]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/f2fs.h
Merge tag 'backlight-next-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition) \
36 do { \
37 if (unlikely(condition)) { \
38 WARN_ON(1); \
39 set_sbi_flag(sbi, SBI_NEED_FSCK); \
40 } \
41 } while (0)
42 #endif
43
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 FAULT_KMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_ALLOC_NID,
49 FAULT_ORPHAN,
50 FAULT_BLOCK,
51 FAULT_DIR_DEPTH,
52 FAULT_EVICT_INODE,
53 FAULT_TRUNCATE,
54 FAULT_IO,
55 FAULT_CHECKPOINT,
56 FAULT_MAX,
57 };
58
59 struct f2fs_fault_info {
60 atomic_t inject_ops;
61 unsigned int inject_rate;
62 unsigned int inject_type;
63 };
64
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
67 #endif
68
69 /*
70 * For mount options
71 */
72 #define F2FS_MOUNT_BG_GC 0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
74 #define F2FS_MOUNT_DISCARD 0x00000004
75 #define F2FS_MOUNT_NOHEAP 0x00000008
76 #define F2FS_MOUNT_XATTR_USER 0x00000010
77 #define F2FS_MOUNT_POSIX_ACL 0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
80 #define F2FS_MOUNT_INLINE_DATA 0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
83 #define F2FS_MOUNT_NOBARRIER 0x00000800
84 #define F2FS_MOUNT_FASTBOOT 0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
89 #define F2FS_MOUNT_ADAPTIVE 0x00020000
90 #define F2FS_MOUNT_LFS 0x00040000
91
92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
95
96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
97 typecheck(unsigned long long, b) && \
98 ((long long)((a) - (b)) > 0))
99
100 typedef u32 block_t; /*
101 * should not change u32, since it is the on-disk block
102 * address format, __le32.
103 */
104 typedef u32 nid_t;
105
106 struct f2fs_mount_info {
107 unsigned int opt;
108 };
109
110 #define F2FS_FEATURE_ENCRYPT 0x0001
111 #define F2FS_FEATURE_BLKZONED 0x0002
112
113 #define F2FS_HAS_FEATURE(sb, mask) \
114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask) \
116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask) \
118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119
120 /*
121 * For checkpoint manager
122 */
123 enum {
124 NAT_BITMAP,
125 SIT_BITMAP
126 };
127
128 #define CP_UMOUNT 0x00000001
129 #define CP_FASTBOOT 0x00000002
130 #define CP_SYNC 0x00000004
131 #define CP_RECOVERY 0x00000008
132 #define CP_DISCARD 0x00000010
133 #define CP_TRIMMED 0x00000020
134
135 #define DEF_BATCHED_TRIM_SECTIONS 2048
136 #define BATCHED_TRIM_SEGMENTS(sbi) \
137 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
138 #define BATCHED_TRIM_BLOCKS(sbi) \
139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
141 #define DISCARD_ISSUE_RATE 8
142 #define DEF_CP_INTERVAL 60 /* 60 secs */
143 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
144
145 struct cp_control {
146 int reason;
147 __u64 trim_start;
148 __u64 trim_end;
149 __u64 trim_minlen;
150 __u64 trimmed;
151 };
152
153 /*
154 * For CP/NAT/SIT/SSA readahead
155 */
156 enum {
157 META_CP,
158 META_NAT,
159 META_SIT,
160 META_SSA,
161 META_POR,
162 };
163
164 /* for the list of ino */
165 enum {
166 ORPHAN_INO, /* for orphan ino list */
167 APPEND_INO, /* for append ino list */
168 UPDATE_INO, /* for update ino list */
169 MAX_INO_ENTRY, /* max. list */
170 };
171
172 struct ino_entry {
173 struct list_head list; /* list head */
174 nid_t ino; /* inode number */
175 };
176
177 /* for the list of inodes to be GCed */
178 struct inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 };
182
183 /* for the bitmap indicate blocks to be discarded */
184 struct discard_entry {
185 struct list_head list; /* list head */
186 block_t start_blkaddr; /* start blockaddr of current segment */
187 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
188 };
189
190 /* max discard pend list number */
191 #define MAX_PLIST_NUM 512
192 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
193 (MAX_PLIST_NUM - 1) : (blk_num - 1))
194
195 enum {
196 D_PREP,
197 D_SUBMIT,
198 D_DONE,
199 };
200
201 struct discard_info {
202 block_t lstart; /* logical start address */
203 block_t len; /* length */
204 block_t start; /* actual start address in dev */
205 };
206
207 struct discard_cmd {
208 struct rb_node rb_node; /* rb node located in rb-tree */
209 union {
210 struct {
211 block_t lstart; /* logical start address */
212 block_t len; /* length */
213 block_t start; /* actual start address in dev */
214 };
215 struct discard_info di; /* discard info */
216
217 };
218 struct list_head list; /* command list */
219 struct completion wait; /* compleation */
220 struct block_device *bdev; /* bdev */
221 unsigned short ref; /* reference count */
222 unsigned char state; /* state */
223 int error; /* bio error */
224 };
225
226 struct discard_cmd_control {
227 struct task_struct *f2fs_issue_discard; /* discard thread */
228 struct list_head entry_list; /* 4KB discard entry list */
229 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
230 struct list_head wait_list; /* store on-flushing entries */
231 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
232 struct mutex cmd_lock;
233 unsigned int nr_discards; /* # of discards in the list */
234 unsigned int max_discards; /* max. discards to be issued */
235 unsigned int undiscard_blks; /* # of undiscard blocks */
236 atomic_t issued_discard; /* # of issued discard */
237 atomic_t issing_discard; /* # of issing discard */
238 atomic_t discard_cmd_cnt; /* # of cached cmd count */
239 struct rb_root root; /* root of discard rb-tree */
240 };
241
242 /* for the list of fsync inodes, used only during recovery */
243 struct fsync_inode_entry {
244 struct list_head list; /* list head */
245 struct inode *inode; /* vfs inode pointer */
246 block_t blkaddr; /* block address locating the last fsync */
247 block_t last_dentry; /* block address locating the last dentry */
248 };
249
250 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
251 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
252
253 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
254 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
255 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
256 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
257
258 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
259 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
260
261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
262 {
263 int before = nats_in_cursum(journal);
264
265 journal->n_nats = cpu_to_le16(before + i);
266 return before;
267 }
268
269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
270 {
271 int before = sits_in_cursum(journal);
272
273 journal->n_sits = cpu_to_le16(before + i);
274 return before;
275 }
276
277 static inline bool __has_cursum_space(struct f2fs_journal *journal,
278 int size, int type)
279 {
280 if (type == NAT_JOURNAL)
281 return size <= MAX_NAT_JENTRIES(journal);
282 return size <= MAX_SIT_JENTRIES(journal);
283 }
284
285 /*
286 * ioctl commands
287 */
288 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
289 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
290 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
291
292 #define F2FS_IOCTL_MAGIC 0xf5
293 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
295 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
297 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
298 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
299 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
300 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
301 struct f2fs_defragment)
302 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
303 struct f2fs_move_range)
304 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
305 struct f2fs_flush_device)
306
307 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
308 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
309 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
310
311 /*
312 * should be same as XFS_IOC_GOINGDOWN.
313 * Flags for going down operation used by FS_IOC_GOINGDOWN
314 */
315 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
316 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
317 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
318 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
319 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
320
321 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
322 /*
323 * ioctl commands in 32 bit emulation
324 */
325 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
326 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
327 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
328 #endif
329
330 struct f2fs_defragment {
331 u64 start;
332 u64 len;
333 };
334
335 struct f2fs_move_range {
336 u32 dst_fd; /* destination fd */
337 u64 pos_in; /* start position in src_fd */
338 u64 pos_out; /* start position in dst_fd */
339 u64 len; /* size to move */
340 };
341
342 struct f2fs_flush_device {
343 u32 dev_num; /* device number to flush */
344 u32 segments; /* # of segments to flush */
345 };
346
347 /*
348 * For INODE and NODE manager
349 */
350 /* for directory operations */
351 struct f2fs_dentry_ptr {
352 struct inode *inode;
353 const void *bitmap;
354 struct f2fs_dir_entry *dentry;
355 __u8 (*filename)[F2FS_SLOT_LEN];
356 int max;
357 };
358
359 static inline void make_dentry_ptr_block(struct inode *inode,
360 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
361 {
362 d->inode = inode;
363 d->max = NR_DENTRY_IN_BLOCK;
364 d->bitmap = &t->dentry_bitmap;
365 d->dentry = t->dentry;
366 d->filename = t->filename;
367 }
368
369 static inline void make_dentry_ptr_inline(struct inode *inode,
370 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
371 {
372 d->inode = inode;
373 d->max = NR_INLINE_DENTRY;
374 d->bitmap = &t->dentry_bitmap;
375 d->dentry = t->dentry;
376 d->filename = t->filename;
377 }
378
379 /*
380 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
381 * as its node offset to distinguish from index node blocks.
382 * But some bits are used to mark the node block.
383 */
384 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
385 >> OFFSET_BIT_SHIFT)
386 enum {
387 ALLOC_NODE, /* allocate a new node page if needed */
388 LOOKUP_NODE, /* look up a node without readahead */
389 LOOKUP_NODE_RA, /*
390 * look up a node with readahead called
391 * by get_data_block.
