2FS_FEATURE_BLKZONED 0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
120 #define F2FS_FEATURE_PRJQUOTA 0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
122 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
123 #define F2FS_FEATURE_QUOTA_INO 0x0080
124
125 #define F2FS_HAS_FEATURE(sb, mask) \
126 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
127 #define F2FS_SET_FEATURE(sb, mask) \
128 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
129 #define F2FS_CLEAR_FEATURE(sb, mask) \
130 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
131
132 /*
133 * For checkpoint manager
134 */
135 enum {
136 NAT_BITMAP,
137 SIT_BITMAP
138 };
139
140 #define CP_UMOUNT 0x00000001
141 #define CP_FASTBOOT 0x00000002
142 #define CP_SYNC 0x00000004
143 #define CP_RECOVERY 0x00000008
144 #define CP_DISCARD 0x00000010
145 #define CP_TRIMMED 0x00000020
146
147 #define DEF_BATCHED_TRIM_SECTIONS 2048
148 #define BATCHED_TRIM_SEGMENTS(sbi) \
149 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
150 #define BATCHED_TRIM_BLOCKS(sbi) \
151 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
152 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
153 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
154 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
155 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
156 #define DEF_CP_INTERVAL 60 /* 60 secs */
157 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
158
159 struct cp_control {
160 int reason;
161 __u64 trim_start;
162 __u64 trim_end;
163 __u64 trim_minlen;
164 };
165
166 /*
167 * For CP/NAT/SIT/SSA readahead
168 */
169 enum {
170 META_CP,
171 META_NAT,
172 META_SIT,
173 META_SSA,
174 META_POR,
175 };
176
177 /* for the list of ino */
178 enum {
179 ORPHAN_INO, /* for orphan ino list */
180 APPEND_INO, /* for append ino list */
181 UPDATE_INO, /* for update ino list */
182 FLUSH_INO, /* for multiple device flushing */
183 MAX_INO_ENTRY, /* max. list */
184 };
185
186 struct ino_entry {
187 struct list_head list; /* list head */
188 nid_t ino; /* inode number */
189 unsigned int dirty_device; /* dirty device bitmap */
190 };
191
192 /* for the list of inodes to be GCed */
193 struct inode_entry {
194 struct list_head list; /* list head */
195 struct inode *inode; /* vfs inode pointer */
196 };
197
198 /* for the bitmap indicate blocks to be discarded */
199 struct discard_entry {
200 struct list_head list; /* list head */
201 block_t start_blkaddr; /* start blockaddr of current segment */
202 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
203 };
204
205 /* default discard granularity of inner discard thread, unit: block count */
206 #define DEFAULT_DISCARD_GRANULARITY 16
207
208 /* max discard pend list number */
209 #define MAX_PLIST_NUM 512
210 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
211 (MAX_PLIST_NUM - 1) : (blk_num - 1))
212
213 enum {
214 D_PREP,
215 D_SUBMIT,
216 D_DONE,
217 };
218
219 struct discard_info {
220 block_t lstart; /* logical start address */
221 block_t len; /* length */
222 block_t start; /* actual start address in dev */
223 };
224
225 struct discard_cmd {
226 struct rb_node rb_node; /* rb node located in rb-tree */
227 union {
228 struct {
229 block_t lstart; /* logical start address */
230 block_t len; /* length */
231 block_t start; /* actual start address in dev */
232 };
233 struct discard_info di; /* discard info */
234
235 };
236 struct list_head list; /* command list */
237 struct completion wait; /* compleation */
238 struct block_device *bdev; /* bdev */
239 unsigned short ref; /* reference count */
240 unsigned char state; /* state */
241 int error; /* bio error */
242 };
243
244 enum {
245 DPOLICY_BG,
246 DPOLICY_FORCE,
247 DPOLICY_FSTRIM,
248 DPOLICY_UMOUNT,
249 MAX_DPOLICY,
250 };
251
252 struct discard_policy {
253 int type; /* type of discard */
254 unsigned int min_interval; /* used for candidates exist */
255 unsigned int max_interval; /* used for candidates not exist */
256 unsigned int max_requests; /* # of discards issued per round */
257 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
258 bool io_aware; /* issue discard in idle time */
259 bool sync; /* submit discard with REQ_SYNC flag */
260 unsigned int granularity; /* discard granularity */
261 };
262
263 struct discard_cmd_control {
264 struct task_struct *f2fs_issue_discard; /* discard thread */
265 struct list_head entry_list; /* 4KB discard entry list */
266 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
267 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
268 struct list_head wait_list; /* store on-flushing entries */
269 struct list_head fstrim_list; /* in-flight discard from fstrim */
270 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
271 unsigned int discard_wake; /* to wake up discard thread */
272 struct mutex cmd_lock;
273 unsigned int nr_discards; /* # of discards in the list */
274 unsigned int max_discards; /* max. discards to be issued */
275 unsigned int discard_granularity; /* discard granularity */
276 unsigned int undiscard_blks; /* # of undiscard blocks */
277 atomic_t issued_discard; /* # of issued discard */
278 atomic_t issing_discard; /* # of issing discard */
279 atomic_t discard_cmd_cnt; /* # of cached cmd count */
280 struct rb_root root; /* root of discard rb-tree */
281 };
282
283 /* for the list of fsync inodes, used only during recovery */
284 struct fsync_inode_entry {
285 struct list_head list; /* list head */
286 struct inode *inode; /* vfs inode pointer */
287 block_t blkaddr; /* block address locating the last fsync */
288 block_t last_dentry; /* block address locating the last dentry */
289 };
290
291 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
292 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
293
294 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
295 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
296 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
297 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
298
299 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
300 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
301
302 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
303 {
304 int before = nats_in_cursum(journal);
305
306 journal->n_nats = cpu_to_le16(before + i);
307 return before;
308 }
309
310 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
311 {
312 int before = sits_in_cursum(journal);
313
314 journal->n_sits = cpu_to_le16(before + i);
315 return before;
316 }
317
318 static inline bool __has_cursum_space(struct f2fs_journal *journal,
319 int size, int type)
320 {
321 if (type == NAT_JOURNAL)
322 return size <= MAX_NAT_JENTRIES(journal);
323 return size <= MAX_SIT_JENTRIES(journal);
324 }
325
326 /*
327 * ioctl commands
328 */
329 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
330 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
331 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
332
333 #define F2FS_IOCTL_MAGIC 0xf5
334 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
335 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
336 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
337 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
338 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
339 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
340 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
341 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
342 struct f2fs_defragment)
343 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
344 struct f2fs_move_range)
345 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
346 struct f2fs_flush_device)
347 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
348 struct f2fs_gc_range)
349 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
350
351 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
352 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
353 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
354
355 /*
356 * should be same as XFS_IOC_GOINGDOWN.
357 * Flags for going down operation used by FS_IOC_GOINGDOWN
358 */
359 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
360 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
361 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
362 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
363 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
364
365 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
366 /*
367 * ioctl commands in 32 bit emulation
368 */
369 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
370 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
371 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
372 #endif
373
374 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
375 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
376
377 struct f2fs_gc_range {
378 u32 sync;
379 u64 start;
380 u64 len;
381 };
382
383 struct f2fs_defragment {
384 u64 start;
385 u64 len;
386 };
387
388 struct f2fs_move_range {
389 u32 dst_fd; /* destination fd */
390 u64 pos_in; /* start position in src_fd */
391 u64 pos_out; /* start position in dst_fd */
392 u64 len; /* size to move */
393 };
394
395 struct f2fs_flush_device {
396 u32 dev_num; /* device number to flush */
397 u32 segments; /* # of segments to flush */
398 };
399
400 /* for inline stuff */
401 #define DEF_INLINE_RESERVED_SIZE 1
402 #define DEF_MIN_INLINE_SIZE 1
403 static inline int get_extra_isize(struct inode *inode);
404 static inline int get_inline_xattr_addrs(struct inode *inode);
405 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode)
406 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
407 (CUR_ADDRS_PER_INODE(inode) - \
408 F2FS_INLINE_XATTR_ADDRS(inode) - \
409 DEF_INLINE_RESERVED_SIZE))
410
411 /* for inline dir */
412 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
413 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
414 BITS_PER_BYTE + 1))
415 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
416 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
417 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
418 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
419 NR_INLINE_DENTRY(inode) + \
420 INLINE_DENTRY_BITMAP_SIZE(inode)))
421
422 /*
423 * For INODE and NODE manager
424 */
425 /* for directory operations */
426 struct f2fs_dentry_ptr {
427 struct inode *inode;
428 void *bitmap;
429 struct f2fs_dir_entry *dentry;
430 __u8 (*filename)[F2FS_SLOT_LEN];
431 int max;
432 int nr_bitmap;
433 };
434
435 static inline void make_dentry_ptr_block(struct inode *inode,
436 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
437 {
438 d->inode = inode;
439 d->max = NR_DENTRY_IN_BLOCK;
440 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
441 d->bitmap = &t->dentry_bitmap;
442 d->dentry = t->dentry;
443 d->filename = t->filename;
444 }
445
446 static inline void make_dentry_ptr_inline(struct inode *inode,
447 struct f2fs_dentry_ptr *d, void *t)
448 {
449 int entry_cnt = NR_INLINE_DENTRY(inode);
450 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
451 int reserved_size = INLINE_RESERVED_SIZE(inode);
452
453 d->inode = inode;
454 d->max = entry_cnt;
455 d->nr_bitmap = bitmap_size;
456 d->bitmap = t;
457 d->dentry = t + bitmap_size + reserved_size;
458 d->filename = t + bitmap_size + reserved_size +
459 SIZE_OF_DIR_ENTRY * entry_cnt;
460 }
461
462 /*
463 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
464 * as its node offset to distinguish from index node blocks.
465 * But some bits are used to mark the node block.
466 */
467 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
468 >> OFFSET_BIT_SHIFT)
469 enum {
470 ALLOC_NODE, /* allocate a new node page if needed */
471 LOOKUP_NODE, /* look up a node without readahead */
472 LOOKUP_NODE_RA, /*
473 * look up a node with readahead called
474 * by get_data_block.
475 */
476 };
477
478 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
479
480 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
481
482 /* vector size for gang look-up from extent cache that consists of radix tree */
483 #define EXT_TREE_VEC_SIZE 64
484
485 /* for in-memory extent cache entry */
486 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
487
488 /* number of extent info in extent cache we try to shrink */
489 #define EXTENT_CACHE_SHRINK_NUMBER 128
490
491 struct rb_entry {
492 struct rb_node rb_node; /* rb node located in rb-tree */
493 unsigned int ofs; /* start offset of the entry */
494 unsigned int len; /* length of the entry */
495 };
496
497 struct extent_info {
498 unsigned int fofs; /* start offset in a file */
499 unsigned int len; /* length of the extent */
500 u32 blk; /* start block address of the extent */
501 };
502
503 struct extent_node {
504 struct rb_node rb_node;
505 union {
506 struct {
507 unsigned int fofs;
508 unsigned int len;
509 u32 blk;
510 };
511 struct extent_info ei; /* extent info */
512
513 };
514 struct list_head list; /* node in global extent list of sbi */
515 struct extent_tree *et; /* extent tree pointer */
516 };
517
518 struct extent_tree {
519 nid_t ino; /* inode number */
520 struct rb_root root; /* root of extent info rb-tree */
521 struct extent_node *cached_en; /* recently accessed extent node */
522 struct extent_info largest; /* largested extent info */
523 struct list_head list; /* to be used by sbi->zombie_list */
524 rwlock_t lock; /* protect extent info rb-tree */
525 atomic_t node_cnt; /* # of extent node in rb-tree*/
526 bool largest_updated; /* largest extent updated */
527 };
528
529 /*
530 * This structure is taken from ext4_map_blocks.
