]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: fix to show ino management cache size correctly
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_IO,
56 FAULT_CHECKPOINT,
57 FAULT_MAX,
58 };
59
60 struct f2fs_fault_info {
61 atomic_t inject_ops;
62 unsigned int inject_rate;
63 unsigned int inject_type;
64 };
65
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90 #define F2FS_MOUNT_ADAPTIVE 0x00020000
91 #define F2FS_MOUNT_LFS 0x00040000
92 #define F2FS_MOUNT_USRQUOTA 0x00080000
93 #define F2FS_MOUNT_GRPQUOTA 0x00100000
94 #define F2FS_MOUNT_PRJQUOTA 0x00200000
95 #define F2FS_MOUNT_QUOTA 0x00400000
96
97 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
98 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
99 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
100
101 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
102 typecheck(unsigned long long, b) && \
103 ((long long)((a) - (b)) > 0))
104
105 typedef u32 block_t; /*
106 * should not change u32, since it is the on-disk block
107 * address format, __le32.
108 */
109 typedef u32 nid_t;
110
111 struct f2fs_mount_info {
112 unsigned int opt;
113 };
114
115 #define F2FS_FEATURE_ENCRYPT 0x0001
116 #define F2FS_FEATURE_BLKZONED 0x0002
117 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
118 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
119 #define F2FS_FEATURE_PRJQUOTA 0x0010
120 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
121
122 #define F2FS_HAS_FEATURE(sb, mask) \
123 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
124 #define F2FS_SET_FEATURE(sb, mask) \
125 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
126 #define F2FS_CLEAR_FEATURE(sb, mask) \
127 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
128
129 /*
130 * For checkpoint manager
131 */
132 enum {
133 NAT_BITMAP,
134 SIT_BITMAP
135 };
136
137 #define CP_UMOUNT 0x00000001
138 #define CP_FASTBOOT 0x00000002
139 #define CP_SYNC 0x00000004
140 #define CP_RECOVERY 0x00000008
141 #define CP_DISCARD 0x00000010
142 #define CP_TRIMMED 0x00000020
143
144 #define DEF_BATCHED_TRIM_SECTIONS 2048
145 #define BATCHED_TRIM_SEGMENTS(sbi) \
146 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
147 #define BATCHED_TRIM_BLOCKS(sbi) \
148 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
149 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
150 #define DISCARD_ISSUE_RATE 8
151 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
152 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
153 #define DEF_CP_INTERVAL 60 /* 60 secs */
154 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
155
156 struct cp_control {
157 int reason;
158 __u64 trim_start;
159 __u64 trim_end;
160 __u64 trim_minlen;
161 __u64 trimmed;
162 };
163
164 /*
165 * For CP/NAT/SIT/SSA readahead
166 */
167 enum {
168 META_CP,
169 META_NAT,
170 META_SIT,
171 META_SSA,
172 META_POR,
173 };
174
175 /* for the list of ino */
176 enum {
177 ORPHAN_INO, /* for orphan ino list */
178 APPEND_INO, /* for append ino list */
179 UPDATE_INO, /* for update ino list */
180 MAX_INO_ENTRY, /* max. list */
181 };
182
183 struct ino_entry {
184 struct list_head list; /* list head */
185 nid_t ino; /* inode number */
186 };
187
188 /* for the list of inodes to be GCed */
189 struct inode_entry {
190 struct list_head list; /* list head */
191 struct inode *inode; /* vfs inode pointer */
192 };
193
194 /* for the bitmap indicate blocks to be discarded */
195 struct discard_entry {
196 struct list_head list; /* list head */
197 block_t start_blkaddr; /* start blockaddr of current segment */
198 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
199 };
200
201 /* default discard granularity of inner discard thread, unit: block count */
202 #define DEFAULT_DISCARD_GRANULARITY 16
203
204 /* max discard pend list number */
205 #define MAX_PLIST_NUM 512
206 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
207 (MAX_PLIST_NUM - 1) : (blk_num - 1))
208
209 #define P_ACTIVE 0x01
210 #define P_TRIM 0x02
211 #define plist_issue(tag) (((tag) & P_ACTIVE) || ((tag) & P_TRIM))
212
213 enum {
214 D_PREP,
215 D_SUBMIT,
216 D_DONE,
217 };
218
219 struct discard_info {
220 block_t lstart; /* logical start address */
221 block_t len; /* length */
222 block_t start; /* actual start address in dev */
223 };
224
225 struct discard_cmd {
226 struct rb_node rb_node; /* rb node located in rb-tree */
227 union {
228 struct {
229 block_t lstart; /* logical start address */
230 block_t len; /* length */
231 block_t start; /* actual start address in dev */
232 };
233 struct discard_info di; /* discard info */
234
235 };
236 struct list_head list; /* command list */
237 struct completion wait; /* compleation */
238 struct block_device *bdev; /* bdev */
239 unsigned short ref; /* reference count */
240 unsigned char state; /* state */
241 int error; /* bio error */
242 };
243
244 struct discard_cmd_control {
245 struct task_struct *f2fs_issue_discard; /* discard thread */
246 struct list_head entry_list; /* 4KB discard entry list */
247 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
248 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
249 struct list_head wait_list; /* store on-flushing entries */
250 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
251 unsigned int discard_wake; /* to wake up discard thread */
252 struct mutex cmd_lock;
253 unsigned int nr_discards; /* # of discards in the list */
254 unsigned int max_discards; /* max. discards to be issued */
255 unsigned int discard_granularity; /* discard granularity */
256 unsigned int undiscard_blks; /* # of undiscard blocks */
257 atomic_t issued_discard; /* # of issued discard */
258 atomic_t issing_discard; /* # of issing discard */
259 atomic_t discard_cmd_cnt; /* # of cached cmd count */
260 struct rb_root root; /* root of discard rb-tree */
261 };
262
263 /* for the list of fsync inodes, used only during recovery */
264 struct fsync_inode_entry {
265 struct list_head list; /* list head */
266 struct inode *inode; /* vfs inode pointer */
267 block_t blkaddr; /* block address locating the last fsync */
268 block_t last_dentry; /* block address locating the last dentry */
269 };
270
271 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
272 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
273
274 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
275 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
276 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
277 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
278
279 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
280 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
281
282 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
283 {
284 int before = nats_in_cursum(journal);
285
286 journal->n_nats = cpu_to_le16(before + i);
287 return before;
288 }
289
290 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
291 {
292 int before = sits_in_cursum(journal);
293
294 journal->n_sits = cpu_to_le16(before + i);
295 return before;
296 }
297
298 static inline bool __has_cursum_space(struct f2fs_journal *journal,
299 int size, int type)
300 {
301 if (type == NAT_JOURNAL)
302 return size <= MAX_NAT_JENTRIES(journal);
303 return size <= MAX_SIT_JENTRIES(journal);
304 }
305
306 /*
307 * ioctl commands
308 */
309 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
310 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
311 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
312
313 #define F2FS_IOCTL_MAGIC 0xf5
314 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
315 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
316 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
317 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
318 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
319 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
320 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
321 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
322 struct f2fs_defragment)
323 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
324 struct f2fs_move_range)
325 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
326 struct f2fs_flush_device)
327 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
328 struct f2fs_gc_range)
329 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
330
331 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
332 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
333 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
334
335 /*
336 * should be same as XFS_IOC_GOINGDOWN.
337 * Flags for going down operation used by FS_IOC_GOINGDOWN
338 */
339 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
340 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
341 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
342 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
343 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
344
345 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
346 /*
347 * ioctl commands in 32 bit emulation
348 */
349 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
350 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
351 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
352 #endif
353
354 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR
355 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR
356
357 struct f2fs_gc_range {
358 u32 sync;
359 u64 start;
360 u64 len;
361 };
362
363 struct f2fs_defragment {
364 u64 start;
365 u64 len;
366 };
367
368 struct f2fs_move_range {
369 u32 dst_fd; /* destination fd */
370 u64 pos_in; /* start position in src_fd */
371 u64 pos_out; /* start position in dst_fd */
372 u64 len; /* size to move */
373 };
374
375 struct f2fs_flush_device {
376 u32 dev_num; /* device number to flush */
377 u32 segments; /* # of segments to flush */
378 };
379
380 /* for inline stuff */
381 #define DEF_INLINE_RESERVED_SIZE 1
382 static inline int get_extra_isize(struct inode *inode);
383 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
384 (CUR_ADDRS_PER_INODE(inode) - \
385 DEF_INLINE_RESERVED_SIZE - \
386 F2FS_INLINE_XATTR_ADDRS))
387
388 /* for inline dir */
389 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
390 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
391 BITS_PER_BYTE + 1))
392 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
393 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
394 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
395 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
396 NR_INLINE_DENTRY(inode) + \
397 INLINE_DENTRY_BITMAP_SIZE(inode)))
398
399 /*
400 * For INODE and NODE manager
401 */
402 /* for directory operations */
403 struct f2fs_dentry_ptr {
404 struct inode *inode;
405 void *bitmap;
406 struct f2fs_dir_entry *dentry;
407 __u8 (*filename)[F2FS_SLOT_LEN];
408 int max;
409 int nr_bitmap;
410 };
411
412 static inline void make_dentry_ptr_block(struct inode *inode,
413 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
414 {
415 d->inode = inode;
416 d->max = NR_DENTRY_IN_BLOCK;
417 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
418 d->bitmap = &t->dentry_bitmap;
419 d->dentry = t->dentry;
420 d->filename = t->filename;
421 }
422
423 static inline void make_dentry_ptr_inline(struct inode *inode,
424 struct f2fs_dentry_ptr *d, void *t)
425 {
426 int entry_cnt = NR_INLINE_DENTRY(inode);
427 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
428 int reserved_size = INLINE_RESERVED_SIZE(inode);
429
430 d->inode = inode;
431 d->max = entry_cnt;
432 d->nr_bitmap = bitmap_size;
433 d->bitmap = t;
434 d->dentry = t + bitmap_size + reserved_size;
435 d->filename = t + bitmap_size + reserved_size +
436 SIZE_OF_DIR_ENTRY * entry_cnt;
437 }
438
439 /*
440 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
441 * as its node offset to distinguish from index node blocks.
442 * But some bits are used to mark the node block.
443 */
444 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
445 >> OFFSET_BIT_SHIFT)
446 enum {
447 ALLOC_NODE, /* allocate a new node page if needed */
448 LOOKUP_NODE, /* look up a node without readahead */
449 LOOKUP_NODE_RA, /*
450 * look up a node with readahead called
451 * by get_data_block.