392 */
393 };
394
395 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
396
397 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
398
399 /* vector size for gang look-up from extent cache that consists of radix tree */
400 #define EXT_TREE_VEC_SIZE 64
401
402 /* for in-memory extent cache entry */
403 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
404
405 /* number of extent info in extent cache we try to shrink */
406 #define EXTENT_CACHE_SHRINK_NUMBER 128
407
408 struct rb_entry {
409 struct rb_node rb_node; /* rb node located in rb-tree */
410 unsigned int ofs; /* start offset of the entry */
411 unsigned int len; /* length of the entry */
412 };
413
414 struct extent_info {
415 unsigned int fofs; /* start offset in a file */
416 unsigned int len; /* length of the extent */
417 u32 blk; /* start block address of the extent */
418 };
419
420 struct extent_node {
421 struct rb_node rb_node;
422 union {
423 struct {
424 unsigned int fofs;
425 unsigned int len;
426 u32 blk;
427 };
428 struct extent_info ei; /* extent info */
429
430 };
431 struct list_head list; /* node in global extent list of sbi */
432 struct extent_tree *et; /* extent tree pointer */
433 };
434
435 struct extent_tree {
436 nid_t ino; /* inode number */
437 struct rb_root root; /* root of extent info rb-tree */
438 struct extent_node *cached_en; /* recently accessed extent node */
439 struct extent_info largest; /* largested extent info */
440 struct list_head list; /* to be used by sbi->zombie_list */
441 rwlock_t lock; /* protect extent info rb-tree */
442 atomic_t node_cnt; /* # of extent node in rb-tree*/
443 };
444
445 /*
446 * This structure is taken from ext4_map_blocks.
447 *
448 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
449 */
450 #define F2FS_MAP_NEW (1 << BH_New)
451 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
452 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
453 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
454 F2FS_MAP_UNWRITTEN)
455
456 struct f2fs_map_blocks {
457 block_t m_pblk;
458 block_t m_lblk;
459 unsigned int m_len;
460 unsigned int m_flags;
461 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
462 };
463
464 /* for flag in get_data_block */
465 #define F2FS_GET_BLOCK_READ 0
466 #define F2FS_GET_BLOCK_DIO 1
467 #define F2FS_GET_BLOCK_FIEMAP 2
468 #define F2FS_GET_BLOCK_BMAP 3
469 #define F2FS_GET_BLOCK_PRE_DIO 4
470 #define F2FS_GET_BLOCK_PRE_AIO 5
471
472 /*
473 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
474 */
475 #define FADVISE_COLD_BIT 0x01
476 #define FADVISE_LOST_PINO_BIT 0x02
477 #define FADVISE_ENCRYPT_BIT 0x04
478 #define FADVISE_ENC_NAME_BIT 0x08
479 #define FADVISE_KEEP_SIZE_BIT 0x10
480
481 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
482 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
483 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
484 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
485 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
486 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
487 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
488 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
489 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
490 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
491 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
492 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
493 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
494
495 #define DEF_DIR_LEVEL 0
496
497 struct f2fs_inode_info {
498 struct inode vfs_inode; /* serve a vfs inode */
499 unsigned long i_flags; /* keep an inode flags for ioctl */
500 unsigned char i_advise; /* use to give file attribute hints */
501 unsigned char i_dir_level; /* use for dentry level for large dir */
502 unsigned int i_current_depth; /* use only in directory structure */
503 unsigned int i_pino; /* parent inode number */
504 umode_t i_acl_mode; /* keep file acl mode temporarily */
505
506 /* Use below internally in f2fs*/
507 unsigned long flags; /* use to pass per-file flags */
508 struct rw_semaphore i_sem; /* protect fi info */
509 atomic_t dirty_pages; /* # of dirty pages */
510 f2fs_hash_t chash; /* hash value of given file name */
511 unsigned int clevel; /* maximum level of given file name */
512 struct task_struct *task; /* lookup and create consistency */
513 nid_t i_xattr_nid; /* node id that contains xattrs */
514 loff_t last_disk_size; /* lastly written file size */
515
516 struct list_head dirty_list; /* dirty list for dirs and files */
517 struct list_head gdirty_list; /* linked in global dirty list */
518 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
519 struct mutex inmem_lock; /* lock for inmemory pages */
520 struct extent_tree *extent_tree; /* cached extent_tree entry */
521 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
522 };
523
524 static inline void get_extent_info(struct extent_info *ext,
525 struct f2fs_extent *i_ext)
526 {
527 ext->fofs = le32_to_cpu(i_ext->fofs);
528 ext->blk = le32_to_cpu(i_ext->blk);
529 ext->len = le32_to_cpu(i_ext->len);
530 }
531
532 static inline void set_raw_extent(struct extent_info *ext,
533 struct f2fs_extent *i_ext)
534 {
535 i_ext->fofs = cpu_to_le32(ext->fofs);
536 i_ext->blk = cpu_to_le32(ext->blk);
537 i_ext->len = cpu_to_le32(ext->len);
538 }
539
540 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
541 u32 blk, unsigned int len)
542 {
543 ei->fofs = fofs;
544 ei->blk = blk;
545 ei->len = len;
546 }
547
548 static inline bool __is_discard_mergeable(struct discard_info *back,
549 struct discard_info *front)
550 {
551 return back->lstart + back->len == front->lstart;
552 }
553
554 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
555 struct discard_info *back)
556 {
557 return __is_discard_mergeable(back, cur);
558 }
559
560 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
561 struct discard_info *front)
562 {
563 return __is_discard_mergeable(cur, front);
564 }
565
566 static inline bool __is_extent_mergeable(struct extent_info *back,
567 struct extent_info *front)
568 {
569 return (back->fofs + back->len == front->fofs &&
570 back->blk + back->len == front->blk);
571 }
572
573 static inline bool __is_back_mergeable(struct extent_info *cur,
574 struct extent_info *back)
575 {
576 return __is_extent_mergeable(back, cur);
577 }
578
579 static inline bool __is_front_mergeable(struct extent_info *cur,
580 struct extent_info *front)
581 {
582 return __is_extent_mergeable(cur, front);
583 }
584
585 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
586 static inline void __try_update_largest_extent(struct inode *inode,
587 struct extent_tree *et, struct extent_node *en)
588 {
589 if (en->ei.len > et->largest.len) {
590 et->largest = en->ei;
591 f2fs_mark_inode_dirty_sync(inode, true);
592 }
593 }
594
595 enum nid_list {
596 FREE_NID_LIST,
597 ALLOC_NID_LIST,
598 MAX_NID_LIST,
599 };
600
601 struct f2fs_nm_info {
602 block_t nat_blkaddr; /* base disk address of NAT */
603 nid_t max_nid; /* maximum possible node ids */
604 nid_t available_nids; /* # of available node ids */
605 nid_t next_scan_nid; /* the next nid to be scanned */
606 unsigned int ram_thresh; /* control the memory footprint */
607 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
608 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
609
610 /* NAT cache management */
611 struct radix_tree_root nat_root;/* root of the nat entry cache */
612 struct radix_tree_root nat_set_root;/* root of the nat set cache */
613 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
614 struct list_head nat_entries; /* cached nat entry list (clean) */
615 unsigned int nat_cnt; /* the # of cached nat entries */
616 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
617 unsigned int nat_blocks; /* # of nat blocks */
618
619 /* free node ids management */
620 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
621 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
622 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
623 spinlock_t nid_list_lock; /* protect nid lists ops */
624 struct mutex build_lock; /* lock for build free nids */
625 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
626 unsigned char *nat_block_bitmap;
627 unsigned short *free_nid_count; /* free nid count of NAT block */
628
629 /* for checkpoint */
630 char *nat_bitmap; /* NAT bitmap pointer */
631
632 unsigned int nat_bits_blocks; /* # of nat bits blocks */
633 unsigned char *nat_bits; /* NAT bits blocks */
634 unsigned char *full_nat_bits; /* full NAT pages */
635 unsigned char *empty_nat_bits; /* empty NAT pages */
636 #ifdef CONFIG_F2FS_CHECK_FS
637 char *nat_bitmap_mir; /* NAT bitmap mirror */
638 #endif
639 int bitmap_size; /* bitmap size */
640 };
641
642 /*
643 * this structure is used as one of function parameters.
644 * all the information are dedicated to a given direct node block determined
645 * by the data offset in a file.
646 */
647 struct dnode_of_data {
648 struct inode *inode; /* vfs inode pointer */
649 struct page *inode_page; /* its inode page, NULL is possible */
650 struct page *node_page; /* cached direct node page */
651 nid_t nid; /* node id of the direct node block */
652 unsigned int ofs_in_node; /* data offset in the node page */
653 bool inode_page_locked; /* inode page is locked or not */
654 bool node_changed; /* is node block changed */
655 char cur_level; /* level of hole node page */
656 char max_level; /* level of current page located */
657 block_t data_blkaddr; /* block address of the node block */
658 };
659
660 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
661 struct page *ipage, struct page *npage, nid_t nid)
662 {
663 memset(dn, 0, sizeof(*dn));
664 dn->inode = inode;
665 dn->inode_page = ipage;
666 dn->node_page = npage;
667 dn->nid = nid;
668 }
669
670 /*
671 * For SIT manager
672 *
673 * By default, there are 6 active log areas across the whole main area.
674 * When considering hot and cold data separation to reduce cleaning overhead,
675 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
676 * respectively.
677 * In the current design, you should not change the numbers intentionally.
678 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
679 * logs individually according to the underlying devices. (default: 6)
680 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
681 * data and 8 for node logs.
