]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/file.c
f2fs: fix overflow of size calculation
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 f2fs_balance_fs(sbi);
44
45 sb_start_pagefault(inode->i_sb);
46
47 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48
49 /* block allocation */
50 f2fs_lock_op(sbi);
51 set_new_dnode(&dn, inode, NULL, NULL, 0);
52 err = f2fs_reserve_block(&dn, page->index);
53 if (err) {
54 f2fs_unlock_op(sbi);
55 goto out;
56 }
57 f2fs_put_dnode(&dn);
58 f2fs_unlock_op(sbi);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
78 i_size_read(inode)) {
79 unsigned offset;
80 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
81 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
82 }
83 set_page_dirty(page);
84 SetPageUptodate(page);
85
86 trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 /* fill the page */
89 f2fs_wait_on_page_writeback(page, DATA);
90 /* if gced page is attached, don't write to cold segment */
91 clear_cold_data(page);
92 out:
93 sb_end_pagefault(inode->i_sb);
94 return block_page_mkwrite_return(err);
95 }
96
97 static const struct vm_operations_struct f2fs_file_vm_ops = {
98 .fault = filemap_fault,
99 .map_pages = filemap_map_pages,
100 .page_mkwrite = f2fs_vm_page_mkwrite,
101 };
102
103 static int get_parent_ino(struct inode *inode, nid_t *pino)
104 {
105 struct dentry *dentry;
106
107 inode = igrab(inode);
108 dentry = d_find_any_alias(inode);
109 iput(inode);
110 if (!dentry)
111 return 0;
112
113 if (update_dent_inode(inode, inode, &dentry->d_name)) {
114 dput(dentry);
115 return 0;
116 }
117
118 *pino = parent_ino(dentry);
119 dput(dentry);
120 return 1;
121 }
122
123 static inline bool need_do_checkpoint(struct inode *inode)
124 {
125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
126 bool need_cp = false;
127
128 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
129 need_cp = true;
130 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
131 need_cp = true;
132 else if (file_wrong_pino(inode))
133 need_cp = true;
134 else if (!space_for_roll_forward(sbi))
135 need_cp = true;
136 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
137 need_cp = true;
138 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
139 need_cp = true;
140 else if (test_opt(sbi, FASTBOOT))
141 need_cp = true;
142 else if (sbi->active_logs == 2)
143 need_cp = true;
144
145 return need_cp;
146 }
147
148 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
149 {
150 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
151 bool ret = false;
152 /* But we need to avoid that there are some inode updates */
153 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
154 ret = true;
155 f2fs_put_page(i, 0);
156 return ret;
157 }
158
159 static void try_to_fix_pino(struct inode *inode)
160 {
161 struct f2fs_inode_info *fi = F2FS_I(inode);
162 nid_t pino;
163
164 down_write(&fi->i_sem);
165 fi->xattr_ver = 0;
166 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
167 get_parent_ino(inode, &pino)) {
168 fi->i_pino = pino;
169 file_got_pino(inode);
170 up_write(&fi->i_sem);
171
172 mark_inode_dirty_sync(inode);
173 f2fs_write_inode(inode, NULL);
174 } else {
175 up_write(&fi->i_sem);
176 }
177 }
178
179 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
180 {
181 struct inode *inode = file->f_mapping->host;
182 struct f2fs_inode_info *fi = F2FS_I(inode);
183 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
184 nid_t ino = inode->i_ino;
185 int ret = 0;
186 bool need_cp = false;
187 struct writeback_control wbc = {
188 .sync_mode = WB_SYNC_ALL,
189 .nr_to_write = LONG_MAX,
190 .for_reclaim = 0,
191 };
192
193 if (unlikely(f2fs_readonly(inode->i_sb)))
194 return 0;
195
196 trace_f2fs_sync_file_enter(inode);
197
198 /* if fdatasync is triggered, let's do in-place-update */
199 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
200 set_inode_flag(fi, FI_NEED_IPU);
201 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
202 clear_inode_flag(fi, FI_NEED_IPU);
203
204 if (ret) {
205 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
206 return ret;
207 }
208
209 /* if the inode is dirty, let's recover all the time */
210 if (!datasync) {
211 f2fs_write_inode(inode, NULL);
212 goto go_write;
213 }
214
215 /*
216 * if there is no written data, don't waste time to write recovery info.
217 */
218 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
219 !exist_written_data(sbi, ino, APPEND_INO)) {
220
221 /* it may call write_inode just prior to fsync */
222 if (need_inode_page_update(sbi, ino))
223 goto go_write;
224
225 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
226 exist_written_data(sbi, ino, UPDATE_INO))
227 goto flush_out;
228 goto out;
229 }
230 go_write:
231 /* guarantee free sections for fsync */
232 f2fs_balance_fs(sbi);
233
234 /*
235 * Both of fdatasync() and fsync() are able to be recovered from
236 * sudden-power-off.
237 */
238 down_read(&fi->i_sem);
239 need_cp = need_do_checkpoint(inode);
240 up_read(&fi->i_sem);
241
242 if (need_cp) {
243 /* all the dirty node pages should be flushed for POR */
244 ret = f2fs_sync_fs(inode->i_sb, 1);
245
246 /*
247 * We've secured consistency through sync_fs. Following pino
248 * will be used only for fsynced inodes after checkpoint.
