]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/file.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 struct vm_fault *vmf)
37 {
38 struct page *page = vmf->page;
39 struct inode *inode = file_inode(vma->vm_file);
40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 struct dnode_of_data dn;
42 int err;
43
44 sb_start_pagefault(inode->i_sb);
45
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
55 }
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
58
59 f2fs_balance_fs(sbi, dn.node_changed);
60
61 file_update_time(vma->vm_file);
62 lock_page(page);
63 if (unlikely(page->mapping != inode->i_mapping ||
64 page_offset(page) > i_size_read(inode) ||
65 !PageUptodate(page))) {
66 unlock_page(page);
67 err = -EFAULT;
68 goto out;
69 }
70
71 /*
72 * check to see if the page is mapped already (no holes)
73 */
74 if (PageMappedToDisk(page))
75 goto mapped;
76
77 /* page is wholly or partially inside EOF */
78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 i_size_read(inode)) {
80 unsigned offset;
81 offset = i_size_read(inode) & ~PAGE_MASK;
82 zero_user_segment(page, offset, PAGE_SIZE);
83 }
84 set_page_dirty(page);
85 if (!PageUptodate(page))
86 SetPageUptodate(page);
87
88 trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 /* fill the page */
91 f2fs_wait_on_page_writeback(page, DATA, false);
92
93 /* wait for GCed encrypted page writeback */
94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96
97 /* if gced page is attached, don't write to cold segment */
98 clear_cold_data(page);
99 out:
100 sb_end_pagefault(inode->i_sb);
101 f2fs_update_time(sbi, REQ_TIME);
102 return block_page_mkwrite_return(err);
103 }
104
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 .fault = filemap_fault,
107 .map_pages = filemap_map_pages,
108 .page_mkwrite = f2fs_vm_page_mkwrite,
109 };
110
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
112 {
113 struct dentry *dentry;
114
115 inode = igrab(inode);
116 dentry = d_find_any_alias(inode);
117 iput(inode);
118 if (!dentry)
119 return 0;
120
121 if (update_dent_inode(inode, inode, &dentry->d_name)) {
122 dput(dentry);
123 return 0;
124 }
125
126 *pino = parent_ino(dentry);
127 dput(dentry);
128 return 1;
129 }
130
131 static inline bool need_do_checkpoint(struct inode *inode)
132 {
133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 bool need_cp = false;
135
136 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137 need_cp = true;
138 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
139 need_cp = true;
140 else if (file_wrong_pino(inode))
141 need_cp = true;
142 else if (!space_for_roll_forward(sbi))
143 need_cp = true;
144 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
145 need_cp = true;
146 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
147 need_cp = true;
148 else if (test_opt(sbi, FASTBOOT))
149 need_cp = true;
150 else if (sbi->active_logs == 2)
151 need_cp = true;
152
153 return need_cp;
154 }
155
156 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
157 {
158 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
159 bool ret = false;
160 /* But we need to avoid that there are some inode updates */
161 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
162 ret = true;
163 f2fs_put_page(i, 0);
164 return ret;
165 }
166
167 static void try_to_fix_pino(struct inode *inode)
168 {
169 struct f2fs_inode_info *fi = F2FS_I(inode);
170 nid_t pino;
171
172 down_write(&fi->i_sem);
173 fi->xattr_ver = 0;
174 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
175 get_parent_ino(inode, &pino)) {
176 f2fs_i_pino_write(inode, pino);
177 file_got_pino(inode);
178 }
179 up_write(&fi->i_sem);
180 }
181
182 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
183 int datasync, bool atomic)
184 {
185 struct inode *inode = file->f_mapping->host;
186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 nid_t ino = inode->i_ino;
188 int ret = 0;
189 bool need_cp = false;
190 struct writeback_control wbc = {
191 .sync_mode = WB_SYNC_ALL,
192 .nr_to_write = LONG_MAX,
193 .for_reclaim = 0,
194 };
195
196 if (unlikely(f2fs_readonly(inode->i_sb)))
197 return 0;
198
199 trace_f2fs_sync_file_enter(inode);
200
201 /* if fdatasync is triggered, let's do in-place-update */
202 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
203 set_inode_flag(inode, FI_NEED_IPU);
204 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
205 clear_inode_flag(inode, FI_NEED_IPU);
206
207 if (ret) {
208 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
209 return ret;
210 }
211
212 /* if the inode is dirty, let's recover all the time */
213 if (!datasync && !f2fs_skip_inode_update(inode)) {
214 f2fs_write_inode(inode, NULL);
215 goto go_write;
216 }
217
218 /*
219 * if there is no written data, don't waste time to write recovery info.
220 */
221 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
222 !exist_written_data(sbi, ino, APPEND_INO)) {
223
224 /* it may call write_inode just prior to fsync */
225 if (need_inode_page_update(sbi, ino))
226 goto go_write;
227
228 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
229 exist_written_data(sbi, ino, UPDATE_INO))
230 goto flush_out;
231 goto out;
232 }
233 go_write:
234 /*
235 * Both of fdatasync() and fsync() are able to be recovered from
236 * sudden-power-off.
237 */
238 down_read(&F2FS_I(inode)->i_sem);
239 need_cp = need_do_checkpoint(inode);
240 up_read(&F2FS_I(inode)->i_sem);
241
242 if (need_cp) {
243 /* all the dirty node pages should be flushed for POR */
244 ret = f2fs_sync_fs(inode->i_sb, 1);
245
246 /*
247 * We've secured consistency through sync_fs. Following pino
248 * will be used only for fsynced inodes after checkpoint.
249 */
250 try_to_fix_pino(inode);
251 clear_inode_flag(inode, FI_APPEND_WRITE);
252 clear_inode_flag(inode, FI_UPDATE_WRITE);
253 goto out;
254 }
255 sync_nodes:
256 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
257 if (ret)
258 goto out;
259
260 /* if cp_error was enabled, we should avoid infinite loop */
261 if (unlikely(f2fs_cp_error(sbi))) {
262 ret = -EIO;
263 goto out;
264 }
265
266 if (need_inode_block_update(sbi, ino)) {
267 f2fs_mark_inode_dirty_sync(inode);
268 f2fs_write_inode(inode, NULL);
269 goto sync_nodes;
270 }
271
272 ret = wait_on_node_pages_writeback(sbi, ino);
273 if (ret)
274 goto out;
275
276 /* once recovery info is written, don't need to tack this */
277 remove_ino_entry(sbi, ino, APPEND_INO);
278 clear_inode_flag(inode, FI_APPEND_WRITE);
279 flush_out:
280 remove_ino_entry(sbi, ino, UPDATE_INO);
281 clear_inode_flag(inode, FI_UPDATE_WRITE);
282 ret = f2fs_issue_flush(sbi);
283 f2fs_update_time(sbi, REQ_TIME);
284 out:
285 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
286 f2fs_trace_ios(NULL, 1);
287 return ret;
288 }
289
290 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
291 {
292 return f2fs_do_sync_file(file, start, end, datasync, false);
293 }
294
295 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
296 pgoff_t pgofs, int whence)
297 {
298 struct pagevec pvec;
299 int nr_pages;
300
301 if (whence != SEEK_DATA)
302 return 0;
303