531 *
532 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
533 */
534 #define F2FS_MAP_NEW (1 << BH_New)
535 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
536 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
537 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
538 F2FS_MAP_UNWRITTEN)
539
540 struct f2fs_map_blocks {
541 block_t m_pblk;
542 block_t m_lblk;
543 unsigned int m_len;
544 unsigned int m_flags;
545 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
546 };
547
548 /* for flag in get_data_block */
549 enum {
550 F2FS_GET_BLOCK_DEFAULT,
551 F2FS_GET_BLOCK_FIEMAP,
552 F2FS_GET_BLOCK_BMAP,
553 F2FS_GET_BLOCK_PRE_DIO,
554 F2FS_GET_BLOCK_PRE_AIO,
555 };
556
557 /*
558 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
559 */
560 #define FADVISE_COLD_BIT 0x01
561 #define FADVISE_LOST_PINO_BIT 0x02
562 #define FADVISE_ENCRYPT_BIT 0x04
563 #define FADVISE_ENC_NAME_BIT 0x08
564 #define FADVISE_KEEP_SIZE_BIT 0x10
565
566 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
567 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
568 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
569 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
570 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
571 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
572 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
573 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
574 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
575 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
576 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
577 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
578 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
579
580 #define DEF_DIR_LEVEL 0
581
582 struct f2fs_inode_info {
583 struct inode vfs_inode; /* serve a vfs inode */
584 unsigned long i_flags; /* keep an inode flags for ioctl */
585 unsigned char i_advise; /* use to give file attribute hints */
586 unsigned char i_dir_level; /* use for dentry level for large dir */
587 unsigned int i_current_depth; /* use only in directory structure */
588 unsigned int i_pino; /* parent inode number */
589 umode_t i_acl_mode; /* keep file acl mode temporarily */
590
591 /* Use below internally in f2fs*/
592 unsigned long flags; /* use to pass per-file flags */
593 struct rw_semaphore i_sem; /* protect fi info */
594 atomic_t dirty_pages; /* # of dirty pages */
595 f2fs_hash_t chash; /* hash value of given file name */
596 unsigned int clevel; /* maximum level of given file name */
597 struct task_struct *task; /* lookup and create consistency */
598 struct task_struct *cp_task; /* separate cp/wb IO stats*/
599 nid_t i_xattr_nid; /* node id that contains xattrs */
600 loff_t last_disk_size; /* lastly written file size */
601
602 #ifdef CONFIG_QUOTA
603 struct dquot *i_dquot[MAXQUOTAS];
604
605 /* quota space reservation, managed internally by quota code */
606 qsize_t i_reserved_quota;
607 #endif
608 struct list_head dirty_list; /* dirty list for dirs and files */
609 struct list_head gdirty_list; /* linked in global dirty list */
610 struct list_head inmem_ilist; /* list for inmem inodes */
611 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
612 struct task_struct *inmem_task; /* store inmemory task */
613 struct mutex inmem_lock; /* lock for inmemory pages */
614 struct extent_tree *extent_tree; /* cached extent_tree entry */
615 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
616 struct rw_semaphore i_mmap_sem;
617 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
618
619 int i_extra_isize; /* size of extra space located in i_addr */
620 kprojid_t i_projid; /* id for project quota */
621 int i_inline_xattr_size; /* inline xattr size */
622 };
623
624 static inline void get_extent_info(struct extent_info *ext,
625 struct f2fs_extent *i_ext)
626 {
627 ext->fofs = le32_to_cpu(i_ext->fofs);
628 ext->blk = le32_to_cpu(i_ext->blk);
629 ext->len = le32_to_cpu(i_ext->len);
630 }
631
632 static inline void set_raw_extent(struct extent_info *ext,
633 struct f2fs_extent *i_ext)
634 {
635 i_ext->fofs = cpu_to_le32(ext->fofs);
636 i_ext->blk = cpu_to_le32(ext->blk);
637 i_ext->len = cpu_to_le32(ext->len);
638 }
639
640 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
641 u32 blk, unsigned int len)
642 {
643 ei->fofs = fofs;
644 ei->blk = blk;
645 ei->len = len;
646 }
647
648 static inline bool __is_discard_mergeable(struct discard_info *back,
649 struct discard_info *front)
650 {
651 return back->lstart + back->len == front->lstart;
652 }
653
654 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
655 struct discard_info *back)
656 {
657 return __is_discard_mergeable(back, cur);
658 }
659
660 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
661 struct discard_info *front)
662 {
663 return __is_discard_mergeable(cur, front);
664 }
665
666 static inline bool __is_extent_mergeable(struct extent_info *back,
667 struct extent_info *front)
668 {
669 return (back->fofs + back->len == front->fofs &&
670 back->blk + back->len == front->blk);
671 }
672
673 static inline bool __is_back_mergeable(struct extent_info *cur,
674 struct extent_info *back)
675 {
676 return __is_extent_mergeable(back, cur);
677 }
678
679 static inline bool __is_front_mergeable(struct extent_info *cur,
680 struct extent_info *front)
681 {
682 return __is_extent_mergeable(cur, front);
683 }
684
685 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
686 static inline void __try_update_largest_extent(struct extent_tree *et,
687 struct extent_node *en)
688 {
689 if (en->ei.len > et->largest.len) {
690 et->largest = en->ei;
691 et->largest_updated = true;
692 }
693 }
694
695 /*
696 * For free nid management
697 */
698 enum nid_state {
699 FREE_NID, /* newly added to free nid list */
700 PREALLOC_NID, /* it is preallocated */
701 MAX_NID_STATE,
702 };
703
704 struct f2fs_nm_info {
705 block_t nat_blkaddr; /* base disk address of NAT */
706 nid_t max_nid; /* maximum possible node ids */
707 nid_t available_nids; /* # of available node ids */
708 nid_t next_scan_nid; /* the next nid to be scanned */
709 unsigned int ram_thresh; /* control the memory footprint */
710 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
711 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
712
713 /* NAT cache management */
714 struct radix_tree_root nat_root;/* root of the nat entry cache */
715 struct radix_tree_root nat_set_root;/* root of the nat set cache */
716 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
717 struct list_head nat_entries; /* cached nat entry list (clean) */
718 unsigned int nat_cnt; /* the # of cached nat entries */
719 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
720 unsigned int nat_blocks; /* # of nat blocks */
721
722 /* free node ids management */
723 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
724 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
725 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
726 spinlock_t nid_list_lock; /* protect nid lists ops */
727 struct mutex build_lock; /* lock for build free nids */
728 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
729 unsigned char *nat_block_bitmap;
730 unsigned short *free_nid_count; /* free nid count of NAT block */
731
732 /* for checkpoint */
733 char *nat_bitmap; /* NAT bitmap pointer */
734
735 unsigned int nat_bits_blocks; /* # of nat bits blocks */
736 unsigned char *nat_bits; /* NAT bits blocks */
737 unsigned char *full_nat_bits; /* full NAT pages */
738 unsigned char *empty_nat_bits; /* empty NAT pages */
739 #ifdef CONFIG_F2FS_CHECK_FS
740 char *nat_bitmap_mir; /* NAT bitmap mirror */
741 #endif
742 int bitmap_size; /* bitmap size */
743 };
744
745 /*
746 * this structure is used as one of function parameters.
747 * all the information are dedicated to a given direct node block determined
748 * by the data offset in a file.
749 */
750 struct dnode_of_data {
751 struct inode *inode; /* vfs inode pointer */
752 struct page *inode_page; /* its inode page, NULL is possible */
753 struct page *node_page; /* cached direct node page */
754 nid_t nid; /* node id of the direct node block */
755 unsigned int ofs_in_node; /* data offset in the node page */
756 bool inode_page_locked; /* inode page is locked or not */
757 bool node_changed; /* is node block changed */
758 char cur_level; /* level of hole node page */
759 char max_level; /* level of current page located */
760 block_t data_blkaddr; /* block address of the node block */
761 };
762
763 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
764 struct page *ipage, struct page *npage, nid_t nid)
765 {
766 memset(dn, 0, sizeof(*dn));
767 dn->inode = inode;
768 dn->inode_page = ipage;
769 dn->node_page = npage;
770 dn->nid = nid;
771 }
772
773 /*
774 * For SIT manager
775 *
776 * By default, there are 6 active log areas across the whole main area.
777 * When considering hot and cold data separation to reduce cleaning overhead,
778 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
779 * respectively.
780 * In the current design, you should not change the numbers intentionally.
781 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
782 * logs individually according to the underlying devices. (default: 6)
783 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
784 * data and 8 for node logs.
785 */
786 #define NR_CURSEG_DATA_TYPE (3)
787 #define NR_CURSEG_NODE_TYPE (3)
788 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
789
790 enum {
791 CURSEG_HOT_DATA = 0, /* directory entry blocks */
792 CURSEG_WARM_DATA, /* data blocks */
793 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
794 CURSEG_HOT_NODE, /* direct node blocks of directory files */
795 CURSEG_WARM_NODE, /* direct node blocks of normal files */
796 CURSEG_COLD_NODE, /* indirect node blocks */
797 NO_CHECK_TYPE,
798 };
799
800 struct flush_cmd {
801 struct completion wait;
802 struct llist_node llnode;
803 nid_t ino;
804 int ret;
805 };
806
807 struct flush_cmd_control {
808 struct task_struct *f2fs_issue_flush; /* flush thread */
809 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
810 atomic_t issued_flush; /* # of issued flushes */
811 atomic_t issing_flush; /* # of issing flushes */
812 struct llist_head issue_list; /* list for command issue */
813 struct llist_node *dispatch_list; /* list for command dispatch */
814 };
815
816 struct f2fs_sm_info {
817 struct sit_info *sit_info; /* whole segment information */
818 struct free_segmap_info *free_info; /* free segment information */
819 struct dirty_seglist_info *dirty_info; /* dirty segment information */
820 struct curseg_info *curseg_array; /* active segment information */
821
822 struct rw_semaphore curseg_lock; /* for preventing curseg change */
823
824 block_t seg0_blkaddr; /* block address of 0'th segment */
825 block_t main_blkaddr; /* start block address of main area */
826 block_t ssa_blkaddr; /* start block address of SSA area */
827
828 unsigned int segment_count; /* total # of segments */
829 unsigned int main_segments; /* # of segments in main area */
830 unsigned int reserved_segments; /* # of reserved segments */
831 unsigned int ovp_segments; /* # of overprovision segments */
832
833 /* a threshold to reclaim prefree segments */
834 unsigned int rec_prefree_segments;
835
836 /* for batched trimming */
837 unsigned int trim_sections; /* # of sections to trim */
838
839 struct list_head sit_entry_set; /* sit entry set list */
840
841 unsigned int ipu_policy; /* in-place-update policy */
842 unsigned int min_ipu_util; /* in-place-update threshold */
843 unsigned int min_fsync_blocks; /* threshold for fsync */
844 unsigned int min_hot_blocks; /* threshold for hot block allocation */
845 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
846
847 /* for flush command control */
848 struct flush_cmd_control *fcc_info;
849
850 /* for discard command control */
851 struct discard_cmd_control *dcc_info;
852 };
853
854 /*
855 * For superblock
856 */
857 /*
858 * COUNT_TYPE for monitoring
859 *
860 * f2fs monitors the number of several block types such as on-writeback,
861 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
862 */
863 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
864 enum count_type {
865 F2FS_DIRTY_DENTS,
866 F2FS_DIRTY_DATA,
867 F2FS_DIRTY_QDATA,
868 F2FS_DIRTY_NODES,
869 F2FS_DIRTY_META,
870 F2FS_INMEM_PAGES,
871 F2FS_DIRTY_IMETA,
872 F2FS_WB_CP_DATA,
873 F2FS_WB_DATA,
874 NR_COUNT_TYPE,
875 };
876
877 /*
878 * The below are the page types of bios used in submit_bio().
