]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
f2fs: use spin_{,un}lock_irq{save,restore}
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 #define CP_UMOUNT 0x00000001
129 #define CP_FASTBOOT 0x00000002
130 #define CP_SYNC 0x00000004
131 #define CP_RECOVERY 0x00000008
132 #define CP_DISCARD 0x00000010
133 #define CP_TRIMMED 0x00000020
134
135 #define DEF_BATCHED_TRIM_SECTIONS 2048
136 #define BATCHED_TRIM_SEGMENTS(sbi) \
137 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
138 #define BATCHED_TRIM_BLOCKS(sbi) \
139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
141 #define DISCARD_ISSUE_RATE 8
142 #define DEF_CP_INTERVAL 60 /* 60 secs */
143 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
144
145 struct cp_control {
146 int reason;
147 __u64 trim_start;
148 __u64 trim_end;
149 __u64 trim_minlen;
150 __u64 trimmed;
151 };
152
153 /*
154 * For CP/NAT/SIT/SSA readahead
155 */
156 enum {
157 META_CP,
158 META_NAT,
159 META_SIT,
160 META_SSA,
161 META_POR,
162 };
163
164 /* for the list of ino */
165 enum {
166 ORPHAN_INO, /* for orphan ino list */
167 APPEND_INO, /* for append ino list */
168 UPDATE_INO, /* for update ino list */
169 MAX_INO_ENTRY, /* max. list */
170 };
171
172 struct ino_entry {
173 struct list_head list; /* list head */
174 nid_t ino; /* inode number */
175 };
176
177 /* for the list of inodes to be GCed */
178 struct inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 };
182
183 /* for the bitmap indicate blocks to be discarded */
184 struct discard_entry {
185 struct list_head list; /* list head */
186 block_t start_blkaddr; /* start blockaddr of current segment */
187 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
188 };
189
190 /* max discard pend list number */
191 #define MAX_PLIST_NUM 512
192 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
193 (MAX_PLIST_NUM - 1) : (blk_num - 1))
194
195 enum {
196 D_PREP,
197 D_SUBMIT,
198 D_DONE,
199 };
200
201 struct discard_info {
202 block_t lstart; /* logical start address */
203 block_t len; /* length */
204 block_t start; /* actual start address in dev */
205 };
206
207 struct discard_cmd {
208 struct rb_node rb_node; /* rb node located in rb-tree */
209 union {
210 struct {
211 block_t lstart; /* logical start address */
212 block_t len; /* length */
213 block_t start; /* actual start address in dev */
214 };
215 struct discard_info di; /* discard info */
216
217 };
218 struct list_head list; /* command list */
219 struct completion wait; /* compleation */
220 struct block_device *bdev; /* bdev */
221 unsigned short ref; /* reference count */
222 unsigned char state; /* state */
223 int error; /* bio error */
224 };
225
226 struct discard_cmd_control {
227 struct task_struct *f2fs_issue_discard; /* discard thread */
228 struct list_head entry_list; /* 4KB discard entry list */
229 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
230 struct list_head wait_list; /* store on-flushing entries */
231 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
232 struct mutex cmd_lock;
233 unsigned int nr_discards; /* # of discards in the list */
234 unsigned int max_discards; /* max. discards to be issued */
235 unsigned int undiscard_blks; /* # of undiscard blocks */
236 atomic_t issued_discard; /* # of issued discard */
237 atomic_t issing_discard; /* # of issing discard */
238 atomic_t discard_cmd_cnt; /* # of cached cmd count */
239 struct rb_root root; /* root of discard rb-tree */
240 };
241
242 /* for the list of fsync inodes, used only during recovery */
243 struct fsync_inode_entry {
244 struct list_head list; /* list head */
245 struct inode *inode; /* vfs inode pointer */
246 block_t blkaddr; /* block address locating the last fsync */
247 block_t last_dentry; /* block address locating the last dentry */
248 };
249
250 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
251 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
252
253 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
254 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
255 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
256 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
257
258 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
259 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
260
261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
262 {
263 int before = nats_in_cursum(journal);
264
265 journal->n_nats = cpu_to_le16(before + i);
266 return before;
267 }
268
269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
270 {
271 int before = sits_in_cursum(journal);
272
273 journal->n_sits = cpu_to_le16(before + i);
274 return before;
275 }
276
277 static inline bool __has_cursum_space(struct f2fs_journal *journal,
278 int size, int type)
279 {
280 if (type == NAT_JOURNAL)
281 return size <= MAX_NAT_JENTRIES(journal);
282 return size <= MAX_SIT_JENTRIES(journal);
283 }
284
285 /*
286 * ioctl commands
287 */
288 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
289 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
290 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
291
292 #define F2FS_IOCTL_MAGIC 0xf5
293 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
295 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
297 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
298 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
299 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
300 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
301 struct f2fs_defragment)
302 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
303 struct f2fs_move_range)
304 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
305 struct f2fs_flush_device)
306 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
307 struct f2fs_gc_range)
308
309 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
310 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
311 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
312
313 /*
314 * should be same as XFS_IOC_GOINGDOWN.
315 * Flags for going down operation used by FS_IOC_GOINGDOWN
316 */
317 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
318 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
319 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
320 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
321 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
322
323 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
324 /*
325 * ioctl commands in 32 bit emulation
326 */
327 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
328 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
329 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
330 #endif
331
332 struct f2fs_gc_range {
333 u32 sync;
334 u64 start;
335 u64 len;
336 };
337
338 struct f2fs_defragment {
339 u64 start;
340 u64 len;
341 };
342
343 struct f2fs_move_range {
344 u32 dst_fd; /* destination fd */
345 u64 pos_in; /* start position in src_fd */
346 u64 pos_out; /* start position in dst_fd */
347 u64 len; /* size to move */
348 };
349
350 struct f2fs_flush_device {
351 u32 dev_num; /* device number to flush */
352 u32 segments; /* # of segments to flush */
353 };
354
355 /*
356 * For INODE and NODE manager
357 */
358 /* for directory operations */
359 struct f2fs_dentry_ptr {
360 struct inode *inode;
361 const void *bitmap;
362 struct f2fs_dir_entry *dentry;
363 __u8 (*filename)[F2FS_SLOT_LEN];
364 int max;
365 };
366
367 static inline void make_dentry_ptr_block(struct inode *inode,
368 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
369 {
370 d->inode = inode;
371 d->max = NR_DENTRY_IN_BLOCK;
372 d->bitmap = &t->dentry_bitmap;
373 d->dentry = t->dentry;
374 d->filename = t->filename;
375 }
376
377 static inline void make_dentry_ptr_inline(struct inode *inode,
378 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
379 {
380 d->inode = inode;
381 d->max = NR_INLINE_DENTRY;
382 d->bitmap = &t->dentry_bitmap;
383 d->dentry = t->dentry;
384 d->filename = t->filename;
385 }
386
387 /*
388 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
389 * as its node offset to distinguish from index node blocks.
390 * But some bits are used to mark the node block.
391 */
392 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
393 >> OFFSET_BIT_SHIFT)
394 enum {
395 ALLOC_NODE, /* allocate a new node page if needed */
396 LOOKUP_NODE, /* look up a node without readahead */
397 LOOKUP_NODE_RA, /*
398 * look up a node with readahead called
399 * by get_data_block.
400 */
401 };
402
403 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
404
405 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
406
407 /* vector size for gang look-up from extent cache that consists of radix tree */
408 #define EXT_TREE_VEC_SIZE 64
409
410 /* for in-memory extent cache entry */
411 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
412
413 /* number of extent info in extent cache we try to shrink */
414 #define EXTENT_CACHE_SHRINK_NUMBER 128
415
416 struct rb_entry {
417 struct rb_node rb_node; /* rb node located in rb-tree */
418 unsigned int ofs; /* start offset of the entry */
419 unsigned int len; /* length of the entry */
420 };
421
422 struct extent_info {
423 unsigned int fofs; /* start offset in a file */
424 unsigned int len; /* length of the extent */
425 u32 blk; /* start block address of the extent */
426 };
427
428 struct extent_node {
429 struct rb_node rb_node;
430 union {
431 struct {
432 unsigned int fofs;
433 unsigned int len;
434 u32 blk;
435 };
436 struct extent_info ei; /* extent info */
437
438 };
439 struct list_head list; /* node in global extent list of sbi */
440 struct extent_tree *et; /* extent tree pointer */
441 };
442
443 struct extent_tree {
444 nid_t ino; /* inode number */
445 struct rb_root root; /* root of extent info rb-tree */
446 struct extent_node *cached_en; /* recently accessed extent node */
447 struct extent_info largest; /* largested extent info */
448 struct list_head list; /* to be used by sbi->zombie_list */
449 rwlock_t lock; /* protect extent info rb-tree */
450 atomic_t node_cnt; /* # of extent node in rb-tree*/
451 };
452
453 /*
454 * This structure is taken from ext4_map_blocks.