304 /* find first dirty page index */
305 pagevec_init(&pvec, 0);
306 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
307 PAGECACHE_TAG_DIRTY, 1);
308 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
309 pagevec_release(&pvec);
310 return pgofs;
311 }
312
313 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
314 int whence)
315 {
316 switch (whence) {
317 case SEEK_DATA:
318 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
319 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
320 return true;
321 break;
322 case SEEK_HOLE:
323 if (blkaddr == NULL_ADDR)
324 return true;
325 break;
326 }
327 return false;
328 }
329
330 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
331 {
332 struct inode *inode = file->f_mapping->host;
333 loff_t maxbytes = inode->i_sb->s_maxbytes;
334 struct dnode_of_data dn;
335 pgoff_t pgofs, end_offset, dirty;
336 loff_t data_ofs = offset;
337 loff_t isize;
338 int err = 0;
339
340 inode_lock(inode);
341
342 isize = i_size_read(inode);
343 if (offset >= isize)
344 goto fail;
345
346 /* handle inline data case */
347 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
348 if (whence == SEEK_HOLE)
349 data_ofs = isize;
350 goto found;
351 }
352
353 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
354
355 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
356
357 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
358 set_new_dnode(&dn, inode, NULL, NULL, 0);
359 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
360 if (err && err != -ENOENT) {
361 goto fail;
362 } else if (err == -ENOENT) {
363 /* direct node does not exists */
364 if (whence == SEEK_DATA) {
365 pgofs = get_next_page_offset(&dn, pgofs);
366 continue;
367 } else {
368 goto found;
369 }
370 }
371
372 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
373
374 /* find data/hole in dnode block */
375 for (; dn.ofs_in_node < end_offset;
376 dn.ofs_in_node++, pgofs++,
377 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
378 block_t blkaddr;
379 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
380
381 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
382 f2fs_put_dnode(&dn);
383 goto found;
384 }
385 }
386 f2fs_put_dnode(&dn);
387 }
388
389 if (whence == SEEK_DATA)
390 goto fail;
391 found:
392 if (whence == SEEK_HOLE && data_ofs > isize)
393 data_ofs = isize;
394 inode_unlock(inode);
395 return vfs_setpos(file, data_ofs, maxbytes);
396 fail:
397 inode_unlock(inode);
398 return -ENXIO;
399 }
400
401 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
402 {
403 struct inode *inode = file->f_mapping->host;
404 loff_t maxbytes = inode->i_sb->s_maxbytes;
405
406 switch (whence) {
407 case SEEK_SET:
408 case SEEK_CUR:
409 case SEEK_END:
410 return generic_file_llseek_size(file, offset, whence,
411 maxbytes, i_size_read(inode));
412 case SEEK_DATA:
413 case SEEK_HOLE:
414 if (offset < 0)
415 return -ENXIO;
416 return f2fs_seek_block(file, offset, whence);
417 }
418
419 return -EINVAL;
420 }
421
422 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
423 {
424 struct inode *inode = file_inode(file);
425 int err;
426
427 if (f2fs_encrypted_inode(inode)) {
428 err = fscrypt_get_encryption_info(inode);
429 if (err)
430 return 0;
431 if (!f2fs_encrypted_inode(inode))
432 return -ENOKEY;
433 }
434
435 /* we don't need to use inline_data strictly */
436 err = f2fs_convert_inline_inode(inode);
437 if (err)
438 return err;
439
440 file_accessed(file);
441 vma->vm_ops = &f2fs_file_vm_ops;
442 return 0;
443 }
444
445 static int f2fs_file_open(struct inode *inode, struct file *filp)
446 {
447 int ret = generic_file_open(inode, filp);
448 struct dentry *dir;
449
450 if (!ret && f2fs_encrypted_inode(inode)) {
451 ret = fscrypt_get_encryption_info(inode);
452 if (ret)
453 return -EACCES;
454 if (!fscrypt_has_encryption_key(inode))
455 return -ENOKEY;
456 }
457 dir = dget_parent(file_dentry(filp));
458 if (f2fs_encrypted_inode(d_inode(dir)) &&
459 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
460 dput(dir);
461 return -EPERM;
462 }
463 dput(dir);
464 return ret;
465 }
466
467 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
468 {
469 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
470 struct f2fs_node *raw_node;
471 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
472 __le32 *addr;
473
474 raw_node = F2FS_NODE(dn->node_page);
475 addr = blkaddr_in_node(raw_node) + ofs;
476
477 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
478 block_t blkaddr = le32_to_cpu(*addr);
479 if (blkaddr == NULL_ADDR)
480 continue;
481
482 dn->data_blkaddr = NULL_ADDR;
483 set_data_blkaddr(dn);
484 invalidate_blocks(sbi, blkaddr);
485 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
486 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
487 nr_free++;
488 }
489
490 if (nr_free) {
491 pgoff_t fofs;
492 /*
493 * once we invalidate valid blkaddr in range [ofs, ofs + count],
494 * we will invalidate all blkaddr in the whole range.
495 */
496 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
497 dn->inode) + ofs;
498 f2fs_update_extent_cache_range(dn, fofs, 0, len);
499 dec_valid_block_count(sbi, dn->inode, nr_free);
500 }
501 dn->ofs_in_node = ofs;
502
503 f2fs_update_time(sbi, REQ_TIME);
504 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
505 dn->ofs_in_node, nr_free);
506 return nr_free;
507 }
508
509 void truncate_data_blocks(struct dnode_of_data *dn)
510 {
511 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
512 }
513
514 static int truncate_partial_data_page(struct inode *inode, u64 from,
515 bool cache_only)
516 {
517 unsigned offset = from & (PAGE_SIZE - 1);
518 pgoff_t index = from >> PAGE_SHIFT;
519 struct address_space *mapping = inode->i_mapping;
520 struct page *page;
521
522 if (!offset && !cache_only)
523 return 0;
524
525 if (cache_only) {
526 page = f2fs_grab_cache_page(mapping, index, false);
527 if (page && PageUptodate(page))
528 goto truncate_out;
529 f2fs_put_page(page, 1);
530 return 0;
531 }
532
533 page = get_lock_data_page(inode, index, true);
534 if (IS_ERR(page))
535 return 0;
536 truncate_out:
537 f2fs_wait_on_page_writeback(page, DATA, true);
538 zero_user(page, offset, PAGE_SIZE - offset);
539 if (!cache_only || !f2fs_encrypted_inode(inode) ||
540 !S_ISREG(inode->i_mode))
541 set_page_dirty(page);
542 f2fs_put_page(page, 1);
543 return 0;
544 }
545
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
547 {
548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 unsigned int blocksize = inode->i_sb->s_blocksize;
550 struct dnode_of_data dn;
551 pgoff_t free_from;
552 int count = 0, err = 0;
553 struct page *ipage;
554 bool truncate_page = false;
555
556 trace_f2fs_truncate_blocks_enter(inode, from);
557
558 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
559
560 if (free_from >= sbi->max_file_blocks)
561 goto free_partial;
562
563 if (lock)
564 f2fs_lock_op(sbi);
565
566 ipage = get_node_page(sbi, inode->i_ino);
567 if (IS_ERR(ipage)) {
568 err = PTR_ERR(ipage);
569 goto out;
570 }
571
572 if (f2fs_has_inline_data(inode)) {
573 if (truncate_inline_inode(ipage, from))