249 */
250 try_to_fix_pino(inode);
251 clear_inode_flag(fi, FI_APPEND_WRITE);
252 clear_inode_flag(fi, FI_UPDATE_WRITE);
253 goto out;
254 }
255 sync_nodes:
256 sync_node_pages(sbi, ino, &wbc);
257
258 /* if cp_error was enabled, we should avoid infinite loop */
259 if (unlikely(f2fs_cp_error(sbi)))
260 goto out;
261
262 if (need_inode_block_update(sbi, ino)) {
263 mark_inode_dirty_sync(inode);
264 f2fs_write_inode(inode, NULL);
265 goto sync_nodes;
266 }
267
268 ret = wait_on_node_pages_writeback(sbi, ino);
269 if (ret)
270 goto out;
271
272 /* once recovery info is written, don't need to tack this */
273 remove_dirty_inode(sbi, ino, APPEND_INO);
274 clear_inode_flag(fi, FI_APPEND_WRITE);
275 flush_out:
276 remove_dirty_inode(sbi, ino, UPDATE_INO);
277 clear_inode_flag(fi, FI_UPDATE_WRITE);
278 ret = f2fs_issue_flush(sbi);
279 out:
280 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
281 f2fs_trace_ios(NULL, 1);
282 return ret;
283 }
284
285 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
286 pgoff_t pgofs, int whence)
287 {
288 struct pagevec pvec;
289 int nr_pages;
290
291 if (whence != SEEK_DATA)
292 return 0;
293
294 /* find first dirty page index */
295 pagevec_init(&pvec, 0);
296 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
297 PAGECACHE_TAG_DIRTY, 1);
298 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
299 pagevec_release(&pvec);
300 return pgofs;
301 }
302
303 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
304 int whence)
305 {
306 switch (whence) {
307 case SEEK_DATA:
308 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
309 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
310 return true;
311 break;
312 case SEEK_HOLE:
313 if (blkaddr == NULL_ADDR)
314 return true;
315 break;
316 }
317 return false;
318 }
319
320 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
321 {
322 struct inode *inode = file->f_mapping->host;
323 loff_t maxbytes = inode->i_sb->s_maxbytes;
324 struct dnode_of_data dn;
325 pgoff_t pgofs, end_offset, dirty;
326 loff_t data_ofs = offset;
327 loff_t isize;
328 int err = 0;
329
330 mutex_lock(&inode->i_mutex);
331
332 isize = i_size_read(inode);
333 if (offset >= isize)
334 goto fail;
335
336 /* handle inline data case */
337 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
338 if (whence == SEEK_HOLE)
339 data_ofs = isize;
340 goto found;
341 }
342
343 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
344
345 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
346
347 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
348 set_new_dnode(&dn, inode, NULL, NULL, 0);
349 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
350 if (err && err != -ENOENT) {
351 goto fail;
352 } else if (err == -ENOENT) {
353 /* direct node does not exists */
354 if (whence == SEEK_DATA) {
355 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
356 F2FS_I(inode));
357 continue;
358 } else {
359 goto found;
360 }
361 }
362
363 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
364
365 /* find data/hole in dnode block */
366 for (; dn.ofs_in_node < end_offset;
367 dn.ofs_in_node++, pgofs++,
368 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
369 block_t blkaddr;
370 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
371
372 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
373 f2fs_put_dnode(&dn);
374 goto found;
375 }
376 }
377 f2fs_put_dnode(&dn);
378 }
379
380 if (whence == SEEK_DATA)
381 goto fail;
382 found:
383 if (whence == SEEK_HOLE && data_ofs > isize)
384 data_ofs = isize;
385 mutex_unlock(&inode->i_mutex);
386 return vfs_setpos(file, data_ofs, maxbytes);
387 fail:
388 mutex_unlock(&inode->i_mutex);
389 return -ENXIO;
390 }
391
392 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
393 {
394 struct inode *inode = file->f_mapping->host;
395 loff_t maxbytes = inode->i_sb->s_maxbytes;
396
397 switch (whence) {
398 case SEEK_SET:
399 case SEEK_CUR:
400 case SEEK_END:
401 return generic_file_llseek_size(file, offset, whence,
402 maxbytes, i_size_read(inode));
403 case SEEK_DATA:
404 case SEEK_HOLE:
405 if (offset < 0)
406 return -ENXIO;
407 return f2fs_seek_block(file, offset, whence);
408 }
409
410 return -EINVAL;
411 }
412
413 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
414 {
415 struct inode *inode = file_inode(file);
416
417 if (f2fs_encrypted_inode(inode)) {
418 int err = f2fs_get_encryption_info(inode);
419 if (err)
420 return 0;
421 }
422
423 /* we don't need to use inline_data strictly */
424 if (f2fs_has_inline_data(inode)) {
425 int err = f2fs_convert_inline_inode(inode);
426 if (err)
427 return err;
428 }
429
430 file_accessed(file);
431 vma->vm_ops = &f2fs_file_vm_ops;
432 return 0;
433 }
434
435 static int f2fs_file_open(struct inode *inode, struct file *filp)
436 {
437 int ret = generic_file_open(inode, filp);
438
439 if (!ret && f2fs_encrypted_inode(inode)) {
440 ret = f2fs_get_encryption_info(inode);
441 if (ret)
442 ret = -EACCES;
443 }
444 return ret;
445 }
446
447 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
448 {
449 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
450 struct f2fs_node *raw_node;
451 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
452 __le32 *addr;
453
454 raw_node = F2FS_NODE(dn->node_page);
455 addr = blkaddr_in_node(raw_node) + ofs;
456
457 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
458 block_t blkaddr = le32_to_cpu(*addr);
459 if (blkaddr == NULL_ADDR)
460 continue;
461
462 dn->data_blkaddr = NULL_ADDR;
463 set_data_blkaddr(dn);
464 invalidate_blocks(sbi, blkaddr);
465 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
466 clear_inode_flag(F2FS_I(dn->inode),
467 FI_FIRST_BLOCK_WRITTEN);
468 nr_free++;
469 }
470
471 if (nr_free) {
472 pgoff_t fofs;
473 /*
474 * once we invalidate valid blkaddr in range [ofs, ofs + count],
475 * we will invalidate all blkaddr in the whole range.