455 *
456 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
457 */
458 #define F2FS_MAP_NEW (1 << BH_New)
459 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
460 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
461 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
462 F2FS_MAP_UNWRITTEN)
463
464 struct f2fs_map_blocks {
465 block_t m_pblk;
466 block_t m_lblk;
467 unsigned int m_len;
468 unsigned int m_flags;
469 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
470 };
471
472 /* for flag in get_data_block */
473 #define F2FS_GET_BLOCK_READ 0
474 #define F2FS_GET_BLOCK_DIO 1
475 #define F2FS_GET_BLOCK_FIEMAP 2
476 #define F2FS_GET_BLOCK_BMAP 3
477 #define F2FS_GET_BLOCK_PRE_DIO 4
478 #define F2FS_GET_BLOCK_PRE_AIO 5
479
480 /*
481 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
482 */
483 #define FADVISE_COLD_BIT 0x01
484 #define FADVISE_LOST_PINO_BIT 0x02
485 #define FADVISE_ENCRYPT_BIT 0x04
486 #define FADVISE_ENC_NAME_BIT 0x08
487 #define FADVISE_KEEP_SIZE_BIT 0x10
488
489 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
490 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
491 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
492 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
493 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
494 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
495 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
496 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
497 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
498 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
499 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
500 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
501 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
502
503 #define DEF_DIR_LEVEL 0
504
505 struct f2fs_inode_info {
506 struct inode vfs_inode; /* serve a vfs inode */
507 unsigned long i_flags; /* keep an inode flags for ioctl */
508 unsigned char i_advise; /* use to give file attribute hints */
509 unsigned char i_dir_level; /* use for dentry level for large dir */
510 unsigned int i_current_depth; /* use only in directory structure */
511 unsigned int i_pino; /* parent inode number */
512 umode_t i_acl_mode; /* keep file acl mode temporarily */
513
514 /* Use below internally in f2fs*/
515 unsigned long flags; /* use to pass per-file flags */
516 struct rw_semaphore i_sem; /* protect fi info */
517 atomic_t dirty_pages; /* # of dirty pages */
518 f2fs_hash_t chash; /* hash value of given file name */
519 unsigned int clevel; /* maximum level of given file name */
520 struct task_struct *task; /* lookup and create consistency */
521 nid_t i_xattr_nid; /* node id that contains xattrs */
522 loff_t last_disk_size; /* lastly written file size */
523
524 struct list_head dirty_list; /* dirty list for dirs and files */
525 struct list_head gdirty_list; /* linked in global dirty list */
526 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
527 struct mutex inmem_lock; /* lock for inmemory pages */
528 struct extent_tree *extent_tree; /* cached extent_tree entry */
529 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
530 struct rw_semaphore i_mmap_sem;
531 };
532
533 static inline void get_extent_info(struct extent_info *ext,
534 struct f2fs_extent *i_ext)
535 {
536 ext->fofs = le32_to_cpu(i_ext->fofs);
537 ext->blk = le32_to_cpu(i_ext->blk);
538 ext->len = le32_to_cpu(i_ext->len);
539 }
540
541 static inline void set_raw_extent(struct extent_info *ext,
542 struct f2fs_extent *i_ext)
543 {
544 i_ext->fofs = cpu_to_le32(ext->fofs);
545 i_ext->blk = cpu_to_le32(ext->blk);
546 i_ext->len = cpu_to_le32(ext->len);
547 }
548
549 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
550 u32 blk, unsigned int len)
551 {
552 ei->fofs = fofs;
553 ei->blk = blk;
554 ei->len = len;
555 }
556
557 static inline bool __is_discard_mergeable(struct discard_info *back,
558 struct discard_info *front)
559 {
560 return back->lstart + back->len == front->lstart;
561 }
562
563 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
564 struct discard_info *back)
565 {
566 return __is_discard_mergeable(back, cur);
567 }
568
569 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
570 struct discard_info *front)
571 {
572 return __is_discard_mergeable(cur, front);
573 }
574
575 static inline bool __is_extent_mergeable(struct extent_info *back,
576 struct extent_info *front)
577 {
578 return (back->fofs + back->len == front->fofs &&
579 back->blk + back->len == front->blk);
580 }
581
582 static inline bool __is_back_mergeable(struct extent_info *cur,
583 struct extent_info *back)
584 {
585 return __is_extent_mergeable(back, cur);
586 }
587
588 static inline bool __is_front_mergeable(struct extent_info *cur,
589 struct extent_info *front)
590 {
591 return __is_extent_mergeable(cur, front);
592 }
593
594 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
595 static inline void __try_update_largest_extent(struct inode *inode,
596 struct extent_tree *et, struct extent_node *en)
597 {
598 if (en->ei.len > et->largest.len) {
599 et->largest = en->ei;
600 f2fs_mark_inode_dirty_sync(inode, true);
601 }
602 }
603
604 enum nid_list {
605 FREE_NID_LIST,
606 ALLOC_NID_LIST,
607 MAX_NID_LIST,
608 };
609
610 struct f2fs_nm_info {
611 block_t nat_blkaddr; /* base disk address of NAT */
612 nid_t max_nid; /* maximum possible node ids */
613 nid_t available_nids; /* # of available node ids */
614 nid_t next_scan_nid; /* the next nid to be scanned */
615 unsigned int ram_thresh; /* control the memory footprint */
616 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
617 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
618
619 /* NAT cache management */
620 struct radix_tree_root nat_root;/* root of the nat entry cache */
621 struct radix_tree_root nat_set_root;/* root of the nat set cache */
622 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
623 struct list_head nat_entries; /* cached nat entry list (clean) */
624 unsigned int nat_cnt; /* the # of cached nat entries */
625 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
626 unsigned int nat_blocks; /* # of nat blocks */
627
628 /* free node ids management */
629 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
630 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
631 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
632 spinlock_t nid_list_lock; /* protect nid lists ops */
633 struct mutex build_lock; /* lock for build free nids */
634 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
635 unsigned char *nat_block_bitmap;
636 unsigned short *free_nid_count; /* free nid count of NAT block */
637
638 /* for checkpoint */
639 char *nat_bitmap; /* NAT bitmap pointer */
640
641 unsigned int nat_bits_blocks; /* # of nat bits blocks */
642 unsigned char *nat_bits; /* NAT bits blocks */
643 unsigned char *full_nat_bits; /* full NAT pages */
644 unsigned char *empty_nat_bits; /* empty NAT pages */
645 #ifdef CONFIG_F2FS_CHECK_FS
646 char *nat_bitmap_mir; /* NAT bitmap mirror */
647 #endif
648 int bitmap_size; /* bitmap size */
649 };
650
651 /*
652 * this structure is used as one of function parameters.
653 * all the information are dedicated to a given direct node block determined
654 * by the data offset in a file.
655 */
656 struct dnode_of_data {
657 struct inode *inode; /* vfs inode pointer */
658 struct page *inode_page; /* its inode page, NULL is possible */
659 struct page *node_page; /* cached direct node page */
660 nid_t nid; /* node id of the direct node block */
661 unsigned int ofs_in_node; /* data offset in the node page */
662 bool inode_page_locked; /* inode page is locked or not */
663 bool node_changed; /* is node block changed */
664 char cur_level; /* level of hole node page */
665 char max_level; /* level of current page located */
666 block_t data_blkaddr; /* block address of the node block */
667 };
668
669 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
670 struct page *ipage, struct page *npage, nid_t nid)
671 {
672 memset(dn, 0, sizeof(*dn));
673 dn->inode = inode;
674 dn->inode_page = ipage;
675 dn->node_page = npage;
676 dn->nid = nid;
677 }
678
679 /*
680 * For SIT manager
681 *
682 * By default, there are 6 active log areas across the whole main area.
683 * When considering hot and cold data separation to reduce cleaning overhead,
684 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
685 * respectively.
686 * In the current design, you should not change the numbers intentionally.
687 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
688 * logs individually according to the underlying devices. (default: 6)
689 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
690 * data and 8 for node logs.
691 */
692 #define NR_CURSEG_DATA_TYPE (3)
693 #define NR_CURSEG_NODE_TYPE (3)
694 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
695
696 enum {
697 CURSEG_HOT_DATA = 0, /* directory entry blocks */
698 CURSEG_WARM_DATA, /* data blocks */
699 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
700 CURSEG_HOT_NODE, /* direct node blocks of directory files */
701 CURSEG_WARM_NODE, /* direct node blocks of normal files */
702 CURSEG_COLD_NODE, /* indirect node blocks */
703 NO_CHECK_TYPE,
704 };
705
706 struct flush_cmd {
707 struct completion wait;
708 struct llist_node llnode;
709 int ret;
710 };
711
712 struct flush_cmd_control {
713 struct task_struct *f2fs_issue_flush; /* flush thread */
714 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
715 atomic_t issued_flush; /* # of issued flushes */
716 atomic_t issing_flush; /* # of issing flushes */
717 struct llist_head issue_list; /* list for command issue */
718 struct llist_node *dispatch_list; /* list for command dispatch */
719 };
720
721 struct f2fs_sm_info {
722 struct sit_info *sit_info; /* whole segment information */
723 struct free_segmap_info *free_info; /* free segment information */
724 struct dirty_seglist_info *dirty_info; /* dirty segment information */
725 struct curseg_info *curseg_array; /* active segment information */
726
727 block_t seg0_blkaddr; /* block address of 0'th segment */
728 block_t main_blkaddr; /* start block address of main area */
729 block_t ssa_blkaddr; /* start block address of SSA area */
730
731 unsigned int segment_count; /* total # of segments */
732 unsigned int main_segments; /* # of segments in main area */
733 unsigned int reserved_segments; /* # of reserved segments */
734 unsigned int ovp_segments; /* # of overprovision segments */
735
736 /* a threshold to reclaim prefree segments */
737 unsigned int rec_prefree_segments;
738
739 /* for batched trimming */
740 unsigned int trim_sections; /* # of sections to trim */
741
742 struct list_head sit_entry_set; /* sit entry set list */
743
744 unsigned int ipu_policy; /* in-place-update policy */
745 unsigned int min_ipu_util; /* in-place-update threshold */
746 unsigned int min_fsync_blocks; /* threshold for fsync */
747 unsigned int min_hot_blocks; /* threshold for hot block allocation */
748
749 /* for flush command control */
750 struct flush_cmd_control *fcc_info;
751
752 /* for discard command control */
753 struct discard_cmd_control *dcc_info;
754 };
755
756 /*
757 * For superblock
758 */
759 /*
760 * COUNT_TYPE for monitoring
761 *
762 * f2fs monitors the number of several block types such as on-writeback,
763 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
764 */
765 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
766 enum count_type {
767 F2FS_DIRTY_DENTS,
768 F2FS_DIRTY_DATA,
769 F2FS_DIRTY_NODES,
770 F2FS_DIRTY_META,
771 F2FS_INMEM_PAGES,
772 F2FS_DIRTY_IMETA,
773 F2FS_WB_CP_DATA,
774 F2FS_WB_DATA,
775 NR_COUNT_TYPE,
776 };
777
778 /*
779 * The below are the page types of bios used in submit_bio().