452 */
453 };
454
455 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
456
457 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
458
459 /* vector size for gang look-up from extent cache that consists of radix tree */
460 #define EXT_TREE_VEC_SIZE 64
461
462 /* for in-memory extent cache entry */
463 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
464
465 /* number of extent info in extent cache we try to shrink */
466 #define EXTENT_CACHE_SHRINK_NUMBER 128
467
468 struct rb_entry {
469 struct rb_node rb_node; /* rb node located in rb-tree */
470 unsigned int ofs; /* start offset of the entry */
471 unsigned int len; /* length of the entry */
472 };
473
474 struct extent_info {
475 unsigned int fofs; /* start offset in a file */
476 unsigned int len; /* length of the extent */
477 u32 blk; /* start block address of the extent */
478 };
479
480 struct extent_node {
481 struct rb_node rb_node;
482 union {
483 struct {
484 unsigned int fofs;
485 unsigned int len;
486 u32 blk;
487 };
488 struct extent_info ei; /* extent info */
489
490 };
491 struct list_head list; /* node in global extent list of sbi */
492 struct extent_tree *et; /* extent tree pointer */
493 };
494
495 struct extent_tree {
496 nid_t ino; /* inode number */
497 struct rb_root root; /* root of extent info rb-tree */
498 struct extent_node *cached_en; /* recently accessed extent node */
499 struct extent_info largest; /* largested extent info */
500 struct list_head list; /* to be used by sbi->zombie_list */
501 rwlock_t lock; /* protect extent info rb-tree */
502 atomic_t node_cnt; /* # of extent node in rb-tree*/
503 };
504
505 /*
506 * This structure is taken from ext4_map_blocks.
507 *
508 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
509 */
510 #define F2FS_MAP_NEW (1 << BH_New)
511 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
512 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
513 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
514 F2FS_MAP_UNWRITTEN)
515
516 struct f2fs_map_blocks {
517 block_t m_pblk;
518 block_t m_lblk;
519 unsigned int m_len;
520 unsigned int m_flags;
521 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
522 };
523
524 /* for flag in get_data_block */
525 enum {
526 F2FS_GET_BLOCK_DEFAULT,
527 F2FS_GET_BLOCK_FIEMAP,
528 F2FS_GET_BLOCK_BMAP,
529 F2FS_GET_BLOCK_PRE_DIO,
530 F2FS_GET_BLOCK_PRE_AIO,
531 };
532
533 /*
534 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
535 */
536 #define FADVISE_COLD_BIT 0x01
537 #define FADVISE_LOST_PINO_BIT 0x02
538 #define FADVISE_ENCRYPT_BIT 0x04
539 #define FADVISE_ENC_NAME_BIT 0x08
540 #define FADVISE_KEEP_SIZE_BIT 0x10
541
542 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
543 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
544 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
545 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
546 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
547 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
548 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
549 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
550 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
551 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
552 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
553 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
554 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
555
556 #define DEF_DIR_LEVEL 0
557
558 struct f2fs_inode_info {
559 struct inode vfs_inode; /* serve a vfs inode */
560 unsigned long i_flags; /* keep an inode flags for ioctl */
561 unsigned char i_advise; /* use to give file attribute hints */
562 unsigned char i_dir_level; /* use for dentry level for large dir */
563 unsigned int i_current_depth; /* use only in directory structure */
564 unsigned int i_pino; /* parent inode number */
565 umode_t i_acl_mode; /* keep file acl mode temporarily */
566
567 /* Use below internally in f2fs*/
568 unsigned long flags; /* use to pass per-file flags */
569 struct rw_semaphore i_sem; /* protect fi info */
570 atomic_t dirty_pages; /* # of dirty pages */
571 f2fs_hash_t chash; /* hash value of given file name */
572 unsigned int clevel; /* maximum level of given file name */
573 struct task_struct *task; /* lookup and create consistency */
574 struct task_struct *cp_task; /* separate cp/wb IO stats*/
575 nid_t i_xattr_nid; /* node id that contains xattrs */
576 loff_t last_disk_size; /* lastly written file size */
577
578 #ifdef CONFIG_QUOTA
579 struct dquot *i_dquot[MAXQUOTAS];
580
581 /* quota space reservation, managed internally by quota code */
582 qsize_t i_reserved_quota;
583 #endif
584 struct list_head dirty_list; /* dirty list for dirs and files */
585 struct list_head gdirty_list; /* linked in global dirty list */
586 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
587 struct task_struct *inmem_task; /* store inmemory task */
588 struct mutex inmem_lock; /* lock for inmemory pages */
589 struct extent_tree *extent_tree; /* cached extent_tree entry */
590 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
591 struct rw_semaphore i_mmap_sem;
592 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
593
594 int i_extra_isize; /* size of extra space located in i_addr */
595 kprojid_t i_projid; /* id for project quota */
596 };
597
598 static inline void get_extent_info(struct extent_info *ext,
599 struct f2fs_extent *i_ext)
600 {
601 ext->fofs = le32_to_cpu(i_ext->fofs);
602 ext->blk = le32_to_cpu(i_ext->blk);
603 ext->len = le32_to_cpu(i_ext->len);
604 }
605
606 static inline void set_raw_extent(struct extent_info *ext,
607 struct f2fs_extent *i_ext)
608 {
609 i_ext->fofs = cpu_to_le32(ext->fofs);
610 i_ext->blk = cpu_to_le32(ext->blk);
611 i_ext->len = cpu_to_le32(ext->len);
612 }
613
614 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
615 u32 blk, unsigned int len)
616 {
617 ei->fofs = fofs;
618 ei->blk = blk;
619 ei->len = len;
620 }
621
622 static inline bool __is_discard_mergeable(struct discard_info *back,
623 struct discard_info *front)
624 {
625 return back->lstart + back->len == front->lstart;
626 }
627
628 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
629 struct discard_info *back)
630 {
631 return __is_discard_mergeable(back, cur);
632 }
633
634 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
635 struct discard_info *front)
636 {
637 return __is_discard_mergeable(cur, front);
638 }
639
640 static inline bool __is_extent_mergeable(struct extent_info *back,
641 struct extent_info *front)
642 {
643 return (back->fofs + back->len == front->fofs &&
644 back->blk + back->len == front->blk);
645 }
646
647 static inline bool __is_back_mergeable(struct extent_info *cur,
648 struct extent_info *back)
649 {
650 return __is_extent_mergeable(back, cur);
651 }
652
653 static inline bool __is_front_mergeable(struct extent_info *cur,
654 struct extent_info *front)
655 {
656 return __is_extent_mergeable(cur, front);
657 }
658
659 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
660 static inline void __try_update_largest_extent(struct inode *inode,
661 struct extent_tree *et, struct extent_node *en)
662 {
663 if (en->ei.len > et->largest.len) {
664 et->largest = en->ei;
665 f2fs_mark_inode_dirty_sync(inode, true);
666 }
667 }
668
669 /*
670 * For free nid management
671 */
672 enum nid_state {
673 FREE_NID, /* newly added to free nid list */
674 PREALLOC_NID, /* it is preallocated */
675 MAX_NID_STATE,
676 };
677
678 struct f2fs_nm_info {
679 block_t nat_blkaddr; /* base disk address of NAT */
680 nid_t max_nid; /* maximum possible node ids */
681 nid_t available_nids; /* # of available node ids */
682 nid_t next_scan_nid; /* the next nid to be scanned */
683 unsigned int ram_thresh; /* control the memory footprint */
684 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
685 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
686
687 /* NAT cache management */
688 struct radix_tree_root nat_root;/* root of the nat entry cache */
689 struct radix_tree_root nat_set_root;/* root of the nat set cache */
690 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
691 struct list_head nat_entries; /* cached nat entry list (clean) */
692 unsigned int nat_cnt; /* the # of cached nat entries */
693 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
694 unsigned int nat_blocks; /* # of nat blocks */
695
696 /* free node ids management */
697 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
698 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
699 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
700 spinlock_t nid_list_lock; /* protect nid lists ops */
701 struct mutex build_lock; /* lock for build free nids */
702 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
703 unsigned char *nat_block_bitmap;
704 unsigned short *free_nid_count; /* free nid count of NAT block */
705
706 /* for checkpoint */
707 char *nat_bitmap; /* NAT bitmap pointer */
708
709 unsigned int nat_bits_blocks; /* # of nat bits blocks */
710 unsigned char *nat_bits; /* NAT bits blocks */
711 unsigned char *full_nat_bits; /* full NAT pages */
712 unsigned char *empty_nat_bits; /* empty NAT pages */
713 #ifdef CONFIG_F2FS_CHECK_FS
714 char *nat_bitmap_mir; /* NAT bitmap mirror */
715 #endif
716 int bitmap_size; /* bitmap size */
717 };
718
719 /*
720 * this structure is used as one of function parameters.
721 * all the information are dedicated to a given direct node block determined
722 * by the data offset in a file.
723 */
724 struct dnode_of_data {
725 struct inode *inode; /* vfs inode pointer */
726 struct page *inode_page; /* its inode page, NULL is possible */
727 struct page *node_page; /* cached direct node page */
728 nid_t nid; /* node id of the direct node block */
729 unsigned int ofs_in_node; /* data offset in the node page */
730 bool inode_page_locked; /* inode page is locked or not */
731 bool node_changed; /* is node block changed */
732 char cur_level; /* level of hole node page */
733 char max_level; /* level of current page located */
734 block_t data_blkaddr; /* block address of the node block */
735 };
736
737 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
738 struct page *ipage, struct page *npage, nid_t nid)
739 {
740 memset(dn, 0, sizeof(*dn));
741 dn->inode = inode;
742 dn->inode_page = ipage;
743 dn->node_page = npage;
744 dn->nid = nid;
745 }
746
747 /*
748 * For SIT manager
749 *
750 * By default, there are 6 active log areas across the whole main area.
751 * When considering hot and cold data separation to reduce cleaning overhead,
752 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
753 * respectively.
754 * In the current design, you should not change the numbers intentionally.
755 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
756 * logs individually according to the underlying devices. (default: 6)
757 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
758 * data and 8 for node logs.