574 set_page_dirty(ipage);
575 f2fs_put_page(ipage, 1);
576 truncate_page = true;
577 goto out;
578 }
579
580 set_new_dnode(&dn, inode, ipage, NULL, 0);
581 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
582 if (err) {
583 if (err == -ENOENT)
584 goto free_next;
585 goto out;
586 }
587
588 count = ADDRS_PER_PAGE(dn.node_page, inode);
589
590 count -= dn.ofs_in_node;
591 f2fs_bug_on(sbi, count < 0);
592
593 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
594 truncate_data_blocks_range(&dn, count);
595 free_from += count;
596 }
597
598 f2fs_put_dnode(&dn);
599 free_next:
600 err = truncate_inode_blocks(inode, free_from);
601 out:
602 if (lock)
603 f2fs_unlock_op(sbi);
604 free_partial:
605 /* lastly zero out the first data page */
606 if (!err)
607 err = truncate_partial_data_page(inode, from, truncate_page);
608
609 trace_f2fs_truncate_blocks_exit(inode, err);
610 return err;
611 }
612
613 int f2fs_truncate(struct inode *inode)
614 {
615 int err;
616
617 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
618 S_ISLNK(inode->i_mode)))
619 return 0;
620
621 trace_f2fs_truncate(inode);
622
623 /* we should check inline_data size */
624 if (!f2fs_may_inline_data(inode)) {
625 err = f2fs_convert_inline_inode(inode);
626 if (err)
627 return err;
628 }
629
630 err = truncate_blocks(inode, i_size_read(inode), true);
631 if (err)
632 return err;
633
634 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
635 f2fs_mark_inode_dirty_sync(inode);
636 return 0;
637 }
638
639 int f2fs_getattr(struct vfsmount *mnt,
640 struct dentry *dentry, struct kstat *stat)
641 {
642 struct inode *inode = d_inode(dentry);
643 generic_fillattr(inode, stat);
644 stat->blocks <<= 3;
645 return 0;
646 }
647
648 #ifdef CONFIG_F2FS_FS_POSIX_ACL
649 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
650 {
651 unsigned int ia_valid = attr->ia_valid;
652
653 if (ia_valid & ATTR_UID)
654 inode->i_uid = attr->ia_uid;
655 if (ia_valid & ATTR_GID)
656 inode->i_gid = attr->ia_gid;
657 if (ia_valid & ATTR_ATIME)
658 inode->i_atime = timespec_trunc(attr->ia_atime,
659 inode->i_sb->s_time_gran);
660 if (ia_valid & ATTR_MTIME)
661 inode->i_mtime = timespec_trunc(attr->ia_mtime,
662 inode->i_sb->s_time_gran);
663 if (ia_valid & ATTR_CTIME)
664 inode->i_ctime = timespec_trunc(attr->ia_ctime,
665 inode->i_sb->s_time_gran);
666 if (ia_valid & ATTR_MODE) {
667 umode_t mode = attr->ia_mode;
668
669 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
670 mode &= ~S_ISGID;
671 set_acl_inode(inode, mode);
672 }
673 }
674 #else
675 #define __setattr_copy setattr_copy
676 #endif
677
678 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
679 {
680 struct inode *inode = d_inode(dentry);
681 int err;
682
683 err = inode_change_ok(inode, attr);
684 if (err)
685 return err;
686
687 if (attr->ia_valid & ATTR_SIZE) {
688 if (f2fs_encrypted_inode(inode) &&
689 fscrypt_get_encryption_info(inode))
690 return -EACCES;
691
692 if (attr->ia_size <= i_size_read(inode)) {
693 truncate_setsize(inode, attr->ia_size);
694 err = f2fs_truncate(inode);
695 if (err)
696 return err;
697 f2fs_balance_fs(F2FS_I_SB(inode), true);
698 } else {
699 /*
700 * do not trim all blocks after i_size if target size is
701 * larger than i_size.
702 */
703 truncate_setsize(inode, attr->ia_size);
704
705 /* should convert inline inode here */
706 if (!f2fs_may_inline_data(inode)) {
707 err = f2fs_convert_inline_inode(inode);
708 if (err)
709 return err;
710 }
711 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
712 }
713 }
714
715 __setattr_copy(inode, attr);
716
717 if (attr->ia_valid & ATTR_MODE) {
718 err = posix_acl_chmod(inode, get_inode_mode(inode));
719 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
720 inode->i_mode = F2FS_I(inode)->i_acl_mode;
721 clear_inode_flag(inode, FI_ACL_MODE);
722 }
723 }
724
725 f2fs_mark_inode_dirty_sync(inode);
726 return err;
727 }
728
729 const struct inode_operations f2fs_file_inode_operations = {
730 .getattr = f2fs_getattr,
731 .setattr = f2fs_setattr,
732 .get_acl = f2fs_get_acl,
733 .set_acl = f2fs_set_acl,
734 #ifdef CONFIG_F2FS_FS_XATTR
735 .setxattr = generic_setxattr,
736 .getxattr = generic_getxattr,
737 .listxattr = f2fs_listxattr,
738 .removexattr = generic_removexattr,
739 #endif
740 .fiemap = f2fs_fiemap,
741 };
742
743 static int fill_zero(struct inode *inode, pgoff_t index,
744 loff_t start, loff_t len)
745 {
746 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
747 struct page *page;
748
749 if (!len)
750 return 0;
751
752 f2fs_balance_fs(sbi, true);
753
754 f2fs_lock_op(sbi);
755 page = get_new_data_page(inode, NULL, index, false);
756 f2fs_unlock_op(sbi);
757
758 if (IS_ERR(page))
759 return PTR_ERR(page);
760
761 f2fs_wait_on_page_writeback(page, DATA, true);
762 zero_user(page, start, len);
763 set_page_dirty(page);
764 f2fs_put_page(page, 1);
765 return 0;
766 }
767
768 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
769 {
770 int err;
771
772 while (pg_start < pg_end) {
773 struct dnode_of_data dn;
774 pgoff_t end_offset, count;
775
776 set_new_dnode(&dn, inode, NULL, NULL, 0);
777 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
778 if (err) {
779 if (err == -ENOENT) {
780 pg_start++;
781 continue;
782 }
783 return err;
784 }
785
786 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
787 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
788
789 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
790
791 truncate_data_blocks_range(&dn, count);
792 f2fs_put_dnode(&dn);
793
794 pg_start += count;
795 }
796 return 0;
797 }
798
799 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
800 {
801 pgoff_t pg_start, pg_end;
802 loff_t off_start, off_end;
803 int ret;
804
805 ret = f2fs_convert_inline_inode(inode);
806 if (ret)
807 return ret;
808
809 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
810 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
811
812 off_start = offset & (PAGE_SIZE - 1);
813 off_end = (offset + len) & (PAGE_SIZE - 1);
814
815 if (pg_start == pg_end) {
816 ret = fill_zero(inode, pg_start, off_start,
817 off_end - off_start);
818 if (ret)
819 return ret;
820 } else {
821 if (off_start) {
822 ret = fill_zero(inode, pg_start++, off_start,
823 PAGE_SIZE - off_start);
824 if (ret)
825 return ret;
826 }
827 if (off_end) {
828 ret = fill_zero(inode, pg_end, 0, off_end);
829 if (ret)
830 return ret;
831 }
832
833 if (pg_start < pg_end) {
834 struct address_space *mapping = inode->i_mapping;
835 loff_t blk_start, blk_end;
836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
837
838 f2fs_balance_fs(sbi, true);
839
840 blk_start = (loff_t)pg_start << PAGE_SHIFT;
841 blk_end = (loff_t)pg_end << PAGE_SHIFT;
842 truncate_inode_pages_range(mapping, blk_start,
843 blk_end - 1);
844
845 f2fs_lock_op(sbi);
846 ret = truncate_hole(inode, pg_start, pg_end);
847 f2fs_unlock_op(sbi);
848 }
849 }
850
851 return ret;
852 }
853
854 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
855 int *do_replace, pgoff_t off, pgoff_t len)
856 {
857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
858 struct dnode_of_data dn;