780 * The available types are:
781 * DATA User data pages. It operates as async mode.
782 * NODE Node pages. It operates as async mode.
783 * META FS metadata pages such as SIT, NAT, CP.
784 * NR_PAGE_TYPE The number of page types.
785 * META_FLUSH Make sure the previous pages are written
786 * with waiting the bio's completion
787 * ... Only can be used with META.
788 */
789 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
790 enum page_type {
791 DATA,
792 NODE,
793 META,
794 NR_PAGE_TYPE,
795 META_FLUSH,
796 INMEM, /* the below types are used by tracepoints only. */
797 INMEM_DROP,
798 INMEM_INVALIDATE,
799 INMEM_REVOKE,
800 IPU,
801 OPU,
802 };
803
804 enum temp_type {
805 HOT = 0, /* must be zero for meta bio */
806 WARM,
807 COLD,
808 NR_TEMP_TYPE,
809 };
810
811 enum need_lock_type {
812 LOCK_REQ = 0,
813 LOCK_DONE,
814 LOCK_RETRY,
815 };
816
817 struct f2fs_io_info {
818 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
819 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
820 enum temp_type temp; /* contains HOT/WARM/COLD */
821 int op; /* contains REQ_OP_ */
822 int op_flags; /* req_flag_bits */
823 block_t new_blkaddr; /* new block address to be written */
824 block_t old_blkaddr; /* old block address before Cow */
825 struct page *page; /* page to be written */
826 struct page *encrypted_page; /* encrypted page */
827 struct list_head list; /* serialize IOs */
828 bool submitted; /* indicate IO submission */
829 int need_lock; /* indicate we need to lock cp_rwsem */
830 bool in_list; /* indicate fio is in io_list */
831 };
832
833 #define is_read_io(rw) ((rw) == READ)
834 struct f2fs_bio_info {
835 struct f2fs_sb_info *sbi; /* f2fs superblock */
836 struct bio *bio; /* bios to merge */
837 sector_t last_block_in_bio; /* last block number */
838 struct f2fs_io_info fio; /* store buffered io info. */
839 struct rw_semaphore io_rwsem; /* blocking op for bio */
840 spinlock_t io_lock; /* serialize DATA/NODE IOs */
841 struct list_head io_list; /* track fios */
842 };
843
844 #define FDEV(i) (sbi->devs[i])
845 #define RDEV(i) (raw_super->devs[i])
846 struct f2fs_dev_info {
847 struct block_device *bdev;
848 char path[MAX_PATH_LEN];
849 unsigned int total_segments;
850 block_t start_blk;
851 block_t end_blk;
852 #ifdef CONFIG_BLK_DEV_ZONED
853 unsigned int nr_blkz; /* Total number of zones */
854 u8 *blkz_type; /* Array of zones type */
855 #endif
856 };
857
858 enum inode_type {
859 DIR_INODE, /* for dirty dir inode */
860 FILE_INODE, /* for dirty regular/symlink inode */
861 DIRTY_META, /* for all dirtied inode metadata */
862 NR_INODE_TYPE,
863 };
864
865 /* for inner inode cache management */
866 struct inode_management {
867 struct radix_tree_root ino_root; /* ino entry array */
868 spinlock_t ino_lock; /* for ino entry lock */
869 struct list_head ino_list; /* inode list head */
870 unsigned long ino_num; /* number of entries */
871 };
872
873 /* For s_flag in struct f2fs_sb_info */
874 enum {
875 SBI_IS_DIRTY, /* dirty flag for checkpoint */
876 SBI_IS_CLOSE, /* specify unmounting */
877 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
878 SBI_POR_DOING, /* recovery is doing or not */
879 SBI_NEED_SB_WRITE, /* need to recover superblock */
880 SBI_NEED_CP, /* need to checkpoint */
881 };
882
883 enum {
884 CP_TIME,
885 REQ_TIME,
886 MAX_TIME,
887 };
888
889 struct f2fs_sb_info {
890 struct super_block *sb; /* pointer to VFS super block */
891 struct proc_dir_entry *s_proc; /* proc entry */
892 struct f2fs_super_block *raw_super; /* raw super block pointer */
893 int valid_super_block; /* valid super block no */
894 unsigned long s_flag; /* flags for sbi */
895
896 #ifdef CONFIG_BLK_DEV_ZONED
897 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
898 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
899 #endif
900
901 /* for node-related operations */
902 struct f2fs_nm_info *nm_info; /* node manager */
903 struct inode *node_inode; /* cache node blocks */
904
905 /* for segment-related operations */
906 struct f2fs_sm_info *sm_info; /* segment manager */
907
908 /* for bio operations */
909 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
910 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
911 /* bio ordering for NODE/DATA */
912 int write_io_size_bits; /* Write IO size bits */
913 mempool_t *write_io_dummy; /* Dummy pages */
914
915 /* for checkpoint */
916 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
917 int cur_cp_pack; /* remain current cp pack */
918 spinlock_t cp_lock; /* for flag in ckpt */
919 struct inode *meta_inode; /* cache meta blocks */
920 struct mutex cp_mutex; /* checkpoint procedure lock */
921 struct rw_semaphore cp_rwsem; /* blocking FS operations */
922 struct rw_semaphore node_write; /* locking node writes */
923 struct rw_semaphore node_change; /* locking node change */
924 wait_queue_head_t cp_wait;
925 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
926 long interval_time[MAX_TIME]; /* to store thresholds */
927
928 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
929
930 /* for orphan inode, use 0'th array */
931 unsigned int max_orphans; /* max orphan inodes */
932
933 /* for inode management */
934 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
935 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
936
937 /* for extent tree cache */
938 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
939 struct mutex extent_tree_lock; /* locking extent radix tree */
940 struct list_head extent_list; /* lru list for shrinker */
941 spinlock_t extent_lock; /* locking extent lru list */
942 atomic_t total_ext_tree; /* extent tree count */
943 struct list_head zombie_list; /* extent zombie tree list */
944 atomic_t total_zombie_tree; /* extent zombie tree count */
945 atomic_t total_ext_node; /* extent info count */
946
947 /* basic filesystem units */
948 unsigned int log_sectors_per_block; /* log2 sectors per block */
949 unsigned int log_blocksize; /* log2 block size */
950 unsigned int blocksize; /* block size */
951 unsigned int root_ino_num; /* root inode number*/
952 unsigned int node_ino_num; /* node inode number*/
953 unsigned int meta_ino_num; /* meta inode number*/
954 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
955 unsigned int blocks_per_seg; /* blocks per segment */
956 unsigned int segs_per_sec; /* segments per section */
957 unsigned int secs_per_zone; /* sections per zone */
958 unsigned int total_sections; /* total section count */
959 unsigned int total_node_count; /* total node block count */
960 unsigned int total_valid_node_count; /* valid node block count */
961 loff_t max_file_blocks; /* max block index of file */
962 int active_logs; /* # of active logs */
963 int dir_level; /* directory level */
964
965 block_t user_block_count; /* # of user blocks */
966 block_t total_valid_block_count; /* # of valid blocks */
967 block_t discard_blks; /* discard command candidats */
968 block_t last_valid_block_count; /* for recovery */
969 block_t reserved_blocks; /* configurable reserved blocks */
970
971 u32 s_next_generation; /* for NFS support */
972
973 /* # of pages, see count_type */
974 atomic_t nr_pages[NR_COUNT_TYPE];
975 /* # of allocated blocks */
976 struct percpu_counter alloc_valid_block_count;
977
978 /* writeback control */
979 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
980
981 /* valid inode count */
982 struct percpu_counter total_valid_inode_count;
983
984 struct f2fs_mount_info mount_opt; /* mount options */
985
986 /* for cleaning operations */
987 struct mutex gc_mutex; /* mutex for GC */
988 struct f2fs_gc_kthread *gc_thread; /* GC thread */
989 unsigned int cur_victim_sec; /* current victim section num */
990
991 /* threshold for converting bg victims for fg */
992 u64 fggc_threshold;
993
994 /* maximum # of trials to find a victim segment for SSR and GC */
995 unsigned int max_victim_search;
996
997 /*
998 * for stat information.
999 * one is for the LFS mode, and the other is for the SSR mode.