879 * The available types are:
880 * DATA User data pages. It operates as async mode.
881 * NODE Node pages. It operates as async mode.
882 * META FS metadata pages such as SIT, NAT, CP.
883 * NR_PAGE_TYPE The number of page types.
884 * META_FLUSH Make sure the previous pages are written
885 * with waiting the bio's completion
886 * ... Only can be used with META.
887 */
888 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
889 enum page_type {
890 DATA,
891 NODE,
892 META,
893 NR_PAGE_TYPE,
894 META_FLUSH,
895 INMEM, /* the below types are used by tracepoints only. */
896 INMEM_DROP,
897 INMEM_INVALIDATE,
898 INMEM_REVOKE,
899 IPU,
900 OPU,
901 };
902
903 enum temp_type {
904 HOT = 0, /* must be zero for meta bio */
905 WARM,
906 COLD,
907 NR_TEMP_TYPE,
908 };
909
910 enum need_lock_type {
911 LOCK_REQ = 0,
912 LOCK_DONE,
913 LOCK_RETRY,
914 };
915
916 enum cp_reason_type {
917 CP_NO_NEEDED,
918 CP_NON_REGULAR,
919 CP_HARDLINK,
920 CP_SB_NEED_CP,
921 CP_WRONG_PINO,
922 CP_NO_SPC_ROLL,
923 CP_NODE_NEED_CP,
924 CP_FASTBOOT_MODE,
925 CP_SPEC_LOG_NUM,
926 };
927
928 enum iostat_type {
929 APP_DIRECT_IO, /* app direct IOs */
930 APP_BUFFERED_IO, /* app buffered IOs */
931 APP_WRITE_IO, /* app write IOs */
932 APP_MAPPED_IO, /* app mapped IOs */
933 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
934 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
935 FS_META_IO, /* meta IOs from kworker/reclaimer */
936 FS_GC_DATA_IO, /* data IOs from forground gc */
937 FS_GC_NODE_IO, /* node IOs from forground gc */
938 FS_CP_DATA_IO, /* data IOs from checkpoint */
939 FS_CP_NODE_IO, /* node IOs from checkpoint */
940 FS_CP_META_IO, /* meta IOs from checkpoint */
941 FS_DISCARD, /* discard */
942 NR_IO_TYPE,
943 };
944
945 struct f2fs_io_info {
946 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
947 nid_t ino; /* inode number */
948 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
949 enum temp_type temp; /* contains HOT/WARM/COLD */
950 int op; /* contains REQ_OP_ */
951 int op_flags; /* req_flag_bits */
952 block_t new_blkaddr; /* new block address to be written */
953 block_t old_blkaddr; /* old block address before Cow */
954 struct page *page; /* page to be written */
955 struct page *encrypted_page; /* encrypted page */
956 struct list_head list; /* serialize IOs */
957 bool submitted; /* indicate IO submission */
958 int need_lock; /* indicate we need to lock cp_rwsem */
959 bool in_list; /* indicate fio is in io_list */
960 bool is_meta; /* indicate borrow meta inode mapping or not */
961 enum iostat_type io_type; /* io type */
962 };
963
964 #define is_read_io(rw) ((rw) == READ)
965 struct f2fs_bio_info {
966 struct f2fs_sb_info *sbi; /* f2fs superblock */
967 struct bio *bio; /* bios to merge */
968 sector_t last_block_in_bio; /* last block number */
969 struct f2fs_io_info fio; /* store buffered io info. */
970 struct rw_semaphore io_rwsem; /* blocking op for bio */
971 spinlock_t io_lock; /* serialize DATA/NODE IOs */
972 struct list_head io_list; /* track fios */
973 };
974
975 #define FDEV(i) (sbi->devs[i])
976 #define RDEV(i) (raw_super->devs[i])
977 struct f2fs_dev_info {
978 struct block_device *bdev;
979 char path[MAX_PATH_LEN];
980 unsigned int total_segments;
981 block_t start_blk;
982 block_t end_blk;
983 #ifdef CONFIG_BLK_DEV_ZONED
984 unsigned int nr_blkz; /* Total number of zones */
985 u8 *blkz_type; /* Array of zones type */
986 #endif
987 };
988
989 enum inode_type {
990 DIR_INODE, /* for dirty dir inode */
991 FILE_INODE, /* for dirty regular/symlink inode */
992 DIRTY_META, /* for all dirtied inode metadata */
993 ATOMIC_FILE, /* for all atomic files */
994 NR_INODE_TYPE,
995 };
996
997 /* for inner inode cache management */
998 struct inode_management {
999 struct radix_tree_root ino_root; /* ino entry array */
1000 spinlock_t ino_lock; /* for ino entry lock */
1001 struct list_head ino_list; /* inode list head */
1002 unsigned long ino_num; /* number of entries */
1003 };
1004
1005 /* For s_flag in struct f2fs_sb_info */
1006 enum {
1007 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1008 SBI_IS_CLOSE, /* specify unmounting */
1009 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1010 SBI_POR_DOING, /* recovery is doing or not */
1011 SBI_NEED_SB_WRITE, /* need to recover superblock */
1012 SBI_NEED_CP, /* need to checkpoint */
1013 };
1014
1015 enum {
1016 CP_TIME,
1017 REQ_TIME,
1018 MAX_TIME,
1019 };
1020
1021 struct f2fs_sb_info {
1022 struct super_block *sb; /* pointer to VFS super block */
1023 struct proc_dir_entry *s_proc; /* proc entry */
1024 struct f2fs_super_block *raw_super; /* raw super block pointer */
1025 int valid_super_block; /* valid super block no */
1026 unsigned long s_flag; /* flags for sbi */
1027
1028 #ifdef CONFIG_BLK_DEV_ZONED
1029 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1030 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1031 #endif
1032
1033 /* for node-related operations */
1034 struct f2fs_nm_info *nm_info; /* node manager */
1035 struct inode *node_inode; /* cache node blocks */
1036
1037 /* for segment-related operations */
1038 struct f2fs_sm_info *sm_info; /* segment manager */
1039
1040 /* for bio operations */
1041 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1042 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1043 /* bio ordering for NODE/DATA */
1044 int write_io_size_bits; /* Write IO size bits */
1045 mempool_t *write_io_dummy; /* Dummy pages */
1046
1047 /* for checkpoint */
1048 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1049 int cur_cp_pack; /* remain current cp pack */
1050 spinlock_t cp_lock; /* for flag in ckpt */
1051 struct inode *meta_inode; /* cache meta blocks */
1052 struct mutex cp_mutex; /* checkpoint procedure lock */
1053 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1054 struct rw_semaphore node_write; /* locking node writes */
1055 struct rw_semaphore node_change; /* locking node change */
1056 wait_queue_head_t cp_wait;
1057 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1058 long interval_time[MAX_TIME]; /* to store thresholds */
1059
1060 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1061
1062 /* for orphan inode, use 0'th array */
1063 unsigned int max_orphans; /* max orphan inodes */
1064
1065 /* for inode management */
1066 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1067 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1068
1069 /* for extent tree cache */
1070 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1071 struct mutex extent_tree_lock; /* locking extent radix tree */
1072 struct list_head extent_list; /* lru list for shrinker */
1073 spinlock_t extent_lock; /* locking extent lru list */
1074 atomic_t total_ext_tree; /* extent tree count */
1075 struct list_head zombie_list; /* extent zombie tree list */
1076 atomic_t total_zombie_tree; /* extent zombie tree count */
1077 atomic_t total_ext_node; /* extent info count */
1078
1079 /* basic filesystem units */
1080 unsigned int log_sectors_per_block; /* log2 sectors per block */
1081 unsigned int log_blocksize; /* log2 block size */
1082 unsigned int blocksize; /* block size */
1083 unsigned int root_ino_num; /* root inode number*/
1084 unsigned int node_ino_num; /* node inode number*/
1085 unsigned int meta_ino_num; /* meta inode number*/
1086 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1087 unsigned int blocks_per_seg; /* blocks per segment */
1088 unsigned int segs_per_sec; /* segments per section */
1089 unsigned int secs_per_zone; /* sections per zone */
1090 unsigned int total_sections; /* total section count */
1091 unsigned int total_node_count; /* total node block count */
1092 unsigned int total_valid_node_count; /* valid node block count */
1093 loff_t max_file_blocks; /* max block index of file */
1094 int active_logs; /* # of active logs */
1095 int dir_level; /* directory level */
1096 int inline_xattr_size; /* inline xattr size */
1097 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1098
1099 block_t user_block_count; /* # of user blocks */
1100 block_t total_valid_block_count; /* # of valid blocks */
1101 block_t discard_blks; /* discard command candidats */
1102 block_t last_valid_block_count; /* for recovery */
1103 block_t reserved_blocks; /* configurable reserved blocks */
1104 block_t current_reserved_blocks; /* current reserved blocks */
1105
1106 u32 s_next_generation; /* for NFS support */
1107
1108 /* # of pages, see count_type */
1109 atomic_t nr_pages[NR_COUNT_TYPE];
1110 /* # of allocated blocks */
1111 struct percpu_counter alloc_valid_block_count;
1112
1113 /* writeback control */
1114 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1115
1116 /* valid inode count */
1117 struct percpu_counter total_valid_inode_count;
1118
1119 struct f2fs_mount_info mount_opt; /* mount options */
1120
1121 /* for cleaning operations */
1122 struct mutex gc_mutex; /* mutex for GC */
1123 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1124 unsigned int cur_victim_sec; /* current victim section num */
1125
1126 /* threshold for converting bg victims for fg */
1127 u64 fggc_threshold;
1128
1129 /* maximum # of trials to find a victim segment for SSR and GC */
1130 unsigned int max_victim_search;
1131
1132 /*
1133 * for stat information.