859 int ret, done, i;
860
861 next_dnode:
862 set_new_dnode(&dn, inode, NULL, NULL, 0);
863 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
864 if (ret && ret != -ENOENT) {
865 return ret;
866 } else if (ret == -ENOENT) {
867 if (dn.max_level == 0)
868 return -ENOENT;
869 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
870 blkaddr += done;
871 do_replace += done;
872 goto next;
873 }
874
875 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
876 dn.ofs_in_node, len);
877 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
878 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
879 if (!is_checkpointed_data(sbi, *blkaddr)) {
880
881 if (test_opt(sbi, LFS)) {
882 f2fs_put_dnode(&dn);
883 return -ENOTSUPP;
884 }
885
886 /* do not invalidate this block address */
887 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
888 *do_replace = 1;
889 }
890 }
891 f2fs_put_dnode(&dn);
892 next:
893 len -= done;
894 off += done;
895 if (len)
896 goto next_dnode;
897 return 0;
898 }
899
900 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
901 int *do_replace, pgoff_t off, int len)
902 {
903 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
904 struct dnode_of_data dn;
905 int ret, i;
906
907 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
908 if (*do_replace == 0)
909 continue;
910
911 set_new_dnode(&dn, inode, NULL, NULL, 0);
912 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
913 if (ret) {
914 dec_valid_block_count(sbi, inode, 1);
915 invalidate_blocks(sbi, *blkaddr);
916 } else {
917 f2fs_update_data_blkaddr(&dn, *blkaddr);
918 }
919 f2fs_put_dnode(&dn);
920 }
921 return 0;
922 }
923
924 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
925 block_t *blkaddr, int *do_replace,
926 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
927 {
928 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
929 pgoff_t i = 0;
930 int ret;
931
932 while (i < len) {
933 if (blkaddr[i] == NULL_ADDR && !full) {
934 i++;
935 continue;
936 }
937
938 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
939 struct dnode_of_data dn;
940 struct node_info ni;
941 size_t new_size;
942 pgoff_t ilen;
943
944 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
945 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
946 if (ret)
947 return ret;
948
949 get_node_info(sbi, dn.nid, &ni);
950 ilen = min((pgoff_t)
951 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
952 dn.ofs_in_node, len - i);
953 do {
954 dn.data_blkaddr = datablock_addr(dn.node_page,
955 dn.ofs_in_node);
956 truncate_data_blocks_range(&dn, 1);
957
958 if (do_replace[i]) {
959 f2fs_i_blocks_write(src_inode,
960 1, false);
961 f2fs_i_blocks_write(dst_inode,
962 1, true);
963 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
964 blkaddr[i], ni.version, true, false);
965
966 do_replace[i] = 0;
967 }
968 dn.ofs_in_node++;
969 i++;
970 new_size = (dst + i) << PAGE_SHIFT;
971 if (dst_inode->i_size < new_size)
972 f2fs_i_size_write(dst_inode, new_size);
973 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
974
975 f2fs_put_dnode(&dn);
976 } else {
977 struct page *psrc, *pdst;
978
979 psrc = get_lock_data_page(src_inode, src + i, true);
980 if (IS_ERR(psrc))
981 return PTR_ERR(psrc);
982 pdst = get_new_data_page(dst_inode, NULL, dst + i,
983 true);
984 if (IS_ERR(pdst)) {
985 f2fs_put_page(psrc, 1);
986 return PTR_ERR(pdst);
987 }
988 f2fs_copy_page(psrc, pdst);
989 set_page_dirty(pdst);
990 f2fs_put_page(pdst, 1);
991 f2fs_put_page(psrc, 1);
992
993 ret = truncate_hole(src_inode, src + i, src + i + 1);
994 if (ret)
995 return ret;
996 i++;
997 }
998 }
999 return 0;
1000 }
1001
1002 static int __exchange_data_block(struct inode *src_inode,
1003 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1004 pgoff_t len, bool full)
1005 {
1006 block_t *src_blkaddr;
1007 int *do_replace;
1008 pgoff_t olen;
1009 int ret;
1010
1011 while (len) {
1012 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1013
1014 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1015 if (!src_blkaddr)
1016 return -ENOMEM;
1017
1018 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1019 if (!do_replace) {
1020 kvfree(src_blkaddr);
1021 return -ENOMEM;
1022 }
1023
1024 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1025 do_replace, src, olen);
1026 if (ret)
1027 goto roll_back;
1028
1029 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1030 do_replace, src, dst, olen, full);
1031 if (ret)
1032 goto roll_back;
1033
1034 src += olen;
1035 dst += olen;
1036 len -= olen;
1037
1038 kvfree(src_blkaddr);
1039 kvfree(do_replace);
1040 }
1041 return 0;
1042
1043 roll_back:
1044 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1045 kvfree(src_blkaddr);
1046 kvfree(do_replace);
1047 return ret;
1048 }
1049
1050 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1051 {
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1054 int ret;
1055
1056 f2fs_balance_fs(sbi, true);
1057 f2fs_lock_op(sbi);
1058
1059 f2fs_drop_extent_tree(inode);
1060
1061 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1062 f2fs_unlock_op(sbi);
1063 return ret;
1064 }
1065
1066 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1067 {
1068 pgoff_t pg_start, pg_end;
1069 loff_t new_size;
1070 int ret;
1071
1072 if (offset + len >= i_size_read(inode))
1073 return -EINVAL;
1074
1075 /* collapse range should be aligned to block size of f2fs. */
1076 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1077 return -EINVAL;
1078
1079 ret = f2fs_convert_inline_inode(inode);
1080 if (ret)
1081 return ret;
1082
1083 pg_start = offset >> PAGE_SHIFT;
1084 pg_end = (offset + len) >> PAGE_SHIFT;
1085
1086 /* write out all dirty pages from offset */
1087 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1088 if (ret)
1089 return ret;
1090
1091 truncate_pagecache(inode, offset);
1092
1093 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1094 if (ret)
1095 return ret;
1096
1097 /* write out all moved pages, if possible */
1098 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1099 truncate_pagecache(inode, offset);
1100
1101 new_size = i_size_read(inode) - len;
1102 truncate_pagecache(inode, new_size);
1103
1104 ret = truncate_blocks(inode, new_size, true);
1105 if (!ret)
1106 f2fs_i_size_write(inode, new_size);
1107
1108 return ret;
1109 }
1110
1111 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1112 pgoff_t end)
1113 {
1114 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1115 pgoff_t index = start;
1116 unsigned int ofs_in_node = dn->ofs_in_node;
1117 blkcnt_t count = 0;
1118 int ret;
1119
1120 for (; index < end; index++, dn->ofs_in_node++) {
1121 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1122 count++;
1123 }
1124
1125 dn->ofs_in_node = ofs_in_node;
1126 ret = reserve_new_blocks(dn, count);
1127 if (ret)
1128 return ret;
1129
1130 dn->ofs_in_node = ofs_in_node;
1131 for (index = start; index < end; index++, dn->ofs_in_node++) {
1132 dn->data_blkaddr =
1133 datablock_addr(dn->node_page, dn->ofs_in_node);
1134 /*
1135 * reserve_new_blocks will not guarantee entire block
1136 * allocation.