759 */
760 #define NR_CURSEG_DATA_TYPE (3)
761 #define NR_CURSEG_NODE_TYPE (3)
762 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
763
764 enum {
765 CURSEG_HOT_DATA = 0, /* directory entry blocks */
766 CURSEG_WARM_DATA, /* data blocks */
767 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
768 CURSEG_HOT_NODE, /* direct node blocks of directory files */
769 CURSEG_WARM_NODE, /* direct node blocks of normal files */
770 CURSEG_COLD_NODE, /* indirect node blocks */
771 NO_CHECK_TYPE,
772 };
773
774 struct flush_cmd {
775 struct completion wait;
776 struct llist_node llnode;
777 int ret;
778 };
779
780 struct flush_cmd_control {
781 struct task_struct *f2fs_issue_flush; /* flush thread */
782 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
783 atomic_t issued_flush; /* # of issued flushes */
784 atomic_t issing_flush; /* # of issing flushes */
785 struct llist_head issue_list; /* list for command issue */
786 struct llist_node *dispatch_list; /* list for command dispatch */
787 };
788
789 struct f2fs_sm_info {
790 struct sit_info *sit_info; /* whole segment information */
791 struct free_segmap_info *free_info; /* free segment information */
792 struct dirty_seglist_info *dirty_info; /* dirty segment information */
793 struct curseg_info *curseg_array; /* active segment information */
794
795 block_t seg0_blkaddr; /* block address of 0'th segment */
796 block_t main_blkaddr; /* start block address of main area */
797 block_t ssa_blkaddr; /* start block address of SSA area */
798
799 unsigned int segment_count; /* total # of segments */
800 unsigned int main_segments; /* # of segments in main area */
801 unsigned int reserved_segments; /* # of reserved segments */
802 unsigned int ovp_segments; /* # of overprovision segments */
803
804 /* a threshold to reclaim prefree segments */
805 unsigned int rec_prefree_segments;
806
807 /* for batched trimming */
808 unsigned int trim_sections; /* # of sections to trim */
809
810 struct list_head sit_entry_set; /* sit entry set list */
811
812 unsigned int ipu_policy; /* in-place-update policy */
813 unsigned int min_ipu_util; /* in-place-update threshold */
814 unsigned int min_fsync_blocks; /* threshold for fsync */
815 unsigned int min_hot_blocks; /* threshold for hot block allocation */
816
817 /* for flush command control */
818 struct flush_cmd_control *fcc_info;
819
820 /* for discard command control */
821 struct discard_cmd_control *dcc_info;
822 };
823
824 /*
825 * For superblock
826 */
827 /*
828 * COUNT_TYPE for monitoring
829 *
830 * f2fs monitors the number of several block types such as on-writeback,
831 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
832 */
833 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
834 enum count_type {
835 F2FS_DIRTY_DENTS,
836 F2FS_DIRTY_DATA,
837 F2FS_DIRTY_NODES,
838 F2FS_DIRTY_META,
839 F2FS_INMEM_PAGES,
840 F2FS_DIRTY_IMETA,
841 F2FS_WB_CP_DATA,
842 F2FS_WB_DATA,
843 NR_COUNT_TYPE,
844 };
845
846 /*
847 * The below are the page types of bios used in submit_bio().
848 * The available types are:
849 * DATA User data pages. It operates as async mode.
850 * NODE Node pages. It operates as async mode.
851 * META FS metadata pages such as SIT, NAT, CP.
852 * NR_PAGE_TYPE The number of page types.
853 * META_FLUSH Make sure the previous pages are written
854 * with waiting the bio's completion
855 * ... Only can be used with META.
856 */
857 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
858 enum page_type {
859 DATA,
860 NODE,
861 META,
862 NR_PAGE_TYPE,
863 META_FLUSH,
864 INMEM, /* the below types are used by tracepoints only. */
865 INMEM_DROP,
866 INMEM_INVALIDATE,
867 INMEM_REVOKE,
868 IPU,
869 OPU,
870 };
871
872 enum temp_type {
873 HOT = 0, /* must be zero for meta bio */
874 WARM,
875 COLD,
876 NR_TEMP_TYPE,
877 };
878
879 enum need_lock_type {
880 LOCK_REQ = 0,
881 LOCK_DONE,
882 LOCK_RETRY,
883 };
884
885 enum iostat_type {
886 APP_DIRECT_IO, /* app direct IOs */
887 APP_BUFFERED_IO, /* app buffered IOs */
888 APP_WRITE_IO, /* app write IOs */
889 APP_MAPPED_IO, /* app mapped IOs */
890 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
891 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
892 FS_META_IO, /* meta IOs from kworker/reclaimer */
893 FS_GC_DATA_IO, /* data IOs from forground gc */
894 FS_GC_NODE_IO, /* node IOs from forground gc */
895 FS_CP_DATA_IO, /* data IOs from checkpoint */
896 FS_CP_NODE_IO, /* node IOs from checkpoint */
897 FS_CP_META_IO, /* meta IOs from checkpoint */
898 FS_DISCARD, /* discard */
899 NR_IO_TYPE,
900 };
901
902 struct f2fs_io_info {
903 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
904 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
905 enum temp_type temp; /* contains HOT/WARM/COLD */
906 int op; /* contains REQ_OP_ */
907 int op_flags; /* req_flag_bits */
908 block_t new_blkaddr; /* new block address to be written */
909 block_t old_blkaddr; /* old block address before Cow */
910 struct page *page; /* page to be written */
911 struct page *encrypted_page; /* encrypted page */
912 struct list_head list; /* serialize IOs */
913 bool submitted; /* indicate IO submission */
914 int need_lock; /* indicate we need to lock cp_rwsem */
915 bool in_list; /* indicate fio is in io_list */
916 enum iostat_type io_type; /* io type */
917 };
918
919 #define is_read_io(rw) ((rw) == READ)
920 struct f2fs_bio_info {
921 struct f2fs_sb_info *sbi; /* f2fs superblock */
922 struct bio *bio; /* bios to merge */
923 sector_t last_block_in_bio; /* last block number */
924 struct f2fs_io_info fio; /* store buffered io info. */
925 struct rw_semaphore io_rwsem; /* blocking op for bio */
926 spinlock_t io_lock; /* serialize DATA/NODE IOs */
927 struct list_head io_list; /* track fios */
928 };
929
930 #define FDEV(i) (sbi->devs[i])
931 #define RDEV(i) (raw_super->devs[i])
932 struct f2fs_dev_info {
933 struct block_device *bdev;
934 char path[MAX_PATH_LEN];
935 unsigned int total_segments;
936 block_t start_blk;
937 block_t end_blk;
938 #ifdef CONFIG_BLK_DEV_ZONED
939 unsigned int nr_blkz; /* Total number of zones */
940 u8 *blkz_type; /* Array of zones type */
941 #endif
942 };
943
944 enum inode_type {
945 DIR_INODE, /* for dirty dir inode */
946 FILE_INODE, /* for dirty regular/symlink inode */
947 DIRTY_META, /* for all dirtied inode metadata */
948 NR_INODE_TYPE,
949 };
950
951 /* for inner inode cache management */
952 struct inode_management {
953 struct radix_tree_root ino_root; /* ino entry array */
954 spinlock_t ino_lock; /* for ino entry lock */
955 struct list_head ino_list; /* inode list head */
956 unsigned long ino_num; /* number of entries */
957 };
958
959 /* For s_flag in struct f2fs_sb_info */
960 enum {
961 SBI_IS_DIRTY, /* dirty flag for checkpoint */
962 SBI_IS_CLOSE, /* specify unmounting */
963 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
964 SBI_POR_DOING, /* recovery is doing or not */
965 SBI_NEED_SB_WRITE, /* need to recover superblock */
966 SBI_NEED_CP, /* need to checkpoint */
967 };
968
969 enum {
970 CP_TIME,
971 REQ_TIME,
972 MAX_TIME,
973 };
974
975 struct f2fs_sb_info {
976 struct super_block *sb; /* pointer to VFS super block */
977 struct proc_dir_entry *s_proc; /* proc entry */
978 struct f2fs_super_block *raw_super; /* raw super block pointer */
979 int valid_super_block; /* valid super block no */
980 unsigned long s_flag; /* flags for sbi */
981
982 #ifdef CONFIG_BLK_DEV_ZONED
983 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
984 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
985 #endif
986
987 /* for node-related operations */
988 struct f2fs_nm_info *nm_info; /* node manager */
989 struct inode *node_inode; /* cache node blocks */
990
991 /* for segment-related operations */
992 struct f2fs_sm_info *sm_info; /* segment manager */
993
994 /* for bio operations */
995 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
996 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
997 /* bio ordering for NODE/DATA */
998 int write_io_size_bits; /* Write IO size bits */
999 mempool_t *write_io_dummy; /* Dummy pages */
1000
1001 /* for checkpoint */
1002 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1003 int cur_cp_pack; /* remain current cp pack */
1004 spinlock_t cp_lock; /* for flag in ckpt */
1005 struct inode *meta_inode; /* cache meta blocks */
1006 struct mutex cp_mutex; /* checkpoint procedure lock */
1007 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1008 struct rw_semaphore node_write; /* locking node writes */
1009 struct rw_semaphore node_change; /* locking node change */
1010 wait_queue_head_t cp_wait;
1011 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1012 long interval_time[MAX_TIME]; /* to store thresholds */
1013
1014 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1015
1016 /* for orphan inode, use 0'th array */
1017 unsigned int max_orphans; /* max orphan inodes */
1018
1019 /* for inode management */
1020 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1021 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1022
1023 /* for extent tree cache */
1024 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1025 struct mutex extent_tree_lock; /* locking extent radix tree */
1026 struct list_head extent_list; /* lru list for shrinker */
1027 spinlock_t extent_lock; /* locking extent lru list */
1028 atomic_t total_ext_tree; /* extent tree count */
1029 struct list_head zombie_list; /* extent zombie tree list */
1030 atomic_t total_zombie_tree; /* extent zombie tree count */
1031 atomic_t total_ext_node; /* extent info count */
1032
1033 /* basic filesystem units */
1034 unsigned int log_sectors_per_block; /* log2 sectors per block */
1035 unsigned int log_blocksize; /* log2 block size */
1036 unsigned int blocksize; /* block size */
1037 unsigned int root_ino_num; /* root inode number*/
1038 unsigned int node_ino_num; /* node inode number*/
1039 unsigned int meta_ino_num; /* meta inode number*/
1040 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1041 unsigned int blocks_per_seg; /* blocks per segment */
1042 unsigned int segs_per_sec; /* segments per section */
1043 unsigned int secs_per_zone; /* sections per zone */
1044 unsigned int total_sections; /* total section count */
1045 unsigned int total_node_count; /* total node block count */
1046 unsigned int total_valid_node_count; /* valid node block count */
1047 loff_t max_file_blocks; /* max block index of file */
1048 int active_logs; /* # of active logs */
1049 int dir_level; /* directory level */
1050
1051 block_t user_block_count; /* # of user blocks */
1052 block_t total_valid_block_count; /* # of valid blocks */
1053 block_t discard_blks; /* discard command candidats */
1054 block_t last_valid_block_count; /* for recovery */
1055 block_t reserved_blocks; /* configurable reserved blocks */
1056
1057 u32 s_next_generation; /* for NFS support */
1058
1059 /* # of pages, see count_type */
1060 atomic_t nr_pages[NR_COUNT_TYPE];
1061 /* # of allocated blocks */
1062 struct percpu_counter alloc_valid_block_count;
1063
1064 /* writeback control */
1065 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1066
1067 /* valid inode count */
1068 struct percpu_counter total_valid_inode_count;
1069
1070 struct f2fs_mount_info mount_opt; /* mount options */
1071
1072 /* for cleaning operations */
1073 struct mutex gc_mutex; /* mutex for GC */
1074 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1075 unsigned int cur_victim_sec; /* current victim section num */
1076
1077 /* threshold for converting bg victims for fg */
1078 u64 fggc_threshold;
1079
1080 /* maximum # of trials to find a victim segment for SSR and GC */
1081 unsigned int max_victim_search;
1082
1083 /*
1084 * for stat information.