682 */
683 #define NR_CURSEG_DATA_TYPE (3)
684 #define NR_CURSEG_NODE_TYPE (3)
685 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
686
687 enum {
688 CURSEG_HOT_DATA = 0, /* directory entry blocks */
689 CURSEG_WARM_DATA, /* data blocks */
690 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
691 CURSEG_HOT_NODE, /* direct node blocks of directory files */
692 CURSEG_WARM_NODE, /* direct node blocks of normal files */
693 CURSEG_COLD_NODE, /* indirect node blocks */
694 NO_CHECK_TYPE,
695 };
696
697 struct flush_cmd {
698 struct completion wait;
699 struct llist_node llnode;
700 int ret;
701 };
702
703 struct flush_cmd_control {
704 struct task_struct *f2fs_issue_flush; /* flush thread */
705 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
706 atomic_t issued_flush; /* # of issued flushes */
707 atomic_t issing_flush; /* # of issing flushes */
708 struct llist_head issue_list; /* list for command issue */
709 struct llist_node *dispatch_list; /* list for command dispatch */
710 };
711
712 struct f2fs_sm_info {
713 struct sit_info *sit_info; /* whole segment information */
714 struct free_segmap_info *free_info; /* free segment information */
715 struct dirty_seglist_info *dirty_info; /* dirty segment information */
716 struct curseg_info *curseg_array; /* active segment information */
717
718 block_t seg0_blkaddr; /* block address of 0'th segment */
719 block_t main_blkaddr; /* start block address of main area */
720 block_t ssa_blkaddr; /* start block address of SSA area */
721
722 unsigned int segment_count; /* total # of segments */
723 unsigned int main_segments; /* # of segments in main area */
724 unsigned int reserved_segments; /* # of reserved segments */
725 unsigned int ovp_segments; /* # of overprovision segments */
726
727 /* a threshold to reclaim prefree segments */
728 unsigned int rec_prefree_segments;
729
730 /* for batched trimming */
731 unsigned int trim_sections; /* # of sections to trim */
732
733 struct list_head sit_entry_set; /* sit entry set list */
734
735 unsigned int ipu_policy; /* in-place-update policy */
736 unsigned int min_ipu_util; /* in-place-update threshold */
737 unsigned int min_fsync_blocks; /* threshold for fsync */
738 unsigned int min_hot_blocks; /* threshold for hot block allocation */
739
740 /* for flush command control */
741 struct flush_cmd_control *fcc_info;
742
743 /* for discard command control */
744 struct discard_cmd_control *dcc_info;
745 };
746
747 /*
748 * For superblock
749 */
750 /*
751 * COUNT_TYPE for monitoring
752 *
753 * f2fs monitors the number of several block types such as on-writeback,
754 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
755 */
756 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
757 enum count_type {
758 F2FS_DIRTY_DENTS,
759 F2FS_DIRTY_DATA,
760 F2FS_DIRTY_NODES,
761 F2FS_DIRTY_META,
762 F2FS_INMEM_PAGES,
763 F2FS_DIRTY_IMETA,
764 F2FS_WB_CP_DATA,
765 F2FS_WB_DATA,
766 NR_COUNT_TYPE,
767 };
768
769 /*
770 * The below are the page types of bios used in submit_bio().
771 * The available types are:
772 * DATA User data pages. It operates as async mode.
773 * NODE Node pages. It operates as async mode.
774 * META FS metadata pages such as SIT, NAT, CP.
775 * NR_PAGE_TYPE The number of page types.
776 * META_FLUSH Make sure the previous pages are written
777 * with waiting the bio's completion
778 * ... Only can be used with META.
779 */
780 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
781 enum page_type {
782 DATA,
783 NODE,
784 META,
785 NR_PAGE_TYPE,
786 META_FLUSH,
787 INMEM, /* the below types are used by tracepoints only. */
788 INMEM_DROP,
789 INMEM_INVALIDATE,
790 INMEM_REVOKE,
791 IPU,
792 OPU,
793 };
794
795 struct f2fs_io_info {
796 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
797 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
798 int op; /* contains REQ_OP_ */
799 int op_flags; /* req_flag_bits */
800 block_t new_blkaddr; /* new block address to be written */
801 block_t old_blkaddr; /* old block address before Cow */
802 struct page *page; /* page to be written */
803 struct page *encrypted_page; /* encrypted page */
804 bool submitted; /* indicate IO submission */
805 bool need_lock; /* indicate we need to lock cp_rwsem */
806 };
807
808 #define is_read_io(rw) ((rw) == READ)
809 struct f2fs_bio_info {
810 struct f2fs_sb_info *sbi; /* f2fs superblock */
811 struct bio *bio; /* bios to merge */
812 sector_t last_block_in_bio; /* last block number */
813 struct f2fs_io_info fio; /* store buffered io info. */
814 struct rw_semaphore io_rwsem; /* blocking op for bio */
815 };
816
817 #define FDEV(i) (sbi->devs[i])
818 #define RDEV(i) (raw_super->devs[i])
819 struct f2fs_dev_info {
820 struct block_device *bdev;
821 char path[MAX_PATH_LEN];
822 unsigned int total_segments;
823 block_t start_blk;
824 block_t end_blk;
825 #ifdef CONFIG_BLK_DEV_ZONED
826 unsigned int nr_blkz; /* Total number of zones */
827 u8 *blkz_type; /* Array of zones type */
828 #endif
829 };
830
831 enum inode_type {
832 DIR_INODE, /* for dirty dir inode */
833 FILE_INODE, /* for dirty regular/symlink inode */
834 DIRTY_META, /* for all dirtied inode metadata */
835 NR_INODE_TYPE,
836 };
837
838 /* for inner inode cache management */
839 struct inode_management {
840 struct radix_tree_root ino_root; /* ino entry array */
841 spinlock_t ino_lock; /* for ino entry lock */
842 struct list_head ino_list; /* inode list head */
843 unsigned long ino_num; /* number of entries */
844 };
845
846 /* For s_flag in struct f2fs_sb_info */
847 enum {
848 SBI_IS_DIRTY, /* dirty flag for checkpoint */
849 SBI_IS_CLOSE, /* specify unmounting */
850 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
851 SBI_POR_DOING, /* recovery is doing or not */
852 SBI_NEED_SB_WRITE, /* need to recover superblock */
853 SBI_NEED_CP, /* need to checkpoint */
854 };
855
856 enum {
857 CP_TIME,
858 REQ_TIME,
859 MAX_TIME,
860 };
861
862 struct f2fs_sb_info {
863 struct super_block *sb; /* pointer to VFS super block */
864 struct proc_dir_entry *s_proc; /* proc entry */
865 struct f2fs_super_block *raw_super; /* raw super block pointer */
866 int valid_super_block; /* valid super block no */
867 unsigned long s_flag; /* flags for sbi */
868
869 #ifdef CONFIG_BLK_DEV_ZONED
870 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
871 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
872 #endif
873
874 /* for node-related operations */
875 struct f2fs_nm_info *nm_info; /* node manager */
876 struct inode *node_inode; /* cache node blocks */
877
878 /* for segment-related operations */
879 struct f2fs_sm_info *sm_info; /* segment manager */
880
881 /* for bio operations */
882 struct f2fs_bio_info read_io; /* for read bios */
883 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
884 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
885 int write_io_size_bits; /* Write IO size bits */
886 mempool_t *write_io_dummy; /* Dummy pages */
887
888 /* for checkpoint */
889 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
890 int cur_cp_pack; /* remain current cp pack */
891 spinlock_t cp_lock; /* for flag in ckpt */
892 struct inode *meta_inode; /* cache meta blocks */
893 struct mutex cp_mutex; /* checkpoint procedure lock */
894 struct rw_semaphore cp_rwsem; /* blocking FS operations */
895 struct rw_semaphore node_write; /* locking node writes */
896 struct rw_semaphore node_change; /* locking node change */
897 wait_queue_head_t cp_wait;
898 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
899 long interval_time[MAX_TIME]; /* to store thresholds */
900
901 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
902
903 /* for orphan inode, use 0'th array */
904 unsigned int max_orphans; /* max orphan inodes */
905
906 /* for inode management */
907 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
908 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
909
910 /* for extent tree cache */
911 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
912 struct mutex extent_tree_lock; /* locking extent radix tree */
913 struct list_head extent_list; /* lru list for shrinker */
914 spinlock_t extent_lock; /* locking extent lru list */
915 atomic_t total_ext_tree; /* extent tree count */
916 struct list_head zombie_list; /* extent zombie tree list */
917 atomic_t total_zombie_tree; /* extent zombie tree count */
918 atomic_t total_ext_node; /* extent info count */
919
920 /* basic filesystem units */
921 unsigned int log_sectors_per_block; /* log2 sectors per block */
922 unsigned int log_blocksize; /* log2 block size */
923 unsigned int blocksize; /* block size */
924 unsigned int root_ino_num; /* root inode number*/
925 unsigned int node_ino_num; /* node inode number*/
926 unsigned int meta_ino_num; /* meta inode number*/
927 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
928 unsigned int blocks_per_seg; /* blocks per segment */
929 unsigned int segs_per_sec; /* segments per section */
930 unsigned int secs_per_zone; /* sections per zone */
931 unsigned int total_sections; /* total section count */
932 unsigned int total_node_count; /* total node block count */
933 unsigned int total_valid_node_count; /* valid node block count */
934 loff_t max_file_blocks; /* max block index of file */
935 int active_logs; /* # of active logs */
936 int dir_level; /* directory level */
937
938 block_t user_block_count; /* # of user blocks */
939 block_t total_valid_block_count; /* # of valid blocks */
940 block_t discard_blks; /* discard command candidats */
941 block_t last_valid_block_count; /* for recovery */
942 u32 s_next_generation; /* for NFS support */
943
944 /* # of pages, see count_type */
945 atomic_t nr_pages[NR_COUNT_TYPE];
946 /* # of allocated blocks */
947 struct percpu_counter alloc_valid_block_count;
948
949 /* writeback control */
950 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
951
952 /* valid inode count */
953 struct percpu_counter total_valid_inode_count;
954
955 struct f2fs_mount_info mount_opt; /* mount options */
956
957 /* for cleaning operations */
958 struct mutex gc_mutex; /* mutex for GC */
959 struct f2fs_gc_kthread *gc_thread; /* GC thread */
960 unsigned int cur_victim_sec; /* current victim section num */
961
962 /* threshold for converting bg victims for fg */
963 u64 fggc_threshold;
964
965 /* maximum # of trials to find a victim segment for SSR and GC */
966 unsigned int max_victim_search;
967
968 /*
969 * for stat information.