476 */
477 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
478 F2FS_I(dn->inode)) + ofs;
479 f2fs_update_extent_cache_range(dn, fofs, 0, len);
480 dec_valid_block_count(sbi, dn->inode, nr_free);
481 set_page_dirty(dn->node_page);
482 sync_inode_page(dn);
483 }
484 dn->ofs_in_node = ofs;
485
486 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
487 dn->ofs_in_node, nr_free);
488 return nr_free;
489 }
490
491 void truncate_data_blocks(struct dnode_of_data *dn)
492 {
493 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
494 }
495
496 static int truncate_partial_data_page(struct inode *inode, u64 from,
497 bool cache_only)
498 {
499 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
500 pgoff_t index = from >> PAGE_CACHE_SHIFT;
501 struct address_space *mapping = inode->i_mapping;
502 struct page *page;
503
504 if (!offset && !cache_only)
505 return 0;
506
507 if (cache_only) {
508 page = grab_cache_page(mapping, index);
509 if (page && PageUptodate(page))
510 goto truncate_out;
511 f2fs_put_page(page, 1);
512 return 0;
513 }
514
515 page = get_lock_data_page(inode, index);
516 if (IS_ERR(page))
517 return 0;
518 truncate_out:
519 f2fs_wait_on_page_writeback(page, DATA);
520 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
521 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
522 set_page_dirty(page);
523 f2fs_put_page(page, 1);
524 return 0;
525 }
526
527 int truncate_blocks(struct inode *inode, u64 from, bool lock)
528 {
529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
530 unsigned int blocksize = inode->i_sb->s_blocksize;
531 struct dnode_of_data dn;
532 pgoff_t free_from;
533 int count = 0, err = 0;
534 struct page *ipage;
535 bool truncate_page = false;
536
537 trace_f2fs_truncate_blocks_enter(inode, from);
538
539 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
540
541 if (lock)
542 f2fs_lock_op(sbi);
543
544 ipage = get_node_page(sbi, inode->i_ino);
545 if (IS_ERR(ipage)) {
546 err = PTR_ERR(ipage);
547 goto out;
548 }
549
550 if (f2fs_has_inline_data(inode)) {
551 if (truncate_inline_inode(ipage, from))
552 set_page_dirty(ipage);
553 f2fs_put_page(ipage, 1);
554 truncate_page = true;
555 goto out;
556 }
557
558 set_new_dnode(&dn, inode, ipage, NULL, 0);
559 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
560 if (err) {
561 if (err == -ENOENT)
562 goto free_next;
563 goto out;
564 }
565
566 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
567
568 count -= dn.ofs_in_node;
569 f2fs_bug_on(sbi, count < 0);
570
571 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
572 truncate_data_blocks_range(&dn, count);
573 free_from += count;
574 }
575
576 f2fs_put_dnode(&dn);
577 free_next:
578 err = truncate_inode_blocks(inode, free_from);
579 out:
580 if (lock)
581 f2fs_unlock_op(sbi);
582
583 /* lastly zero out the first data page */
584 if (!err)
585 err = truncate_partial_data_page(inode, from, truncate_page);
586
587 trace_f2fs_truncate_blocks_exit(inode, err);
588 return err;
589 }
590
591 int f2fs_truncate(struct inode *inode, bool lock)
592 {
593 int err;
594
595 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
596 S_ISLNK(inode->i_mode)))
597 return 0;
598
599 trace_f2fs_truncate(inode);
600
601 /* we should check inline_data size */
602 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
603 err = f2fs_convert_inline_inode(inode);
604 if (err)
605 return err;
606 }
607
608 err = truncate_blocks(inode, i_size_read(inode), lock);
609 if (err)
610 return err;
611
612 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
613 mark_inode_dirty(inode);
614 return 0;
615 }
616
617 int f2fs_getattr(struct vfsmount *mnt,
618 struct dentry *dentry, struct kstat *stat)
619 {
620 struct inode *inode = d_inode(dentry);
621 generic_fillattr(inode, stat);
622 stat->blocks <<= 3;
623 return 0;
624 }
625
626 #ifdef CONFIG_F2FS_FS_POSIX_ACL
627 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
628 {
629 struct f2fs_inode_info *fi = F2FS_I(inode);
630 unsigned int ia_valid = attr->ia_valid;
631
632 if (ia_valid & ATTR_UID)
633 inode->i_uid = attr->ia_uid;
634 if (ia_valid & ATTR_GID)
635 inode->i_gid = attr->ia_gid;
636 if (ia_valid & ATTR_ATIME)
637 inode->i_atime = timespec_trunc(attr->ia_atime,
638 inode->i_sb->s_time_gran);
639 if (ia_valid & ATTR_MTIME)
640 inode->i_mtime = timespec_trunc(attr->ia_mtime,
641 inode->i_sb->s_time_gran);
642 if (ia_valid & ATTR_CTIME)
643 inode->i_ctime = timespec_trunc(attr->ia_ctime,
644 inode->i_sb->s_time_gran);
645 if (ia_valid & ATTR_MODE) {
646 umode_t mode = attr->ia_mode;
647
648 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
649 mode &= ~S_ISGID;
650 set_acl_inode(fi, mode);
651 }
652 }
653 #else
654 #define __setattr_copy setattr_copy
655 #endif
656
657 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
658 {
659 struct inode *inode = d_inode(dentry);
660 struct f2fs_inode_info *fi = F2FS_I(inode);
661 int err;
662
663 err = inode_change_ok(inode, attr);
664 if (err)
665 return err;
666
667 if (attr->ia_valid & ATTR_SIZE) {
668 if (f2fs_encrypted_inode(inode) &&
669 f2fs_get_encryption_info(inode))
670 return -EACCES;
671
672 if (attr->ia_size <= i_size_read(inode)) {
673 truncate_setsize(inode, attr->ia_size);
674 err = f2fs_truncate(inode, true);
675 if (err)
676 return err;
677 f2fs_balance_fs(F2FS_I_SB(inode));
678 } else {
679 /*
680 * do not trim all blocks after i_size if target size is
681 * larger than i_size.