1085 * one is for the LFS mode, and the other is for the SSR mode.
1086 */
1087 #ifdef CONFIG_F2FS_STAT_FS
1088 struct f2fs_stat_info *stat_info; /* FS status information */
1089 unsigned int segment_count[2]; /* # of allocated segments */
1090 unsigned int block_count[2]; /* # of allocated blocks */
1091 atomic_t inplace_count; /* # of inplace update */
1092 atomic64_t total_hit_ext; /* # of lookup extent cache */
1093 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1094 atomic64_t read_hit_largest; /* # of hit largest extent node */
1095 atomic64_t read_hit_cached; /* # of hit cached extent node */
1096 atomic_t inline_xattr; /* # of inline_xattr inodes */
1097 atomic_t inline_inode; /* # of inline_data inodes */
1098 atomic_t inline_dir; /* # of inline_dentry inodes */
1099 atomic_t aw_cnt; /* # of atomic writes */
1100 atomic_t vw_cnt; /* # of volatile writes */
1101 atomic_t max_aw_cnt; /* max # of atomic writes */
1102 atomic_t max_vw_cnt; /* max # of volatile writes */
1103 int bg_gc; /* background gc calls */
1104 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1105 #endif
1106 spinlock_t stat_lock; /* lock for stat operations */
1107
1108 /* For app/fs IO statistics */
1109 spinlock_t iostat_lock;
1110 unsigned long long write_iostat[NR_IO_TYPE];
1111 bool iostat_enable;
1112
1113 /* For sysfs suppport */
1114 struct kobject s_kobj;
1115 struct completion s_kobj_unregister;
1116
1117 /* For shrinker support */
1118 struct list_head s_list;
1119 int s_ndevs; /* number of devices */
1120 struct f2fs_dev_info *devs; /* for device list */
1121 struct mutex umount_mutex;
1122 unsigned int shrinker_run_no;
1123
1124 /* For write statistics */
1125 u64 sectors_written_start;
1126 u64 kbytes_written;
1127
1128 /* Reference to checksum algorithm driver via cryptoapi */
1129 struct crypto_shash *s_chksum_driver;
1130
1131 /* Precomputed FS UUID checksum for seeding other checksums */
1132 __u32 s_chksum_seed;
1133
1134 /* For fault injection */
1135 #ifdef CONFIG_F2FS_FAULT_INJECTION
1136 struct f2fs_fault_info fault_info;
1137 #endif
1138
1139 #ifdef CONFIG_QUOTA
1140 /* Names of quota files with journalled quota */
1141 char *s_qf_names[MAXQUOTAS];
1142 int s_jquota_fmt; /* Format of quota to use */
1143 #endif
1144 };
1145
1146 #ifdef CONFIG_F2FS_FAULT_INJECTION
1147 #define f2fs_show_injection_info(type) \
1148 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1149 KERN_INFO, fault_name[type], \
1150 __func__, __builtin_return_address(0))
1151 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1152 {
1153 struct f2fs_fault_info *ffi = &sbi->fault_info;
1154
1155 if (!ffi->inject_rate)
1156 return false;
1157
1158 if (!IS_FAULT_SET(ffi, type))
1159 return false;
1160
1161 atomic_inc(&ffi->inject_ops);
1162 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1163 atomic_set(&ffi->inject_ops, 0);
1164 return true;
1165 }
1166 return false;
1167 }
1168 #endif
1169
1170 /* For write statistics. Suppose sector size is 512 bytes,
1171 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1172 */
1173 #define BD_PART_WRITTEN(s) \
1174 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1175 (s)->sectors_written_start) >> 1)
1176
1177 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1178 {
1179 sbi->last_time[type] = jiffies;
1180 }
1181
1182 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1183 {
1184 struct timespec ts = {sbi->interval_time[type], 0};
1185 unsigned long interval = timespec_to_jiffies(&ts);
1186
1187 return time_after(jiffies, sbi->last_time[type] + interval);
1188 }
1189
1190 static inline bool is_idle(struct f2fs_sb_info *sbi)
1191 {
1192 struct block_device *bdev = sbi->sb->s_bdev;
1193 struct request_queue *q = bdev_get_queue(bdev);
1194 struct request_list *rl = &q->root_rl;
1195
1196 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1197 return 0;
1198
1199 return f2fs_time_over(sbi, REQ_TIME);
1200 }
1201
1202 /*
1203 * Inline functions
1204 */
1205 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1206 unsigned int length)
1207 {
1208 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1209 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1210 u32 retval;
1211 int err;
1212
1213 shash->tfm = sbi->s_chksum_driver;
1214 shash->flags = 0;
1215 *ctx = F2FS_SUPER_MAGIC;
1216
1217 err = crypto_shash_update(shash, address, length);
1218 BUG_ON(err);
1219
1220 retval = *ctx;
1221 barrier_data(ctx);
1222 return retval;
1223 }
1224
1225 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1226 void *buf, size_t buf_size)
1227 {
1228 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1229 }
1230
1231 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1232 const void *address, unsigned int length)
1233 {
1234 struct {
1235 struct shash_desc shash;
1236 char ctx[4];
1237 } desc;
1238 int err;
1239
1240 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1241
1242 desc.shash.tfm = sbi->s_chksum_driver;
1243 desc.shash.flags = 0;
1244 *(u32 *)desc.ctx = crc;
1245
1246 err = crypto_shash_update(&desc.shash, address, length);
1247 BUG_ON(err);
1248
1249 return *(u32 *)desc.ctx;
1250 }
1251
1252 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1253 {
1254 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1255 }
1256
1257 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1258 {
1259 return sb->s_fs_info;
1260 }
1261
1262 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1263 {
1264 return F2FS_SB(inode->i_sb);
1265 }
1266
1267 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1268 {
1269 return F2FS_I_SB(mapping->host);
1270 }
1271
1272 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1273 {
1274 return F2FS_M_SB(page->mapping);
1275 }
1276
1277 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1278 {
1279 return (struct f2fs_super_block *)(sbi->raw_super);
1280 }
1281
1282 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1283 {
1284 return (struct f2fs_checkpoint *)(sbi->ckpt);
1285 }
1286
1287 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1288 {
1289 return (struct f2fs_node *)page_address(page);
1290 }
1291
1292 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1293 {
1294 return &((struct f2fs_node *)page_address(page))->i;
1295 }
1296
1297 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1298 {
1299 return (struct f2fs_nm_info *)(sbi->nm_info);
1300 }
1301
1302 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1303 {
1304 return (struct f2fs_sm_info *)(sbi->sm_info);
1305 }
1306
1307 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1308 {
1309 return (struct sit_info *)(SM_I(sbi)->sit_info);
1310 }
1311
1312 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1313 {
1314 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1315 }
1316
1317 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1318 {
1319 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1320 }
1321
1322 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1323 {
1324 return sbi->meta_inode->i_mapping;
1325 }
1326
1327 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1328 {
1329 return sbi->node_inode->i_mapping;
1330 }
1331
1332 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1333 {
1334 return test_bit(type, &sbi->s_flag);
1335 }
1336
1337 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1338 {
1339 set_bit(type, &sbi->s_flag);
1340 }
1341
1342 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1343 {
1344 clear_bit(type, &sbi->s_flag);
1345 }
1346
1347 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1348 {
1349 return le64_to_cpu(cp->checkpoint_ver);
1350 }
1351
1352 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1353 {
1354 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1355 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1356 }
1357
1358 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1359 {
1360 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1361
1362 return ckpt_flags & f;
1363 }
1364
1365 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1366 {
1367 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1368 }
1369
1370 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1371 {
1372 unsigned int ckpt_flags;
1373
1374 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1375 ckpt_flags |= f;
1376 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1377 }
1378
1379 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1380 {
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&sbi->cp_lock, flags);
1384 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1385 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1386 }
1387
1388 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1389 {
1390 unsigned int ckpt_flags;
1391
1392 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1393 ckpt_flags &= (~f);
1394 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1395 }
1396
1397 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1398 {
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&sbi->cp_lock, flags);
1402 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1403 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1404 }
1405
1406 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1407 {
1408 unsigned long flags;
1409
1410 set_sbi_flag(sbi, SBI_NEED_FSCK);
1411
1412 if (lock)
1413 spin_lock_irqsave(&sbi->cp_lock, flags);
1414 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1415 kfree(NM_I(sbi)->nat_bits);
1416 NM_I(sbi)->nat_bits = NULL;
1417 if (lock)
1418 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1419 }
1420
1421 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1422 struct cp_control *cpc)
1423 {
1424 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1425
1426 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1427 }
1428
1429 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1430 {
1431 down_read(&sbi->cp_rwsem);
1432 }
1433
1434 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1435 {
1436 return down_read_trylock(&sbi->cp_rwsem);
1437 }
1438
1439 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1440 {
1441 up_read(&sbi->cp_rwsem);
1442 }
1443
1444 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1445 {
1446 down_write(&sbi->cp_rwsem);
1447 }
1448
1449 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1450 {
1451 up_write(&sbi->cp_rwsem);
1452 }
1453
1454 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1455 {
1456 int reason = CP_SYNC;
1457
1458 if (test_opt(sbi, FASTBOOT))
1459 reason = CP_FASTBOOT;
1460 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1461 reason = CP_UMOUNT;
1462 return reason;
1463 }
1464
1465 static inline bool __remain_node_summaries(int reason)
1466 {
1467 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1468 }
1469
1470 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1471 {
1472 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1473 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1474 }
1475
1476 /*
1477 * Check whether the given nid is within node id range.