1134 * one is for the LFS mode, and the other is for the SSR mode.
1135 */
1136 #ifdef CONFIG_F2FS_STAT_FS
1137 struct f2fs_stat_info *stat_info; /* FS status information */
1138 unsigned int segment_count[2]; /* # of allocated segments */
1139 unsigned int block_count[2]; /* # of allocated blocks */
1140 atomic_t inplace_count; /* # of inplace update */
1141 atomic64_t total_hit_ext; /* # of lookup extent cache */
1142 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1143 atomic64_t read_hit_largest; /* # of hit largest extent node */
1144 atomic64_t read_hit_cached; /* # of hit cached extent node */
1145 atomic_t inline_xattr; /* # of inline_xattr inodes */
1146 atomic_t inline_inode; /* # of inline_data inodes */
1147 atomic_t inline_dir; /* # of inline_dentry inodes */
1148 atomic_t aw_cnt; /* # of atomic writes */
1149 atomic_t vw_cnt; /* # of volatile writes */
1150 atomic_t max_aw_cnt; /* max # of atomic writes */
1151 atomic_t max_vw_cnt; /* max # of volatile writes */
1152 int bg_gc; /* background gc calls */
1153 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1154 #endif
1155 spinlock_t stat_lock; /* lock for stat operations */
1156
1157 /* For app/fs IO statistics */
1158 spinlock_t iostat_lock;
1159 unsigned long long write_iostat[NR_IO_TYPE];
1160 bool iostat_enable;
1161
1162 /* For sysfs suppport */
1163 struct kobject s_kobj;
1164 struct completion s_kobj_unregister;
1165
1166 /* For shrinker support */
1167 struct list_head s_list;
1168 int s_ndevs; /* number of devices */
1169 struct f2fs_dev_info *devs; /* for device list */
1170 unsigned int dirty_device; /* for checkpoint data flush */
1171 spinlock_t dev_lock; /* protect dirty_device */
1172 struct mutex umount_mutex;
1173 unsigned int shrinker_run_no;
1174
1175 /* For write statistics */
1176 u64 sectors_written_start;
1177 u64 kbytes_written;
1178
1179 /* Reference to checksum algorithm driver via cryptoapi */
1180 struct crypto_shash *s_chksum_driver;
1181
1182 /* Precomputed FS UUID checksum for seeding other checksums */
1183 __u32 s_chksum_seed;
1184
1185 /* For fault injection */
1186 #ifdef CONFIG_F2FS_FAULT_INJECTION
1187 struct f2fs_fault_info fault_info;
1188 #endif
1189
1190 #ifdef CONFIG_QUOTA
1191 /* Names of quota files with journalled quota */
1192 char *s_qf_names[MAXQUOTAS];
1193 int s_jquota_fmt; /* Format of quota to use */
1194 #endif
1195 };
1196
1197 #ifdef CONFIG_F2FS_FAULT_INJECTION
1198 #define f2fs_show_injection_info(type) \
1199 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1200 KERN_INFO, fault_name[type], \
1201 __func__, __builtin_return_address(0))
1202 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1203 {
1204 struct f2fs_fault_info *ffi = &sbi->fault_info;
1205
1206 if (!ffi->inject_rate)
1207 return false;
1208
1209 if (!IS_FAULT_SET(ffi, type))
1210 return false;
1211
1212 atomic_inc(&ffi->inject_ops);
1213 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1214 atomic_set(&ffi->inject_ops, 0);
1215 return true;
1216 }
1217 return false;
1218 }
1219 #endif
1220
1221 /* For write statistics. Suppose sector size is 512 bytes,
1222 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1223 */
1224 #define BD_PART_WRITTEN(s) \
1225 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1226 (s)->sectors_written_start) >> 1)
1227
1228 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1229 {
1230 sbi->last_time[type] = jiffies;
1231 }
1232
1233 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1234 {
1235 unsigned long interval = sbi->interval_time[type] * HZ;
1236
1237 return time_after(jiffies, sbi->last_time[type] + interval);
1238 }
1239
1240 static inline bool is_idle(struct f2fs_sb_info *sbi)
1241 {
1242 struct block_device *bdev = sbi->sb->s_bdev;
1243 struct request_queue *q = bdev_get_queue(bdev);
1244 struct request_list *rl = &q->root_rl;
1245
1246 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1247 return 0;
1248
1249 return f2fs_time_over(sbi, REQ_TIME);
1250 }
1251
1252 /*
1253 * Inline functions
1254 */
1255 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1256 unsigned int length)
1257 {
1258 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1259 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1260 u32 retval;
1261 int err;
1262
1263 shash->tfm = sbi->s_chksum_driver;
1264 shash->flags = 0;
1265 *ctx = F2FS_SUPER_MAGIC;
1266
1267 err = crypto_shash_update(shash, address, length);
1268 BUG_ON(err);
1269
1270 retval = *ctx;
1271 barrier_data(ctx);
1272 return retval;
1273 }
1274
1275 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1276 void *buf, size_t buf_size)
1277 {
1278 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1279 }
1280
1281 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1282 const void *address, unsigned int length)
1283 {
1284 struct {
1285 struct shash_desc shash;
1286 char ctx[4];
1287 } desc;
1288 int err;
1289
1290 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1291
1292 desc.shash.tfm = sbi->s_chksum_driver;
1293 desc.shash.flags = 0;
1294 *(u32 *)desc.ctx = crc;
1295
1296 err = crypto_shash_update(&desc.shash, address, length);
1297 BUG_ON(err);
1298
1299 return *(u32 *)desc.ctx;
1300 }
1301
1302 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1303 {
1304 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1305 }
1306
1307 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1308 {
1309 return sb->s_fs_info;
1310 }
1311
1312 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1313 {
1314 return F2FS_SB(inode->i_sb);
1315 }
1316
1317 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1318 {
1319 return F2FS_I_SB(mapping->host);
1320 }
1321
1322 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1323 {
1324 return F2FS_M_SB(page->mapping);
1325 }
1326
1327 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1328 {
1329 return (struct f2fs_super_block *)(sbi->raw_super);
1330 }
1331
1332 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1333 {
1334 return (struct f2fs_checkpoint *)(sbi->ckpt);
1335 }
1336
1337 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1338 {
1339 return (struct f2fs_node *)page_address(page);
1340 }
1341
1342 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1343 {
1344 return &((struct f2fs_node *)page_address(page))->i;
1345 }
1346
1347 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1348 {
1349 return (struct f2fs_nm_info *)(sbi->nm_info);
1350 }
1351
1352 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1353 {
1354 return (struct f2fs_sm_info *)(sbi->sm_info);
1355 }
1356
1357 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1358 {
1359 return (struct sit_info *)(SM_I(sbi)->sit_info);
1360 }
1361
1362 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1363 {
1364 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1365 }
1366
1367 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1368 {
1369 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1370 }
1371
1372 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1373 {
1374 return sbi->meta_inode->i_mapping;
1375 }
1376
1377 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1378 {
1379 return sbi->node_inode->i_mapping;
1380 }
1381
1382 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1383 {
1384 return test_bit(type, &sbi->s_flag);
1385 }
1386
1387 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1388 {
1389 set_bit(type, &sbi->s_flag);
1390 }
1391
1392 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1393 {
1394 clear_bit(type, &sbi->s_flag);
1395 }
1396
1397 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1398 {
1399 return le64_to_cpu(cp->checkpoint_ver);
1400 }
1401
1402 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1403 {
1404 if (type < F2FS_MAX_QUOTAS)
1405 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1406 return 0;
1407 }
1408
1409 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1410 {
1411 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1412 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1413 }
1414
1415 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1416 {
1417 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1418
1419 return ckpt_flags & f;
1420 }
1421
1422 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1423 {
1424 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1425 }
1426
1427 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1428 {
1429 unsigned int ckpt_flags;
1430
1431 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1432 ckpt_flags |= f;
1433 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1434 }
1435
1436 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1437 {
1438 unsigned long flags;
1439
1440 spin_lock_irqsave(&sbi->cp_lock, flags);
1441 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1442 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1443 }
1444
1445 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1446 {
1447 unsigned int ckpt_flags;
1448
1449 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1450 ckpt_flags &= (~f);
1451 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1452 }
1453
1454 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1455 {
1456 unsigned long flags;
1457
1458 spin_lock_irqsave(&sbi->cp_lock, flags);
1459 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1460 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1461 }
1462
1463 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1464 {
1465 unsigned long flags;
1466
1467 set_sbi_flag(sbi, SBI_NEED_FSCK);
1468
1469 if (lock)
1470 spin_lock_irqsave(&sbi->cp_lock, flags);
1471 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1472 kfree(NM_I(sbi)->nat_bits);
1473 NM_I(sbi)->nat_bits = NULL;
1474 if (lock)
1475 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1476 }
1477
1478 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1479 struct cp_control *cpc)
1480 {
1481 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1482
1483 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1484 }
1485
1486 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1487 {
1488 down_read(&sbi->cp_rwsem);
1489 }
1490
1491 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1492 {
1493 return down_read_trylock(&sbi->cp_rwsem);
1494 }
1495
1496 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1497 {
1498 up_read(&sbi->cp_rwsem);
1499 }
1500
1501 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1502 {
1503 down_write(&sbi->cp_rwsem);
1504 }
1505
1506 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1507 {
1508 up_write(&sbi->cp_rwsem);
1509 }
1510
1511 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1512 {
1513 int reason = CP_SYNC;
1514
1515 if (test_opt(sbi, FASTBOOT))
1516 reason = CP_FASTBOOT;
1517 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1518 reason = CP_UMOUNT;
1519 return reason;
1520 }
1521
1522 static inline bool __remain_node_summaries(int reason)
1523 {
1524 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1525 }
1526
1527 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1528 {
1529 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1530 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1531 }
1532
1533 /*
1534 * Check whether the inode has blocks or not
1535 */
1536 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1537 {
1538 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1539
1540 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1541 }
1542
1543 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1544 {
1545 return ofs == XATTR_NODE_OFFSET;
1546 }
1547
1548 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1549 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1550 struct inode *inode, blkcnt_t *count)
1551 {
1552 blkcnt_t diff = 0, release = 0;
1553 block_t avail_user_block_count;
1554 int ret;
1555
1556 ret = dquot_reserve_block(inode, *count);