682 */
683 truncate_setsize(inode, attr->ia_size);
684 }
685 }
686
687 __setattr_copy(inode, attr);
688
689 if (attr->ia_valid & ATTR_MODE) {
690 err = posix_acl_chmod(inode, get_inode_mode(inode));
691 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
692 inode->i_mode = fi->i_acl_mode;
693 clear_inode_flag(fi, FI_ACL_MODE);
694 }
695 }
696
697 mark_inode_dirty(inode);
698 return err;
699 }
700
701 const struct inode_operations f2fs_file_inode_operations = {
702 .getattr = f2fs_getattr,
703 .setattr = f2fs_setattr,
704 .get_acl = f2fs_get_acl,
705 .set_acl = f2fs_set_acl,
706 #ifdef CONFIG_F2FS_FS_XATTR
707 .setxattr = generic_setxattr,
708 .getxattr = generic_getxattr,
709 .listxattr = f2fs_listxattr,
710 .removexattr = generic_removexattr,
711 #endif
712 .fiemap = f2fs_fiemap,
713 };
714
715 static int fill_zero(struct inode *inode, pgoff_t index,
716 loff_t start, loff_t len)
717 {
718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
719 struct page *page;
720
721 if (!len)
722 return 0;
723
724 f2fs_balance_fs(sbi);
725
726 f2fs_lock_op(sbi);
727 page = get_new_data_page(inode, NULL, index, false);
728 f2fs_unlock_op(sbi);
729
730 if (IS_ERR(page))
731 return PTR_ERR(page);
732
733 f2fs_wait_on_page_writeback(page, DATA);
734 zero_user(page, start, len);
735 set_page_dirty(page);
736 f2fs_put_page(page, 1);
737 return 0;
738 }
739
740 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
741 {
742 pgoff_t index;
743 int err;
744
745 for (index = pg_start; index < pg_end; index++) {
746 struct dnode_of_data dn;
747
748 set_new_dnode(&dn, inode, NULL, NULL, 0);
749 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
750 if (err) {
751 if (err == -ENOENT)
752 continue;
753 return err;
754 }
755
756 if (dn.data_blkaddr != NULL_ADDR)
757 truncate_data_blocks_range(&dn, 1);
758 f2fs_put_dnode(&dn);
759 }
760 return 0;
761 }
762
763 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
764 {
765 pgoff_t pg_start, pg_end;
766 loff_t off_start, off_end;
767 int ret = 0;
768
769 if (f2fs_has_inline_data(inode)) {
770 ret = f2fs_convert_inline_inode(inode);
771 if (ret)
772 return ret;
773 }
774
775 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
776 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
777
778 off_start = offset & (PAGE_CACHE_SIZE - 1);
779 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
780
781 if (pg_start == pg_end) {
782 ret = fill_zero(inode, pg_start, off_start,
783 off_end - off_start);
784 if (ret)
785 return ret;
786 } else {
787 if (off_start) {
788 ret = fill_zero(inode, pg_start++, off_start,
789 PAGE_CACHE_SIZE - off_start);
790 if (ret)
791 return ret;
792 }
793 if (off_end) {
794 ret = fill_zero(inode, pg_end, 0, off_end);
795 if (ret)
796 return ret;
797 }
798
799 if (pg_start < pg_end) {
800 struct address_space *mapping = inode->i_mapping;
801 loff_t blk_start, blk_end;
802 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
803
804 f2fs_balance_fs(sbi);
805
806 blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
807 blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
808 truncate_inode_pages_range(mapping, blk_start,
809 blk_end - 1);
810
811 f2fs_lock_op(sbi);
812 ret = truncate_hole(inode, pg_start, pg_end);
813 f2fs_unlock_op(sbi);
814 }
815 }
816
817 return ret;
818 }
819
820 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
821 {
822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823 struct dnode_of_data dn;
824 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
825 int ret = 0;
826
827 for (; end < nrpages; start++, end++) {
828 block_t new_addr, old_addr;
829
830 f2fs_lock_op(sbi);
831
832 set_new_dnode(&dn, inode, NULL, NULL, 0);
833 ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
834 if (ret && ret != -ENOENT) {
835 goto out;
836 } else if (ret == -ENOENT) {
837 new_addr = NULL_ADDR;
838 } else {
839 new_addr = dn.data_blkaddr;
840 truncate_data_blocks_range(&dn, 1);
841 f2fs_put_dnode(&dn);
842 }
843
844 if (new_addr == NULL_ADDR) {
845 set_new_dnode(&dn, inode, NULL, NULL, 0);
846 ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
847 if (ret && ret != -ENOENT) {
848 goto out;
849 } else if (ret == -ENOENT) {
850 f2fs_unlock_op(sbi);
851 continue;
852 }
853
854 if (dn.data_blkaddr == NULL_ADDR) {
855 f2fs_put_dnode(&dn);
856 f2fs_unlock_op(sbi);
857 continue;
858 } else {
859 truncate_data_blocks_range(&dn, 1);
860 }
861
862 f2fs_put_dnode(&dn);
863 } else {
864 struct page *ipage;
865
866 ipage = get_node_page(sbi, inode->i_ino);
867 if (IS_ERR(ipage)) {
868 ret = PTR_ERR(ipage);
869 goto out;
870 }
871
872 set_new_dnode(&dn, inode, ipage, NULL, 0);
873 ret = f2fs_reserve_block(&dn, start);
874 if (ret)