1478 */
1479 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1480 {
1481 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1482 return -EINVAL;
1483 if (unlikely(nid >= NM_I(sbi)->max_nid))
1484 return -EINVAL;
1485 return 0;
1486 }
1487
1488 /*
1489 * Check whether the inode has blocks or not
1490 */
1491 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1492 {
1493 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1494
1495 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1496 }
1497
1498 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1499 {
1500 return ofs == XATTR_NODE_OFFSET;
1501 }
1502
1503 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1504 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1505 struct inode *inode, blkcnt_t *count)
1506 {
1507 blkcnt_t diff = 0, release = 0;
1508 block_t avail_user_block_count;
1509 int ret;
1510
1511 ret = dquot_reserve_block(inode, *count);
1512 if (ret)
1513 return ret;
1514
1515 #ifdef CONFIG_F2FS_FAULT_INJECTION
1516 if (time_to_inject(sbi, FAULT_BLOCK)) {
1517 f2fs_show_injection_info(FAULT_BLOCK);
1518 release = *count;
1519 goto enospc;
1520 }
1521 #endif
1522 /*
1523 * let's increase this in prior to actual block count change in order
1524 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1525 */
1526 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1527
1528 spin_lock(&sbi->stat_lock);
1529 sbi->total_valid_block_count += (block_t)(*count);
1530 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1531 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1532 diff = sbi->total_valid_block_count - avail_user_block_count;
1533 *count -= diff;
1534 release = diff;
1535 sbi->total_valid_block_count = avail_user_block_count;
1536 if (!*count) {
1537 spin_unlock(&sbi->stat_lock);
1538 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1539 goto enospc;
1540 }
1541 }
1542 spin_unlock(&sbi->stat_lock);
1543
1544 if (release)
1545 dquot_release_reservation_block(inode, release);
1546 f2fs_i_blocks_write(inode, *count, true, true);
1547 return 0;
1548
1549 enospc:
1550 dquot_release_reservation_block(inode, release);
1551 return -ENOSPC;
1552 }
1553
1554 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1555 struct inode *inode,
1556 block_t count)
1557 {
1558 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1559
1560 spin_lock(&sbi->stat_lock);
1561 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1562 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1563 sbi->total_valid_block_count -= (block_t)count;
1564 spin_unlock(&sbi->stat_lock);
1565 f2fs_i_blocks_write(inode, count, false, true);
1566 }
1567
1568 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1569 {
1570 atomic_inc(&sbi->nr_pages[count_type]);
1571
1572 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1573 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1574 return;
1575
1576 set_sbi_flag(sbi, SBI_IS_DIRTY);
1577 }
1578
1579 static inline void inode_inc_dirty_pages(struct inode *inode)
1580 {
1581 atomic_inc(&F2FS_I(inode)->dirty_pages);
1582 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1583 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1584 }
1585
1586 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1587 {
1588 atomic_dec(&sbi->nr_pages[count_type]);
1589 }
1590
1591 static inline void inode_dec_dirty_pages(struct inode *inode)
1592 {
1593 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1594 !S_ISLNK(inode->i_mode))
1595 return;
1596
1597 atomic_dec(&F2FS_I(inode)->dirty_pages);
1598 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1599 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1600 }
1601
1602 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1603 {
1604 return atomic_read(&sbi->nr_pages[count_type]);
1605 }
1606
1607 static inline int get_dirty_pages(struct inode *inode)
1608 {
1609 return atomic_read(&F2FS_I(inode)->dirty_pages);
1610 }
1611
1612 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1613 {
1614 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1615 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1616 sbi->log_blocks_per_seg;
1617
1618 return segs / sbi->segs_per_sec;
1619 }
1620
1621 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1622 {
1623 return sbi->total_valid_block_count;
1624 }
1625
1626 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1627 {
1628 return sbi->discard_blks;
1629 }
1630
1631 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1632 {
1633 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1634
1635 /* return NAT or SIT bitmap */
1636 if (flag == NAT_BITMAP)
1637 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1638 else if (flag == SIT_BITMAP)
1639 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1640
1641 return 0;
1642 }
1643
1644 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1645 {
1646 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1647 }
1648
1649 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1650 {
1651 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1652 int offset;
1653
1654 if (__cp_payload(sbi) > 0) {
1655 if (flag == NAT_BITMAP)
1656 return &ckpt->sit_nat_version_bitmap;
1657 else
1658 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1659 } else {
1660 offset = (flag == NAT_BITMAP) ?
1661 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1662 return &ckpt->sit_nat_version_bitmap + offset;
1663 }
1664 }
1665
1666 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1667 {
1668 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1669
1670 if (sbi->cur_cp_pack == 2)
1671 start_addr += sbi->blocks_per_seg;
1672 return start_addr;
1673 }
1674
1675 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1676 {
1677 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1678
1679 if (sbi->cur_cp_pack == 1)
1680 start_addr += sbi->blocks_per_seg;
1681 return start_addr;
1682 }
1683
1684 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1685 {
1686 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1687 }
1688
1689 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1690 {
1691 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1692 }
1693
1694 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1695 struct inode *inode, bool is_inode)
1696 {
1697 block_t valid_block_count;
1698 unsigned int valid_node_count;
1699 bool quota = inode && !is_inode;
1700
1701 if (quota) {
1702 int ret = dquot_reserve_block(inode, 1);
1703 if (ret)
1704 return ret;
1705 }
1706
1707 spin_lock(&sbi->stat_lock);
1708
1709 valid_block_count = sbi->total_valid_block_count + 1;
1710 if (unlikely(valid_block_count + sbi->reserved_blocks >
1711 sbi->user_block_count)) {
1712 spin_unlock(&sbi->stat_lock);
1713 goto enospc;
1714 }
1715
1716 valid_node_count = sbi->total_valid_node_count + 1;
1717 if (unlikely(valid_node_count > sbi->total_node_count)) {
1718 spin_unlock(&sbi->stat_lock);
1719 goto enospc;
1720 }
1721
1722 sbi->total_valid_node_count++;
1723 sbi->total_valid_block_count++;
1724 spin_unlock(&sbi->stat_lock);
1725
1726 if (inode) {
1727 if (is_inode)
1728 f2fs_mark_inode_dirty_sync(inode, true);
1729 else
1730 f2fs_i_blocks_write(inode, 1, true, true);
1731 }
1732
1733 percpu_counter_inc(&sbi->alloc_valid_block_count);
1734 return 0;
1735
1736 enospc:
1737 if (quota)
1738 dquot_release_reservation_block(inode, 1);
1739 return -ENOSPC;
1740 }
1741
1742 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1743 struct inode *inode, bool is_inode)
1744 {
1745 spin_lock(&sbi->stat_lock);
1746
1747 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1748 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1749 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1750
1751 sbi->total_valid_node_count--;
1752 sbi->total_valid_block_count--;
1753
1754 spin_unlock(&sbi->stat_lock);
1755
1756 if (!is_inode)
1757 f2fs_i_blocks_write(inode, 1, false, true);
1758 }
1759
1760 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1761 {
1762 return sbi->total_valid_node_count;
1763 }
1764
1765 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1766 {
1767 percpu_counter_inc(&sbi->total_valid_inode_count);
1768 }
1769
1770 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1771 {
1772 percpu_counter_dec(&sbi->total_valid_inode_count);
1773 }
1774
1775 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1776 {
1777 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1778 }
1779
1780 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1781 pgoff_t index, bool for_write)
1782 {
1783 #ifdef CONFIG_F2FS_FAULT_INJECTION
1784 struct page *page = find_lock_page(mapping, index);
1785
1786 if (page)
1787 return page;
1788
1789 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1790 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1791 return NULL;
1792 }
1793 #endif
1794 if (!for_write)
1795 return grab_cache_page(mapping, index);
1796 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1797 }
1798
1799 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1800 {
1801 char *src_kaddr = kmap(src);
1802 char *dst_kaddr = kmap(dst);
1803
1804 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1805 kunmap(dst);
1806 kunmap(src);
1807 }
1808
1809 static inline void f2fs_put_page(struct page *page, int unlock)
1810 {
1811 if (!page)
1812 return;
1813
1814 if (unlock) {
1815 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1816 unlock_page(page);
1817 }
1818 put_page(page);
1819 }
1820
1821 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1822 {
1823 if (dn->node_page)
1824 f2fs_put_page(dn->node_page, 1);
1825 if (dn->inode_page && dn->node_page != dn->inode_page)
1826 f2fs_put_page(dn->inode_page, 0);
1827 dn->node_page = NULL;
1828 dn->inode_page = NULL;
1829 }
1830
1831 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1832 size_t size)
1833 {
1834 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1835 }
1836
1837 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1838 gfp_t flags)
1839 {
1840 void *entry;
1841
1842 entry = kmem_cache_alloc(cachep, flags);
1843 if (!entry)
1844 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1845 return entry;
1846 }
1847
1848 static inline struct bio *f2fs_bio_alloc(int npages)
1849 {
1850 struct bio *bio;
1851
1852 /* No failure on bio allocation */
1853 bio = bio_alloc(GFP_NOIO, npages);
1854 if (!bio)
1855 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1856 return bio;
1857 }
1858
1859 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1860 unsigned long index, void *item)
1861 {
1862 while (radix_tree_insert(root, index, item))
1863 cond_resched();
1864 }
1865
1866 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1867
1868 static inline bool IS_INODE(struct page *page)
1869 {
1870 struct f2fs_node *p = F2FS_NODE(page);
1871
1872 return RAW_IS_INODE(p);
1873 }
1874
1875 static inline int offset_in_addr(struct f2fs_inode *i)
1876 {
1877 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1878 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1879 }
1880
1881 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1882 {
1883 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1884 }
1885
1886 static inline int f2fs_has_extra_attr(struct inode *inode);
1887 static inline block_t datablock_addr(struct inode *inode,
1888 struct page *node_page, unsigned int offset)
1889 {
1890 struct f2fs_node *raw_node;
1891 __le32 *addr_array;
1892 int base = 0;
1893 bool is_inode = IS_INODE(node_page);
1894
1895 raw_node = F2FS_NODE(node_page);
1896
1897 /* from GC path only */