1000 */
1001 #ifdef CONFIG_F2FS_STAT_FS
1002 struct f2fs_stat_info *stat_info; /* FS status information */
1003 unsigned int segment_count[2]; /* # of allocated segments */
1004 unsigned int block_count[2]; /* # of allocated blocks */
1005 atomic_t inplace_count; /* # of inplace update */
1006 atomic64_t total_hit_ext; /* # of lookup extent cache */
1007 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1008 atomic64_t read_hit_largest; /* # of hit largest extent node */
1009 atomic64_t read_hit_cached; /* # of hit cached extent node */
1010 atomic_t inline_xattr; /* # of inline_xattr inodes */
1011 atomic_t inline_inode; /* # of inline_data inodes */
1012 atomic_t inline_dir; /* # of inline_dentry inodes */
1013 atomic_t aw_cnt; /* # of atomic writes */
1014 atomic_t vw_cnt; /* # of volatile writes */
1015 atomic_t max_aw_cnt; /* max # of atomic writes */
1016 atomic_t max_vw_cnt; /* max # of volatile writes */
1017 int bg_gc; /* background gc calls */
1018 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1019 #endif
1020 spinlock_t stat_lock; /* lock for stat operations */
1021
1022 /* For sysfs suppport */
1023 struct kobject s_kobj;
1024 struct completion s_kobj_unregister;
1025
1026 /* For shrinker support */
1027 struct list_head s_list;
1028 int s_ndevs; /* number of devices */
1029 struct f2fs_dev_info *devs; /* for device list */
1030 struct mutex umount_mutex;
1031 unsigned int shrinker_run_no;
1032
1033 /* For write statistics */
1034 u64 sectors_written_start;
1035 u64 kbytes_written;
1036
1037 /* Reference to checksum algorithm driver via cryptoapi */
1038 struct crypto_shash *s_chksum_driver;
1039
1040 /* For fault injection */
1041 #ifdef CONFIG_F2FS_FAULT_INJECTION
1042 struct f2fs_fault_info fault_info;
1043 #endif
1044 };
1045
1046 #ifdef CONFIG_F2FS_FAULT_INJECTION
1047 #define f2fs_show_injection_info(type) \
1048 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1049 KERN_INFO, fault_name[type], \
1050 __func__, __builtin_return_address(0))
1051 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1052 {
1053 struct f2fs_fault_info *ffi = &sbi->fault_info;
1054
1055 if (!ffi->inject_rate)
1056 return false;
1057
1058 if (!IS_FAULT_SET(ffi, type))
1059 return false;
1060
1061 atomic_inc(&ffi->inject_ops);
1062 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1063 atomic_set(&ffi->inject_ops, 0);
1064 return true;
1065 }
1066 return false;
1067 }
1068 #endif
1069
1070 /* For write statistics. Suppose sector size is 512 bytes,
1071 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1072 */
1073 #define BD_PART_WRITTEN(s) \
1074 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1075 (s)->sectors_written_start) >> 1)
1076
1077 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1078 {
1079 sbi->last_time[type] = jiffies;
1080 }
1081
1082 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1083 {
1084 struct timespec ts = {sbi->interval_time[type], 0};
1085 unsigned long interval = timespec_to_jiffies(&ts);
1086
1087 return time_after(jiffies, sbi->last_time[type] + interval);
1088 }
1089
1090 static inline bool is_idle(struct f2fs_sb_info *sbi)
1091 {
1092 struct block_device *bdev = sbi->sb->s_bdev;
1093 struct request_queue *q = bdev_get_queue(bdev);
1094 struct request_list *rl = &q->root_rl;
1095
1096 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1097 return 0;
1098
1099 return f2fs_time_over(sbi, REQ_TIME);
1100 }
1101
1102 /*
1103 * Inline functions
1104 */
1105 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1106 unsigned int length)
1107 {
1108 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1109 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1110 int err;
1111
1112 shash->tfm = sbi->s_chksum_driver;
1113 shash->flags = 0;
1114 *ctx = F2FS_SUPER_MAGIC;
1115
1116 err = crypto_shash_update(shash, address, length);
1117 BUG_ON(err);
1118
1119 return *ctx;
1120 }
1121
1122 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1123 void *buf, size_t buf_size)
1124 {
1125 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1126 }
1127
1128 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1129 {
1130 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1131 }
1132
1133 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1134 {
1135 return sb->s_fs_info;
1136 }
1137
1138 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1139 {
1140 return F2FS_SB(inode->i_sb);
1141 }
1142
1143 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1144 {
1145 return F2FS_I_SB(mapping->host);
1146 }
1147
1148 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1149 {
1150 return F2FS_M_SB(page->mapping);
1151 }
1152
1153 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1154 {
1155 return (struct f2fs_super_block *)(sbi->raw_super);
1156 }
1157
1158 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1159 {
1160 return (struct f2fs_checkpoint *)(sbi->ckpt);
1161 }
1162
1163 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1164 {
1165 return (struct f2fs_node *)page_address(page);
1166 }
1167
1168 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1169 {
1170 return &((struct f2fs_node *)page_address(page))->i;
1171 }
1172
1173 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1174 {
1175 return (struct f2fs_nm_info *)(sbi->nm_info);
1176 }
1177
1178 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1179 {
1180 return (struct f2fs_sm_info *)(sbi->sm_info);
1181 }
1182
1183 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1184 {
1185 return (struct sit_info *)(SM_I(sbi)->sit_info);
1186 }
1187
1188 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1189 {
1190 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1191 }
1192
1193 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1194 {
1195 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1196 }
1197
1198 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1199 {
1200 return sbi->meta_inode->i_mapping;
1201 }
1202
1203 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1204 {
1205 return sbi->node_inode->i_mapping;
1206 }
1207
1208 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1209 {
1210 return test_bit(type, &sbi->s_flag);
1211 }
1212
1213 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1214 {
1215 set_bit(type, &sbi->s_flag);
1216 }
1217
1218 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1219 {
1220 clear_bit(type, &sbi->s_flag);
1221 }
1222
1223 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1224 {
1225 return le64_to_cpu(cp->checkpoint_ver);
1226 }
1227
1228 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1229 {
1230 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1231 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1232 }
1233
1234 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1235 {
1236 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1237
1238 return ckpt_flags & f;
1239 }
1240
1241 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1242 {
1243 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1244 }
1245
1246 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1247 {
1248 unsigned int ckpt_flags;
1249
1250 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1251 ckpt_flags |= f;
1252 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1253 }
1254
1255 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1256 {
1257 unsigned long flags;
1258
1259 spin_lock_irqsave(&sbi->cp_lock, flags);
1260 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1261 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1262 }
1263
1264 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1265 {
1266 unsigned int ckpt_flags;
1267
1268 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1269 ckpt_flags &= (~f);
1270 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1271 }
1272
1273 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1274 {
1275 unsigned long flags;
1276
1277 spin_lock_irqsave(&sbi->cp_lock, flags);
1278 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1279 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1280 }
1281
1282 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1283 {
1284 unsigned long flags;
1285
1286 set_sbi_flag(sbi, SBI_NEED_FSCK);
1287
1288 if (lock)
1289 spin_lock_irqsave(&sbi->cp_lock, flags);
1290 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1291 kfree(NM_I(sbi)->nat_bits);
1292 NM_I(sbi)->nat_bits = NULL;
1293 if (lock)
1294 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1295 }
1296
1297 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1298 struct cp_control *cpc)
1299 {
1300 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1301
1302 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1303 }
1304
1305 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1306 {
1307 down_read(&sbi->cp_rwsem);
1308 }
1309
1310 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1311 {
1312 return down_read_trylock(&sbi->cp_rwsem);
1313 }
1314
1315 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1316 {
1317 up_read(&sbi->cp_rwsem);
1318 }
1319
1320 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1321 {
1322 down_write(&sbi->cp_rwsem);
1323 }
1324
1325 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1326 {
1327 up_write(&sbi->cp_rwsem);
1328 }
1329
1330 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1331 {
1332 int reason = CP_SYNC;
1333
1334 if (test_opt(sbi, FASTBOOT))
1335 reason = CP_FASTBOOT;
1336 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1337 reason = CP_UMOUNT;
1338 return reason;
1339 }
1340
1341 static inline bool __remain_node_summaries(int reason)
1342 {
1343 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1344 }
1345
1346 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1347 {
1348 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1349 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1350 }
1351
1352 /*
1353 * Check whether the given nid is within node id range.