875 goto out;
876
877 old_addr = dn.data_blkaddr;
878 if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
879 dn.data_blkaddr = NULL_ADDR;
880 f2fs_update_extent_cache(&dn);
881 invalidate_blocks(sbi, old_addr);
882
883 dn.data_blkaddr = new_addr;
884 set_data_blkaddr(&dn);
885 } else if (new_addr != NEW_ADDR) {
886 struct node_info ni;
887
888 get_node_info(sbi, dn.nid, &ni);
889 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
890 ni.version, true);
891 }
892
893 f2fs_put_dnode(&dn);
894 }
895 f2fs_unlock_op(sbi);
896 }
897 return 0;
898 out:
899 f2fs_unlock_op(sbi);
900 return ret;
901 }
902
903 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
904 {
905 pgoff_t pg_start, pg_end;
906 loff_t new_size;
907 int ret;
908
909 if (offset + len >= i_size_read(inode))
910 return -EINVAL;
911
912 /* collapse range should be aligned to block size of f2fs. */
913 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
914 return -EINVAL;
915
916 f2fs_balance_fs(F2FS_I_SB(inode));
917
918 if (f2fs_has_inline_data(inode)) {
919 ret = f2fs_convert_inline_inode(inode);
920 if (ret)
921 return ret;
922 }
923
924 pg_start = offset >> PAGE_CACHE_SHIFT;
925 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
926
927 /* write out all dirty pages from offset */
928 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
929 if (ret)
930 return ret;
931
932 truncate_pagecache(inode, offset);
933
934 ret = f2fs_do_collapse(inode, pg_start, pg_end);
935 if (ret)
936 return ret;
937
938 new_size = i_size_read(inode) - len;
939
940 ret = truncate_blocks(inode, new_size, true);
941 if (!ret)
942 i_size_write(inode, new_size);
943
944 return ret;
945 }
946
947 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
948 int mode)
949 {
950 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
951 struct address_space *mapping = inode->i_mapping;
952 pgoff_t index, pg_start, pg_end;
953 loff_t new_size = i_size_read(inode);
954 loff_t off_start, off_end;
955 int ret = 0;
956
957 ret = inode_newsize_ok(inode, (len + offset));
958 if (ret)
959 return ret;
960
961 f2fs_balance_fs(sbi);
962
963 if (f2fs_has_inline_data(inode)) {
964 ret = f2fs_convert_inline_inode(inode);
965 if (ret)
966 return ret;
967 }
968
969 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
970 if (ret)
971 return ret;
972
973 truncate_pagecache_range(inode, offset, offset + len - 1);
974
975 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
976 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
977
978 off_start = offset & (PAGE_CACHE_SIZE - 1);
979 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
980
981 if (pg_start == pg_end) {
982 ret = fill_zero(inode, pg_start, off_start,
983 off_end - off_start);
984 if (ret)
985 return ret;
986
987 if (offset + len > new_size)
988 new_size = offset + len;
989 new_size = max_t(loff_t, new_size, offset + len);
990 } else {
991 if (off_start) {
992 ret = fill_zero(inode, pg_start++, off_start,
993 PAGE_CACHE_SIZE - off_start);
994 if (ret)
995 return ret;
996
997 new_size = max_t(loff_t, new_size,
998 (loff_t)pg_start << PAGE_CACHE_SHIFT);
999 }
1000
1001 for (index = pg_start; index < pg_end; index++) {
1002 struct dnode_of_data dn;
1003 struct page *ipage;
1004
1005 f2fs_lock_op(sbi);
1006
1007 ipage = get_node_page(sbi, inode->i_ino);
1008 if (IS_ERR(ipage)) {
1009 ret = PTR_ERR(ipage);
1010 f2fs_unlock_op(sbi);
1011 goto out;
1012 }
1013
1014 set_new_dnode(&dn, inode, ipage, NULL, 0);
1015 ret = f2fs_reserve_block(&dn, index);
1016 if (ret) {
1017 f2fs_unlock_op(sbi);
1018 goto out;
1019 }
1020
1021 if (dn.data_blkaddr != NEW_ADDR) {
1022 invalidate_blocks(sbi, dn.data_blkaddr);
1023
1024 dn.data_blkaddr = NEW_ADDR;
1025 set_data_blkaddr(&dn);
1026
1027 dn.data_blkaddr = NULL_ADDR;
1028 f2fs_update_extent_cache(&dn);
1029 }
1030 f2fs_put_dnode(&dn);
1031 f2fs_unlock_op(sbi);
1032
1033 new_size = max_t(loff_t, new_size,
1034 (loff_t)(index + 1) << PAGE_CACHE_SHIFT);
1035 }
1036
1037 if (off_end) {
1038 ret = fill_zero(inode, pg_end, 0, off_end);
1039 if (ret)
1040 goto out;
1041
1042 new_size = max_t(loff_t, new_size, offset + len);
1043 }
1044 }
1045
1046 out:
1047 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1048 i_size_write(inode, new_size);
1049 mark_inode_dirty(inode);
1050 update_inode_page(inode);
1051 }
1052
1053 return ret;
1054 }
1055
1056 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1057 {
1058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1059 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1060 loff_t new_size;
1061 int ret;
1062
1063 new_size = i_size_read(inode) + len;
1064 if (new_size > inode->i_sb->s_maxbytes)
1065 return -EFBIG;
1066