1137 */
1138 if (dn->data_blkaddr == NULL_ADDR) {
1139 ret = -ENOSPC;
1140 break;
1141 }
1142 if (dn->data_blkaddr != NEW_ADDR) {
1143 invalidate_blocks(sbi, dn->data_blkaddr);
1144 dn->data_blkaddr = NEW_ADDR;
1145 set_data_blkaddr(dn);
1146 }
1147 }
1148
1149 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1150
1151 return ret;
1152 }
1153
1154 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1155 int mode)
1156 {
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 struct address_space *mapping = inode->i_mapping;
1159 pgoff_t index, pg_start, pg_end;
1160 loff_t new_size = i_size_read(inode);
1161 loff_t off_start, off_end;
1162 int ret = 0;
1163
1164 ret = inode_newsize_ok(inode, (len + offset));
1165 if (ret)
1166 return ret;
1167
1168 ret = f2fs_convert_inline_inode(inode);
1169 if (ret)
1170 return ret;
1171
1172 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1173 if (ret)
1174 return ret;
1175
1176 truncate_pagecache_range(inode, offset, offset + len - 1);
1177
1178 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1179 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1180
1181 off_start = offset & (PAGE_SIZE - 1);
1182 off_end = (offset + len) & (PAGE_SIZE - 1);
1183
1184 if (pg_start == pg_end) {
1185 ret = fill_zero(inode, pg_start, off_start,
1186 off_end - off_start);
1187 if (ret)
1188 return ret;
1189
1190 if (offset + len > new_size)
1191 new_size = offset + len;
1192 new_size = max_t(loff_t, new_size, offset + len);
1193 } else {
1194 if (off_start) {
1195 ret = fill_zero(inode, pg_start++, off_start,
1196 PAGE_SIZE - off_start);
1197 if (ret)
1198 return ret;
1199
1200 new_size = max_t(loff_t, new_size,
1201 (loff_t)pg_start << PAGE_SHIFT);
1202 }
1203
1204 for (index = pg_start; index < pg_end;) {
1205 struct dnode_of_data dn;
1206 unsigned int end_offset;
1207 pgoff_t end;
1208
1209 f2fs_lock_op(sbi);
1210
1211 set_new_dnode(&dn, inode, NULL, NULL, 0);
1212 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1213 if (ret) {
1214 f2fs_unlock_op(sbi);
1215 goto out;
1216 }
1217
1218 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1219 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1220
1221 ret = f2fs_do_zero_range(&dn, index, end);
1222 f2fs_put_dnode(&dn);
1223 f2fs_unlock_op(sbi);
1224 if (ret)
1225 goto out;
1226
1227 index = end;
1228 new_size = max_t(loff_t, new_size,
1229 (loff_t)index << PAGE_SHIFT);
1230 }
1231
1232 if (off_end) {
1233 ret = fill_zero(inode, pg_end, 0, off_end);
1234 if (ret)
1235 goto out;
1236
1237 new_size = max_t(loff_t, new_size, offset + len);
1238 }
1239 }
1240
1241 out:
1242 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1243 f2fs_i_size_write(inode, new_size);
1244
1245 return ret;
1246 }
1247
1248 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1249 {
1250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1251 pgoff_t nr, pg_start, pg_end, delta, idx;
1252 loff_t new_size;
1253 int ret = 0;
1254
1255 new_size = i_size_read(inode) + len;
1256 if (new_size > inode->i_sb->s_maxbytes)
1257 return -EFBIG;
1258
1259 if (offset >= i_size_read(inode))
1260 return -EINVAL;
1261
1262 /* insert range should be aligned to block size of f2fs. */
1263 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1264 return -EINVAL;
1265
1266 ret = f2fs_convert_inline_inode(inode);
1267 if (ret)
1268 return ret;
1269
1270 f2fs_balance_fs(sbi, true);
1271
1272 ret = truncate_blocks(inode, i_size_read(inode), true);
1273 if (ret)
1274 return ret;
1275
1276 /* write out all dirty pages from offset */
1277 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1278 if (ret)
1279 return ret;
1280
1281 truncate_pagecache(inode, offset);
1282
1283 pg_start = offset >> PAGE_SHIFT;
1284 pg_end = (offset + len) >> PAGE_SHIFT;
1285 delta = pg_end - pg_start;
1286 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1287
1288 while (!ret && idx > pg_start) {
1289 nr = idx - pg_start;
1290 if (nr > delta)
1291 nr = delta;
1292 idx -= nr;
1293
1294 f2fs_lock_op(sbi);
1295 f2fs_drop_extent_tree(inode);
1296
1297 ret = __exchange_data_block(inode, inode, idx,
1298 idx + delta, nr, false);
1299 f2fs_unlock_op(sbi);
1300 }
1301
1302 /* write out all moved pages, if possible */
1303 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1304 truncate_pagecache(inode, offset);
1305
1306 if (!ret)
1307 f2fs_i_size_write(inode, new_size);
1308 return ret;
1309 }
1310
1311 static int expand_inode_data(struct inode *inode, loff_t offset,
1312 loff_t len, int mode)
1313 {
1314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1316 pgoff_t pg_end;
1317 loff_t new_size = i_size_read(inode);
1318 loff_t off_end;
1319 int ret;
1320
1321 ret = inode_newsize_ok(inode, (len + offset));
1322 if (ret)
1323 return ret;
1324
1325 ret = f2fs_convert_inline_inode(inode);
1326 if (ret)
1327 return ret;
1328
1329 f2fs_balance_fs(sbi, true);
1330
1331 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1332 off_end = (offset + len) & (PAGE_SIZE - 1);
1333
1334 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1335 map.m_len = pg_end - map.m_lblk;
1336 if (off_end)
1337 map.m_len++;
1338
1339 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1340 if (ret) {
1341 pgoff_t last_off;
1342
1343 if (!map.m_len)
1344 return ret;
1345
1346 last_off = map.m_lblk + map.m_len - 1;
1347
1348 /* update new size to the failed position */
1349 new_size = (last_off == pg_end) ? offset + len:
1350 (loff_t)(last_off + 1) << PAGE_SHIFT;
1351 } else {
1352 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1353 }
1354
1355 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1356 f2fs_i_size_write(inode, new_size);
1357
1358 return ret;
1359 }
1360
1361 static long f2fs_fallocate(struct file *file, int mode,
1362 loff_t offset, loff_t len)
1363 {
1364 struct inode *inode = file_inode(file);
1365 long ret = 0;
1366
1367 /* f2fs only support ->fallocate for regular file */
1368 if (!S_ISREG(inode->i_mode))
1369 return -EINVAL;
1370
1371 if (f2fs_encrypted_inode(inode) &&
1372 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1373 return -EOPNOTSUPP;
1374
1375 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1376 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1377 FALLOC_FL_INSERT_RANGE))
1378 return -EOPNOTSUPP;
1379
1380 inode_lock(inode);
1381
1382 if (mode & FALLOC_FL_PUNCH_HOLE) {
1383 if (offset >= inode->i_size)
1384 goto out;
1385
1386 ret = punch_hole(inode, offset, len);
1387 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1388 ret = f2fs_collapse_range(inode, offset, len);
1389 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1390 ret = f2fs_zero_range(inode, offset, len, mode);
1391 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1392 ret = f2fs_insert_range(inode, offset, len);
1393 } else {
1394 ret = expand_inode_data(inode, offset, len, mode);
1395 }
1396
1397 if (!ret) {
1398 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1399 f2fs_mark_inode_dirty_sync(inode);
1400 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1401 }
1402
1403 out:
1404 inode_unlock(inode);
1405
1406 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1407 return ret;
1408 }
1409
1410 static int f2fs_release_file(struct inode *inode, struct file *filp)
1411 {
1412 /*
1413 * f2fs_relase_file is called at every close calls. So we should
1414 * not drop any inmemory pages by close called by other process.