1354 */
1355 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1356 {
1357 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1358 return -EINVAL;
1359 if (unlikely(nid >= NM_I(sbi)->max_nid))
1360 return -EINVAL;
1361 return 0;
1362 }
1363
1364 /*
1365 * Check whether the inode has blocks or not
1366 */
1367 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1368 {
1369 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1370
1371 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1372 }
1373
1374 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1375 {
1376 return ofs == XATTR_NODE_OFFSET;
1377 }
1378
1379 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool);
1380 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1381 struct inode *inode, blkcnt_t *count)
1382 {
1383 blkcnt_t diff;
1384 block_t avail_user_block_count;
1385
1386 #ifdef CONFIG_F2FS_FAULT_INJECTION
1387 if (time_to_inject(sbi, FAULT_BLOCK)) {
1388 f2fs_show_injection_info(FAULT_BLOCK);
1389 return false;
1390 }
1391 #endif
1392 /*
1393 * let's increase this in prior to actual block count change in order
1394 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1395 */
1396 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1397
1398 spin_lock(&sbi->stat_lock);
1399 sbi->total_valid_block_count += (block_t)(*count);
1400 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1401 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1402 diff = sbi->total_valid_block_count - avail_user_block_count;
1403 *count -= diff;
1404 sbi->total_valid_block_count = avail_user_block_count;
1405 if (!*count) {
1406 spin_unlock(&sbi->stat_lock);
1407 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1408 return false;
1409 }
1410 }
1411 spin_unlock(&sbi->stat_lock);
1412
1413 f2fs_i_blocks_write(inode, *count, true);
1414 return true;
1415 }
1416
1417 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1418 struct inode *inode,
1419 block_t count)
1420 {
1421 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1422
1423 spin_lock(&sbi->stat_lock);
1424 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1425 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1426 sbi->total_valid_block_count -= (block_t)count;
1427 spin_unlock(&sbi->stat_lock);
1428 f2fs_i_blocks_write(inode, count, false);
1429 }
1430
1431 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1432 {
1433 atomic_inc(&sbi->nr_pages[count_type]);
1434
1435 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1436 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1437 return;
1438
1439 set_sbi_flag(sbi, SBI_IS_DIRTY);
1440 }
1441
1442 static inline void inode_inc_dirty_pages(struct inode *inode)
1443 {
1444 atomic_inc(&F2FS_I(inode)->dirty_pages);
1445 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1446 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1447 }
1448
1449 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1450 {
1451 atomic_dec(&sbi->nr_pages[count_type]);
1452 }
1453
1454 static inline void inode_dec_dirty_pages(struct inode *inode)
1455 {
1456 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1457 !S_ISLNK(inode->i_mode))
1458 return;
1459
1460 atomic_dec(&F2FS_I(inode)->dirty_pages);
1461 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1462 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1463 }
1464
1465 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1466 {
1467 return atomic_read(&sbi->nr_pages[count_type]);
1468 }
1469
1470 static inline int get_dirty_pages(struct inode *inode)
1471 {
1472 return atomic_read(&F2FS_I(inode)->dirty_pages);
1473 }
1474
1475 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1476 {
1477 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1478 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1479 sbi->log_blocks_per_seg;
1480
1481 return segs / sbi->segs_per_sec;
1482 }
1483
1484 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1485 {
1486 return sbi->total_valid_block_count;
1487 }
1488
1489 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1490 {
1491 return sbi->discard_blks;
1492 }
1493
1494 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1495 {
1496 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1497
1498 /* return NAT or SIT bitmap */
1499 if (flag == NAT_BITMAP)
1500 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1501 else if (flag == SIT_BITMAP)
1502 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1503
1504 return 0;
1505 }
1506
1507 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1508 {
1509 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1510 }
1511
1512 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1513 {
1514 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1515 int offset;
1516
1517 if (__cp_payload(sbi) > 0) {
1518 if (flag == NAT_BITMAP)
1519 return &ckpt->sit_nat_version_bitmap;
1520 else
1521 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1522 } else {
1523 offset = (flag == NAT_BITMAP) ?
1524 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1525 return &ckpt->sit_nat_version_bitmap + offset;
1526 }
1527 }
1528
1529 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1530 {
1531 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1532
1533 if (sbi->cur_cp_pack == 2)
1534 start_addr += sbi->blocks_per_seg;
1535 return start_addr;
1536 }
1537
1538 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1539 {
1540 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1541
1542 if (sbi->cur_cp_pack == 1)
1543 start_addr += sbi->blocks_per_seg;
1544 return start_addr;
1545 }
1546
1547 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1548 {
1549 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1550 }
1551
1552 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1553 {
1554 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1555 }
1556
1557 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1558 struct inode *inode, bool is_inode)
1559 {
1560 block_t valid_block_count;
1561 unsigned int valid_node_count;
1562
1563 spin_lock(&sbi->stat_lock);
1564
1565 valid_block_count = sbi->total_valid_block_count + 1;
1566 if (unlikely(valid_block_count + sbi->reserved_blocks >
1567 sbi->user_block_count)) {
1568 spin_unlock(&sbi->stat_lock);
1569 return false;
1570 }
1571
1572 valid_node_count = sbi->total_valid_node_count + 1;
1573 if (unlikely(valid_node_count > sbi->total_node_count)) {
1574 spin_unlock(&sbi->stat_lock);
1575 return false;
1576 }
1577
1578 if (inode) {
1579 if (is_inode)
1580 f2fs_mark_inode_dirty_sync(inode, true);
1581 else
1582 f2fs_i_blocks_write(inode, 1, true);
1583 }
1584
1585 sbi->total_valid_node_count++;
1586 sbi->total_valid_block_count++;
1587 spin_unlock(&sbi->stat_lock);
1588
1589 percpu_counter_inc(&sbi->alloc_valid_block_count);
1590 return true;
1591 }
1592
1593 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1594 struct inode *inode, bool is_inode)
1595 {
1596 spin_lock(&sbi->stat_lock);
1597
1598 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1599 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1600 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1601
1602 if (!is_inode)
1603 f2fs_i_blocks_write(inode, 1, false);
1604 sbi->total_valid_node_count--;
1605 sbi->total_valid_block_count--;
1606
1607 spin_unlock(&sbi->stat_lock);
1608 }
1609
1610 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1611 {
1612 return sbi->total_valid_node_count;
1613 }
1614
1615 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1616 {
1617 percpu_counter_inc(&sbi->total_valid_inode_count);
1618 }
1619
1620 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1621 {
1622 percpu_counter_dec(&sbi->total_valid_inode_count);
1623 }
1624
1625 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1626 {
1627 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1628 }
1629
1630 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1631 pgoff_t index, bool for_write)
1632 {
1633 #ifdef CONFIG_F2FS_FAULT_INJECTION
1634 struct page *page = find_lock_page(mapping, index);
1635
1636 if (page)
1637 return page;
1638
1639 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1640 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1641 return NULL;
1642 }
1643 #endif
1644 if (!for_write)
1645 return grab_cache_page(mapping, index);
1646 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1647 }
1648
1649 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1650 {
1651 char *src_kaddr = kmap(src);
1652 char *dst_kaddr = kmap(dst);
1653
1654 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1655 kunmap(dst);
1656 kunmap(src);
1657 }
1658
1659 static inline void f2fs_put_page(struct page *page, int unlock)
1660 {
1661 if (!page)
1662 return;
1663
1664 if (unlock) {
1665 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1666 unlock_page(page);
1667 }
1668 put_page(page);
1669 }
1670
1671 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1672 {
1673 if (dn->node_page)
1674 f2fs_put_page(dn->node_page, 1);
1675 if (dn->inode_page && dn->node_page != dn->inode_page)
1676 f2fs_put_page(dn->inode_page, 0);
1677 dn->node_page = NULL;
1678 dn->inode_page = NULL;
1679 }
1680
1681 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1682 size_t size)
1683 {
1684 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1685 }
1686
1687 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1688 gfp_t flags)
1689 {
1690 void *entry;
1691
1692 entry = kmem_cache_alloc(cachep, flags);
1693 if (!entry)
1694 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1695 return entry;
1696 }
1697
1698 static inline struct bio *f2fs_bio_alloc(int npages)
1699 {
1700 struct bio *bio;
1701
1702 /* No failure on bio allocation */
1703 bio = bio_alloc(GFP_NOIO, npages);
1704 if (!bio)
1705 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1706 return bio;
1707 }
1708
1709 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1710 unsigned long index, void *item)
1711 {
1712 while (radix_tree_insert(root, index, item))
1713 cond_resched();
1714 }
1715
1716 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1717
1718 static inline bool IS_INODE(struct page *page)
1719 {
1720 struct f2fs_node *p = F2FS_NODE(page);
1721
1722 return RAW_IS_INODE(p);
1723 }
1724
1725 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1726 {
1727 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1728 }
1729
1730 static inline block_t datablock_addr(struct page *node_page,