1067 if (offset >= i_size_read(inode))
1068 return -EINVAL;
1069
1070 /* insert range should be aligned to block size of f2fs. */
1071 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1072 return -EINVAL;
1073
1074 f2fs_balance_fs(sbi);
1075
1076 if (f2fs_has_inline_data(inode)) {
1077 ret = f2fs_convert_inline_inode(inode);
1078 if (ret)
1079 return ret;
1080 }
1081
1082 ret = truncate_blocks(inode, i_size_read(inode), true);
1083 if (ret)
1084 return ret;
1085
1086 /* write out all dirty pages from offset */
1087 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1088 if (ret)
1089 return ret;
1090
1091 truncate_pagecache(inode, offset);
1092
1093 pg_start = offset >> PAGE_CACHE_SHIFT;
1094 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1095 delta = pg_end - pg_start;
1096 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1097
1098 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1099 struct dnode_of_data dn;
1100 struct page *ipage;
1101 block_t new_addr, old_addr;
1102
1103 f2fs_lock_op(sbi);
1104
1105 set_new_dnode(&dn, inode, NULL, NULL, 0);
1106 ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
1107 if (ret && ret != -ENOENT) {
1108 goto out;
1109 } else if (ret == -ENOENT) {
1110 goto next;
1111 } else if (dn.data_blkaddr == NULL_ADDR) {
1112 f2fs_put_dnode(&dn);
1113 goto next;
1114 } else {
1115 new_addr = dn.data_blkaddr;
1116 truncate_data_blocks_range(&dn, 1);
1117 f2fs_put_dnode(&dn);
1118 }
1119
1120 ipage = get_node_page(sbi, inode->i_ino);
1121 if (IS_ERR(ipage)) {
1122 ret = PTR_ERR(ipage);
1123 goto out;
1124 }
1125
1126 set_new_dnode(&dn, inode, ipage, NULL, 0);
1127 ret = f2fs_reserve_block(&dn, idx + delta);
1128 if (ret)
1129 goto out;
1130
1131 old_addr = dn.data_blkaddr;
1132 f2fs_bug_on(sbi, old_addr != NEW_ADDR);
1133
1134 if (new_addr != NEW_ADDR) {
1135 struct node_info ni;
1136
1137 get_node_info(sbi, dn.nid, &ni);
1138 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
1139 ni.version, true);
1140 }
1141 f2fs_put_dnode(&dn);
1142 next:
1143 f2fs_unlock_op(sbi);
1144 }
1145
1146 i_size_write(inode, new_size);
1147 return 0;
1148 out:
1149 f2fs_unlock_op(sbi);
1150 return ret;
1151 }
1152
1153 static int expand_inode_data(struct inode *inode, loff_t offset,
1154 loff_t len, int mode)
1155 {
1156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1157 pgoff_t index, pg_start, pg_end;
1158 loff_t new_size = i_size_read(inode);
1159 loff_t off_start, off_end;
1160 int ret = 0;
1161
1162 f2fs_balance_fs(sbi);
1163
1164 ret = inode_newsize_ok(inode, (len + offset));
1165 if (ret)
1166 return ret;
1167
1168 if (f2fs_has_inline_data(inode)) {
1169 ret = f2fs_convert_inline_inode(inode);
1170 if (ret)
1171 return ret;
1172 }
1173
1174 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1175 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1176
1177 off_start = offset & (PAGE_CACHE_SIZE - 1);
1178 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1179
1180 f2fs_lock_op(sbi);
1181
1182 for (index = pg_start; index <= pg_end; index++) {
1183 struct dnode_of_data dn;
1184
1185 if (index == pg_end && !off_end)
1186 goto noalloc;
1187
1188 set_new_dnode(&dn, inode, NULL, NULL, 0);
1189 ret = f2fs_reserve_block(&dn, index);
1190 if (ret)
1191 break;
1192 noalloc:
1193 if (pg_start == pg_end)
1194 new_size = offset + len;
1195 else if (index == pg_start && off_start)
1196 new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
1197 else if (index == pg_end)
1198 new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
1199 off_end;
1200 else
1201 new_size += PAGE_CACHE_SIZE;
1202 }
1203
1204 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1205 i_size_read(inode) < new_size) {
1206 i_size_write(inode, new_size);
1207 mark_inode_dirty(inode);
1208 update_inode_page(inode);
1209 }
1210 f2fs_unlock_op(sbi);
1211
1212 return ret;
1213 }
1214
1215 static long f2fs_fallocate(struct file *file, int mode,
1216 loff_t offset, loff_t len)
1217 {
1218 struct inode *inode = file_inode(file);
1219 long ret = 0;
1220
1221 /* f2fs only support ->fallocate for regular file */
1222 if (!S_ISREG(inode->i_mode))
1223 return -EINVAL;
1224
1225 if (f2fs_encrypted_inode(inode) &&
1226 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1227 return -EOPNOTSUPP;
1228
1229 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1230 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1231 FALLOC_FL_INSERT_RANGE))
1232 return -EOPNOTSUPP;
1233
1234 mutex_lock(&inode->i_mutex);
1235
1236 if (mode & FALLOC_FL_PUNCH_HOLE) {
1237 if (offset >= inode->i_size)
1238 goto out;
1239
1240 ret = punch_hole(inode, offset, len);
1241 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1242 ret = f2fs_collapse_range(inode, offset, len);