1557 if (ret)
1558 return ret;
1559
1560 #ifdef CONFIG_F2FS_FAULT_INJECTION
1561 if (time_to_inject(sbi, FAULT_BLOCK)) {
1562 f2fs_show_injection_info(FAULT_BLOCK);
1563 release = *count;
1564 goto enospc;
1565 }
1566 #endif
1567 /*
1568 * let's increase this in prior to actual block count change in order
1569 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1570 */
1571 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1572
1573 spin_lock(&sbi->stat_lock);
1574 sbi->total_valid_block_count += (block_t)(*count);
1575 avail_user_block_count = sbi->user_block_count -
1576 sbi->current_reserved_blocks;
1577 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1578 diff = sbi->total_valid_block_count - avail_user_block_count;
1579 *count -= diff;
1580 release = diff;
1581 sbi->total_valid_block_count = avail_user_block_count;
1582 if (!*count) {
1583 spin_unlock(&sbi->stat_lock);
1584 goto enospc;
1585 }
1586 }
1587 spin_unlock(&sbi->stat_lock);
1588
1589 if (unlikely(release)) {
1590 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1591 dquot_release_reservation_block(inode, release);
1592 }
1593 f2fs_i_blocks_write(inode, *count, true, true);
1594 return 0;
1595
1596 enospc:
1597 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1598 dquot_release_reservation_block(inode, release);
1599 return -ENOSPC;
1600 }
1601
1602 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1603 struct inode *inode,
1604 block_t count)
1605 {
1606 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1607
1608 spin_lock(&sbi->stat_lock);
1609 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1610 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1611 sbi->total_valid_block_count -= (block_t)count;
1612 if (sbi->reserved_blocks &&
1613 sbi->current_reserved_blocks < sbi->reserved_blocks)
1614 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1615 sbi->current_reserved_blocks + count);
1616 spin_unlock(&sbi->stat_lock);
1617 f2fs_i_blocks_write(inode, count, false, true);
1618 }
1619
1620 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1621 {
1622 atomic_inc(&sbi->nr_pages[count_type]);
1623
1624 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1625 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1626 return;
1627
1628 set_sbi_flag(sbi, SBI_IS_DIRTY);
1629 }
1630
1631 static inline void inode_inc_dirty_pages(struct inode *inode)
1632 {
1633 atomic_inc(&F2FS_I(inode)->dirty_pages);
1634 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1635 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1636 if (IS_NOQUOTA(inode))
1637 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1638 }
1639
1640 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1641 {
1642 atomic_dec(&sbi->nr_pages[count_type]);
1643 }
1644
1645 static inline void inode_dec_dirty_pages(struct inode *inode)
1646 {
1647 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1648 !S_ISLNK(inode->i_mode))
1649 return;
1650
1651 atomic_dec(&F2FS_I(inode)->dirty_pages);
1652 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1653 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1654 if (IS_NOQUOTA(inode))
1655 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1656 }
1657
1658 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1659 {
1660 return atomic_read(&sbi->nr_pages[count_type]);
1661 }
1662
1663 static inline int get_dirty_pages(struct inode *inode)
1664 {
1665 return atomic_read(&F2FS_I(inode)->dirty_pages);
1666 }
1667
1668 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1669 {
1670 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1671 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1672 sbi->log_blocks_per_seg;
1673
1674 return segs / sbi->segs_per_sec;
1675 }
1676
1677 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1678 {
1679 return sbi->total_valid_block_count;
1680 }
1681
1682 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1683 {
1684 return sbi->discard_blks;
1685 }
1686
1687 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1688 {
1689 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1690
1691 /* return NAT or SIT bitmap */
1692 if (flag == NAT_BITMAP)
1693 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1694 else if (flag == SIT_BITMAP)
1695 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1696
1697 return 0;
1698 }
1699
1700 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1701 {
1702 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1703 }
1704
1705 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1706 {
1707 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1708 int offset;
1709
1710 if (__cp_payload(sbi) > 0) {
1711 if (flag == NAT_BITMAP)
1712 return &ckpt->sit_nat_version_bitmap;
1713 else
1714 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1715 } else {
1716 offset = (flag == NAT_BITMAP) ?
1717 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1718 return &ckpt->sit_nat_version_bitmap + offset;
1719 }
1720 }
1721
1722 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1723 {
1724 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1725
1726 if (sbi->cur_cp_pack == 2)
1727 start_addr += sbi->blocks_per_seg;
1728 return start_addr;
1729 }
1730
1731 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1732 {
1733 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1734
1735 if (sbi->cur_cp_pack == 1)
1736 start_addr += sbi->blocks_per_seg;
1737 return start_addr;
1738 }
1739
1740 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1741 {
1742 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1743 }
1744
1745 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1746 {
1747 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1748 }
1749
1750 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1751 struct inode *inode, bool is_inode)
1752 {
1753 block_t valid_block_count;
1754 unsigned int valid_node_count;
1755 bool quota = inode && !is_inode;
1756
1757 if (quota) {
1758 int ret = dquot_reserve_block(inode, 1);
1759 if (ret)
1760 return ret;
1761 }
1762
1763 #ifdef CONFIG_F2FS_FAULT_INJECTION
1764 if (time_to_inject(sbi, FAULT_BLOCK)) {
1765 f2fs_show_injection_info(FAULT_BLOCK);
1766 goto enospc;
1767 }
1768 #endif
1769
1770 spin_lock(&sbi->stat_lock);
1771
1772 valid_block_count = sbi->total_valid_block_count + 1;
1773 if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1774 sbi->user_block_count)) {
1775 spin_unlock(&sbi->stat_lock);
1776 goto enospc;
1777 }
1778
1779 valid_node_count = sbi->total_valid_node_count + 1;
1780 if (unlikely(valid_node_count > sbi->total_node_count)) {
1781 spin_unlock(&sbi->stat_lock);
1782 goto enospc;
1783 }
1784
1785 sbi->total_valid_node_count++;
1786 sbi->total_valid_block_count++;
1787 spin_unlock(&sbi->stat_lock);
1788
1789 if (inode) {
1790 if (is_inode)
1791 f2fs_mark_inode_dirty_sync(inode, true);
1792 else
1793 f2fs_i_blocks_write(inode, 1, true, true);
1794 }
1795
1796 percpu_counter_inc(&sbi->alloc_valid_block_count);
1797 return 0;
1798
1799 enospc:
1800 if (quota)
1801 dquot_release_reservation_block(inode, 1);
1802 return -ENOSPC;
1803 }
1804
1805 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1806 struct inode *inode, bool is_inode)
1807 {
1808 spin_lock(&sbi->stat_lock);
1809
1810 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1811 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1812 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1813
1814 sbi->total_valid_node_count--;
1815 sbi->total_valid_block_count--;
1816 if (sbi->reserved_blocks &&
1817 sbi->current_reserved_blocks < sbi->reserved_blocks)
1818 sbi->current_reserved_blocks++;
1819
1820 spin_unlock(&sbi->stat_lock);
1821
1822 if (!is_inode)
1823 f2fs_i_blocks_write(inode, 1, false, true);
1824 }
1825
1826 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1827 {
1828 return sbi->total_valid_node_count;
1829 }
1830
1831 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1832 {
1833 percpu_counter_inc(&sbi->total_valid_inode_count);
1834 }
1835
1836 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1837 {
1838 percpu_counter_dec(&sbi->total_valid_inode_count);
1839 }
1840
1841 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1842 {
1843 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1844 }
1845
1846 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1847 pgoff_t index, bool for_write)
1848 {
1849 #ifdef CONFIG_F2FS_FAULT_INJECTION
1850 struct page *page;
1851
1852 if (!for_write)
1853 page = find_get_page_flags(mapping, index,
1854 FGP_LOCK | FGP_ACCESSED);
1855 else
1856 page = find_lock_page(mapping, index);
1857 if (page)
1858 return page;
1859
1860 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1861 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1862 return NULL;
1863 }
1864 #endif
1865 if (!for_write)
1866 return grab_cache_page(mapping, index);
1867 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1868 }
1869
1870 static inline struct page *f2fs_pagecache_get_page(
1871 struct address_space *mapping, pgoff_t index,
1872 int fgp_flags, gfp_t gfp_mask)
1873 {
1874 #ifdef CONFIG_F2FS_FAULT_INJECTION
1875 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1876 f2fs_show_injection_info(FAULT_PAGE_GET);
1877 return NULL;
1878 }
1879 #endif
1880 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1881 }
1882
1883 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1884 {
1885 char *src_kaddr = kmap(src);
1886 char *dst_kaddr = kmap(dst);
1887
1888 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1889 kunmap(dst);
1890 kunmap(src);
1891 }
1892
1893 static inline void f2fs_put_page(struct page *page, int unlock)
1894 {
1895 if (!page)
1896 return;
1897
1898 if (unlock) {
1899 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1900 unlock_page(page);
1901 }
1902 put_page(page);
1903 }
1904
1905 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1906 {
1907 if (dn->node_page)
1908 f2fs_put_page(dn->node_page, 1);
1909 if (dn->inode_page && dn->node_page != dn->inode_page)
1910 f2fs_put_page(dn->inode_page, 0);
1911 dn->node_page = NULL;
1912 dn->inode_page = NULL;
1913 }
1914
1915 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1916 size_t size)
1917 {
1918 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1919 }
1920
1921 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1922 gfp_t flags)
1923 {
1924 void *entry;
1925
1926 entry = kmem_cache_alloc(cachep, flags);
1927 if (!entry)
1928 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1929 return entry;
1930 }
1931
1932 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
1933 int npages, bool no_fail)
1934 {
1935 struct bio *bio;
1936
1937 if (no_fail) {
1938 /* No failure on bio allocation */
1939 bio = bio_alloc(GFP_NOIO, npages);
1940 if (!bio)
1941 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1942 return bio;
1943 }
1944 #ifdef CONFIG_F2FS_FAULT_INJECTION
1945 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
1946 f2fs_show_injection_info(FAULT_ALLOC_BIO);
1947 return NULL;
1948 }
1949 #endif
1950 return bio_alloc(GFP_KERNEL, npages);
1951 }
1952
1953 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1954 unsigned long index, void *item)
1955 {
1956 while (radix_tree_insert(root, index, item))
1957 cond_resched();
1958 }
1959
1960 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1961
1962 static inline bool IS_INODE(struct page *page)
1963 {
1964 struct f2fs_node *p = F2FS_NODE(page);
1965
1966 return RAW_IS_INODE(p);
1967 }
1968
1969 static inline int offset_in_addr(struct f2fs_inode *i)
1970 {
1971 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1972 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1973 }
1974
1975 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1976 {
1977 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1978 }
1979
1980 static inline int f2fs_has_extra_attr(struct inode *inode);