1731 unsigned int offset)
1732 {
1733 struct f2fs_node *raw_node;
1734 __le32 *addr_array;
1735
1736 raw_node = F2FS_NODE(node_page);
1737 addr_array = blkaddr_in_node(raw_node);
1738 return le32_to_cpu(addr_array[offset]);
1739 }
1740
1741 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1742 {
1743 int mask;
1744
1745 addr += (nr >> 3);
1746 mask = 1 << (7 - (nr & 0x07));
1747 return mask & *addr;
1748 }
1749
1750 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1751 {
1752 int mask;
1753
1754 addr += (nr >> 3);
1755 mask = 1 << (7 - (nr & 0x07));
1756 *addr |= mask;
1757 }
1758
1759 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1760 {
1761 int mask;
1762
1763 addr += (nr >> 3);
1764 mask = 1 << (7 - (nr & 0x07));
1765 *addr &= ~mask;
1766 }
1767
1768 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1769 {
1770 int mask;
1771 int ret;
1772
1773 addr += (nr >> 3);
1774 mask = 1 << (7 - (nr & 0x07));
1775 ret = mask & *addr;
1776 *addr |= mask;
1777 return ret;
1778 }
1779
1780 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1781 {
1782 int mask;
1783 int ret;
1784
1785 addr += (nr >> 3);
1786 mask = 1 << (7 - (nr & 0x07));
1787 ret = mask & *addr;
1788 *addr &= ~mask;
1789 return ret;
1790 }
1791
1792 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1793 {
1794 int mask;
1795
1796 addr += (nr >> 3);
1797 mask = 1 << (7 - (nr & 0x07));
1798 *addr ^= mask;
1799 }
1800
1801 /* used for f2fs_inode_info->flags */
1802 enum {
1803 FI_NEW_INODE, /* indicate newly allocated inode */
1804 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1805 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1806 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1807 FI_INC_LINK, /* need to increment i_nlink */
1808 FI_ACL_MODE, /* indicate acl mode */
1809 FI_NO_ALLOC, /* should not allocate any blocks */
1810 FI_FREE_NID, /* free allocated nide */
1811 FI_NO_EXTENT, /* not to use the extent cache */
1812 FI_INLINE_XATTR, /* used for inline xattr */
1813 FI_INLINE_DATA, /* used for inline data*/
1814 FI_INLINE_DENTRY, /* used for inline dentry */
1815 FI_APPEND_WRITE, /* inode has appended data */
1816 FI_UPDATE_WRITE, /* inode has in-place-update data */
1817 FI_NEED_IPU, /* used for ipu per file */
1818 FI_ATOMIC_FILE, /* indicate atomic file */
1819 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1820 FI_VOLATILE_FILE, /* indicate volatile file */
1821 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1822 FI_DROP_CACHE, /* drop dirty page cache */
1823 FI_DATA_EXIST, /* indicate data exists */
1824 FI_INLINE_DOTS, /* indicate inline dot dentries */
1825 FI_DO_DEFRAG, /* indicate defragment is running */
1826 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1827 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1828 FI_HOT_DATA, /* indicate file is hot */
1829 };
1830
1831 static inline void __mark_inode_dirty_flag(struct inode *inode,
1832 int flag, bool set)
1833 {
1834 switch (flag) {
1835 case FI_INLINE_XATTR:
1836 case FI_INLINE_DATA:
1837 case FI_INLINE_DENTRY:
1838 if (set)
1839 return;
1840 case FI_DATA_EXIST:
1841 case FI_INLINE_DOTS:
1842 f2fs_mark_inode_dirty_sync(inode, true);
1843 }
1844 }
1845
1846 static inline void set_inode_flag(struct inode *inode, int flag)
1847 {
1848 if (!test_bit(flag, &F2FS_I(inode)->flags))
1849 set_bit(flag, &F2FS_I(inode)->flags);
1850 __mark_inode_dirty_flag(inode, flag, true);
1851 }
1852
1853 static inline int is_inode_flag_set(struct inode *inode, int flag)
1854 {
1855 return test_bit(flag, &F2FS_I(inode)->flags);
1856 }
1857
1858 static inline void clear_inode_flag(struct inode *inode, int flag)
1859 {
1860 if (test_bit(flag, &F2FS_I(inode)->flags))
1861 clear_bit(flag, &F2FS_I(inode)->flags);
1862 __mark_inode_dirty_flag(inode, flag, false);
1863 }
1864
1865 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1866 {
1867 F2FS_I(inode)->i_acl_mode = mode;
1868 set_inode_flag(inode, FI_ACL_MODE);
1869 f2fs_mark_inode_dirty_sync(inode, false);
1870 }
1871
1872 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1873 {
1874 if (inc)
1875 inc_nlink(inode);
1876 else
1877 drop_nlink(inode);
1878 f2fs_mark_inode_dirty_sync(inode, true);
1879 }
1880
1881 static inline void f2fs_i_blocks_write(struct inode *inode,
1882 block_t diff, bool add)
1883 {
1884 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1885 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1886 blkcnt_t sectors = diff << F2FS_LOG_SECTORS_PER_BLOCK;
1887
1888 inode->i_blocks = add ? inode->i_blocks + sectors :
1889 inode->i_blocks - sectors;
1890 f2fs_mark_inode_dirty_sync(inode, true);
1891 if (clean || recover)
1892 set_inode_flag(inode, FI_AUTO_RECOVER);
1893 }
1894
1895 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1896 {
1897 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1898 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1899
1900 if (i_size_read(inode) == i_size)
1901 return;
1902
1903 i_size_write(inode, i_size);
1904 f2fs_mark_inode_dirty_sync(inode, true);
1905 if (clean || recover)
1906 set_inode_flag(inode, FI_AUTO_RECOVER);
1907 }
1908
1909 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1910 {
1911 F2FS_I(inode)->i_current_depth = depth;
1912 f2fs_mark_inode_dirty_sync(inode, true);
1913 }
1914
1915 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1916 {
1917 F2FS_I(inode)->i_xattr_nid = xnid;
1918 f2fs_mark_inode_dirty_sync(inode, true);
1919 }
1920
1921 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1922 {
1923 F2FS_I(inode)->i_pino = pino;
1924 f2fs_mark_inode_dirty_sync(inode, true);
1925 }
1926
1927 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1928 {
1929 struct f2fs_inode_info *fi = F2FS_I(inode);
1930
1931 if (ri->i_inline & F2FS_INLINE_XATTR)
1932 set_bit(FI_INLINE_XATTR, &fi->flags);
1933 if (ri->i_inline & F2FS_INLINE_DATA)
1934 set_bit(FI_INLINE_DATA, &fi->flags);
1935 if (ri->i_inline & F2FS_INLINE_DENTRY)
1936 set_bit(FI_INLINE_DENTRY, &fi->flags);
1937 if (ri->i_inline & F2FS_DATA_EXIST)
1938 set_bit(FI_DATA_EXIST, &fi->flags);
1939 if (ri->i_inline & F2FS_INLINE_DOTS)
1940 set_bit(FI_INLINE_DOTS, &fi->flags);
1941 }
1942
1943 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1944 {
1945 ri->i_inline = 0;
1946
1947 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1948 ri->i_inline |= F2FS_INLINE_XATTR;
1949 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1950 ri->i_inline |= F2FS_INLINE_DATA;
1951 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1952 ri->i_inline |= F2FS_INLINE_DENTRY;
1953 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1954 ri->i_inline |= F2FS_DATA_EXIST;
1955 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1956 ri->i_inline |= F2FS_INLINE_DOTS;
1957 }
1958
1959 static inline int f2fs_has_inline_xattr(struct inode *inode)
1960 {
1961 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1962 }
1963
1964 static inline unsigned int addrs_per_inode(struct inode *inode)
1965 {
1966 if (f2fs_has_inline_xattr(inode))
1967 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1968 return DEF_ADDRS_PER_INODE;
1969 }
1970
1971 static inline void *inline_xattr_addr(struct page *page)
1972 {
1973 struct f2fs_inode *ri = F2FS_INODE(page);
1974
1975 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1976 F2FS_INLINE_XATTR_ADDRS]);
1977 }
1978
1979 static inline int inline_xattr_size(struct inode *inode)
1980 {
1981 if (f2fs_has_inline_xattr(inode))
1982 return F2FS_INLINE_XATTR_ADDRS << 2;
1983 else
1984 return 0;
1985 }
1986
1987 static inline int f2fs_has_inline_data(struct inode *inode)
1988 {
1989 return is_inode_flag_set(inode, FI_INLINE_DATA);
1990 }
1991
1992 static inline int f2fs_exist_data(struct inode *inode)
1993 {
1994 return is_inode_flag_set(inode, FI_DATA_EXIST);
1995 }
1996
1997 static inline int f2fs_has_inline_dots(struct inode *inode)
1998 {
1999 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2000 }
2001
2002 static inline bool f2fs_is_atomic_file(struct inode *inode)
2003 {
2004 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2005 }
2006
2007 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2008 {
2009 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2010 }
2011
2012 static inline bool f2fs_is_volatile_file(struct inode *inode)
2013 {
2014 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2015 }
2016
2017 static inline bool f2fs_is_first_block_written(struct inode *inode)
2018 {
2019 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2020 }
2021
2022 static inline bool f2fs_is_drop_cache(struct inode *inode)
2023 {
2024 return is_inode_flag_set(inode, FI_DROP_CACHE);
2025 }
2026
2027 static inline void *inline_data_addr(struct page *page)
2028 {
2029 struct f2fs_inode *ri = F2FS_INODE(page);
2030
2031 return (void *)&(ri->i_addr[1]);
2032 }
2033
2034 static inline int f2fs_has_inline_dentry(struct inode *inode)
2035 {
2036 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2037 }
2038
2039 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2040 {
2041 if (!f2fs_has_inline_dentry(dir))
2042 kunmap(page);
2043 }
2044
2045 static inline int is_file(struct inode *inode, int type)
2046 {
2047 return F2FS_I(inode)->i_advise & type;
2048 }
2049
2050 static inline void set_file(struct inode *inode, int type)
2051 {
2052 F2FS_I(inode)->i_advise |= type;
2053 f2fs_mark_inode_dirty_sync(inode, true);
2054 }
2055
2056 static inline void clear_file(struct inode *inode, int type)
2057 {
2058 F2FS_I(inode)->i_advise &= ~type;
2059 f2fs_mark_inode_dirty_sync(inode, true);
2060 }
2061
2062 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2063 {
2064 if (dsync) {
2065 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2066 bool ret;
2067
2068 spin_lock(&sbi->inode_lock[DIRTY_META]);
2069 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2070 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2071 return ret;
2072 }
2073 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2074 file_keep_isize(inode) ||
2075 i_size_read(inode) & PAGE_MASK)
2076 return false;
2077 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2078 }
2079
2080 static inline int f2fs_readonly(struct super_block *sb)
2081 {
2082 return sb->s_flags & MS_RDONLY;
2083 }
2084
2085 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2086 {
2087 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2088 }
2089
2090 static inline bool is_dot_dotdot(const struct qstr *str)
2091 {
2092 if (str->len == 1 && str->name[0] == '.')