1898 if (!inode) {
1899 if (is_inode)
1900 base = offset_in_addr(&raw_node->i);
1901 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1902 base = get_extra_isize(inode);
1903 }
1904
1905 addr_array = blkaddr_in_node(raw_node);
1906 return le32_to_cpu(addr_array[base + offset]);
1907 }
1908
1909 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1910 {
1911 int mask;
1912
1913 addr += (nr >> 3);
1914 mask = 1 << (7 - (nr & 0x07));
1915 return mask & *addr;
1916 }
1917
1918 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1919 {
1920 int mask;
1921
1922 addr += (nr >> 3);
1923 mask = 1 << (7 - (nr & 0x07));
1924 *addr |= mask;
1925 }
1926
1927 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1928 {
1929 int mask;
1930
1931 addr += (nr >> 3);
1932 mask = 1 << (7 - (nr & 0x07));
1933 *addr &= ~mask;
1934 }
1935
1936 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1937 {
1938 int mask;
1939 int ret;
1940
1941 addr += (nr >> 3);
1942 mask = 1 << (7 - (nr & 0x07));
1943 ret = mask & *addr;
1944 *addr |= mask;
1945 return ret;
1946 }
1947
1948 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1949 {
1950 int mask;
1951 int ret;
1952
1953 addr += (nr >> 3);
1954 mask = 1 << (7 - (nr & 0x07));
1955 ret = mask & *addr;
1956 *addr &= ~mask;
1957 return ret;
1958 }
1959
1960 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1961 {
1962 int mask;
1963
1964 addr += (nr >> 3);
1965 mask = 1 << (7 - (nr & 0x07));
1966 *addr ^= mask;
1967 }
1968
1969 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1970 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1971 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
1972
1973 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1974 {
1975 if (S_ISDIR(mode))
1976 return flags;
1977 else if (S_ISREG(mode))
1978 return flags & F2FS_REG_FLMASK;
1979 else
1980 return flags & F2FS_OTHER_FLMASK;
1981 }
1982
1983 /* used for f2fs_inode_info->flags */
1984 enum {
1985 FI_NEW_INODE, /* indicate newly allocated inode */
1986 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1987 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1988 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1989 FI_INC_LINK, /* need to increment i_nlink */
1990 FI_ACL_MODE, /* indicate acl mode */
1991 FI_NO_ALLOC, /* should not allocate any blocks */
1992 FI_FREE_NID, /* free allocated nide */
1993 FI_NO_EXTENT, /* not to use the extent cache */
1994 FI_INLINE_XATTR, /* used for inline xattr */
1995 FI_INLINE_DATA, /* used for inline data*/
1996 FI_INLINE_DENTRY, /* used for inline dentry */
1997 FI_APPEND_WRITE, /* inode has appended data */
1998 FI_UPDATE_WRITE, /* inode has in-place-update data */
1999 FI_NEED_IPU, /* used for ipu per file */
2000 FI_ATOMIC_FILE, /* indicate atomic file */
2001 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2002 FI_VOLATILE_FILE, /* indicate volatile file */
2003 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2004 FI_DROP_CACHE, /* drop dirty page cache */
2005 FI_DATA_EXIST, /* indicate data exists */
2006 FI_INLINE_DOTS, /* indicate inline dot dentries */
2007 FI_DO_DEFRAG, /* indicate defragment is running */
2008 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2009 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2010 FI_HOT_DATA, /* indicate file is hot */
2011 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2012 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2013 };
2014
2015 static inline void __mark_inode_dirty_flag(struct inode *inode,
2016 int flag, bool set)
2017 {
2018 switch (flag) {
2019 case FI_INLINE_XATTR:
2020 case FI_INLINE_DATA:
2021 case FI_INLINE_DENTRY:
2022 if (set)
2023 return;
2024 case FI_DATA_EXIST:
2025 case FI_INLINE_DOTS:
2026 f2fs_mark_inode_dirty_sync(inode, true);
2027 }
2028 }
2029
2030 static inline void set_inode_flag(struct inode *inode, int flag)
2031 {
2032 if (!test_bit(flag, &F2FS_I(inode)->flags))
2033 set_bit(flag, &F2FS_I(inode)->flags);
2034 __mark_inode_dirty_flag(inode, flag, true);
2035 }
2036
2037 static inline int is_inode_flag_set(struct inode *inode, int flag)
2038 {
2039 return test_bit(flag, &F2FS_I(inode)->flags);
2040 }
2041
2042 static inline void clear_inode_flag(struct inode *inode, int flag)
2043 {
2044 if (test_bit(flag, &F2FS_I(inode)->flags))
2045 clear_bit(flag, &F2FS_I(inode)->flags);
2046 __mark_inode_dirty_flag(inode, flag, false);
2047 }
2048
2049 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2050 {
2051 F2FS_I(inode)->i_acl_mode = mode;
2052 set_inode_flag(inode, FI_ACL_MODE);
2053 f2fs_mark_inode_dirty_sync(inode, false);
2054 }
2055
2056 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2057 {
2058 if (inc)
2059 inc_nlink(inode);
2060 else
2061 drop_nlink(inode);
2062 f2fs_mark_inode_dirty_sync(inode, true);
2063 }
2064
2065 static inline void f2fs_i_blocks_write(struct inode *inode,
2066 block_t diff, bool add, bool claim)
2067 {
2068 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2069 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2070
2071 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2072 if (add) {
2073 if (claim)
2074 dquot_claim_block(inode, diff);
2075 else
2076 dquot_alloc_block_nofail(inode, diff);
2077 } else {
2078 dquot_free_block(inode, diff);
2079 }
2080
2081 f2fs_mark_inode_dirty_sync(inode, true);
2082 if (clean || recover)
2083 set_inode_flag(inode, FI_AUTO_RECOVER);
2084 }
2085
2086 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2087 {
2088 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2089 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2090
2091 if (i_size_read(inode) == i_size)
2092 return;
2093
2094 i_size_write(inode, i_size);
2095 f2fs_mark_inode_dirty_sync(inode, true);
2096 if (clean || recover)
2097 set_inode_flag(inode, FI_AUTO_RECOVER);
2098 }
2099
2100 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2101 {
2102 F2FS_I(inode)->i_current_depth = depth;
2103 f2fs_mark_inode_dirty_sync(inode, true);
2104 }
2105
2106 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2107 {
2108 F2FS_I(inode)->i_xattr_nid = xnid;
2109 f2fs_mark_inode_dirty_sync(inode, true);
2110 }
2111
2112 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2113 {
2114 F2FS_I(inode)->i_pino = pino;
2115 f2fs_mark_inode_dirty_sync(inode, true);
2116 }
2117
2118 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2119 {
2120 struct f2fs_inode_info *fi = F2FS_I(inode);
2121
2122 if (ri->i_inline & F2FS_INLINE_XATTR)
2123 set_bit(FI_INLINE_XATTR, &fi->flags);
2124 if (ri->i_inline & F2FS_INLINE_DATA)
2125 set_bit(FI_INLINE_DATA, &fi->flags);
2126 if (ri->i_inline & F2FS_INLINE_DENTRY)
2127 set_bit(FI_INLINE_DENTRY, &fi->flags);
2128 if (ri->i_inline & F2FS_DATA_EXIST)
2129 set_bit(FI_DATA_EXIST, &fi->flags);
2130 if (ri->i_inline & F2FS_INLINE_DOTS)
2131 set_bit(FI_INLINE_DOTS, &fi->flags);
2132 if (ri->i_inline & F2FS_EXTRA_ATTR)
2133 set_bit(FI_EXTRA_ATTR, &fi->flags);
2134 }
2135
2136 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2137 {
2138 ri->i_inline = 0;
2139
2140 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2141 ri->i_inline |= F2FS_INLINE_XATTR;
2142 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2143 ri->i_inline |= F2FS_INLINE_DATA;
2144 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2145 ri->i_inline |= F2FS_INLINE_DENTRY;
2146 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2147 ri->i_inline |= F2FS_DATA_EXIST;
2148 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2149 ri->i_inline |= F2FS_INLINE_DOTS;
2150 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2151 ri->i_inline |= F2FS_EXTRA_ATTR;
2152 }
2153
2154 static inline int f2fs_has_extra_attr(struct inode *inode)
2155 {
2156 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2157 }
2158
2159 static inline int f2fs_has_inline_xattr(struct inode *inode)
2160 {
2161 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2162 }
2163
2164 static inline unsigned int addrs_per_inode(struct inode *inode)
2165 {
2166 if (f2fs_has_inline_xattr(inode))
2167 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2168 return CUR_ADDRS_PER_INODE(inode);
2169 }
2170
2171 static inline void *inline_xattr_addr(struct page *page)
2172 {
2173 struct f2fs_inode *ri = F2FS_INODE(page);
2174
2175 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2176 F2FS_INLINE_XATTR_ADDRS]);
2177 }
2178
2179 static inline int inline_xattr_size(struct inode *inode)
2180 {
2181 if (f2fs_has_inline_xattr(inode))
2182 return F2FS_INLINE_XATTR_ADDRS << 2;
2183 else
2184 return 0;
2185 }
2186
2187 static inline int f2fs_has_inline_data(struct inode *inode)
2188 {
2189 return is_inode_flag_set(inode, FI_INLINE_DATA);
2190 }
2191
2192 static inline int f2fs_exist_data(struct inode *inode)
2193 {
2194 return is_inode_flag_set(inode, FI_DATA_EXIST);
2195 }
2196
2197 static inline int f2fs_has_inline_dots(struct inode *inode)
2198 {
2199 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2200 }
2201
2202 static inline bool f2fs_is_atomic_file(struct inode *inode)
2203 {
2204 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2205 }
2206
2207 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2208 {
2209 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2210 }
2211
2212 static inline bool f2fs_is_volatile_file(struct inode *inode)
2213 {
2214 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2215 }
2216
2217 static inline bool f2fs_is_first_block_written(struct inode *inode)
2218 {
2219 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2220 }
2221
2222 static inline bool f2fs_is_drop_cache(struct inode *inode)
2223 {
2224 return is_inode_flag_set(inode, FI_DROP_CACHE);
2225 }
2226
2227 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2228 {
2229 struct f2fs_inode *ri = F2FS_INODE(page);
2230 int extra_size = get_extra_isize(inode);
2231
2232 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2233 }
2234
2235 static inline int f2fs_has_inline_dentry(struct inode *inode)
2236 {
2237 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2238 }
2239
2240 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2241 {
2242 if (!f2fs_has_inline_dentry(dir))
2243 kunmap(page);
2244 }
2245
2246 static inline int is_file(struct inode *inode, int type)
2247 {
2248 return F2FS_I(inode)->i_advise & type;
2249 }
2250
2251 static inline void set_file(struct inode *inode, int type)
2252 {
2253 F2FS_I(inode)->i_advise |= type;
2254 f2fs_mark_inode_dirty_sync(inode, true);
2255 }
2256
2257 static inline void clear_file(struct inode *inode, int type)
2258 {
2259 F2FS_I(inode)->i_advise &= ~type;
2260 f2fs_mark_inode_dirty_sync(inode, true);
2261 }
2262
2263 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2264 {
2265 if (dsync) {
2266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2267 bool ret;
2268
2269 spin_lock(&sbi->inode_lock[DIRTY_META]);
2270 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2271 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2272 return ret;
2273 }
2274 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2275 file_keep_isize(inode) ||
2276 i_size_read(inode) & PAGE_MASK)
2277 return false;
2278 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2279 }
2280
2281 static inline int f2fs_readonly(struct super_block *sb)
2282 {
2283 return sb->s_flags & MS_RDONLY;
2284 }
2285
2286 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2287 {
2288 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2289 }
2290
2291 static inline bool is_dot_dotdot(const struct qstr *str)
2292 {
2293 if (str->len == 1 && str->name[0] == '.')