1981 static inline block_t datablock_addr(struct inode *inode,
1982 struct page *node_page, unsigned int offset)
1983 {
1984 struct f2fs_node *raw_node;
1985 __le32 *addr_array;
1986 int base = 0;
1987 bool is_inode = IS_INODE(node_page);
1988
1989 raw_node = F2FS_NODE(node_page);
1990
1991 /* from GC path only */
1992 if (!inode) {
1993 if (is_inode)
1994 base = offset_in_addr(&raw_node->i);
1995 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1996 base = get_extra_isize(inode);
1997 }
1998
1999 addr_array = blkaddr_in_node(raw_node);
2000 return le32_to_cpu(addr_array[base + offset]);
2001 }
2002
2003 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2004 {
2005 int mask;
2006
2007 addr += (nr >> 3);
2008 mask = 1 << (7 - (nr & 0x07));
2009 return mask & *addr;
2010 }
2011
2012 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2013 {
2014 int mask;
2015
2016 addr += (nr >> 3);
2017 mask = 1 << (7 - (nr & 0x07));
2018 *addr |= mask;
2019 }
2020
2021 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2022 {
2023 int mask;
2024
2025 addr += (nr >> 3);
2026 mask = 1 << (7 - (nr & 0x07));
2027 *addr &= ~mask;
2028 }
2029
2030 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2031 {
2032 int mask;
2033 int ret;
2034
2035 addr += (nr >> 3);
2036 mask = 1 << (7 - (nr & 0x07));
2037 ret = mask & *addr;
2038 *addr |= mask;
2039 return ret;
2040 }
2041
2042 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2043 {
2044 int mask;
2045 int ret;
2046
2047 addr += (nr >> 3);
2048 mask = 1 << (7 - (nr & 0x07));
2049 ret = mask & *addr;
2050 *addr &= ~mask;
2051 return ret;
2052 }
2053
2054 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2055 {
2056 int mask;
2057
2058 addr += (nr >> 3);
2059 mask = 1 << (7 - (nr & 0x07));
2060 *addr ^= mask;
2061 }
2062
2063 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2064 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2065 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2066
2067 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2068 {
2069 if (S_ISDIR(mode))
2070 return flags;
2071 else if (S_ISREG(mode))
2072 return flags & F2FS_REG_FLMASK;
2073 else
2074 return flags & F2FS_OTHER_FLMASK;
2075 }
2076
2077 /* used for f2fs_inode_info->flags */
2078 enum {
2079 FI_NEW_INODE, /* indicate newly allocated inode */
2080 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2081 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2082 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2083 FI_INC_LINK, /* need to increment i_nlink */
2084 FI_ACL_MODE, /* indicate acl mode */
2085 FI_NO_ALLOC, /* should not allocate any blocks */
2086 FI_FREE_NID, /* free allocated nide */
2087 FI_NO_EXTENT, /* not to use the extent cache */
2088 FI_INLINE_XATTR, /* used for inline xattr */
2089 FI_INLINE_DATA, /* used for inline data*/
2090 FI_INLINE_DENTRY, /* used for inline dentry */
2091 FI_APPEND_WRITE, /* inode has appended data */
2092 FI_UPDATE_WRITE, /* inode has in-place-update data */
2093 FI_NEED_IPU, /* used for ipu per file */
2094 FI_ATOMIC_FILE, /* indicate atomic file */
2095 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2096 FI_VOLATILE_FILE, /* indicate volatile file */
2097 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2098 FI_DROP_CACHE, /* drop dirty page cache */
2099 FI_DATA_EXIST, /* indicate data exists */
2100 FI_INLINE_DOTS, /* indicate inline dot dentries */
2101 FI_DO_DEFRAG, /* indicate defragment is running */
2102 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2103 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2104 FI_HOT_DATA, /* indicate file is hot */
2105 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2106 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2107 };
2108
2109 static inline void __mark_inode_dirty_flag(struct inode *inode,
2110 int flag, bool set)
2111 {
2112 switch (flag) {
2113 case FI_INLINE_XATTR:
2114 case FI_INLINE_DATA:
2115 case FI_INLINE_DENTRY:
2116 if (set)
2117 return;
2118 case FI_DATA_EXIST:
2119 case FI_INLINE_DOTS:
2120 f2fs_mark_inode_dirty_sync(inode, true);
2121 }
2122 }
2123
2124 static inline void set_inode_flag(struct inode *inode, int flag)
2125 {
2126 if (!test_bit(flag, &F2FS_I(inode)->flags))
2127 set_bit(flag, &F2FS_I(inode)->flags);
2128 __mark_inode_dirty_flag(inode, flag, true);
2129 }
2130
2131 static inline int is_inode_flag_set(struct inode *inode, int flag)
2132 {
2133 return test_bit(flag, &F2FS_I(inode)->flags);
2134 }
2135
2136 static inline void clear_inode_flag(struct inode *inode, int flag)
2137 {
2138 if (test_bit(flag, &F2FS_I(inode)->flags))
2139 clear_bit(flag, &F2FS_I(inode)->flags);
2140 __mark_inode_dirty_flag(inode, flag, false);
2141 }
2142
2143 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2144 {
2145 F2FS_I(inode)->i_acl_mode = mode;
2146 set_inode_flag(inode, FI_ACL_MODE);
2147 f2fs_mark_inode_dirty_sync(inode, false);
2148 }
2149
2150 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2151 {
2152 if (inc)
2153 inc_nlink(inode);
2154 else
2155 drop_nlink(inode);
2156 f2fs_mark_inode_dirty_sync(inode, true);
2157 }
2158
2159 static inline void f2fs_i_blocks_write(struct inode *inode,
2160 block_t diff, bool add, bool claim)
2161 {
2162 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2163 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2164
2165 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2166 if (add) {
2167 if (claim)
2168 dquot_claim_block(inode, diff);
2169 else
2170 dquot_alloc_block_nofail(inode, diff);
2171 } else {
2172 dquot_free_block(inode, diff);
2173 }
2174
2175 f2fs_mark_inode_dirty_sync(inode, true);
2176 if (clean || recover)
2177 set_inode_flag(inode, FI_AUTO_RECOVER);
2178 }
2179
2180 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2181 {
2182 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2183 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2184
2185 if (i_size_read(inode) == i_size)
2186 return;
2187
2188 i_size_write(inode, i_size);
2189 f2fs_mark_inode_dirty_sync(inode, true);
2190 if (clean || recover)
2191 set_inode_flag(inode, FI_AUTO_RECOVER);
2192 }
2193
2194 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2195 {
2196 F2FS_I(inode)->i_current_depth = depth;
2197 f2fs_mark_inode_dirty_sync(inode, true);
2198 }
2199
2200 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2201 {
2202 F2FS_I(inode)->i_xattr_nid = xnid;
2203 f2fs_mark_inode_dirty_sync(inode, true);
2204 }
2205
2206 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2207 {
2208 F2FS_I(inode)->i_pino = pino;
2209 f2fs_mark_inode_dirty_sync(inode, true);
2210 }
2211
2212 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2213 {
2214 struct f2fs_inode_info *fi = F2FS_I(inode);
2215
2216 if (ri->i_inline & F2FS_INLINE_XATTR)
2217 set_bit(FI_INLINE_XATTR, &fi->flags);
2218 if (ri->i_inline & F2FS_INLINE_DATA)
2219 set_bit(FI_INLINE_DATA, &fi->flags);
2220 if (ri->i_inline & F2FS_INLINE_DENTRY)
2221 set_bit(FI_INLINE_DENTRY, &fi->flags);
2222 if (ri->i_inline & F2FS_DATA_EXIST)
2223 set_bit(FI_DATA_EXIST, &fi->flags);
2224 if (ri->i_inline & F2FS_INLINE_DOTS)
2225 set_bit(FI_INLINE_DOTS, &fi->flags);
2226 if (ri->i_inline & F2FS_EXTRA_ATTR)
2227 set_bit(FI_EXTRA_ATTR, &fi->flags);
2228 }
2229
2230 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2231 {
2232 ri->i_inline = 0;
2233
2234 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2235 ri->i_inline |= F2FS_INLINE_XATTR;
2236 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2237 ri->i_inline |= F2FS_INLINE_DATA;
2238 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2239 ri->i_inline |= F2FS_INLINE_DENTRY;
2240 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2241 ri->i_inline |= F2FS_DATA_EXIST;
2242 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2243 ri->i_inline |= F2FS_INLINE_DOTS;
2244 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2245 ri->i_inline |= F2FS_EXTRA_ATTR;
2246 }
2247
2248 static inline int f2fs_has_extra_attr(struct inode *inode)
2249 {
2250 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2251 }
2252
2253 static inline int f2fs_has_inline_xattr(struct inode *inode)
2254 {
2255 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2256 }
2257
2258 static inline unsigned int addrs_per_inode(struct inode *inode)
2259 {
2260 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2261 }
2262
2263 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2264 {
2265 struct f2fs_inode *ri = F2FS_INODE(page);
2266
2267 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2268 F2FS_INLINE_XATTR_ADDRS(inode)]);
2269 }
2270
2271 static inline int inline_xattr_size(struct inode *inode)
2272 {
2273 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2274 }
2275
2276 static inline int f2fs_has_inline_data(struct inode *inode)
2277 {
2278 return is_inode_flag_set(inode, FI_INLINE_DATA);
2279 }
2280
2281 static inline int f2fs_exist_data(struct inode *inode)
2282 {
2283 return is_inode_flag_set(inode, FI_DATA_EXIST);
2284 }
2285
2286 static inline int f2fs_has_inline_dots(struct inode *inode)
2287 {
2288 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2289 }
2290
2291 static inline bool f2fs_is_atomic_file(struct inode *inode)
2292 {
2293 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2294 }
2295
2296 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2297 {
2298 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2299 }
2300
2301 static inline bool f2fs_is_volatile_file(struct inode *inode)
2302 {
2303 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2304 }
2305
2306 static inline bool f2fs_is_first_block_written(struct inode *inode)
2307 {
2308 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2309 }
2310
2311 static inline bool f2fs_is_drop_cache(struct inode *inode)
2312 {
2313 return is_inode_flag_set(inode, FI_DROP_CACHE);
2314 }
2315
2316 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2317 {
2318 struct f2fs_inode *ri = F2FS_INODE(page);
2319 int extra_size = get_extra_isize(inode);
2320
2321 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2322 }
2323
2324 static inline int f2fs_has_inline_dentry(struct inode *inode)
2325 {
2326 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2327 }
2328
2329 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2330 {
2331 if (!f2fs_has_inline_dentry(dir))
2332 kunmap(page);
2333 }
2334
2335 static inline int is_file(struct inode *inode, int type)
2336 {
2337 return F2FS_I(inode)->i_advise & type;
2338 }
2339
2340 static inline void set_file(struct inode *inode, int type)
2341 {
2342 F2FS_I(inode)->i_advise |= type;
2343 f2fs_mark_inode_dirty_sync(inode, true);
2344 }
2345
2346 static inline void clear_file(struct inode *inode, int type)
2347 {
2348 F2FS_I(inode)->i_advise &= ~type;
2349 f2fs_mark_inode_dirty_sync(inode, true);
2350 }
2351
2352 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2353 {
2354 bool ret;
2355
2356 if (dsync) {
2357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358
2359 spin_lock(&sbi->inode_lock[DIRTY_META]);
2360 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2361 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2362 return ret;
2363 }
2364 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2365 file_keep_isize(inode) ||
2366 i_size_read(inode) & PAGE_MASK)
2367 return false;
2368
2369 down_read(&F2FS_I(inode)->i_sem);
2370 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2371 up_read(&F2FS_I(inode)->i_sem);
2372
2373 return ret;
2374 }
2375
2376 static inline int f2fs_readonly(struct super_block *sb)
2377 {
2378 return sb->s_flags & SB_RDONLY;
2379 }
2380
2381 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2382 {
2383 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2384 }
2385
2386 static inline bool is_dot_dotdot(const struct qstr *str)
2387 {
2388 if (str->len == 1 && str->name[0] == '.')