2093 return true;
2094
2095 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2096 return true;
2097
2098 return false;
2099 }
2100
2101 static inline bool f2fs_may_extent_tree(struct inode *inode)
2102 {
2103 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2104 is_inode_flag_set(inode, FI_NO_EXTENT))
2105 return false;
2106
2107 return S_ISREG(inode->i_mode);
2108 }
2109
2110 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2111 size_t size, gfp_t flags)
2112 {
2113 #ifdef CONFIG_F2FS_FAULT_INJECTION
2114 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2115 f2fs_show_injection_info(FAULT_KMALLOC);
2116 return NULL;
2117 }
2118 #endif
2119 return kmalloc(size, flags);
2120 }
2121
2122 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2123 {
2124 void *ret;
2125
2126 ret = kmalloc(size, flags | __GFP_NOWARN);
2127 if (!ret)
2128 ret = __vmalloc(size, flags, PAGE_KERNEL);
2129 return ret;
2130 }
2131
2132 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2133 {
2134 void *ret;
2135
2136 ret = kzalloc(size, flags | __GFP_NOWARN);
2137 if (!ret)
2138 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2139 return ret;
2140 }
2141
2142 #define get_inode_mode(i) \
2143 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2144 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2145
2146 /*
2147 * file.c
2148 */
2149 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2150 void truncate_data_blocks(struct dnode_of_data *dn);
2151 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2152 int f2fs_truncate(struct inode *inode);
2153 int f2fs_getattr(const struct path *path, struct kstat *stat,
2154 u32 request_mask, unsigned int flags);
2155 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2156 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2157 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2158 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2159 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2160
2161 /*
2162 * inode.c
2163 */
2164 void f2fs_set_inode_flags(struct inode *inode);
2165 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2166 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2167 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2168 int update_inode(struct inode *inode, struct page *node_page);
2169 int update_inode_page(struct inode *inode);
2170 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2171 void f2fs_evict_inode(struct inode *inode);
2172 void handle_failed_inode(struct inode *inode);
2173
2174 /*
2175 * namei.c
2176 */
2177 struct dentry *f2fs_get_parent(struct dentry *child);
2178
2179 /*
2180 * dir.c
2181 */
2182 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2183 unsigned char get_de_type(struct f2fs_dir_entry *de);
2184 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2185 f2fs_hash_t namehash, int *max_slots,
2186 struct f2fs_dentry_ptr *d);
2187 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2188 unsigned int start_pos, struct fscrypt_str *fstr);
2189 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2190 struct f2fs_dentry_ptr *d);
2191 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2192 const struct qstr *new_name,
2193 const struct qstr *orig_name, struct page *dpage);
2194 void update_parent_metadata(struct inode *dir, struct inode *inode,
2195 unsigned int current_depth);
2196 int room_for_filename(const void *bitmap, int slots, int max_slots);
2197 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2198 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2199 struct fscrypt_name *fname, struct page **res_page);
2200 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2201 const struct qstr *child, struct page **res_page);
2202 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2203 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2204 struct page **page);
2205 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2206 struct page *page, struct inode *inode);
2207 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2208 const struct qstr *name, f2fs_hash_t name_hash,
2209 unsigned int bit_pos);
2210 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2211 const struct qstr *orig_name,
2212 struct inode *inode, nid_t ino, umode_t mode);
2213 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2214 struct inode *inode, nid_t ino, umode_t mode);
2215 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2216 struct inode *inode, nid_t ino, umode_t mode);
2217 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2218 struct inode *dir, struct inode *inode);
2219 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2220 bool f2fs_empty_dir(struct inode *dir);
2221
2222 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2223 {
2224 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2225 inode, inode->i_ino, inode->i_mode);
2226 }
2227
2228 /*
2229 * super.c
2230 */
2231 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2232 void f2fs_inode_synced(struct inode *inode);
2233 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2234 int f2fs_sync_fs(struct super_block *sb, int sync);
2235 extern __printf(3, 4)
2236 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2237 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2238
2239 /*
2240 * hash.c
2241 */
2242 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2243 struct fscrypt_name *fname);
2244
2245 /*
2246 * node.c
2247 */
2248 struct dnode_of_data;
2249 struct node_info;
2250
2251 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2252 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2253 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2254 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2255 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2256 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2257 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2258 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2259 int truncate_xattr_node(struct inode *inode, struct page *page);
2260 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2261 int remove_inode_page(struct inode *inode);
2262 struct page *new_inode_page(struct inode *inode);
2263 struct page *new_node_page(struct dnode_of_data *dn,
2264 unsigned int ofs, struct page *ipage);
2265 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2266 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2267 struct page *get_node_page_ra(struct page *parent, int start);
2268 void move_node_page(struct page *node_page, int gc_type);
2269 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2270 struct writeback_control *wbc, bool atomic);
2271 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2272 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2273 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2274 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2275 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2276 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2277 void recover_inline_xattr(struct inode *inode, struct page *page);
2278 int recover_xattr_data(struct inode *inode, struct page *page,
2279 block_t blkaddr);
2280 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2281 int restore_node_summary(struct f2fs_sb_info *sbi,
2282 unsigned int segno, struct f2fs_summary_block *sum);
2283 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2284 int build_node_manager(struct f2fs_sb_info *sbi);
2285 void destroy_node_manager(struct f2fs_sb_info *sbi);
2286 int __init create_node_manager_caches(void);
2287 void destroy_node_manager_caches(void);
2288
2289 /*
2290 * segment.c
2291 */
2292 void register_inmem_page(struct inode *inode, struct page *page);
2293 void drop_inmem_pages(struct inode *inode);
2294 void drop_inmem_page(struct inode *inode, struct page *page);
2295 int commit_inmem_pages(struct inode *inode);
2296 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2297 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2298 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2299 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2300 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2301 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2302 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2303 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2304 void stop_discard_thread(struct f2fs_sb_info *sbi);
2305 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2306 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2307 void release_discard_addrs(struct f2fs_sb_info *sbi);
2308 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2309 void allocate_new_segments(struct f2fs_sb_info *sbi);
2310 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2311 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2312 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2313 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2314 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2315 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2316 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2317 int rewrite_data_page(struct f2fs_io_info *fio);
2318 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2319 block_t old_blkaddr, block_t new_blkaddr,
2320 bool recover_curseg, bool recover_newaddr);
2321 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2322 block_t old_addr, block_t new_addr,
2323 unsigned char version, bool recover_curseg,
2324 bool recover_newaddr);
2325 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2326 block_t old_blkaddr, block_t *new_blkaddr,
2327 struct f2fs_summary *sum, int type,
2328 struct f2fs_io_info *fio, bool add_list);
2329 void f2fs_wait_on_page_writeback(struct page *page,
2330 enum page_type type, bool ordered);
2331 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2332 block_t blkaddr);
2333 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2334 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2335 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2336 unsigned int val, int alloc);
2337 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2338 int build_segment_manager(struct f2fs_sb_info *sbi);
2339 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2340 int __init create_segment_manager_caches(void);
2341 void destroy_segment_manager_caches(void);
2342
2343 /*
2344 * checkpoint.c
2345 */
2346 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2347 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2348 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2349 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2350 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2351 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2352 int type, bool sync);
2353 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2354 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2355 long nr_to_write);
2356 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2357 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2358 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2359 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2360 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2361 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2362 void release_orphan_inode(struct f2fs_sb_info *sbi);
2363 void add_orphan_inode(struct inode *inode);
2364 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2365 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2366 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2367 void update_dirty_page(struct inode *inode, struct page *page);
2368 void remove_dirty_inode(struct inode *inode);
2369 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2370 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2371 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2372 int __init create_checkpoint_caches(void);
2373 void destroy_checkpoint_caches(void);
2374
2375 /*
2376 * data.c
2377 */
2378 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2379 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2380 struct inode *inode, nid_t ino, pgoff_t idx,
2381 enum page_type type);
2382 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2383 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2384 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2385 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2386 block_t blk_addr, struct bio *bio);
2387 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2388 void set_data_blkaddr(struct dnode_of_data *dn);
2389 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2390 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2391 int reserve_new_block(struct dnode_of_data *dn);
2392 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2393 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2394 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2395 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2396 int op_flags, bool for_write);
2397 struct page *find_data_page(struct inode *inode, pgoff_t index);
2398 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2399 bool for_write);
2400 struct page *get_new_data_page(struct inode *inode,
2401 struct page *ipage, pgoff_t index, bool new_i_size);
2402 int do_write_data_page(struct f2fs_io_info *fio);
2403 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2404 int create, int flag);
2405 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2406 u64 start, u64 len);
2407 void f2fs_set_page_dirty_nobuffers(struct page *page);
2408 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2409 unsigned int length);
2410 int f2fs_release_page(struct page *page, gfp_t wait);
2411 #ifdef CONFIG_MIGRATION
2412 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2413 struct page *page, enum migrate_mode mode);
2414 #endif
2415
2416 /*
2417 * gc.c
2418 */
2419 int start_gc_thread(struct f2fs_sb_info *sbi);
2420 void stop_gc_thread(struct f2fs_sb_info *sbi);