2294 return true;
2295
2296 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2297 return true;
2298
2299 return false;
2300 }
2301
2302 static inline bool f2fs_may_extent_tree(struct inode *inode)
2303 {
2304 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2305 is_inode_flag_set(inode, FI_NO_EXTENT))
2306 return false;
2307
2308 return S_ISREG(inode->i_mode);
2309 }
2310
2311 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2312 size_t size, gfp_t flags)
2313 {
2314 #ifdef CONFIG_F2FS_FAULT_INJECTION
2315 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2316 f2fs_show_injection_info(FAULT_KMALLOC);
2317 return NULL;
2318 }
2319 #endif
2320 return kmalloc(size, flags);
2321 }
2322
2323 static inline int get_extra_isize(struct inode *inode)
2324 {
2325 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2326 }
2327
2328 #define get_inode_mode(i) \
2329 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2330 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2331
2332 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2333 (offsetof(struct f2fs_inode, i_extra_end) - \
2334 offsetof(struct f2fs_inode, i_extra_isize)) \
2335
2336 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2337 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2338 ((offsetof(typeof(*f2fs_inode), field) + \
2339 sizeof((f2fs_inode)->field)) \
2340 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2341
2342 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2343 {
2344 int i;
2345
2346 spin_lock(&sbi->iostat_lock);
2347 for (i = 0; i < NR_IO_TYPE; i++)
2348 sbi->write_iostat[i] = 0;
2349 spin_unlock(&sbi->iostat_lock);
2350 }
2351
2352 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2353 enum iostat_type type, unsigned long long io_bytes)
2354 {
2355 if (!sbi->iostat_enable)
2356 return;
2357 spin_lock(&sbi->iostat_lock);
2358 sbi->write_iostat[type] += io_bytes;
2359
2360 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2361 sbi->write_iostat[APP_BUFFERED_IO] =
2362 sbi->write_iostat[APP_WRITE_IO] -
2363 sbi->write_iostat[APP_DIRECT_IO];
2364 spin_unlock(&sbi->iostat_lock);
2365 }
2366
2367 /*
2368 * file.c
2369 */
2370 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2371 void truncate_data_blocks(struct dnode_of_data *dn);
2372 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2373 int f2fs_truncate(struct inode *inode);
2374 int f2fs_getattr(const struct path *path, struct kstat *stat,
2375 u32 request_mask, unsigned int flags);
2376 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2377 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2378 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2379 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2380 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2381
2382 /*
2383 * inode.c
2384 */
2385 void f2fs_set_inode_flags(struct inode *inode);
2386 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2387 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2388 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2389 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2390 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2391 int update_inode(struct inode *inode, struct page *node_page);
2392 int update_inode_page(struct inode *inode);
2393 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2394 void f2fs_evict_inode(struct inode *inode);
2395 void handle_failed_inode(struct inode *inode);
2396
2397 /*
2398 * namei.c
2399 */
2400 struct dentry *f2fs_get_parent(struct dentry *child);
2401
2402 /*
2403 * dir.c
2404 */
2405 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2406 unsigned char get_de_type(struct f2fs_dir_entry *de);
2407 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2408 f2fs_hash_t namehash, int *max_slots,
2409 struct f2fs_dentry_ptr *d);
2410 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2411 unsigned int start_pos, struct fscrypt_str *fstr);
2412 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2413 struct f2fs_dentry_ptr *d);
2414 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2415 const struct qstr *new_name,
2416 const struct qstr *orig_name, struct page *dpage);
2417 void update_parent_metadata(struct inode *dir, struct inode *inode,
2418 unsigned int current_depth);
2419 int room_for_filename(const void *bitmap, int slots, int max_slots);
2420 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2421 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2422 struct fscrypt_name *fname, struct page **res_page);
2423 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2424 const struct qstr *child, struct page **res_page);
2425 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2426 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2427 struct page **page);
2428 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2429 struct page *page, struct inode *inode);
2430 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2431 const struct qstr *name, f2fs_hash_t name_hash,
2432 unsigned int bit_pos);
2433 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2434 const struct qstr *orig_name,
2435 struct inode *inode, nid_t ino, umode_t mode);
2436 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2437 struct inode *inode, nid_t ino, umode_t mode);
2438 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2439 struct inode *inode, nid_t ino, umode_t mode);
2440 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2441 struct inode *dir, struct inode *inode);
2442 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2443 bool f2fs_empty_dir(struct inode *dir);
2444
2445 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2446 {
2447 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2448 inode, inode->i_ino, inode->i_mode);
2449 }
2450
2451 /*
2452 * super.c
2453 */
2454 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2455 void f2fs_inode_synced(struct inode *inode);
2456 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi);
2457 void f2fs_quota_off_umount(struct super_block *sb);
2458 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2459 int f2fs_sync_fs(struct super_block *sb, int sync);
2460 extern __printf(3, 4)
2461 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2462 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2463
2464 /*
2465 * hash.c
2466 */
2467 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2468 struct fscrypt_name *fname);
2469
2470 /*
2471 * node.c
2472 */
2473 struct dnode_of_data;
2474 struct node_info;
2475
2476 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2477 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2478 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2479 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2480 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2481 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2482 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2483 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2484 int truncate_xattr_node(struct inode *inode, struct page *page);
2485 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2486 int remove_inode_page(struct inode *inode);
2487 struct page *new_inode_page(struct inode *inode);
2488 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2489 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2490 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2491 struct page *get_node_page_ra(struct page *parent, int start);
2492 void move_node_page(struct page *node_page, int gc_type);
2493 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2494 struct writeback_control *wbc, bool atomic);
2495 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2496 bool do_balance, enum iostat_type io_type);
2497 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2498 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2499 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2500 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2501 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2502 void recover_inline_xattr(struct inode *inode, struct page *page);
2503 int recover_xattr_data(struct inode *inode, struct page *page,
2504 block_t blkaddr);
2505 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2506 int restore_node_summary(struct f2fs_sb_info *sbi,
2507 unsigned int segno, struct f2fs_summary_block *sum);
2508 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2509 int build_node_manager(struct f2fs_sb_info *sbi);
2510 void destroy_node_manager(struct f2fs_sb_info *sbi);
2511 int __init create_node_manager_caches(void);
2512 void destroy_node_manager_caches(void);
2513
2514 /*
2515 * segment.c
2516 */
2517 bool need_SSR(struct f2fs_sb_info *sbi);
2518 void register_inmem_page(struct inode *inode, struct page *page);
2519 void drop_inmem_pages(struct inode *inode);
2520 void drop_inmem_page(struct inode *inode, struct page *page);
2521 int commit_inmem_pages(struct inode *inode);
2522 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2523 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2524 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2525 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2526 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2527 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2528 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2529 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2530 void stop_discard_thread(struct f2fs_sb_info *sbi);
2531 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi, bool umount);
2532 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2533 void release_discard_addrs(struct f2fs_sb_info *sbi);
2534 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2535 void allocate_new_segments(struct f2fs_sb_info *sbi);
2536 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2537 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2538 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2539 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2540 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2541 enum iostat_type io_type);
2542 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2543 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2544 int rewrite_data_page(struct f2fs_io_info *fio);
2545 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2546 block_t old_blkaddr, block_t new_blkaddr,
2547 bool recover_curseg, bool recover_newaddr);
2548 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2549 block_t old_addr, block_t new_addr,
2550 unsigned char version, bool recover_curseg,
2551 bool recover_newaddr);
2552 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2553 block_t old_blkaddr, block_t *new_blkaddr,
2554 struct f2fs_summary *sum, int type,
2555 struct f2fs_io_info *fio, bool add_list);
2556 void f2fs_wait_on_page_writeback(struct page *page,
2557 enum page_type type, bool ordered);
2558 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2559 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2560 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2561 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2562 unsigned int val, int alloc);
2563 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2564 int build_segment_manager(struct f2fs_sb_info *sbi);
2565 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2566 int __init create_segment_manager_caches(void);
2567 void destroy_segment_manager_caches(void);
2568
2569 /*
2570 * checkpoint.c
2571 */
2572 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2573 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2574 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2575 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2576 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2577 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2578 int type, bool sync);
2579 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2580 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2581 long nr_to_write, enum iostat_type io_type);
2582 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2583 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2584 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2585 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2586 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2587 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2588 void release_orphan_inode(struct f2fs_sb_info *sbi);
2589 void add_orphan_inode(struct inode *inode);
2590 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2591 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2592 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2593 void update_dirty_page(struct inode *inode, struct page *page);
2594 void remove_dirty_inode(struct inode *inode);
2595 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2596 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2597 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2598 int __init create_checkpoint_caches(void);
2599 void destroy_checkpoint_caches(void);
2600
2601 /*
2602 * data.c
2603 */
2604 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2605 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2606 struct inode *inode, nid_t ino, pgoff_t idx,
2607 enum page_type type);
2608 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2609 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2610 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2611 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2612 block_t blk_addr, struct bio *bio);
2613 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2614 void set_data_blkaddr(struct dnode_of_data *dn);
2615 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2616 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2617 int reserve_new_block(struct dnode_of_data *dn);
2618 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2619 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2620 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2621 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2622 int op_flags, bool for_write);
2623 struct page *find_data_page(struct inode *inode, pgoff_t index);
2624 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2625 bool for_write);
2626 struct page *get_new_data_page(struct inode *inode,
2627 struct page *ipage, pgoff_t index, bool new_i_size);
2628 int do_write_data_page(struct f2fs_io_info *fio);
2629 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2630 int create, int flag);
2631 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2632 u64 start, u64 len);
2633 void f2fs_set_page_dirty_nobuffers(struct page *page);
2634 int __f2fs_write_data_pages(struct address_space *mapping,
2635 struct writeback_control *wbc,
2636 enum iostat_type io_type);
2637 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2638 unsigned int length);
2639 int f2fs_release_page(struct page *page, gfp_t wait);