2389 return true;
2390
2391 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2392 return true;
2393
2394 return false;
2395 }
2396
2397 static inline bool f2fs_may_extent_tree(struct inode *inode)
2398 {
2399 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2400 is_inode_flag_set(inode, FI_NO_EXTENT))
2401 return false;
2402
2403 return S_ISREG(inode->i_mode);
2404 }
2405
2406 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2407 size_t size, gfp_t flags)
2408 {
2409 #ifdef CONFIG_F2FS_FAULT_INJECTION
2410 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2411 f2fs_show_injection_info(FAULT_KMALLOC);
2412 return NULL;
2413 }
2414 #endif
2415 return kmalloc(size, flags);
2416 }
2417
2418 static inline int get_extra_isize(struct inode *inode)
2419 {
2420 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2421 }
2422
2423 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
2424 static inline int get_inline_xattr_addrs(struct inode *inode)
2425 {
2426 return F2FS_I(inode)->i_inline_xattr_size;
2427 }
2428
2429 #define get_inode_mode(i) \
2430 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2431 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2432
2433 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2434 (offsetof(struct f2fs_inode, i_extra_end) - \
2435 offsetof(struct f2fs_inode, i_extra_isize)) \
2436
2437 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2438 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2439 ((offsetof(typeof(*f2fs_inode), field) + \
2440 sizeof((f2fs_inode)->field)) \
2441 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2442
2443 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2444 {
2445 int i;
2446
2447 spin_lock(&sbi->iostat_lock);
2448 for (i = 0; i < NR_IO_TYPE; i++)
2449 sbi->write_iostat[i] = 0;
2450 spin_unlock(&sbi->iostat_lock);
2451 }
2452
2453 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2454 enum iostat_type type, unsigned long long io_bytes)
2455 {
2456 if (!sbi->iostat_enable)
2457 return;
2458 spin_lock(&sbi->iostat_lock);
2459 sbi->write_iostat[type] += io_bytes;
2460
2461 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2462 sbi->write_iostat[APP_BUFFERED_IO] =
2463 sbi->write_iostat[APP_WRITE_IO] -
2464 sbi->write_iostat[APP_DIRECT_IO];
2465 spin_unlock(&sbi->iostat_lock);
2466 }
2467
2468 /*
2469 * file.c
2470 */
2471 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2472 void truncate_data_blocks(struct dnode_of_data *dn);
2473 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2474 int f2fs_truncate(struct inode *inode);
2475 int f2fs_getattr(const struct path *path, struct kstat *stat,
2476 u32 request_mask, unsigned int flags);
2477 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2478 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2479 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2480 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2481 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2482
2483 /*
2484 * inode.c
2485 */
2486 void f2fs_set_inode_flags(struct inode *inode);
2487 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2488 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2489 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2490 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2491 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2492 int update_inode(struct inode *inode, struct page *node_page);
2493 int update_inode_page(struct inode *inode);
2494 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2495 void f2fs_evict_inode(struct inode *inode);
2496 void handle_failed_inode(struct inode *inode);
2497
2498 /*
2499 * namei.c
2500 */
2501 struct dentry *f2fs_get_parent(struct dentry *child);
2502
2503 /*
2504 * dir.c
2505 */
2506 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2507 unsigned char get_de_type(struct f2fs_dir_entry *de);
2508 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2509 f2fs_hash_t namehash, int *max_slots,
2510 struct f2fs_dentry_ptr *d);
2511 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2512 unsigned int start_pos, struct fscrypt_str *fstr);
2513 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2514 struct f2fs_dentry_ptr *d);
2515 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2516 const struct qstr *new_name,
2517 const struct qstr *orig_name, struct page *dpage);
2518 void update_parent_metadata(struct inode *dir, struct inode *inode,
2519 unsigned int current_depth);
2520 int room_for_filename(const void *bitmap, int slots, int max_slots);
2521 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2522 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2523 struct fscrypt_name *fname, struct page **res_page);
2524 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2525 const struct qstr *child, struct page **res_page);
2526 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2527 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2528 struct page **page);
2529 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2530 struct page *page, struct inode *inode);
2531 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2532 const struct qstr *name, f2fs_hash_t name_hash,
2533 unsigned int bit_pos);
2534 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2535 const struct qstr *orig_name,
2536 struct inode *inode, nid_t ino, umode_t mode);
2537 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2538 struct inode *inode, nid_t ino, umode_t mode);
2539 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2540 struct inode *inode, nid_t ino, umode_t mode);
2541 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2542 struct inode *dir, struct inode *inode);
2543 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2544 bool f2fs_empty_dir(struct inode *dir);
2545
2546 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2547 {
2548 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2549 inode, inode->i_ino, inode->i_mode);
2550 }
2551
2552 /*
2553 * super.c
2554 */
2555 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2556 void f2fs_inode_synced(struct inode *inode);
2557 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2558 void f2fs_quota_off_umount(struct super_block *sb);
2559 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2560 int f2fs_sync_fs(struct super_block *sb, int sync);
2561 extern __printf(3, 4)
2562 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2563 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2564
2565 /*
2566 * hash.c
2567 */
2568 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2569 struct fscrypt_name *fname);
2570
2571 /*
2572 * node.c
2573 */
2574 struct dnode_of_data;
2575 struct node_info;
2576
2577 int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2578 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2579 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2580 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2581 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2582 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2583 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2584 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2585 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2586 int truncate_xattr_node(struct inode *inode);
2587 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2588 int remove_inode_page(struct inode *inode);
2589 struct page *new_inode_page(struct inode *inode);
2590 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2591 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2592 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2593 struct page *get_node_page_ra(struct page *parent, int start);
2594 void move_node_page(struct page *node_page, int gc_type);
2595 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2596 struct writeback_control *wbc, bool atomic);
2597 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2598 bool do_balance, enum iostat_type io_type);
2599 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2600 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2601 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2602 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2603 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2604 void recover_inline_xattr(struct inode *inode, struct page *page);
2605 int recover_xattr_data(struct inode *inode, struct page *page,
2606 block_t blkaddr);
2607 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2608 int restore_node_summary(struct f2fs_sb_info *sbi,
2609 unsigned int segno, struct f2fs_summary_block *sum);
2610 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2611 int build_node_manager(struct f2fs_sb_info *sbi);
2612 void destroy_node_manager(struct f2fs_sb_info *sbi);
2613 int __init create_node_manager_caches(void);
2614 void destroy_node_manager_caches(void);
2615
2616 /*
2617 * segment.c
2618 */
2619 bool need_SSR(struct f2fs_sb_info *sbi);
2620 void register_inmem_page(struct inode *inode, struct page *page);
2621 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2622 void drop_inmem_pages(struct inode *inode);
2623 void drop_inmem_page(struct inode *inode, struct page *page);
2624 int commit_inmem_pages(struct inode *inode);
2625 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2626 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2627 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2628 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2629 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2630 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2631 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2632 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2633 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2634 unsigned int granularity);
2635 void stop_discard_thread(struct f2fs_sb_info *sbi);
2636 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2637 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2638 void release_discard_addrs(struct f2fs_sb_info *sbi);
2639 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2640 void allocate_new_segments(struct f2fs_sb_info *sbi);
2641 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2642 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2643 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2644 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2645 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2646 enum iostat_type io_type);
2647 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2648 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2649 int rewrite_data_page(struct f2fs_io_info *fio);
2650 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2651 block_t old_blkaddr, block_t new_blkaddr,
2652 bool recover_curseg, bool recover_newaddr);
2653 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2654 block_t old_addr, block_t new_addr,
2655 unsigned char version, bool recover_curseg,
2656 bool recover_newaddr);
2657 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2658 block_t old_blkaddr, block_t *new_blkaddr,
2659 struct f2fs_summary *sum, int type,
2660 struct f2fs_io_info *fio, bool add_list);
2661 void f2fs_wait_on_page_writeback(struct page *page,
2662 enum page_type type, bool ordered);
2663 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2664 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2665 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2666 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2667 unsigned int val, int alloc);
2668 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2669 int build_segment_manager(struct f2fs_sb_info *sbi);
2670 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2671 int __init create_segment_manager_caches(void);
2672 void destroy_segment_manager_caches(void);
2673
2674 /*
2675 * checkpoint.c
2676 */
2677 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2678 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2679 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2680 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2681 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2682 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2683 int type, bool sync);
2684 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2685 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2686 long nr_to_write, enum iostat_type io_type);
2687 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2688 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2689 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2690 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2691 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2692 unsigned int devidx, int type);
2693 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2694 unsigned int devidx, int type);
2695 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2696 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2697 void release_orphan_inode(struct f2fs_sb_info *sbi);
2698 void add_orphan_inode(struct inode *inode);
2699 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2700 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2701 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2702 void update_dirty_page(struct inode *inode, struct page *page);
2703 void remove_dirty_inode(struct inode *inode);
2704 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2705 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2706 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2707 int __init create_checkpoint_caches(void);
2708 void destroy_checkpoint_caches(void);
2709
2710 /*
2711 * data.c
2712 */
2713 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2714 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2715 struct inode *inode, nid_t ino, pgoff_t idx,
2716 enum page_type type);
2717 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2718 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2719 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2720 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2721 block_t blk_addr, struct bio *bio);
2722 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2723 void set_data_blkaddr(struct dnode_of_data *dn);
2724 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2725 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2726 int reserve_new_block(struct dnode_of_data *dn);
2727 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2728 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2729 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2730 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2731 int op_flags, bool for_write);
2732 struct page *find_data_page(struct inode *inode, pgoff_t index);
2733 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2734 bool for_write);
2735 struct page *get_new_data_page(struct inode *inode,
2736 struct page *ipage, pgoff_t index, bool new_i_size);
2737 int do_write_data_page(struct f2fs_io_info *fio);
2738 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2739 int create, int flag);
2740 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2741 u64 start, u64 len);
2742 void f2fs_set_page_dirty_nobuffers(struct page *page);
2743 int __f2fs_write_data_pages(struct address_space *mapping,
2744 struct writeback_control *wbc,
2745 enum iostat_type io_type);