970 * one is for the LFS mode, and the other is for the SSR mode.
971 */
972 #ifdef CONFIG_F2FS_STAT_FS
973 struct f2fs_stat_info *stat_info; /* FS status information */
974 unsigned int segment_count[2]; /* # of allocated segments */
975 unsigned int block_count[2]; /* # of allocated blocks */
976 atomic_t inplace_count; /* # of inplace update */
977 atomic64_t total_hit_ext; /* # of lookup extent cache */
978 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
979 atomic64_t read_hit_largest; /* # of hit largest extent node */
980 atomic64_t read_hit_cached; /* # of hit cached extent node */
981 atomic_t inline_xattr; /* # of inline_xattr inodes */
982 atomic_t inline_inode; /* # of inline_data inodes */
983 atomic_t inline_dir; /* # of inline_dentry inodes */
984 atomic_t aw_cnt; /* # of atomic writes */
985 atomic_t vw_cnt; /* # of volatile writes */
986 atomic_t max_aw_cnt; /* max # of atomic writes */
987 atomic_t max_vw_cnt; /* max # of volatile writes */
988 int bg_gc; /* background gc calls */
989 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
990 #endif
991 spinlock_t stat_lock; /* lock for stat operations */
992
993 /* For sysfs suppport */
994 struct kobject s_kobj;
995 struct completion s_kobj_unregister;
996
997 /* For shrinker support */
998 struct list_head s_list;
999 int s_ndevs; /* number of devices */
1000 struct f2fs_dev_info *devs; /* for device list */
1001 struct mutex umount_mutex;
1002 unsigned int shrinker_run_no;
1003
1004 /* For write statistics */
1005 u64 sectors_written_start;
1006 u64 kbytes_written;
1007
1008 /* Reference to checksum algorithm driver via cryptoapi */
1009 struct crypto_shash *s_chksum_driver;
1010
1011 /* For fault injection */
1012 #ifdef CONFIG_F2FS_FAULT_INJECTION
1013 struct f2fs_fault_info fault_info;
1014 #endif
1015 };
1016
1017 #ifdef CONFIG_F2FS_FAULT_INJECTION
1018 #define f2fs_show_injection_info(type) \
1019 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1020 KERN_INFO, fault_name[type], \
1021 __func__, __builtin_return_address(0))
1022 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1023 {
1024 struct f2fs_fault_info *ffi = &sbi->fault_info;
1025
1026 if (!ffi->inject_rate)
1027 return false;
1028
1029 if (!IS_FAULT_SET(ffi, type))
1030 return false;
1031
1032 atomic_inc(&ffi->inject_ops);
1033 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1034 atomic_set(&ffi->inject_ops, 0);
1035 return true;
1036 }
1037 return false;
1038 }
1039 #endif
1040
1041 /* For write statistics. Suppose sector size is 512 bytes,
1042 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1043 */
1044 #define BD_PART_WRITTEN(s) \
1045 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1046 (s)->sectors_written_start) >> 1)
1047
1048 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1049 {
1050 sbi->last_time[type] = jiffies;
1051 }
1052
1053 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1054 {
1055 struct timespec ts = {sbi->interval_time[type], 0};
1056 unsigned long interval = timespec_to_jiffies(&ts);
1057
1058 return time_after(jiffies, sbi->last_time[type] + interval);
1059 }
1060
1061 static inline bool is_idle(struct f2fs_sb_info *sbi)
1062 {
1063 struct block_device *bdev = sbi->sb->s_bdev;
1064 struct request_queue *q = bdev_get_queue(bdev);
1065 struct request_list *rl = &q->root_rl;
1066
1067 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1068 return 0;
1069
1070 return f2fs_time_over(sbi, REQ_TIME);
1071 }
1072
1073 /*
1074 * Inline functions
1075 */
1076 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1077 unsigned int length)
1078 {
1079 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1080 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1081 u32 retval;
1082 int err;
1083
1084 shash->tfm = sbi->s_chksum_driver;
1085 shash->flags = 0;
1086 *ctx = F2FS_SUPER_MAGIC;
1087
1088 err = crypto_shash_update(shash, address, length);
1089 BUG_ON(err);
1090
1091 retval = *ctx;
1092 barrier_data(ctx);
1093 return retval;
1094 }
1095
1096 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1097 void *buf, size_t buf_size)
1098 {
1099 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1100 }
1101
1102 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1103 {
1104 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1105 }
1106
1107 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1108 {
1109 return sb->s_fs_info;
1110 }
1111
1112 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1113 {
1114 return F2FS_SB(inode->i_sb);
1115 }
1116
1117 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1118 {
1119 return F2FS_I_SB(mapping->host);
1120 }
1121
1122 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1123 {
1124 return F2FS_M_SB(page->mapping);
1125 }
1126
1127 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1128 {
1129 return (struct f2fs_super_block *)(sbi->raw_super);
1130 }
1131
1132 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1133 {
1134 return (struct f2fs_checkpoint *)(sbi->ckpt);
1135 }
1136
1137 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1138 {
1139 return (struct f2fs_node *)page_address(page);
1140 }
1141
1142 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1143 {
1144 return &((struct f2fs_node *)page_address(page))->i;
1145 }
1146
1147 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1148 {
1149 return (struct f2fs_nm_info *)(sbi->nm_info);
1150 }
1151
1152 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1153 {
1154 return (struct f2fs_sm_info *)(sbi->sm_info);
1155 }
1156
1157 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1158 {
1159 return (struct sit_info *)(SM_I(sbi)->sit_info);
1160 }
1161
1162 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1163 {
1164 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1165 }
1166
1167 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1168 {
1169 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1170 }
1171
1172 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1173 {
1174 return sbi->meta_inode->i_mapping;
1175 }
1176
1177 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1178 {
1179 return sbi->node_inode->i_mapping;
1180 }
1181
1182 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1183 {
1184 return test_bit(type, &sbi->s_flag);
1185 }
1186
1187 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1188 {
1189 set_bit(type, &sbi->s_flag);
1190 }
1191
1192 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1193 {
1194 clear_bit(type, &sbi->s_flag);
1195 }
1196
1197 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1198 {
1199 return le64_to_cpu(cp->checkpoint_ver);
1200 }
1201
1202 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1203 {
1204 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1205 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1206 }
1207
1208 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1209 {
1210 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1211
1212 return ckpt_flags & f;
1213 }
1214
1215 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1216 {
1217 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1218 }
1219
1220 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1221 {
1222 unsigned int ckpt_flags;
1223
1224 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1225 ckpt_flags |= f;
1226 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1227 }
1228
1229 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1230 {
1231 spin_lock(&sbi->cp_lock);
1232 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1233 spin_unlock(&sbi->cp_lock);
1234 }
1235
1236 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1237 {
1238 unsigned int ckpt_flags;
1239
1240 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1241 ckpt_flags &= (~f);
1242 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1243 }
1244
1245 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1246 {
1247 spin_lock(&sbi->cp_lock);
1248 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1249 spin_unlock(&sbi->cp_lock);
1250 }
1251
1252 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1253 {
1254 set_sbi_flag(sbi, SBI_NEED_FSCK);
1255
1256 if (lock)
1257 spin_lock(&sbi->cp_lock);
1258 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1259 kfree(NM_I(sbi)->nat_bits);
1260 NM_I(sbi)->nat_bits = NULL;
1261 if (lock)
1262 spin_unlock(&sbi->cp_lock);
1263 }
1264
1265 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1266 struct cp_control *cpc)
1267 {
1268 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1269
1270 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1271 }
1272
1273 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1274 {
1275 down_read(&sbi->cp_rwsem);
1276 }
1277
1278 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1279 {
1280 up_read(&sbi->cp_rwsem);
1281 }
1282
1283 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1284 {
1285 down_write(&sbi->cp_rwsem);
1286 }
1287
1288 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1289 {
1290 up_write(&sbi->cp_rwsem);
1291 }
1292
1293 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1294 {
1295 int reason = CP_SYNC;
1296
1297 if (test_opt(sbi, FASTBOOT))
1298 reason = CP_FASTBOOT;
1299 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1300 reason = CP_UMOUNT;
1301 return reason;
1302 }
1303
1304 static inline bool __remain_node_summaries(int reason)
1305 {
1306 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1307 }
1308
1309 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1310 {
1311 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1312 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1313 }
1314
1315 /*
1316 * Check whether the given nid is within node id range.