2421 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2422 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2423 unsigned int segno);
2424 void build_gc_manager(struct f2fs_sb_info *sbi);
2425
2426 /*
2427 * recovery.c
2428 */
2429 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2430 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2431
2432 /*
2433 * debug.c
2434 */
2435 #ifdef CONFIG_F2FS_STAT_FS
2436 struct f2fs_stat_info {
2437 struct list_head stat_list;
2438 struct f2fs_sb_info *sbi;
2439 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2440 int main_area_segs, main_area_sections, main_area_zones;
2441 unsigned long long hit_largest, hit_cached, hit_rbtree;
2442 unsigned long long hit_total, total_ext;
2443 int ext_tree, zombie_tree, ext_node;
2444 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2445 int inmem_pages;
2446 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2447 int nats, dirty_nats, sits, dirty_sits;
2448 int free_nids, avail_nids, alloc_nids;
2449 int total_count, utilization;
2450 int bg_gc, nr_wb_cp_data, nr_wb_data;
2451 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2452 int nr_discard_cmd;
2453 unsigned int undiscard_blks;
2454 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2455 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2456 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2457 unsigned int bimodal, avg_vblocks;
2458 int util_free, util_valid, util_invalid;
2459 int rsvd_segs, overp_segs;
2460 int dirty_count, node_pages, meta_pages;
2461 int prefree_count, call_count, cp_count, bg_cp_count;
2462 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2463 int bg_node_segs, bg_data_segs;
2464 int tot_blks, data_blks, node_blks;
2465 int bg_data_blks, bg_node_blks;
2466 int curseg[NR_CURSEG_TYPE];
2467 int cursec[NR_CURSEG_TYPE];
2468 int curzone[NR_CURSEG_TYPE];
2469
2470 unsigned int segment_count[2];
2471 unsigned int block_count[2];
2472 unsigned int inplace_count;
2473 unsigned long long base_mem, cache_mem, page_mem;
2474 };
2475
2476 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2477 {
2478 return (struct f2fs_stat_info *)sbi->stat_info;
2479 }
2480
2481 #define stat_inc_cp_count(si) ((si)->cp_count++)
2482 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2483 #define stat_inc_call_count(si) ((si)->call_count++)
2484 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2485 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2486 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2487 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2488 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2489 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2490 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2491 #define stat_inc_inline_xattr(inode) \
2492 do { \
2493 if (f2fs_has_inline_xattr(inode)) \
2494 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2495 } while (0)
2496 #define stat_dec_inline_xattr(inode) \
2497 do { \
2498 if (f2fs_has_inline_xattr(inode)) \
2499 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2500 } while (0)
2501 #define stat_inc_inline_inode(inode) \
2502 do { \
2503 if (f2fs_has_inline_data(inode)) \
2504 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2505 } while (0)
2506 #define stat_dec_inline_inode(inode) \
2507 do { \
2508 if (f2fs_has_inline_data(inode)) \
2509 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2510 } while (0)
2511 #define stat_inc_inline_dir(inode) \
2512 do { \
2513 if (f2fs_has_inline_dentry(inode)) \
2514 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2515 } while (0)
2516 #define stat_dec_inline_dir(inode) \
2517 do { \
2518 if (f2fs_has_inline_dentry(inode)) \
2519 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2520 } while (0)
2521 #define stat_inc_seg_type(sbi, curseg) \
2522 ((sbi)->segment_count[(curseg)->alloc_type]++)
2523 #define stat_inc_block_count(sbi, curseg) \
2524 ((sbi)->block_count[(curseg)->alloc_type]++)
2525 #define stat_inc_inplace_blocks(sbi) \
2526 (atomic_inc(&(sbi)->inplace_count))
2527 #define stat_inc_atomic_write(inode) \
2528 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2529 #define stat_dec_atomic_write(inode) \
2530 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2531 #define stat_update_max_atomic_write(inode) \
2532 do { \
2533 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2534 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2535 if (cur > max) \
2536 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2537 } while (0)
2538 #define stat_inc_volatile_write(inode) \
2539 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2540 #define stat_dec_volatile_write(inode) \
2541 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2542 #define stat_update_max_volatile_write(inode) \
2543 do { \
2544 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2545 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2546 if (cur > max) \
2547 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2548 } while (0)
2549 #define stat_inc_seg_count(sbi, type, gc_type) \
2550 do { \
2551 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2552 si->tot_segs++; \
2553 if ((type) == SUM_TYPE_DATA) { \
2554 si->data_segs++; \
2555 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2556 } else { \
2557 si->node_segs++; \
2558 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2559 } \
2560 } while (0)
2561
2562 #define stat_inc_tot_blk_count(si, blks) \
2563 ((si)->tot_blks += (blks))
2564
2565 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2566 do { \
2567 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2568 stat_inc_tot_blk_count(si, blks); \
2569 si->data_blks += (blks); \
2570 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2571 } while (0)
2572
2573 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2574 do { \
2575 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2576 stat_inc_tot_blk_count(si, blks); \
2577 si->node_blks += (blks); \
2578 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2579 } while (0)
2580
2581 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2582 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2583 int __init f2fs_create_root_stats(void);
2584 void f2fs_destroy_root_stats(void);
2585 #else
2586 #define stat_inc_cp_count(si) do { } while (0)
2587 #define stat_inc_bg_cp_count(si) do { } while (0)
2588 #define stat_inc_call_count(si) do { } while (0)
2589 #define stat_inc_bggc_count(si) do { } while (0)
2590 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2591 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2592 #define stat_inc_total_hit(sb) do { } while (0)
2593 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2594 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2595 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2596 #define stat_inc_inline_xattr(inode) do { } while (0)
2597 #define stat_dec_inline_xattr(inode) do { } while (0)
2598 #define stat_inc_inline_inode(inode) do { } while (0)
2599 #define stat_dec_inline_inode(inode) do { } while (0)
2600 #define stat_inc_inline_dir(inode) do { } while (0)
2601 #define stat_dec_inline_dir(inode) do { } while (0)
2602 #define stat_inc_atomic_write(inode) do { } while (0)
2603 #define stat_dec_atomic_write(inode) do { } while (0)
2604 #define stat_update_max_atomic_write(inode) do { } while (0)
2605 #define stat_inc_volatile_write(inode) do { } while (0)
2606 #define stat_dec_volatile_write(inode) do { } while (0)
2607 #define stat_update_max_volatile_write(inode) do { } while (0)
2608 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2609 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2610 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2611 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2612 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2613 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2614 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2615
2616 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2617 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2618 static inline int __init f2fs_create_root_stats(void) { return 0; }
2619 static inline void f2fs_destroy_root_stats(void) { }
2620 #endif
2621
2622 extern const struct file_operations f2fs_dir_operations;
2623 extern const struct file_operations f2fs_file_operations;
2624 extern const struct inode_operations f2fs_file_inode_operations;
2625 extern const struct address_space_operations f2fs_dblock_aops;
2626 extern const struct address_space_operations f2fs_node_aops;
2627 extern const struct address_space_operations f2fs_meta_aops;
2628 extern const struct inode_operations f2fs_dir_inode_operations;
2629 extern const struct inode_operations f2fs_symlink_inode_operations;
2630 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2631 extern const struct inode_operations f2fs_special_inode_operations;
2632 extern struct kmem_cache *inode_entry_slab;
2633
2634 /*
2635 * inline.c
2636 */
2637 bool f2fs_may_inline_data(struct inode *inode);
2638 bool f2fs_may_inline_dentry(struct inode *inode);
2639 void read_inline_data(struct page *page, struct page *ipage);
2640 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2641 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2642 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2643 int f2fs_convert_inline_inode(struct inode *inode);
2644 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2645 bool recover_inline_data(struct inode *inode, struct page *npage);
2646 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2647 struct fscrypt_name *fname, struct page **res_page);
2648 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2649 struct page *ipage);
2650 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2651 const struct qstr *orig_name,
2652 struct inode *inode, nid_t ino, umode_t mode);
2653 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2654 struct inode *dir, struct inode *inode);
2655 bool f2fs_empty_inline_dir(struct inode *dir);
2656 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2657 struct fscrypt_str *fstr);
2658 int f2fs_inline_data_fiemap(struct inode *inode,
2659 struct fiemap_extent_info *fieinfo,
2660 __u64 start, __u64 len);
2661
2662 /*
2663 * shrinker.c
2664 */
2665 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2666 struct shrink_control *sc);
2667 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2668 struct shrink_control *sc);
2669 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2670 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2671
2672 /*
2673 * extent_cache.c
2674 */
2675 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2676 struct rb_entry *cached_re, unsigned int ofs);
2677 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2678 struct rb_root *root, struct rb_node **parent,
2679 unsigned int ofs);
2680 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2681 struct rb_entry *cached_re, unsigned int ofs,
2682 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2683 struct rb_node ***insert_p, struct rb_node **insert_parent,
2684 bool force);
2685 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2686 struct rb_root *root);
2687 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2688 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2689 void f2fs_drop_extent_tree(struct inode *inode);
2690 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2691 void f2fs_destroy_extent_tree(struct inode *inode);
2692 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2693 struct extent_info *ei);
2694 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2695 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2696 pgoff_t fofs, block_t blkaddr, unsigned int len);
2697 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2698 int __init create_extent_cache(void);
2699 void destroy_extent_cache(void);
2700
2701 /*
2702 * sysfs.c
2703 */
2704 int __init f2fs_register_sysfs(void);
2705 void f2fs_unregister_sysfs(void);
2706 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2707 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2708
2709 /*
2710 * crypto support
2711 */
2712 static inline bool f2fs_encrypted_inode(struct inode *inode)
2713 {
2714 return file_is_encrypt(inode);
2715 }
2716
2717 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2718 {
2719 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2720 file_set_encrypt(inode);
2721 #endif
2722 }
2723
2724 static inline bool f2fs_bio_encrypted(struct bio *bio)
2725 {
2726 return bio->bi_private != NULL;
2727 }
2728
2729 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2730 {
2731 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2732 }
2733
2734 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2735 {
2736 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2737 }
2738
2739 #ifdef CONFIG_BLK_DEV_ZONED
2740 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2741 struct block_device *bdev, block_t blkaddr)
2742 {
2743 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2744 int i;
2745
2746 for (i = 0; i < sbi->s_ndevs; i++)
2747 if (FDEV(i).bdev == bdev)
2748 return FDEV(i).blkz_type[zno];
2749 return -EINVAL;
2750 }
2751 #endif
2752
2753 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2754 {
2755 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2756
2757 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2758 }
2759
2760 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2761 {
2762 clear_opt(sbi, ADAPTIVE);
2763 clear_opt(sbi, LFS);
2764
2765 switch (mt) {
2766 case F2FS_MOUNT_ADAPTIVE:
2767 set_opt(sbi, ADAPTIVE);
2768 break;
2769 case F2FS_MOUNT_LFS:
2770 set_opt(sbi, LFS);
2771 break;
2772 }
2773 }
2774
2775 static inline bool f2fs_may_encrypt(struct inode *inode)
2776 {
2777 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2778 umode_t mode = inode->i_mode;
2779
2780 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2781 #else
2782 return 0;
2783 #endif
2784 }
2785
2786 #endif