2746 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2747 unsigned int length);
2748 int f2fs_release_page(struct page *page, gfp_t wait);
2749 #ifdef CONFIG_MIGRATION
2750 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2751 struct page *page, enum migrate_mode mode);
2752 #endif
2753
2754 /*
2755 * gc.c
2756 */
2757 int start_gc_thread(struct f2fs_sb_info *sbi);
2758 void stop_gc_thread(struct f2fs_sb_info *sbi);
2759 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2760 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2761 unsigned int segno);
2762 void build_gc_manager(struct f2fs_sb_info *sbi);
2763
2764 /*
2765 * recovery.c
2766 */
2767 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2768 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2769
2770 /*
2771 * debug.c
2772 */
2773 #ifdef CONFIG_F2FS_STAT_FS
2774 struct f2fs_stat_info {
2775 struct list_head stat_list;
2776 struct f2fs_sb_info *sbi;
2777 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2778 int main_area_segs, main_area_sections, main_area_zones;
2779 unsigned long long hit_largest, hit_cached, hit_rbtree;
2780 unsigned long long hit_total, total_ext;
2781 int ext_tree, zombie_tree, ext_node;
2782 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2783 int ndirty_data, ndirty_qdata;
2784 int inmem_pages;
2785 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2786 int nats, dirty_nats, sits, dirty_sits;
2787 int free_nids, avail_nids, alloc_nids;
2788 int total_count, utilization;
2789 int bg_gc, nr_wb_cp_data, nr_wb_data;
2790 int nr_flushing, nr_flushed, flush_list_empty;
2791 int nr_discarding, nr_discarded;
2792 int nr_discard_cmd;
2793 unsigned int undiscard_blks;
2794 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2795 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2796 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2797 unsigned int bimodal, avg_vblocks;
2798 int util_free, util_valid, util_invalid;
2799 int rsvd_segs, overp_segs;
2800 int dirty_count, node_pages, meta_pages;
2801 int prefree_count, call_count, cp_count, bg_cp_count;
2802 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2803 int bg_node_segs, bg_data_segs;
2804 int tot_blks, data_blks, node_blks;
2805 int bg_data_blks, bg_node_blks;
2806 int curseg[NR_CURSEG_TYPE];
2807 int cursec[NR_CURSEG_TYPE];
2808 int curzone[NR_CURSEG_TYPE];
2809
2810 unsigned int segment_count[2];
2811 unsigned int block_count[2];
2812 unsigned int inplace_count;
2813 unsigned long long base_mem, cache_mem, page_mem;
2814 };
2815
2816 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2817 {
2818 return (struct f2fs_stat_info *)sbi->stat_info;
2819 }
2820
2821 #define stat_inc_cp_count(si) ((si)->cp_count++)
2822 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2823 #define stat_inc_call_count(si) ((si)->call_count++)
2824 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2825 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2826 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2827 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2828 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2829 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2830 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2831 #define stat_inc_inline_xattr(inode) \
2832 do { \
2833 if (f2fs_has_inline_xattr(inode)) \
2834 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2835 } while (0)
2836 #define stat_dec_inline_xattr(inode) \
2837 do { \
2838 if (f2fs_has_inline_xattr(inode)) \
2839 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2840 } while (0)
2841 #define stat_inc_inline_inode(inode) \
2842 do { \
2843 if (f2fs_has_inline_data(inode)) \
2844 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2845 } while (0)
2846 #define stat_dec_inline_inode(inode) \
2847 do { \
2848 if (f2fs_has_inline_data(inode)) \
2849 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2850 } while (0)
2851 #define stat_inc_inline_dir(inode) \
2852 do { \
2853 if (f2fs_has_inline_dentry(inode)) \
2854 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2855 } while (0)
2856 #define stat_dec_inline_dir(inode) \
2857 do { \
2858 if (f2fs_has_inline_dentry(inode)) \
2859 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2860 } while (0)
2861 #define stat_inc_seg_type(sbi, curseg) \
2862 ((sbi)->segment_count[(curseg)->alloc_type]++)
2863 #define stat_inc_block_count(sbi, curseg) \
2864 ((sbi)->block_count[(curseg)->alloc_type]++)
2865 #define stat_inc_inplace_blocks(sbi) \
2866 (atomic_inc(&(sbi)->inplace_count))
2867 #define stat_inc_atomic_write(inode) \
2868 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2869 #define stat_dec_atomic_write(inode) \
2870 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2871 #define stat_update_max_atomic_write(inode) \
2872 do { \
2873 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2874 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2875 if (cur > max) \
2876 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2877 } while (0)
2878 #define stat_inc_volatile_write(inode) \
2879 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2880 #define stat_dec_volatile_write(inode) \
2881 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2882 #define stat_update_max_volatile_write(inode) \
2883 do { \
2884 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2885 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2886 if (cur > max) \
2887 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2888 } while (0)
2889 #define stat_inc_seg_count(sbi, type, gc_type) \
2890 do { \
2891 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2892 si->tot_segs++; \
2893 if ((type) == SUM_TYPE_DATA) { \
2894 si->data_segs++; \
2895 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2896 } else { \
2897 si->node_segs++; \
2898 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2899 } \
2900 } while (0)
2901
2902 #define stat_inc_tot_blk_count(si, blks) \
2903 ((si)->tot_blks += (blks))
2904
2905 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2906 do { \
2907 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2908 stat_inc_tot_blk_count(si, blks); \
2909 si->data_blks += (blks); \
2910 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2911 } while (0)
2912
2913 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2914 do { \
2915 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2916 stat_inc_tot_blk_count(si, blks); \
2917 si->node_blks += (blks); \
2918 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2919 } while (0)
2920
2921 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2922 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2923 int __init f2fs_create_root_stats(void);
2924 void f2fs_destroy_root_stats(void);
2925 #else
2926 #define stat_inc_cp_count(si) do { } while (0)
2927 #define stat_inc_bg_cp_count(si) do { } while (0)
2928 #define stat_inc_call_count(si) do { } while (0)
2929 #define stat_inc_bggc_count(si) do { } while (0)
2930 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2931 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2932 #define stat_inc_total_hit(sb) do { } while (0)
2933 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2934 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2935 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2936 #define stat_inc_inline_xattr(inode) do { } while (0)
2937 #define stat_dec_inline_xattr(inode) do { } while (0)
2938 #define stat_inc_inline_inode(inode) do { } while (0)
2939 #define stat_dec_inline_inode(inode) do { } while (0)
2940 #define stat_inc_inline_dir(inode) do { } while (0)
2941 #define stat_dec_inline_dir(inode) do { } while (0)
2942 #define stat_inc_atomic_write(inode) do { } while (0)
2943 #define stat_dec_atomic_write(inode) do { } while (0)
2944 #define stat_update_max_atomic_write(inode) do { } while (0)
2945 #define stat_inc_volatile_write(inode) do { } while (0)
2946 #define stat_dec_volatile_write(inode) do { } while (0)
2947 #define stat_update_max_volatile_write(inode) do { } while (0)
2948 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2949 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2950 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2951 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2952 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2953 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2954 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2955
2956 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2957 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2958 static inline int __init f2fs_create_root_stats(void) { return 0; }
2959 static inline void f2fs_destroy_root_stats(void) { }
2960 #endif
2961
2962 extern const struct file_operations f2fs_dir_operations;
2963 extern const struct file_operations f2fs_file_operations;
2964 extern const struct inode_operations f2fs_file_inode_operations;
2965 extern const struct address_space_operations f2fs_dblock_aops;
2966 extern const struct address_space_operations f2fs_node_aops;
2967 extern const struct address_space_operations f2fs_meta_aops;
2968 extern const struct inode_operations f2fs_dir_inode_operations;
2969 extern const struct inode_operations f2fs_symlink_inode_operations;
2970 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2971 extern const struct inode_operations f2fs_special_inode_operations;
2972 extern struct kmem_cache *inode_entry_slab;
2973
2974 /*
2975 * inline.c
2976 */
2977 bool f2fs_may_inline_data(struct inode *inode);
2978 bool f2fs_may_inline_dentry(struct inode *inode);
2979 void read_inline_data(struct page *page, struct page *ipage);
2980 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2981 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2982 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2983 int f2fs_convert_inline_inode(struct inode *inode);
2984 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2985 bool recover_inline_data(struct inode *inode, struct page *npage);
2986 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2987 struct fscrypt_name *fname, struct page **res_page);
2988 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2989 struct page *ipage);
2990 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2991 const struct qstr *orig_name,
2992 struct inode *inode, nid_t ino, umode_t mode);
2993 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2994 struct inode *dir, struct inode *inode);
2995 bool f2fs_empty_inline_dir(struct inode *dir);
2996 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2997 struct fscrypt_str *fstr);
2998 int f2fs_inline_data_fiemap(struct inode *inode,
2999 struct fiemap_extent_info *fieinfo,
3000 __u64 start, __u64 len);
3001
3002 /*
3003 * shrinker.c
3004 */
3005 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3006 struct shrink_control *sc);
3007 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3008 struct shrink_control *sc);
3009 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3010 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3011
3012 /*
3013 * extent_cache.c
3014 */
3015 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3016 struct rb_entry *cached_re, unsigned int ofs);
3017 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3018 struct rb_root *root, struct rb_node **parent,
3019 unsigned int ofs);
3020 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3021 struct rb_entry *cached_re, unsigned int ofs,
3022 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3023 struct rb_node ***insert_p, struct rb_node **insert_parent,
3024 bool force);
3025 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3026 struct rb_root *root);
3027 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3028 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3029 void f2fs_drop_extent_tree(struct inode *inode);
3030 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3031 void f2fs_destroy_extent_tree(struct inode *inode);
3032 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3033 struct extent_info *ei);
3034 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3035 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3036 pgoff_t fofs, block_t blkaddr, unsigned int len);
3037 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3038 int __init create_extent_cache(void);
3039 void destroy_extent_cache(void);
3040
3041 /*
3042 * sysfs.c
3043 */
3044 int __init f2fs_init_sysfs(void);
3045 void f2fs_exit_sysfs(void);
3046 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3047 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3048
3049 /*
3050 * crypto support
3051 */
3052 static inline bool f2fs_encrypted_inode(struct inode *inode)
3053 {
3054 return file_is_encrypt(inode);
3055 }
3056
3057 static inline bool f2fs_encrypted_file(struct inode *inode)
3058 {
3059 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3060 }
3061
3062 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3063 {
3064 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3065 file_set_encrypt(inode);
3066 inode->i_flags |= S_ENCRYPTED;
3067 #endif
3068 }
3069
3070 static inline bool f2fs_bio_encrypted(struct bio *bio)
3071 {
3072 return bio->bi_private != NULL;
3073 }
3074
3075 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3076 {
3077 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3078 }
3079
3080 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3081 {
3082 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3083 }
3084
3085 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3086 {
3087 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3088 }
3089
3090 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3091 {
3092 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3093 }
3094
3095 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3096 {
3097 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3098 }
3099
3100 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3101 {
3102 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3103 }
3104
3105 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3106 {
3107 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3108 }
3109
3110 #ifdef CONFIG_BLK_DEV_ZONED
3111 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3112 struct block_device *bdev, block_t blkaddr)
3113 {
3114 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3115 int i;
3116
3117 for (i = 0; i < sbi->s_ndevs; i++)
3118 if (FDEV(i).bdev == bdev)
3119 return FDEV(i).blkz_type[zno];
3120 return -EINVAL;
3121 }
3122 #endif
3123
3124 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3125 {
3126 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3127
3128 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3129 }
3130
3131 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3132 {
3133 clear_opt(sbi, ADAPTIVE);
3134 clear_opt(sbi, LFS);
3135
3136 switch (mt) {
3137 case F2FS_MOUNT_ADAPTIVE:
3138 set_opt(sbi, ADAPTIVE);
3139 break;
3140 case F2FS_MOUNT_LFS:
3141 set_opt(sbi, LFS);
3142 break;
3143 }
3144 }
3145
3146 static inline bool f2fs_may_encrypt(struct inode *inode)
3147 {
3148 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3149 umode_t mode = inode->i_mode;
3150
3151 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3152 #else
3153 return 0;
3154 #endif
3155 }
3156
3157 #endif