1317 */
1318 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1319 {
1320 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1321 return -EINVAL;
1322 if (unlikely(nid >= NM_I(sbi)->max_nid))
1323 return -EINVAL;
1324 return 0;
1325 }
1326
1327 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1328
1329 /*
1330 * Check whether the inode has blocks or not
1331 */
1332 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1333 {
1334 if (F2FS_I(inode)->i_xattr_nid)
1335 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1336 else
1337 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1338 }
1339
1340 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1341 {
1342 return ofs == XATTR_NODE_OFFSET;
1343 }
1344
1345 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1346 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1347 struct inode *inode, blkcnt_t *count)
1348 {
1349 blkcnt_t diff;
1350
1351 #ifdef CONFIG_F2FS_FAULT_INJECTION
1352 if (time_to_inject(sbi, FAULT_BLOCK)) {
1353 f2fs_show_injection_info(FAULT_BLOCK);
1354 return false;
1355 }
1356 #endif
1357 /*
1358 * let's increase this in prior to actual block count change in order
1359 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1360 */
1361 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1362
1363 spin_lock(&sbi->stat_lock);
1364 sbi->total_valid_block_count += (block_t)(*count);
1365 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1366 diff = sbi->total_valid_block_count - sbi->user_block_count;
1367 *count -= diff;
1368 sbi->total_valid_block_count = sbi->user_block_count;
1369 if (!*count) {
1370 spin_unlock(&sbi->stat_lock);
1371 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1372 return false;
1373 }
1374 }
1375 spin_unlock(&sbi->stat_lock);
1376
1377 f2fs_i_blocks_write(inode, *count, true);
1378 return true;
1379 }
1380
1381 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1382 struct inode *inode,
1383 blkcnt_t count)
1384 {
1385 spin_lock(&sbi->stat_lock);
1386 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1387 f2fs_bug_on(sbi, inode->i_blocks < count);
1388 sbi->total_valid_block_count -= (block_t)count;
1389 spin_unlock(&sbi->stat_lock);
1390 f2fs_i_blocks_write(inode, count, false);
1391 }
1392
1393 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1394 {
1395 atomic_inc(&sbi->nr_pages[count_type]);
1396
1397 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1398 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1399 return;
1400
1401 set_sbi_flag(sbi, SBI_IS_DIRTY);
1402 }
1403
1404 static inline void inode_inc_dirty_pages(struct inode *inode)
1405 {
1406 atomic_inc(&F2FS_I(inode)->dirty_pages);
1407 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1408 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1409 }
1410
1411 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1412 {
1413 atomic_dec(&sbi->nr_pages[count_type]);
1414 }
1415
1416 static inline void inode_dec_dirty_pages(struct inode *inode)
1417 {
1418 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1419 !S_ISLNK(inode->i_mode))
1420 return;
1421
1422 atomic_dec(&F2FS_I(inode)->dirty_pages);
1423 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1424 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1425 }
1426
1427 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1428 {
1429 return atomic_read(&sbi->nr_pages[count_type]);
1430 }
1431
1432 static inline int get_dirty_pages(struct inode *inode)
1433 {
1434 return atomic_read(&F2FS_I(inode)->dirty_pages);
1435 }
1436
1437 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1438 {
1439 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1440 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1441 sbi->log_blocks_per_seg;
1442
1443 return segs / sbi->segs_per_sec;
1444 }
1445
1446 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1447 {
1448 return sbi->total_valid_block_count;
1449 }
1450
1451 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1452 {
1453 return sbi->discard_blks;
1454 }
1455
1456 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1457 {
1458 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1459
1460 /* return NAT or SIT bitmap */
1461 if (flag == NAT_BITMAP)
1462 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1463 else if (flag == SIT_BITMAP)
1464 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1465
1466 return 0;
1467 }
1468
1469 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1470 {
1471 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1472 }
1473
1474 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1475 {
1476 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1477 int offset;
1478
1479 if (__cp_payload(sbi) > 0) {
1480 if (flag == NAT_BITMAP)
1481 return &ckpt->sit_nat_version_bitmap;
1482 else
1483 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1484 } else {
1485 offset = (flag == NAT_BITMAP) ?
1486 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1487 return &ckpt->sit_nat_version_bitmap + offset;
1488 }
1489 }
1490
1491 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1492 {
1493 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1494
1495 if (sbi->cur_cp_pack == 2)
1496 start_addr += sbi->blocks_per_seg;
1497 return start_addr;
1498 }
1499
1500 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1501 {
1502 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1503
1504 if (sbi->cur_cp_pack == 1)
1505 start_addr += sbi->blocks_per_seg;
1506 return start_addr;
1507 }
1508
1509 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1510 {
1511 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1512 }
1513
1514 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1515 {
1516 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1517 }
1518
1519 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1520 struct inode *inode)
1521 {
1522 block_t valid_block_count;
1523 unsigned int valid_node_count;
1524
1525 spin_lock(&sbi->stat_lock);
1526
1527 valid_block_count = sbi->total_valid_block_count + 1;
1528 if (unlikely(valid_block_count > sbi->user_block_count)) {
1529 spin_unlock(&sbi->stat_lock);
1530 return false;
1531 }
1532
1533 valid_node_count = sbi->total_valid_node_count + 1;
1534 if (unlikely(valid_node_count > sbi->total_node_count)) {
1535 spin_unlock(&sbi->stat_lock);
1536 return false;
1537 }
1538
1539 if (inode)
1540 f2fs_i_blocks_write(inode, 1, true);
1541
1542 sbi->total_valid_node_count++;
1543 sbi->total_valid_block_count++;
1544 spin_unlock(&sbi->stat_lock);
1545
1546 percpu_counter_inc(&sbi->alloc_valid_block_count);
1547 return true;
1548 }
1549
1550 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1551 struct inode *inode)
1552 {
1553 spin_lock(&sbi->stat_lock);
1554
1555 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1556 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1557 f2fs_bug_on(sbi, !inode->i_blocks);
1558
1559 f2fs_i_blocks_write(inode, 1, false);
1560 sbi->total_valid_node_count--;
1561 sbi->total_valid_block_count--;
1562
1563 spin_unlock(&sbi->stat_lock);
1564 }
1565
1566 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1567 {
1568 return sbi->total_valid_node_count;
1569 }
1570
1571 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1572 {
1573 percpu_counter_inc(&sbi->total_valid_inode_count);
1574 }
1575
1576 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1577 {
1578 percpu_counter_dec(&sbi->total_valid_inode_count);
1579 }
1580
1581 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1582 {
1583 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1584 }
1585
1586 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1587 pgoff_t index, bool for_write)
1588 {
1589 #ifdef CONFIG_F2FS_FAULT_INJECTION
1590 struct page *page = find_lock_page(mapping, index);
1591
1592 if (page)
1593 return page;
1594
1595 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1596 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1597 return NULL;
1598 }
1599 #endif
1600 if (!for_write)
1601 return grab_cache_page(mapping, index);
1602 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1603 }
1604
1605 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1606 {
1607 char *src_kaddr = kmap(src);
1608 char *dst_kaddr = kmap(dst);
1609
1610 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1611 kunmap(dst);
1612 kunmap(src);
1613 }
1614
1615 static inline void f2fs_put_page(struct page *page, int unlock)
1616 {
1617 if (!page)
1618 return;
1619
1620 if (unlock) {
1621 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1622 unlock_page(page);
1623 }
1624 put_page(page);
1625 }
1626
1627 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1628 {
1629 if (dn->node_page)
1630 f2fs_put_page(dn->node_page, 1);
1631 if (dn->inode_page && dn->node_page != dn->inode_page)
1632 f2fs_put_page(dn->inode_page, 0);
1633 dn->node_page = NULL;
1634 dn->inode_page = NULL;
1635 }
1636
1637 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1638 size_t size)
1639 {
1640 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1641 }
1642
1643 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1644 gfp_t flags)
1645 {
1646 void *entry;
1647
1648 entry = kmem_cache_alloc(cachep, flags);
1649 if (!entry)
1650 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1651 return entry;
1652 }
1653
1654 static inline struct bio *f2fs_bio_alloc(int npages)
1655 {
1656 struct bio *bio;
1657
1658 /* No failure on bio allocation */
1659 bio = bio_alloc(GFP_NOIO, npages);
1660 if (!bio)
1661 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1662 return bio;
1663 }
1664
1665 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1666 unsigned long index, void *item)
1667 {
1668 while (radix_tree_insert(root, index, item))
1669 cond_resched();
1670 }
1671
1672 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1673
1674 static inline bool IS_INODE(struct page *page)
1675 {
1676 struct f2fs_node *p = F2FS_NODE(page);
1677
1678 return RAW_IS_INODE(p);
1679 }
1680
1681 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1682 {
1683 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1684 }
1685
1686 static inline block_t datablock_addr(struct page *node_page,
1687 unsigned int offset)
1688 {
1689 struct f2fs_node *raw_node;
1690 __le32 *addr_array;
1691