1243 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1244 ret = f2fs_zero_range(inode, offset, len, mode);
1245 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1246 ret = f2fs_insert_range(inode, offset, len);
1247 } else {
1248 ret = expand_inode_data(inode, offset, len, mode);
1249 }
1250
1251 if (!ret) {
1252 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1253 mark_inode_dirty(inode);
1254 }
1255
1256 out:
1257 mutex_unlock(&inode->i_mutex);
1258
1259 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1260 return ret;
1261 }
1262
1263 static int f2fs_release_file(struct inode *inode, struct file *filp)
1264 {
1265 /* some remained atomic pages should discarded */
1266 if (f2fs_is_atomic_file(inode))
1267 commit_inmem_pages(inode, true);
1268 if (f2fs_is_volatile_file(inode)) {
1269 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1270 filemap_fdatawrite(inode->i_mapping);
1271 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1272 }
1273 return 0;
1274 }
1275
1276 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1277 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1278
1279 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1280 {
1281 if (S_ISDIR(mode))
1282 return flags;
1283 else if (S_ISREG(mode))
1284 return flags & F2FS_REG_FLMASK;
1285 else
1286 return flags & F2FS_OTHER_FLMASK;
1287 }
1288
1289 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1290 {
1291 struct inode *inode = file_inode(filp);
1292 struct f2fs_inode_info *fi = F2FS_I(inode);
1293 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1294 return put_user(flags, (int __user *)arg);
1295 }
1296
1297 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1298 {
1299 struct inode *inode = file_inode(filp);
1300 struct f2fs_inode_info *fi = F2FS_I(inode);
1301 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1302 unsigned int oldflags;
1303 int ret;
1304
1305 ret = mnt_want_write_file(filp);
1306 if (ret)
1307 return ret;
1308
1309 if (!inode_owner_or_capable(inode)) {
1310 ret = -EACCES;
1311 goto out;
1312 }
1313
1314 if (get_user(flags, (int __user *)arg)) {
1315 ret = -EFAULT;
1316 goto out;
1317 }
1318
1319 flags = f2fs_mask_flags(inode->i_mode, flags);
1320
1321 mutex_lock(&inode->i_mutex);
1322
1323 oldflags = fi->i_flags;
1324
1325 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1326 if (!capable(CAP_LINUX_IMMUTABLE)) {
1327 mutex_unlock(&inode->i_mutex);
1328 ret = -EPERM;
1329 goto out;
1330 }
1331 }
1332
1333 flags = flags & FS_FL_USER_MODIFIABLE;
1334 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1335 fi->i_flags = flags;
1336 mutex_unlock(&inode->i_mutex);
1337
1338 f2fs_set_inode_flags(inode);
1339 inode->i_ctime = CURRENT_TIME;
1340 mark_inode_dirty(inode);
1341 out:
1342 mnt_drop_write_file(filp);
1343 return ret;
1344 }
1345
1346 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1347 {
1348 struct inode *inode = file_inode(filp);
1349
1350 return put_user(inode->i_generation, (int __user *)arg);
1351 }
1352
1353 static int f2fs_ioc_start_atomic_write(struct file *filp)
1354 {
1355 struct inode *inode = file_inode(filp);
1356 int ret;
1357
1358 if (!inode_owner_or_capable(inode))
1359 return -EACCES;
1360
1361 f2fs_balance_fs(F2FS_I_SB(inode));
1362
1363 if (f2fs_is_atomic_file(inode))
1364 return 0;
1365
1366 ret = f2fs_convert_inline_inode(inode);
1367 if (ret)
1368 return ret;
1369
1370 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1371 return 0;
1372 }
1373
1374 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1375 {
1376 struct inode *inode = file_inode(filp);
1377 int ret;
1378
1379 if (!inode_owner_or_capable(inode))
1380 return -EACCES;
1381
1382 if (f2fs_is_volatile_file(inode))
1383 return 0;
1384
1385 ret = mnt_want_write_file(filp);
1386 if (ret)
1387 return ret;
1388
1389 if (f2fs_is_atomic_file(inode)) {
1390 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1391 ret = commit_inmem_pages(inode, false);
1392 if (ret)
1393 goto err_out;
1394 }
1395
1396 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1397 err_out:
1398 mnt_drop_write_file(filp);
1399 return ret;
1400 }
1401
1402 static int f2fs_ioc_start_volatile_write(struct file *filp)
1403 {
1404 struct inode *inode = file_inode(filp);
1405 int ret;
1406
1407 if (!inode_owner_or_capable(inode))
1408 return -EACCES;
1409
1410 if (f2fs_is_volatile_file(inode))
1411 return 0;
1412
1413 ret = f2fs_convert_inline_inode(inode);
1414 if (ret)
1415 return ret;
1416
1417 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1418 return 0;
1419 }
1420
1421 static int f2fs_ioc_release_volatile_write(struct file *filp)
1422 {