1415 */
1416 if (!(filp->f_mode & FMODE_WRITE) ||
1417 atomic_read(&inode->i_writecount) != 1)
1418 return 0;
1419
1420 /* some remained atomic pages should discarded */
1421 if (f2fs_is_atomic_file(inode))
1422 drop_inmem_pages(inode);
1423 if (f2fs_is_volatile_file(inode)) {
1424 clear_inode_flag(inode, FI_VOLATILE_FILE);
1425 set_inode_flag(inode, FI_DROP_CACHE);
1426 filemap_fdatawrite(inode->i_mapping);
1427 clear_inode_flag(inode, FI_DROP_CACHE);
1428 }
1429 return 0;
1430 }
1431
1432 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1433 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1434
1435 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1436 {
1437 if (S_ISDIR(mode))
1438 return flags;
1439 else if (S_ISREG(mode))
1440 return flags & F2FS_REG_FLMASK;
1441 else
1442 return flags & F2FS_OTHER_FLMASK;
1443 }
1444
1445 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1446 {
1447 struct inode *inode = file_inode(filp);
1448 struct f2fs_inode_info *fi = F2FS_I(inode);
1449 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1450 return put_user(flags, (int __user *)arg);
1451 }
1452
1453 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1454 {
1455 struct inode *inode = file_inode(filp);
1456 struct f2fs_inode_info *fi = F2FS_I(inode);
1457 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1458 unsigned int oldflags;
1459 int ret;
1460
1461 if (!inode_owner_or_capable(inode))
1462 return -EACCES;
1463
1464 if (get_user(flags, (int __user *)arg))
1465 return -EFAULT;
1466
1467 ret = mnt_want_write_file(filp);
1468 if (ret)
1469 return ret;
1470
1471 flags = f2fs_mask_flags(inode->i_mode, flags);
1472
1473 inode_lock(inode);
1474
1475 oldflags = fi->i_flags;
1476
1477 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1478 if (!capable(CAP_LINUX_IMMUTABLE)) {
1479 inode_unlock(inode);
1480 ret = -EPERM;
1481 goto out;
1482 }
1483 }
1484
1485 flags = flags & FS_FL_USER_MODIFIABLE;
1486 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1487 fi->i_flags = flags;
1488 inode_unlock(inode);
1489
1490 inode->i_ctime = CURRENT_TIME;
1491 f2fs_set_inode_flags(inode);
1492 out:
1493 mnt_drop_write_file(filp);
1494 return ret;
1495 }
1496
1497 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1498 {
1499 struct inode *inode = file_inode(filp);
1500
1501 return put_user(inode->i_generation, (int __user *)arg);
1502 }
1503
1504 static int f2fs_ioc_start_atomic_write(struct file *filp)
1505 {
1506 struct inode *inode = file_inode(filp);
1507 int ret;
1508
1509 if (!inode_owner_or_capable(inode))
1510 return -EACCES;
1511
1512 ret = mnt_want_write_file(filp);
1513 if (ret)
1514 return ret;
1515
1516 inode_lock(inode);
1517
1518 if (f2fs_is_atomic_file(inode))
1519 goto out;
1520
1521 ret = f2fs_convert_inline_inode(inode);
1522 if (ret)
1523 goto out;
1524
1525 set_inode_flag(inode, FI_ATOMIC_FILE);
1526 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1527
1528 if (!get_dirty_pages(inode))
1529 goto out;
1530
1531 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1532 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1533 inode->i_ino, get_dirty_pages(inode));
1534 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1535 if (ret)
1536 clear_inode_flag(inode, FI_ATOMIC_FILE);
1537 out:
1538 inode_unlock(inode);
1539 mnt_drop_write_file(filp);
1540 return ret;
1541 }
1542
1543 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1544 {
1545 struct inode *inode = file_inode(filp);
1546 int ret;
1547
1548 if (!inode_owner_or_capable(inode))
1549 return -EACCES;
1550
1551 ret = mnt_want_write_file(filp);
1552 if (ret)
1553 return ret;
1554
1555 inode_lock(inode);
1556
1557 if (f2fs_is_volatile_file(inode))
1558 goto err_out;
1559
1560 if (f2fs_is_atomic_file(inode)) {
1561 clear_inode_flag(inode, FI_ATOMIC_FILE);
1562 ret = commit_inmem_pages(inode);
1563 if (ret) {
1564 set_inode_flag(inode, FI_ATOMIC_FILE);
1565 goto err_out;
1566 }
1567 }
1568
1569 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1570 err_out:
1571 inode_unlock(inode);
1572 mnt_drop_write_file(filp);
1573 return ret;
1574 }
1575
1576 static int f2fs_ioc_start_volatile_write(struct file *filp)
1577 {
1578 struct inode *inode = file_inode(filp);
1579 int ret;
1580
1581 if (!inode_owner_or_capable(inode))
1582 return -EACCES;
1583
1584 ret = mnt_want_write_file(filp);
1585 if (ret)
1586 return ret;
1587
1588 inode_lock(inode);
1589
1590 if (f2fs_is_volatile_file(inode))
1591 goto out;
1592
1593 ret = f2fs_convert_inline_inode(inode);
1594 if (ret)
1595 goto out;
1596
1597 set_inode_flag(inode, FI_VOLATILE_FILE);
1598 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1599 out:
1600 inode_unlock(inode);
1601 mnt_drop_write_file(filp);
1602 return ret;
1603 }
1604
1605 static int f2fs_ioc_release_volatile_write(struct file *filp)
1606 {
1607 struct inode *inode = file_inode(filp);
1608 int ret;
1609
1610 if (!inode_owner_or_capable(inode))
1611 return -EACCES;
1612
1613 ret = mnt_want_write_file(filp);
1614 if (ret)
1615 return ret;
1616
1617 inode_lock(inode);
1618
1619 if (!f2fs_is_volatile_file(inode))
1620 goto out;
1621
1622 if (!f2fs_is_first_block_written(inode)) {
1623 ret = truncate_partial_data_page(inode, 0, true);
1624 goto out;
1625 }
1626
1627 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1628 out:
1629 inode_unlock(inode);
1630 mnt_drop_write_file(filp);
1631 return ret;
1632 }
1633
1634 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1635 {
1636 struct inode *inode = file_inode(filp);
1637 int ret;
1638
1639 if (!inode_owner_or_capable(inode))
1640 return -EACCES;
1641
1642 ret = mnt_want_write_file(filp);
1643 if (ret)
1644 return ret;
1645
1646 inode_lock(inode);
1647
1648 if (f2fs_is_atomic_file(inode))
1649 drop_inmem_pages(inode);
1650 if (f2fs_is_volatile_file(inode)) {
1651 clear_inode_flag(inode, FI_VOLATILE_FILE);
1652 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1653 }
1654
1655 inode_unlock(inode);
1656
1657 mnt_drop_write_file(filp);
1658 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1659 return ret;
1660 }
1661
1662 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1663 {
1664 struct inode *inode = file_inode(filp);
1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 struct super_block *sb = sbi->sb;
1667 __u32 in;
1668 int ret;
1669
1670 if (!capable(CAP_SYS_ADMIN))
1671 return -EPERM;
1672
1673 if (get_user(in, (__u32 __user *)arg))
1674 return -EFAULT;
1675
1676 ret = mnt_want_write_file(filp);
1677 if (ret)
1678 return ret;
1679
1680 switch (in) {
1681 case F2FS_GOING_DOWN_FULLSYNC:
1682 sb = freeze_bdev(sb->s_bdev);
1683 if (sb && !IS_ERR(sb)) {
1684 f2fs_stop_checkpoint(sbi, false);
1685 thaw_bdev(sb->s_bdev, sb);
1686 }
1687 break;
1688 case F2FS_GOING_DOWN_METASYNC:
1689 /* do checkpoint only */
1690 f2fs_sync_fs(sb, 1);
1691 f2fs_stop_checkpoint(sbi, false);
1692 break;
1693 case F2FS_GOING_DOWN_NOSYNC:
1694 f2fs_stop_checkpoint(sbi, false);
1695 break;
1696 case F2FS_GOING_DOWN_METAFLUSH:
1697 sync_meta_pages(sbi, META, LONG_MAX);
1698 f2fs_stop_checkpoint(sbi, false);
1699 break;
1700 default:
1701 ret = -EINVAL;
1702 goto out;
1703 }
1704 f2fs_update_time(sbi, REQ_TIME);
1705 out:
1706 mnt_drop_write_file(filp);
1707 return ret;
1708 }
1709
1710 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1711 {
1712 struct inode *inode = file_inode(filp);
1713 struct super_block *sb = inode->i_sb;
1714 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1715 struct fstrim_range range;
1716 int ret;
1717
1718 if (!capable(CAP_SYS_ADMIN))
1719 return -EPERM;
1720
1721 if (!blk_queue_discard(q))
1722 return -EOPNOTSUPP;
1723
1724 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1725 sizeof(range)))
1726 return -EFAULT;
1727