1692 raw_node = F2FS_NODE(node_page);
1693 addr_array = blkaddr_in_node(raw_node);
1694 return le32_to_cpu(addr_array[offset]);
1695 }
1696
1697 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1698 {
1699 int mask;
1700
1701 addr += (nr >> 3);
1702 mask = 1 << (7 - (nr & 0x07));
1703 return mask & *addr;
1704 }
1705
1706 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1707 {
1708 int mask;
1709
1710 addr += (nr >> 3);
1711 mask = 1 << (7 - (nr & 0x07));
1712 *addr |= mask;
1713 }
1714
1715 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1716 {
1717 int mask;
1718
1719 addr += (nr >> 3);
1720 mask = 1 << (7 - (nr & 0x07));
1721 *addr &= ~mask;
1722 }
1723
1724 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1725 {
1726 int mask;
1727 int ret;
1728
1729 addr += (nr >> 3);
1730 mask = 1 << (7 - (nr & 0x07));
1731 ret = mask & *addr;
1732 *addr |= mask;
1733 return ret;
1734 }
1735
1736 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1737 {
1738 int mask;
1739 int ret;
1740
1741 addr += (nr >> 3);
1742 mask = 1 << (7 - (nr & 0x07));
1743 ret = mask & *addr;
1744 *addr &= ~mask;
1745 return ret;
1746 }
1747
1748 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1749 {
1750 int mask;
1751
1752 addr += (nr >> 3);
1753 mask = 1 << (7 - (nr & 0x07));
1754 *addr ^= mask;
1755 }
1756
1757 /* used for f2fs_inode_info->flags */
1758 enum {
1759 FI_NEW_INODE, /* indicate newly allocated inode */
1760 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1761 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1762 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1763 FI_INC_LINK, /* need to increment i_nlink */
1764 FI_ACL_MODE, /* indicate acl mode */
1765 FI_NO_ALLOC, /* should not allocate any blocks */
1766 FI_FREE_NID, /* free allocated nide */
1767 FI_NO_EXTENT, /* not to use the extent cache */
1768 FI_INLINE_XATTR, /* used for inline xattr */
1769 FI_INLINE_DATA, /* used for inline data*/
1770 FI_INLINE_DENTRY, /* used for inline dentry */
1771 FI_APPEND_WRITE, /* inode has appended data */
1772 FI_UPDATE_WRITE, /* inode has in-place-update data */
1773 FI_NEED_IPU, /* used for ipu per file */
1774 FI_ATOMIC_FILE, /* indicate atomic file */
1775 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
1776 FI_VOLATILE_FILE, /* indicate volatile file */
1777 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1778 FI_DROP_CACHE, /* drop dirty page cache */
1779 FI_DATA_EXIST, /* indicate data exists */
1780 FI_INLINE_DOTS, /* indicate inline dot dentries */
1781 FI_DO_DEFRAG, /* indicate defragment is running */
1782 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1783 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
1784 FI_HOT_DATA, /* indicate file is hot */
1785 };
1786
1787 static inline void __mark_inode_dirty_flag(struct inode *inode,
1788 int flag, bool set)
1789 {
1790 switch (flag) {
1791 case FI_INLINE_XATTR:
1792 case FI_INLINE_DATA:
1793 case FI_INLINE_DENTRY:
1794 if (set)
1795 return;
1796 case FI_DATA_EXIST:
1797 case FI_INLINE_DOTS:
1798 f2fs_mark_inode_dirty_sync(inode, true);
1799 }
1800 }
1801
1802 static inline void set_inode_flag(struct inode *inode, int flag)
1803 {
1804 if (!test_bit(flag, &F2FS_I(inode)->flags))
1805 set_bit(flag, &F2FS_I(inode)->flags);
1806 __mark_inode_dirty_flag(inode, flag, true);
1807 }
1808
1809 static inline int is_inode_flag_set(struct inode *inode, int flag)
1810 {
1811 return test_bit(flag, &F2FS_I(inode)->flags);
1812 }
1813
1814 static inline void clear_inode_flag(struct inode *inode, int flag)
1815 {
1816 if (test_bit(flag, &F2FS_I(inode)->flags))
1817 clear_bit(flag, &F2FS_I(inode)->flags);
1818 __mark_inode_dirty_flag(inode, flag, false);
1819 }
1820
1821 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1822 {
1823 F2FS_I(inode)->i_acl_mode = mode;
1824 set_inode_flag(inode, FI_ACL_MODE);
1825 f2fs_mark_inode_dirty_sync(inode, false);
1826 }
1827
1828 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1829 {
1830 if (inc)
1831 inc_nlink(inode);
1832 else
1833 drop_nlink(inode);
1834 f2fs_mark_inode_dirty_sync(inode, true);
1835 }
1836
1837 static inline void f2fs_i_blocks_write(struct inode *inode,
1838 blkcnt_t diff, bool add)
1839 {
1840 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1841 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1842
1843 inode->i_blocks = add ? inode->i_blocks + diff :
1844 inode->i_blocks - diff;
1845 f2fs_mark_inode_dirty_sync(inode, true);
1846 if (clean || recover)
1847 set_inode_flag(inode, FI_AUTO_RECOVER);
1848 }
1849
1850 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1851 {
1852 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1853 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1854
1855 if (i_size_read(inode) == i_size)
1856 return;
1857
1858 i_size_write(inode, i_size);
1859 f2fs_mark_inode_dirty_sync(inode, true);
1860 if (clean || recover)
1861 set_inode_flag(inode, FI_AUTO_RECOVER);
1862 }
1863
1864 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1865 {
1866 F2FS_I(inode)->i_current_depth = depth;
1867 f2fs_mark_inode_dirty_sync(inode, true);
1868 }
1869
1870 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1871 {
1872 F2FS_I(inode)->i_xattr_nid = xnid;
1873 f2fs_mark_inode_dirty_sync(inode, true);
1874 }
1875
1876 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1877 {
1878 F2FS_I(inode)->i_pino = pino;
1879 f2fs_mark_inode_dirty_sync(inode, true);
1880 }
1881
1882 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1883 {
1884 struct f2fs_inode_info *fi = F2FS_I(inode);
1885
1886 if (ri->i_inline & F2FS_INLINE_XATTR)
1887 set_bit(FI_INLINE_XATTR, &fi->flags);
1888 if (ri->i_inline & F2FS_INLINE_DATA)
1889 set_bit(FI_INLINE_DATA, &fi->flags);
1890 if (ri->i_inline & F2FS_INLINE_DENTRY)
1891 set_bit(FI_INLINE_DENTRY, &fi->flags);
1892 if (ri->i_inline & F2FS_DATA_EXIST)
1893 set_bit(FI_DATA_EXIST, &fi->flags);
1894 if (ri->i_inline & F2FS_INLINE_DOTS)
1895 set_bit(FI_INLINE_DOTS, &fi->flags);
1896 }
1897
1898 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1899 {
1900 ri->i_inline = 0;
1901
1902 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1903 ri->i_inline |= F2FS_INLINE_XATTR;
1904 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1905 ri->i_inline |= F2FS_INLINE_DATA;
1906 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1907 ri->i_inline |= F2FS_INLINE_DENTRY;
1908 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1909 ri->i_inline |= F2FS_DATA_EXIST;
1910 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1911 ri->i_inline |= F2FS_INLINE_DOTS;
1912 }
1913
1914 static inline int f2fs_has_inline_xattr(struct inode *inode)
1915 {
1916 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1917 }
1918
1919 static inline unsigned int addrs_per_inode(struct inode *inode)
1920 {
1921 if (f2fs_has_inline_xattr(inode))
1922 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1923 return DEF_ADDRS_PER_INODE;
1924 }
1925
1926 static inline void *inline_xattr_addr(struct page *page)
1927 {
1928 struct f2fs_inode *ri = F2FS_INODE(page);
1929
1930 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1931 F2FS_INLINE_XATTR_ADDRS]);
1932 }
1933
1934 static inline int inline_xattr_size(struct inode *inode)
1935 {
1936 if (f2fs_has_inline_xattr(inode))
1937 return F2FS_INLINE_XATTR_ADDRS << 2;
1938 else
1939 return 0;
1940 }
1941
1942 static inline int f2fs_has_inline_data(struct inode *inode)
1943 {
1944 return is_inode_flag_set(inode, FI_INLINE_DATA);
1945 }
1946
1947 static inline int f2fs_exist_data(struct inode *inode)
1948 {
1949 return is_inode_flag_set(inode, FI_DATA_EXIST);
1950 }
1951
1952 static inline int f2fs_has_inline_dots(struct inode *inode)
1953 {
1954 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1955 }
1956
1957 static inline bool f2fs_is_atomic_file(struct inode *inode)
1958 {
1959 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1960 }
1961
1962 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1963 {
1964 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1965 }
1966
1967 static inline bool f2fs_is_volatile_file(struct inode *inode)
1968 {
1969 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1970 }
1971
1972 static inline bool f2fs_is_first_block_written(struct inode *inode)
1973 {
1974 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1975 }
1976
1977 static inline bool f2fs_is_drop_cache(struct inode *inode)
1978 {
1979 return is_inode_flag_set(inode, FI_DROP_CACHE);
1980 }
1981
1982 static inline void *inline_data_addr(struct page *page)
1983 {
1984 struct f2fs_inode *ri = F2FS_INODE(page);
1985
1986 return (void *)&(ri->i_addr[1]);
1987 }
1988
1989 static inline int f2fs_has_inline_dentry(struct inode *inode)
1990 {
1991 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1992 }
1993
1994 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1995 {
1996 if (!f2fs_has_inline_dentry(dir))
1997 kunmap(page);
1998 }
1999
2000 static inline int is_file(struct inode *inode, int type)
2001 {
2002 return F2FS_I(inode)->i_advise & type;
2003 }
2004
2005 static inline void set_file(struct inode *inode, int type)
2006 {
2007 F2FS_I(inode)->i_advise |= type;
2008 f2fs_mark_inode_dirty_sync(inode, true);
2009 }
2010
2011 static inline void clear_file(struct inode *inode, int type)
2012 {
2013 F2FS_I(inode)->i_advise &= ~type;
2014 f2fs_mark_inode_dirty_sync(inode, true);
2015 }
2016
2017 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2018 {
2019 if (dsync) {
2020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2021 bool ret;
2022
2023 spin_lock(&sbi->inode_lock[DIRTY_META]);
2024 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2025 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2026 return ret;
2027 }
2028 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2029 file_keep_isize(inode) ||
2030 i_size_read(inode) & PAGE_MASK)
2031 return false;
2032 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2033 }
2034
2035 static inline int f2fs_readonly(struct super_block *sb)
2036 {
2037 return sb->s_flags & MS_RDONLY;
2038 }
2039
2040 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2041 {
2042 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2043 }
2044
2045 static inline bool is_dot_dotdot(const struct qstr *str)
2046 {
2047 if (str->len == 1 && str->name[0] == '.')