2640 #ifdef CONFIG_MIGRATION
2641 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2642 struct page *page, enum migrate_mode mode);
2643 #endif
2644
2645 /*
2646 * gc.c
2647 */
2648 int start_gc_thread(struct f2fs_sb_info *sbi);
2649 void stop_gc_thread(struct f2fs_sb_info *sbi);
2650 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2651 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2652 unsigned int segno);
2653 void build_gc_manager(struct f2fs_sb_info *sbi);
2654
2655 /*
2656 * recovery.c
2657 */
2658 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2659 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2660
2661 /*
2662 * debug.c
2663 */
2664 #ifdef CONFIG_F2FS_STAT_FS
2665 struct f2fs_stat_info {
2666 struct list_head stat_list;
2667 struct f2fs_sb_info *sbi;
2668 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2669 int main_area_segs, main_area_sections, main_area_zones;
2670 unsigned long long hit_largest, hit_cached, hit_rbtree;
2671 unsigned long long hit_total, total_ext;
2672 int ext_tree, zombie_tree, ext_node;
2673 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2674 int inmem_pages;
2675 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2676 int nats, dirty_nats, sits, dirty_sits;
2677 int free_nids, avail_nids, alloc_nids;
2678 int total_count, utilization;
2679 int bg_gc, nr_wb_cp_data, nr_wb_data;
2680 int nr_flushing, nr_flushed, flush_list_empty;
2681 int nr_discarding, nr_discarded;
2682 int nr_discard_cmd;
2683 unsigned int undiscard_blks;
2684 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2685 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2686 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2687 unsigned int bimodal, avg_vblocks;
2688 int util_free, util_valid, util_invalid;
2689 int rsvd_segs, overp_segs;
2690 int dirty_count, node_pages, meta_pages;
2691 int prefree_count, call_count, cp_count, bg_cp_count;
2692 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2693 int bg_node_segs, bg_data_segs;
2694 int tot_blks, data_blks, node_blks;
2695 int bg_data_blks, bg_node_blks;
2696 int curseg[NR_CURSEG_TYPE];
2697 int cursec[NR_CURSEG_TYPE];
2698 int curzone[NR_CURSEG_TYPE];
2699
2700 unsigned int segment_count[2];
2701 unsigned int block_count[2];
2702 unsigned int inplace_count;
2703 unsigned long long base_mem, cache_mem, page_mem;
2704 };
2705
2706 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2707 {
2708 return (struct f2fs_stat_info *)sbi->stat_info;
2709 }
2710
2711 #define stat_inc_cp_count(si) ((si)->cp_count++)
2712 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2713 #define stat_inc_call_count(si) ((si)->call_count++)
2714 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2715 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2716 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2717 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2718 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2719 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2720 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2721 #define stat_inc_inline_xattr(inode) \
2722 do { \
2723 if (f2fs_has_inline_xattr(inode)) \
2724 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2725 } while (0)
2726 #define stat_dec_inline_xattr(inode) \
2727 do { \
2728 if (f2fs_has_inline_xattr(inode)) \
2729 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2730 } while (0)
2731 #define stat_inc_inline_inode(inode) \
2732 do { \
2733 if (f2fs_has_inline_data(inode)) \
2734 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2735 } while (0)
2736 #define stat_dec_inline_inode(inode) \
2737 do { \
2738 if (f2fs_has_inline_data(inode)) \
2739 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2740 } while (0)
2741 #define stat_inc_inline_dir(inode) \
2742 do { \
2743 if (f2fs_has_inline_dentry(inode)) \
2744 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2745 } while (0)
2746 #define stat_dec_inline_dir(inode) \
2747 do { \
2748 if (f2fs_has_inline_dentry(inode)) \
2749 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2750 } while (0)
2751 #define stat_inc_seg_type(sbi, curseg) \
2752 ((sbi)->segment_count[(curseg)->alloc_type]++)
2753 #define stat_inc_block_count(sbi, curseg) \
2754 ((sbi)->block_count[(curseg)->alloc_type]++)
2755 #define stat_inc_inplace_blocks(sbi) \
2756 (atomic_inc(&(sbi)->inplace_count))
2757 #define stat_inc_atomic_write(inode) \
2758 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2759 #define stat_dec_atomic_write(inode) \
2760 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2761 #define stat_update_max_atomic_write(inode) \
2762 do { \
2763 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2764 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2765 if (cur > max) \
2766 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2767 } while (0)
2768 #define stat_inc_volatile_write(inode) \
2769 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2770 #define stat_dec_volatile_write(inode) \
2771 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2772 #define stat_update_max_volatile_write(inode) \
2773 do { \
2774 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2775 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2776 if (cur > max) \
2777 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2778 } while (0)
2779 #define stat_inc_seg_count(sbi, type, gc_type) \
2780 do { \
2781 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2782 si->tot_segs++; \
2783 if ((type) == SUM_TYPE_DATA) { \
2784 si->data_segs++; \
2785 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2786 } else { \
2787 si->node_segs++; \
2788 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2789 } \
2790 } while (0)
2791
2792 #define stat_inc_tot_blk_count(si, blks) \
2793 ((si)->tot_blks += (blks))
2794
2795 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2796 do { \
2797 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2798 stat_inc_tot_blk_count(si, blks); \
2799 si->data_blks += (blks); \
2800 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2801 } while (0)
2802
2803 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2804 do { \
2805 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2806 stat_inc_tot_blk_count(si, blks); \
2807 si->node_blks += (blks); \
2808 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2809 } while (0)
2810
2811 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2812 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2813 int __init f2fs_create_root_stats(void);
2814 void f2fs_destroy_root_stats(void);
2815 #else
2816 #define stat_inc_cp_count(si) do { } while (0)
2817 #define stat_inc_bg_cp_count(si) do { } while (0)
2818 #define stat_inc_call_count(si) do { } while (0)
2819 #define stat_inc_bggc_count(si) do { } while (0)
2820 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2821 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2822 #define stat_inc_total_hit(sb) do { } while (0)
2823 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2824 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2825 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2826 #define stat_inc_inline_xattr(inode) do { } while (0)
2827 #define stat_dec_inline_xattr(inode) do { } while (0)
2828 #define stat_inc_inline_inode(inode) do { } while (0)
2829 #define stat_dec_inline_inode(inode) do { } while (0)
2830 #define stat_inc_inline_dir(inode) do { } while (0)
2831 #define stat_dec_inline_dir(inode) do { } while (0)
2832 #define stat_inc_atomic_write(inode) do { } while (0)
2833 #define stat_dec_atomic_write(inode) do { } while (0)
2834 #define stat_update_max_atomic_write(inode) do { } while (0)
2835 #define stat_inc_volatile_write(inode) do { } while (0)
2836 #define stat_dec_volatile_write(inode) do { } while (0)
2837 #define stat_update_max_volatile_write(inode) do { } while (0)
2838 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2839 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2840 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2841 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2842 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2843 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2844 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2845
2846 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2847 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2848 static inline int __init f2fs_create_root_stats(void) { return 0; }
2849 static inline void f2fs_destroy_root_stats(void) { }
2850 #endif
2851
2852 extern const struct file_operations f2fs_dir_operations;
2853 extern const struct file_operations f2fs_file_operations;
2854 extern const struct inode_operations f2fs_file_inode_operations;
2855 extern const struct address_space_operations f2fs_dblock_aops;
2856 extern const struct address_space_operations f2fs_node_aops;
2857 extern const struct address_space_operations f2fs_meta_aops;
2858 extern const struct inode_operations f2fs_dir_inode_operations;
2859 extern const struct inode_operations f2fs_symlink_inode_operations;
2860 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2861 extern const struct inode_operations f2fs_special_inode_operations;
2862 extern struct kmem_cache *inode_entry_slab;
2863
2864 /*
2865 * inline.c
2866 */
2867 bool f2fs_may_inline_data(struct inode *inode);
2868 bool f2fs_may_inline_dentry(struct inode *inode);
2869 void read_inline_data(struct page *page, struct page *ipage);
2870 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2871 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2872 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2873 int f2fs_convert_inline_inode(struct inode *inode);
2874 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2875 bool recover_inline_data(struct inode *inode, struct page *npage);
2876 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2877 struct fscrypt_name *fname, struct page **res_page);
2878 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2879 struct page *ipage);
2880 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2881 const struct qstr *orig_name,
2882 struct inode *inode, nid_t ino, umode_t mode);
2883 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2884 struct inode *dir, struct inode *inode);
2885 bool f2fs_empty_inline_dir(struct inode *dir);
2886 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2887 struct fscrypt_str *fstr);
2888 int f2fs_inline_data_fiemap(struct inode *inode,
2889 struct fiemap_extent_info *fieinfo,
2890 __u64 start, __u64 len);
2891
2892 /*
2893 * shrinker.c
2894 */
2895 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2896 struct shrink_control *sc);
2897 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2898 struct shrink_control *sc);
2899 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2900 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2901
2902 /*
2903 * extent_cache.c
2904 */
2905 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2906 struct rb_entry *cached_re, unsigned int ofs);
2907 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2908 struct rb_root *root, struct rb_node **parent,
2909 unsigned int ofs);
2910 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2911 struct rb_entry *cached_re, unsigned int ofs,
2912 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2913 struct rb_node ***insert_p, struct rb_node **insert_parent,
2914 bool force);
2915 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2916 struct rb_root *root);
2917 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2918 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2919 void f2fs_drop_extent_tree(struct inode *inode);
2920 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2921 void f2fs_destroy_extent_tree(struct inode *inode);
2922 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2923 struct extent_info *ei);
2924 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2925 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2926 pgoff_t fofs, block_t blkaddr, unsigned int len);
2927 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2928 int __init create_extent_cache(void);
2929 void destroy_extent_cache(void);
2930
2931 /*
2932 * sysfs.c
2933 */
2934 int __init f2fs_init_sysfs(void);
2935 void f2fs_exit_sysfs(void);
2936 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
2937 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
2938
2939 /*
2940 * crypto support
2941 */
2942 static inline bool f2fs_encrypted_inode(struct inode *inode)
2943 {
2944 return file_is_encrypt(inode);
2945 }
2946
2947 static inline bool f2fs_encrypted_file(struct inode *inode)
2948 {
2949 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
2950 }
2951
2952 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2953 {
2954 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2955 file_set_encrypt(inode);
2956 #endif
2957 }
2958
2959 static inline bool f2fs_bio_encrypted(struct bio *bio)
2960 {
2961 return bio->bi_private != NULL;
2962 }
2963
2964 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2965 {
2966 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2967 }
2968
2969 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2970 {
2971 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2972 }
2973
2974 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
2975 {
2976 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
2977 }
2978
2979 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
2980 {
2981 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
2982 }
2983
2984 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
2985 {
2986 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
2987 }
2988
2989 #ifdef CONFIG_BLK_DEV_ZONED
2990 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2991 struct block_device *bdev, block_t blkaddr)
2992 {
2993 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2994 int i;
2995
2996 for (i = 0; i < sbi->s_ndevs; i++)
2997 if (FDEV(i).bdev == bdev)
2998 return FDEV(i).blkz_type[zno];
2999 return -EINVAL;
3000 }
3001 #endif
3002
3003 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3004 {
3005 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3006
3007 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3008 }
3009
3010 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3011 {
3012 clear_opt(sbi, ADAPTIVE);
3013 clear_opt(sbi, LFS);
3014
3015 switch (mt) {
3016 case F2FS_MOUNT_ADAPTIVE:
3017 set_opt(sbi, ADAPTIVE);
3018 break;
3019 case F2FS_MOUNT_LFS:
3020 set_opt(sbi, LFS);
3021 break;
3022 }
3023 }
3024
3025 static inline bool f2fs_may_encrypt(struct inode *inode)
3026 {
3027 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3028 umode_t mode = inode->i_mode;
3029
3030 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3031 #else
3032 return 0;
3033 #endif
3034 }
3035
3036 #endif