1728 ret = mnt_want_write_file(filp);
1729 if (ret)
1730 return ret;
1731
1732 range.minlen = max((unsigned int)range.minlen,
1733 q->limits.discard_granularity);
1734 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1735 mnt_drop_write_file(filp);
1736 if (ret < 0)
1737 return ret;
1738
1739 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1740 sizeof(range)))
1741 return -EFAULT;
1742 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1743 return 0;
1744 }
1745
1746 static bool uuid_is_nonzero(__u8 u[16])
1747 {
1748 int i;
1749
1750 for (i = 0; i < 16; i++)
1751 if (u[i])
1752 return true;
1753 return false;
1754 }
1755
1756 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1757 {
1758 struct fscrypt_policy policy;
1759 struct inode *inode = file_inode(filp);
1760 int ret;
1761
1762 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1763 sizeof(policy)))
1764 return -EFAULT;
1765
1766 ret = mnt_want_write_file(filp);
1767 if (ret)
1768 return ret;
1769
1770 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1771 ret = fscrypt_process_policy(inode, &policy);
1772
1773 mnt_drop_write_file(filp);
1774 return ret;
1775 }
1776
1777 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1778 {
1779 struct fscrypt_policy policy;
1780 struct inode *inode = file_inode(filp);
1781 int err;
1782
1783 err = fscrypt_get_policy(inode, &policy);
1784 if (err)
1785 return err;
1786
1787 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1788 return -EFAULT;
1789 return 0;
1790 }
1791
1792 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1793 {
1794 struct inode *inode = file_inode(filp);
1795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1796 int err;
1797
1798 if (!f2fs_sb_has_crypto(inode->i_sb))
1799 return -EOPNOTSUPP;
1800
1801 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1802 goto got_it;
1803
1804 err = mnt_want_write_file(filp);
1805 if (err)
1806 return err;
1807
1808 /* update superblock with uuid */
1809 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1810
1811 err = f2fs_commit_super(sbi, false);
1812 if (err) {
1813 /* undo new data */
1814 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1815 mnt_drop_write_file(filp);
1816 return err;
1817 }
1818 mnt_drop_write_file(filp);
1819 got_it:
1820 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1821 16))
1822 return -EFAULT;
1823 return 0;
1824 }
1825
1826 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1827 {
1828 struct inode *inode = file_inode(filp);
1829 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1830 __u32 sync;
1831 int ret;
1832
1833 if (!capable(CAP_SYS_ADMIN))
1834 return -EPERM;
1835
1836 if (get_user(sync, (__u32 __user *)arg))
1837 return -EFAULT;
1838
1839 if (f2fs_readonly(sbi->sb))
1840 return -EROFS;
1841
1842 ret = mnt_want_write_file(filp);
1843 if (ret)
1844 return ret;
1845
1846 if (!sync) {
1847 if (!mutex_trylock(&sbi->gc_mutex)) {
1848 ret = -EBUSY;
1849 goto out;
1850 }
1851 } else {
1852 mutex_lock(&sbi->gc_mutex);
1853 }
1854
1855 ret = f2fs_gc(sbi, sync);
1856 out:
1857 mnt_drop_write_file(filp);
1858 return ret;
1859 }
1860
1861 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1862 {
1863 struct inode *inode = file_inode(filp);
1864 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1865 int ret;
1866
1867 if (!capable(CAP_SYS_ADMIN))
1868 return -EPERM;
1869
1870 if (f2fs_readonly(sbi->sb))
1871 return -EROFS;
1872
1873 ret = mnt_want_write_file(filp);
1874 if (ret)
1875 return ret;
1876
1877 ret = f2fs_sync_fs(sbi->sb, 1);
1878
1879 mnt_drop_write_file(filp);
1880 return ret;
1881 }
1882
1883 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1884 struct file *filp,
1885 struct f2fs_defragment *range)
1886 {
1887 struct inode *inode = file_inode(filp);
1888 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1889 struct extent_info ei;
1890 pgoff_t pg_start, pg_end;
1891 unsigned int blk_per_seg = sbi->blocks_per_seg;
1892 unsigned int total = 0, sec_num;
1893 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1894 block_t blk_end = 0;
1895 bool fragmented = false;
1896 int err;
1897
1898 /* if in-place-update policy is enabled, don't waste time here */
1899 if (need_inplace_update(inode))
1900 return -EINVAL;
1901
1902 pg_start = range->start >> PAGE_SHIFT;
1903 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1904
1905 f2fs_balance_fs(sbi, true);
1906
1907 inode_lock(inode);
1908
1909 /* writeback all dirty pages in the range */
1910 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1911 range->start + range->len - 1);
1912 if (err)
1913 goto out;
1914
1915 /*
1916 * lookup mapping info in extent cache, skip defragmenting if physical
1917 * block addresses are continuous.
1918 */
1919 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1920 if (ei.fofs + ei.len >= pg_end)
1921 goto out;
1922 }
1923
1924 map.m_lblk = pg_start;
1925
1926 /*
1927 * lookup mapping info in dnode page cache, skip defragmenting if all
1928 * physical block addresses are continuous even if there are hole(s)
1929 * in logical blocks.
1930 */
1931 while (map.m_lblk < pg_end) {
1932 map.m_len = pg_end - map.m_lblk;
1933 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1934 if (err)
1935 goto out;
1936
1937 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1938 map.m_lblk++;
1939 continue;
1940 }
1941
1942 if (blk_end && blk_end != map.m_pblk) {
1943 fragmented = true;
1944 break;
1945 }
1946 blk_end = map.m_pblk + map.m_len;
1947
1948 map.m_lblk += map.m_len;
1949 }
1950
1951 if (!fragmented)
1952 goto out;
1953
1954 map.m_lblk = pg_start;
1955 map.m_len = pg_end - pg_start;
1956
1957 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1958
1959 /*
1960 * make sure there are enough free section for LFS allocation, this can
1961 * avoid defragment running in SSR mode when free section are allocated
1962 * intensively
1963 */
1964 if (has_not_enough_free_secs(sbi, sec_num)) {
1965 err = -EAGAIN;
1966 goto out;
1967 }
1968
1969 while (map.m_lblk < pg_end) {
1970 pgoff_t idx;
1971 int cnt = 0;
1972
1973 do_map:
1974 map.m_len = pg_end - map.m_lblk;
1975 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1976 if (err)
1977 goto clear_out;
1978
1979 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1980 map.m_lblk++;
1981 continue;
1982 }
1983
1984 set_inode_flag(inode, FI_DO_DEFRAG);
1985
1986 idx = map.m_lblk;
1987 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1988 struct page *page;
1989
1990 page = get_lock_data_page(inode, idx, true);
1991 if (IS_ERR(page)) {
1992 err = PTR_ERR(page);
1993 goto clear_out;
1994 }
1995
1996 set_page_dirty(page);
1997 f2fs_put_page(page, 1);
1998
1999 idx++;
2000 cnt++;
2001 total++;
2002 }
2003
2004 map.m_lblk = idx;
2005
2006 if (idx < pg_end && cnt < blk_per_seg)
2007 goto do_map;
2008
2009 clear_inode_flag(inode, FI_DO_DEFRAG);
2010
2011 err = filemap_fdatawrite(inode->i_mapping);
2012 if (err)
2013 goto out;
2014 }
2015 clear_out:
2016 clear_inode_flag(inode, FI_DO_DEFRAG);
2017 out:
2018 inode_unlock(inode);
2019 if (!err)
2020 range->len = (u64)total << PAGE_SHIFT;
2021 return err;
2022 }
2023
2024 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2025 {
2026 struct inode *inode = file_inode(filp);
2027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2028 struct f2fs_defragment range;
2029 int err;
2030
2031 if (!capable(CAP_SYS_ADMIN))
2032 return -EPERM;
2033
2034 if (!S_ISREG(inode->i_mode))
2035 return -EINVAL;
2036
2037 err = mnt_want_write_file(filp);
2038 if (err)
2039 return err;
2040
2041 if (f2fs_readonly(sbi->sb)) {
2042 err = -EROFS;
2043 goto out;
2044 }
2045
2046 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2047 sizeof(range))) {
2048 err = -EFAULT;
2049 goto out;
2050 }
2051
2052 /* verify alignment of offset & size */