2048 return true;
2049
2050 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2051 return true;
2052
2053 return false;
2054 }
2055
2056 static inline bool f2fs_may_extent_tree(struct inode *inode)
2057 {
2058 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2059 is_inode_flag_set(inode, FI_NO_EXTENT))
2060 return false;
2061
2062 return S_ISREG(inode->i_mode);
2063 }
2064
2065 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2066 size_t size, gfp_t flags)
2067 {
2068 #ifdef CONFIG_F2FS_FAULT_INJECTION
2069 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2070 f2fs_show_injection_info(FAULT_KMALLOC);
2071 return NULL;
2072 }
2073 #endif
2074 return kmalloc(size, flags);
2075 }
2076
2077 #define get_inode_mode(i) \
2078 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2079 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2080
2081 /*
2082 * file.c
2083 */
2084 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2085 void truncate_data_blocks(struct dnode_of_data *dn);
2086 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2087 int f2fs_truncate(struct inode *inode);
2088 int f2fs_getattr(const struct path *path, struct kstat *stat,
2089 u32 request_mask, unsigned int flags);
2090 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2091 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2092 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2093 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2094 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2095
2096 /*
2097 * inode.c
2098 */
2099 void f2fs_set_inode_flags(struct inode *inode);
2100 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2101 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2102 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2103 int update_inode(struct inode *inode, struct page *node_page);
2104 int update_inode_page(struct inode *inode);
2105 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2106 void f2fs_evict_inode(struct inode *inode);
2107 void handle_failed_inode(struct inode *inode);
2108
2109 /*
2110 * namei.c
2111 */
2112 struct dentry *f2fs_get_parent(struct dentry *child);
2113
2114 /*
2115 * dir.c
2116 */
2117 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2118 unsigned char get_de_type(struct f2fs_dir_entry *de);
2119 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2120 f2fs_hash_t namehash, int *max_slots,
2121 struct f2fs_dentry_ptr *d);
2122 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2123 unsigned int start_pos, struct fscrypt_str *fstr);
2124 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2125 struct f2fs_dentry_ptr *d);
2126 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2127 const struct qstr *new_name,
2128 const struct qstr *orig_name, struct page *dpage);
2129 void update_parent_metadata(struct inode *dir, struct inode *inode,
2130 unsigned int current_depth);
2131 int room_for_filename(const void *bitmap, int slots, int max_slots);
2132 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2133 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2134 struct fscrypt_name *fname, struct page **res_page);
2135 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2136 const struct qstr *child, struct page **res_page);
2137 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2138 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2139 struct page **page);
2140 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2141 struct page *page, struct inode *inode);
2142 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2143 const struct qstr *name, f2fs_hash_t name_hash,
2144 unsigned int bit_pos);
2145 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2146 const struct qstr *orig_name,
2147 struct inode *inode, nid_t ino, umode_t mode);
2148 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2149 struct inode *inode, nid_t ino, umode_t mode);
2150 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2151 struct inode *inode, nid_t ino, umode_t mode);
2152 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2153 struct inode *dir, struct inode *inode);
2154 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2155 bool f2fs_empty_dir(struct inode *dir);
2156
2157 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2158 {
2159 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2160 inode, inode->i_ino, inode->i_mode);
2161 }
2162
2163 /*
2164 * super.c
2165 */
2166 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2167 void f2fs_inode_synced(struct inode *inode);
2168 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2169 int f2fs_sync_fs(struct super_block *sb, int sync);
2170 extern __printf(3, 4)
2171 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2172 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2173
2174 /*
2175 * hash.c
2176 */
2177 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2178 struct fscrypt_name *fname);
2179
2180 /*
2181 * node.c
2182 */
2183 struct dnode_of_data;
2184 struct node_info;
2185
2186 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2187 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2188 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2189 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2190 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2191 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2192 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2193 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2194 int truncate_xattr_node(struct inode *inode, struct page *page);
2195 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2196 int remove_inode_page(struct inode *inode);
2197 struct page *new_inode_page(struct inode *inode);
2198 struct page *new_node_page(struct dnode_of_data *dn,
2199 unsigned int ofs, struct page *ipage);
2200 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2201 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2202 struct page *get_node_page_ra(struct page *parent, int start);
2203 void move_node_page(struct page *node_page, int gc_type);
2204 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2205 struct writeback_control *wbc, bool atomic);
2206 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2207 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2208 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2209 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2210 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2211 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2212 void recover_inline_xattr(struct inode *inode, struct page *page);
2213 int recover_xattr_data(struct inode *inode, struct page *page,
2214 block_t blkaddr);
2215 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2216 int restore_node_summary(struct f2fs_sb_info *sbi,
2217 unsigned int segno, struct f2fs_summary_block *sum);
2218 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2219 int build_node_manager(struct f2fs_sb_info *sbi);
2220 void destroy_node_manager(struct f2fs_sb_info *sbi);
2221 int __init create_node_manager_caches(void);
2222 void destroy_node_manager_caches(void);
2223
2224 /*
2225 * segment.c
2226 */
2227 void register_inmem_page(struct inode *inode, struct page *page);
2228 void drop_inmem_pages(struct inode *inode);
2229 void drop_inmem_page(struct inode *inode, struct page *page);
2230 int commit_inmem_pages(struct inode *inode);
2231 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2232 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2233 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2234 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2235 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2237 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2238 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2239 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2240 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2241 void release_discard_addrs(struct f2fs_sb_info *sbi);
2242 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2243 void allocate_new_segments(struct f2fs_sb_info *sbi);
2244 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2245 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2246 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2247 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2248 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2249 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2250 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2251 int rewrite_data_page(struct f2fs_io_info *fio);
2252 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2253 block_t old_blkaddr, block_t new_blkaddr,
2254 bool recover_curseg, bool recover_newaddr);
2255 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2256 block_t old_addr, block_t new_addr,
2257 unsigned char version, bool recover_curseg,
2258 bool recover_newaddr);
2259 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2260 block_t old_blkaddr, block_t *new_blkaddr,
2261 struct f2fs_summary *sum, int type);
2262 void f2fs_wait_on_page_writeback(struct page *page,
2263 enum page_type type, bool ordered);
2264 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2265 block_t blkaddr);
2266 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2267 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2268 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2269 unsigned int val, int alloc);
2270 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2271 int build_segment_manager(struct f2fs_sb_info *sbi);
2272 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2273 int __init create_segment_manager_caches(void);
2274 void destroy_segment_manager_caches(void);
2275
2276 /*
2277 * checkpoint.c
2278 */
2279 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2280 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2281 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2282 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2283 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2284 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2285 int type, bool sync);
2286 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2287 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2288 long nr_to_write);
2289 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2290 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2291 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2292 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2293 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2294 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2295 void release_orphan_inode(struct f2fs_sb_info *sbi);
2296 void add_orphan_inode(struct inode *inode);
2297 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2298 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2299 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2300 void update_dirty_page(struct inode *inode, struct page *page);
2301 void remove_dirty_inode(struct inode *inode);
2302 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2303 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2304 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2305 int __init create_checkpoint_caches(void);
2306 void destroy_checkpoint_caches(void);
2307
2308 /*
2309 * data.c
2310 */
2311 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2312 int rw);
2313 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2314 struct inode *inode, nid_t ino, pgoff_t idx,
2315 enum page_type type, int rw);
2316 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2317 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2318 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2319 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2320 block_t blk_addr, struct bio *bio);
2321 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2322 void set_data_blkaddr(struct dnode_of_data *dn);
2323 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2324 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2325 int reserve_new_block(struct dnode_of_data *dn);
2326 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2327 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2328 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2329 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2330 int op_flags, bool for_write);
2331 struct page *find_data_page(struct inode *inode, pgoff_t index);
2332 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2333 bool for_write);
2334 struct page *get_new_data_page(struct inode *inode,
2335 struct page *ipage, pgoff_t index, bool new_i_size);
2336 int do_write_data_page(struct f2fs_io_info *fio);
2337 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2338 int create, int flag);
2339 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2340 u64 start, u64 len);
2341 void f2fs_set_page_dirty_nobuffers(struct page *page);
2342 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2343 unsigned int length);
2344 int f2fs_release_page(struct page *page, gfp_t wait);
2345 #ifdef CONFIG_MIGRATION
2346 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2347 struct page *page, enum migrate_mode mode);
2348 #endif
2349
2350 /*
2351 * gc.c
2352 */
2353 int start_gc_thread(struct f2fs_sb_info *sbi);
2354 void stop_gc_thread(struct f2fs_sb_info *sbi);
2355 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2356 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2357 unsigned int segno);
2358 void build_gc_manager(struct f2fs_sb_info *sbi);
2359
2360 /*
2361 * recovery.c
2362 */
2363 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2364 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2365
2366 /*
2367 * debug.c
2368 */
2369 #ifdef CONFIG_F2FS_STAT_FS
2370 struct f2fs_stat_info {
2371 struct list_head stat_list;
2372 struct f2fs_sb_info *sbi;
2373 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2374 int main_area_segs, main_area_sections, main_area_zones;
2375 unsigned long long hit_largest, hit_cached, hit_rbtree;
2376 unsigned long long hit_total, total_ext;
2377 int ext_tree, zombie_tree, ext_node;
2378 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2379 int inmem_pages;
2380 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2381 int nats, dirty_nats, sits, dirty_sits;
2382 int free_nids, avail_nids, alloc_nids;
2383 int total_count, utilization;
2384 int bg_gc, nr_wb_cp_data, nr_wb_data;
2385 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2386 int nr_discard_cmd;
2387 unsigned int undiscard_blks;
2388 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2389 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2390 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2391 unsigned int bimodal, avg_vblocks;
2392 int util_free, util_valid, util_invalid;
2393 int rsvd_segs, overp_segs;
2394 int dirty_count, node_pages, meta_pages;
2395 int prefree_count, call_count, cp_count, bg_cp_count;
2396 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2397 int bg_node_segs, bg_data_segs;
2398 int tot_blks, data_blks, node_blks;
2399 int bg_data_blks, bg_node_blks;
2400 int curseg[NR_CURSEG_TYPE];
2401 int cursec[NR_CURSEG_TYPE];
2402 int curzone[NR_CURSEG_TYPE];
2403
2404 unsigned int segment_count[2];
2405 unsigned int block_count[2];
2406 unsigned int inplace_count;
2407 unsigned long long base_mem, cache_mem, page_mem;
2408 };
2409
2410 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2411 {
2412 return (struct f2fs_stat_info *)sbi->stat_info;
2413 }
2414
2415 #define stat_inc_cp_count(si) ((si)->cp_count++)
2416 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2417 #define stat_inc_call_count(si) ((si)->call_count++)
2418 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2419 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2420 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2421 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2422 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2423 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2424 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2425 #define stat_inc_inline_xattr(inode) \
2426 do { \
2427 if (f2fs_has_inline_xattr(inode)) \
2428 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2429 } while (0)
2430 #define stat_dec_inline_xattr(inode) \
2431 do { \
2432 if (f2fs_has_inline_xattr(inode)) \
2433 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2434 } while (0)
2435 #define stat_inc_inline_inode(inode) \
2436 do { \
2437 if (f2fs_has_inline_data(inode)) \
2438 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2439 } while (0)
2440 #define stat_dec_inline_inode(inode) \
2441 do { \
2442 if (f2fs_has_inline_data(inode)) \
2443 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2444 } while (0)
2445 #define stat_inc_inline_dir(inode) \
2446 do { \
2447 if (f2fs_has_inline_dentry(inode)) \
2448 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2449 } while (0)
2450 #define stat_dec_inline_dir(inode) \
2451 do { \
2452 if (f2fs_has_inline_dentry(inode)) \
2453 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2454 } while (0)
2455 #define stat_inc_seg_type(sbi, curseg) \
2456 ((sbi)->segment_count[(curseg)->alloc_type]++)
2457 #define stat_inc_block_count(sbi, curseg) \
2458 ((sbi)->block_count[(curseg)->alloc_type]++)
2459 #define stat_inc_inplace_blocks(sbi) \
2460 (atomic_inc(&(sbi)->inplace_count))
2461 #define stat_inc_atomic_write(inode) \
2462 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2463 #define stat_dec_atomic_write(inode) \
2464 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2465 #define stat_update_max_atomic_write(inode) \
2466 do { \
2467 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2468 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2469 if (cur > max) \
2470 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2471 } while (0)
2472 #define stat_inc_volatile_write(inode) \
2473 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2474 #define stat_dec_volatile_write(inode) \
2475 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2476 #define stat_update_max_volatile_write(inode) \
2477 do { \
2478 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2479 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2480 if (cur > max) \
2481 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2482 } while (0)
2483 #define stat_inc_seg_count(sbi, type, gc_type) \
2484 do { \
2485 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2486 si->tot_segs++; \
2487 if ((type) == SUM_TYPE_DATA) { \
2488 si->data_segs++; \
2489 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2490 } else { \
2491 si->node_segs++; \
2492 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2493 } \
2494 } while (0)
2495
2496 #define stat_inc_tot_blk_count(si, blks) \
2497 ((si)->tot_blks += (blks))
2498
2499 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2500 do { \
2501 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2502 stat_inc_tot_blk_count(si, blks); \
2503 si->data_blks += (blks); \
2504 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2505 } while (0)
2506
2507 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2508 do { \
2509 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2510 stat_inc_tot_blk_count(si, blks); \
2511 si->node_blks += (blks); \
2512 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2513 } while (0)
2514
2515 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2516 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2517 int __init f2fs_create_root_stats(void);
2518 void f2fs_destroy_root_stats(void);
2519 #else
2520 #define stat_inc_cp_count(si) do { } while (0)
2521 #define stat_inc_bg_cp_count(si) do { } while (0)
2522 #define stat_inc_call_count(si) do { } while (0)
2523 #define stat_inc_bggc_count(si) do { } while (0)
2524 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2525 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2526 #define stat_inc_total_hit(sb) do { } while (0)
2527 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2528 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2529 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2530 #define stat_inc_inline_xattr(inode) do { } while (0)
2531 #define stat_dec_inline_xattr(inode) do { } while (0)
2532 #define stat_inc_inline_inode(inode) do { } while (0)
2533 #define stat_dec_inline_inode(inode) do { } while (0)
2534 #define stat_inc_inline_dir(inode) do { } while (0)
2535 #define stat_dec_inline_dir(inode) do { } while (0)
2536 #define stat_inc_atomic_write(inode) do { } while (0)
2537 #define stat_dec_atomic_write(inode) do { } while (0)
2538 #define stat_update_max_atomic_write(inode) do { } while (0)
2539 #define stat_inc_volatile_write(inode) do { } while (0)
2540 #define stat_dec_volatile_write(inode) do { } while (0)
2541 #define stat_update_max_volatile_write(inode) do { } while (0)
2542 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2543 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2544 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2545 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2546 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2547 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2548 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2549
2550 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2551 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2552 static inline int __init f2fs_create_root_stats(void) { return 0; }
2553 static inline void f2fs_destroy_root_stats(void) { }
2554 #endif
2555
2556 extern const struct file_operations f2fs_dir_operations;
2557 extern const struct file_operations f2fs_file_operations;
2558 extern const struct inode_operations f2fs_file_inode_operations;
2559 extern const struct address_space_operations f2fs_dblock_aops;
2560 extern const struct address_space_operations f2fs_node_aops;
2561 extern const struct address_space_operations f2fs_meta_aops;
2562 extern const struct inode_operations f2fs_dir_inode_operations;
2563 extern const struct inode_operations f2fs_symlink_inode_operations;
2564 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2565 extern const struct inode_operations f2fs_special_inode_operations;
2566 extern struct kmem_cache *inode_entry_slab;
2567
2568 /*
2569 * inline.c
2570 */
2571 bool f2fs_may_inline_data(struct inode *inode);
2572 bool f2fs_may_inline_dentry(struct inode *inode);
2573 void read_inline_data(struct page *page, struct page *ipage);
2574 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2575 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2576 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2577 int f2fs_convert_inline_inode(struct inode *inode);
2578 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2579 bool recover_inline_data(struct inode *inode, struct page *npage);
2580 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2581 struct fscrypt_name *fname, struct page **res_page);
2582 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2583 struct page *ipage);
2584 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2585 const struct qstr *orig_name,
2586 struct inode *inode, nid_t ino, umode_t mode);
2587 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2588 struct inode *dir, struct inode *inode);
2589 bool f2fs_empty_inline_dir(struct inode *dir);
2590 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2591 struct fscrypt_str *fstr);
2592 int f2fs_inline_data_fiemap(struct inode *inode,
2593 struct fiemap_extent_info *fieinfo,
2594 __u64 start, __u64 len);
2595
2596 /*
2597 * shrinker.c
2598 */
2599 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2600 struct shrink_control *sc);
2601 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2602 struct shrink_control *sc);
2603 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2604 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2605
2606 /*
2607 * extent_cache.c
2608 */
2609 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2610 struct rb_entry *cached_re, unsigned int ofs);
2611 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2612 struct rb_root *root, struct rb_node **parent,
2613 unsigned int ofs);
2614 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2615 struct rb_entry *cached_re, unsigned int ofs,
2616 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2617 struct rb_node ***insert_p, struct rb_node **insert_parent,
2618 bool force);
2619 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2620 struct rb_root *root);
2621 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2622 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2623 void f2fs_drop_extent_tree(struct inode *inode);
2624 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2625 void f2fs_destroy_extent_tree(struct inode *inode);
2626 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2627 struct extent_info *ei);
2628 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2629 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2630 pgoff_t fofs, block_t blkaddr, unsigned int len);
2631 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2632 int __init create_extent_cache(void);
2633 void destroy_extent_cache(void);
2634
2635 /*
2636 * crypto support
2637 */
2638 static inline bool f2fs_encrypted_inode(struct inode *inode)
2639 {
2640 return file_is_encrypt(inode);
2641 }
2642
2643 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2644 {
2645 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2646 file_set_encrypt(inode);
2647 #endif
2648 }
2649
2650 static inline bool f2fs_bio_encrypted(struct bio *bio)
2651 {
2652 return bio->bi_private != NULL;
2653 }
2654
2655 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2656 {
2657 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2658 }
2659
2660 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2661 {
2662 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2663 }
2664
2665 #ifdef CONFIG_BLK_DEV_ZONED
2666 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2667 struct block_device *bdev, block_t blkaddr)
2668 {
2669 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2670 int i;
2671
2672 for (i = 0; i < sbi->s_ndevs; i++)
2673 if (FDEV(i).bdev == bdev)
2674 return FDEV(i).blkz_type[zno];
2675 return -EINVAL;
2676 }
2677 #endif
2678
2679 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2680 {
2681 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2682
2683 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2684 }
2685
2686 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2687 {
2688 clear_opt(sbi, ADAPTIVE);
2689 clear_opt(sbi, LFS);
2690
2691 switch (mt) {
2692 case F2FS_MOUNT_ADAPTIVE:
2693 set_opt(sbi, ADAPTIVE);
2694 break;
2695 case F2FS_MOUNT_LFS:
2696 set_opt(sbi, LFS);
2697 break;
2698 }
2699 }
2700
2701 static inline bool f2fs_may_encrypt(struct inode *inode)
2702 {
2703 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2704 umode_t mode = inode->i_mode;
2705
2706 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2707 #else
2708 return 0;
2709 #endif
2710 }
2711
2712 #endif