2053 if (range.start & (F2FS_BLKSIZE - 1) ||
2054 range.len & (F2FS_BLKSIZE - 1)) {
2055 err = -EINVAL;
2056 goto out;
2057 }
2058
2059 err = f2fs_defragment_range(sbi, filp, &range);
2060 f2fs_update_time(sbi, REQ_TIME);
2061 if (err < 0)
2062 goto out;
2063
2064 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2065 sizeof(range)))
2066 err = -EFAULT;
2067 out:
2068 mnt_drop_write_file(filp);
2069 return err;
2070 }
2071
2072 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2073 struct file *file_out, loff_t pos_out, size_t len)
2074 {
2075 struct inode *src = file_inode(file_in);
2076 struct inode *dst = file_inode(file_out);
2077 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2078 size_t olen = len, dst_max_i_size = 0;
2079 size_t dst_osize;
2080 int ret;
2081
2082 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2083 src->i_sb != dst->i_sb)
2084 return -EXDEV;
2085
2086 if (unlikely(f2fs_readonly(src->i_sb)))
2087 return -EROFS;
2088
2089 if (S_ISDIR(src->i_mode) || S_ISDIR(dst->i_mode))
2090 return -EISDIR;
2091
2092 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2093 return -EOPNOTSUPP;
2094
2095 inode_lock(src);
2096 if (src != dst)
2097 inode_lock(dst);
2098
2099 ret = -EINVAL;
2100 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2101 goto out_unlock;
2102 if (len == 0)
2103 olen = len = src->i_size - pos_in;
2104 if (pos_in + len == src->i_size)
2105 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2106 if (len == 0) {
2107 ret = 0;
2108 goto out_unlock;
2109 }
2110
2111 dst_osize = dst->i_size;
2112 if (pos_out + olen > dst->i_size)
2113 dst_max_i_size = pos_out + olen;
2114
2115 /* verify the end result is block aligned */
2116 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2117 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2118 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2119 goto out_unlock;
2120
2121 ret = f2fs_convert_inline_inode(src);
2122 if (ret)
2123 goto out_unlock;
2124
2125 ret = f2fs_convert_inline_inode(dst);
2126 if (ret)
2127 goto out_unlock;
2128
2129 /* write out all dirty pages from offset */
2130 ret = filemap_write_and_wait_range(src->i_mapping,
2131 pos_in, pos_in + len);
2132 if (ret)
2133 goto out_unlock;
2134
2135 ret = filemap_write_and_wait_range(dst->i_mapping,
2136 pos_out, pos_out + len);
2137 if (ret)
2138 goto out_unlock;
2139
2140 f2fs_balance_fs(sbi, true);
2141 f2fs_lock_op(sbi);
2142 ret = __exchange_data_block(src, dst, pos_in,
2143 pos_out, len >> F2FS_BLKSIZE_BITS, false);
2144
2145 if (!ret) {
2146 if (dst_max_i_size)
2147 f2fs_i_size_write(dst, dst_max_i_size);
2148 else if (dst_osize != dst->i_size)
2149 f2fs_i_size_write(dst, dst_osize);
2150 }
2151 f2fs_unlock_op(sbi);
2152 out_unlock:
2153 if (src != dst)
2154 inode_unlock(dst);
2155 inode_unlock(src);
2156 return ret;
2157 }
2158
2159 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2160 {
2161 struct f2fs_move_range range;
2162 struct fd dst;
2163 int err;
2164
2165 if (!(filp->f_mode & FMODE_READ) ||
2166 !(filp->f_mode & FMODE_WRITE))
2167 return -EBADF;
2168
2169 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2170 sizeof(range)))
2171 return -EFAULT;
2172
2173 dst = fdget(range.dst_fd);
2174 if (!dst.file)
2175 return -EBADF;
2176
2177 if (!(dst.file->f_mode & FMODE_WRITE)) {
2178 err = -EBADF;
2179 goto err_out;
2180 }
2181
2182 err = mnt_want_write_file(filp);
2183 if (err)
2184 goto err_out;
2185
2186 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2187 range.pos_out, range.len);
2188
2189 mnt_drop_write_file(filp);
2190
2191 if (copy_to_user((struct f2fs_move_range __user *)arg,
2192 &range, sizeof(range)))
2193 err = -EFAULT;
2194 err_out:
2195 fdput(dst);
2196 return err;
2197 }
2198
2199 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2200 {
2201 switch (cmd) {
2202 case F2FS_IOC_GETFLAGS:
2203 return f2fs_ioc_getflags(filp, arg);
2204 case F2FS_IOC_SETFLAGS:
2205 return f2fs_ioc_setflags(filp, arg);
2206 case F2FS_IOC_GETVERSION:
2207 return f2fs_ioc_getversion(filp, arg);
2208 case F2FS_IOC_START_ATOMIC_WRITE:
2209 return f2fs_ioc_start_atomic_write(filp);
2210 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2211 return f2fs_ioc_commit_atomic_write(filp);
2212 case F2FS_IOC_START_VOLATILE_WRITE:
2213 return f2fs_ioc_start_volatile_write(filp);
2214 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2215 return f2fs_ioc_release_volatile_write(filp);
2216 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2217 return f2fs_ioc_abort_volatile_write(filp);
2218 case F2FS_IOC_SHUTDOWN:
2219 return f2fs_ioc_shutdown(filp, arg);
2220 case FITRIM:
2221 return f2fs_ioc_fitrim(filp, arg);
2222 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2223 return f2fs_ioc_set_encryption_policy(filp, arg);
2224 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2225 return f2fs_ioc_get_encryption_policy(filp, arg);
2226 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2227 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2228 case F2FS_IOC_GARBAGE_COLLECT:
2229 return f2fs_ioc_gc(filp, arg);
2230 case F2FS_IOC_WRITE_CHECKPOINT:
2231 return f2fs_ioc_write_checkpoint(filp, arg);
2232 case F2FS_IOC_DEFRAGMENT:
2233 return f2fs_ioc_defragment(filp, arg);
2234 case F2FS_IOC_MOVE_RANGE:
2235 return f2fs_ioc_move_range(filp, arg);
2236 default:
2237 return -ENOTTY;
2238 }
2239 }
2240
2241 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2242 {
2243 struct file *file = iocb->ki_filp;
2244 struct inode *inode = file_inode(file);
2245 struct blk_plug plug;
2246 ssize_t ret;
2247
2248 if (f2fs_encrypted_inode(inode) &&
2249 !fscrypt_has_encryption_key(inode) &&
2250 fscrypt_get_encryption_info(inode))
2251 return -EACCES;
2252
2253 inode_lock(inode);
2254 ret = generic_write_checks(iocb, from);
2255 if (ret > 0) {
2256 ret = f2fs_preallocate_blocks(iocb, from);
2257 if (!ret) {
2258 blk_start_plug(&plug);
2259 ret = __generic_file_write_iter(iocb, from);
2260 blk_finish_plug(&plug);
2261 }
2262 }
2263 inode_unlock(inode);
2264
2265 if (ret > 0)
2266 ret = generic_write_sync(iocb, ret);
2267 return ret;
2268 }
2269
2270 #ifdef CONFIG_COMPAT
2271 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2272 {
2273 switch (cmd) {
2274 case F2FS_IOC32_GETFLAGS:
2275 cmd = F2FS_IOC_GETFLAGS;
2276 break;
2277 case F2FS_IOC32_SETFLAGS:
2278 cmd = F2FS_IOC_SETFLAGS;
2279 break;
2280 case F2FS_IOC32_GETVERSION:
2281 cmd = F2FS_IOC_GETVERSION;
2282 break;
2283 case F2FS_IOC_START_ATOMIC_WRITE:
2284 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2285 case F2FS_IOC_START_VOLATILE_WRITE:
2286 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2287 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2288 case F2FS_IOC_SHUTDOWN:
2289 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2290 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2291 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2292 case F2FS_IOC_GARBAGE_COLLECT:
2293 case F2FS_IOC_WRITE_CHECKPOINT:
2294 case F2FS_IOC_DEFRAGMENT:
2295 break;
2296 case F2FS_IOC_MOVE_RANGE:
2297 break;
2298 default:
2299 return -ENOIOCTLCMD;
2300 }
2301 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2302 }
2303 #endif
2304
2305 const struct file_operations f2fs_file_operations = {
2306 .llseek = f2fs_llseek,
2307 .read_iter = generic_file_read_iter,
2308 .write_iter = f2fs_file_write_iter,
2309 .open = f2fs_file_open,
2310 .release = f2fs_release_file,
2311 .mmap = f2fs_file_mmap,
2312 .fsync = f2fs_sync_file,
2313 .fallocate = f2fs_fallocate,
2314 .unlocked_ioctl = f2fs_ioctl,
2315 #ifdef CONFIG_COMPAT
2316 .compat_ioctl = f2fs_compat_ioctl,
2317 #endif
2318 .splice_read = generic_file_splice_read,
2319 .splice_write = iter_file_splice_write,
2320 };