1423 struct inode *inode = file_inode(filp);
1424
1425 if (!inode_owner_or_capable(inode))
1426 return -EACCES;
1427
1428 if (!f2fs_is_volatile_file(inode))
1429 return 0;
1430
1431 if (!f2fs_is_first_block_written(inode))
1432 return truncate_partial_data_page(inode, 0, true);
1433
1434 return punch_hole(inode, 0, F2FS_BLKSIZE);
1435 }
1436
1437 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1438 {
1439 struct inode *inode = file_inode(filp);
1440 int ret;
1441
1442 if (!inode_owner_or_capable(inode))
1443 return -EACCES;
1444
1445 ret = mnt_want_write_file(filp);
1446 if (ret)
1447 return ret;
1448
1449 f2fs_balance_fs(F2FS_I_SB(inode));
1450
1451 if (f2fs_is_atomic_file(inode)) {
1452 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1453 commit_inmem_pages(inode, true);
1454 }
1455
1456 if (f2fs_is_volatile_file(inode))
1457 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1458
1459 mnt_drop_write_file(filp);
1460 return ret;
1461 }
1462
1463 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1464 {
1465 struct inode *inode = file_inode(filp);
1466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1467 struct super_block *sb = sbi->sb;
1468 __u32 in;
1469
1470 if (!capable(CAP_SYS_ADMIN))
1471 return -EPERM;
1472
1473 if (get_user(in, (__u32 __user *)arg))
1474 return -EFAULT;
1475
1476 switch (in) {
1477 case F2FS_GOING_DOWN_FULLSYNC:
1478 sb = freeze_bdev(sb->s_bdev);
1479 if (sb && !IS_ERR(sb)) {
1480 f2fs_stop_checkpoint(sbi);
1481 thaw_bdev(sb->s_bdev, sb);
1482 }
1483 break;
1484 case F2FS_GOING_DOWN_METASYNC:
1485 /* do checkpoint only */
1486 f2fs_sync_fs(sb, 1);
1487 f2fs_stop_checkpoint(sbi);
1488 break;
1489 case F2FS_GOING_DOWN_NOSYNC:
1490 f2fs_stop_checkpoint(sbi);
1491 break;
1492 default:
1493 return -EINVAL;
1494 }
1495 return 0;
1496 }
1497
1498 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1499 {
1500 struct inode *inode = file_inode(filp);
1501 struct super_block *sb = inode->i_sb;
1502 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1503 struct fstrim_range range;
1504 int ret;
1505
1506 if (!capable(CAP_SYS_ADMIN))
1507 return -EPERM;
1508
1509 if (!blk_queue_discard(q))
1510 return -EOPNOTSUPP;
1511
1512 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1513 sizeof(range)))
1514 return -EFAULT;
1515
1516 range.minlen = max((unsigned int)range.minlen,
1517 q->limits.discard_granularity);
1518 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1519 if (ret < 0)
1520 return ret;
1521
1522 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1523 sizeof(range)))
1524 return -EFAULT;
1525 return 0;
1526 }
1527
1528 static bool uuid_is_nonzero(__u8 u[16])
1529 {
1530 int i;
1531
1532 for (i = 0; i < 16; i++)
1533 if (u[i])
1534 return true;
1535 return false;
1536 }
1537
1538 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1539 {
1540 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1541 struct f2fs_encryption_policy policy;
1542 struct inode *inode = file_inode(filp);
1543
1544 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1545 sizeof(policy)))
1546 return -EFAULT;
1547
1548 return f2fs_process_policy(&policy, inode);
1549 #else
1550 return -EOPNOTSUPP;
1551 #endif
1552 }
1553
1554 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1555 {
1556 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1557 struct f2fs_encryption_policy policy;
1558 struct inode *inode = file_inode(filp);
1559 int err;
1560
1561 err = f2fs_get_policy(inode, &policy);
1562 if (err)
1563 return err;
1564
1565 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1566 sizeof(policy)))
1567 return -EFAULT;
1568 return 0;
1569 #else
1570 return -EOPNOTSUPP;
1571 #endif
1572 }
1573
1574 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1575 {
1576 struct inode *inode = file_inode(filp);
1577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1578 int err;
1579
1580 if (!f2fs_sb_has_crypto(inode->i_sb))
1581 return -EOPNOTSUPP;
1582
1583 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1584 goto got_it;
1585
1586 err = mnt_want_write_file(filp);
1587 if (err)
1588 return err;
1589
1590 /* update superblock with uuid */
1591 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1592
1593 err = f2fs_commit_super(sbi, false);
1594
1595 mnt_drop_write_file(filp);
1596 if (err) {
1597 /* undo new data */
1598 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1599 return err;
1600 }
1601 got_it:
1602 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1603 16))
1604 return -EFAULT;
1605 return 0;
1606 }
1607
1608 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1609 {
1610 struct inode *inode = file_inode(filp);
1611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1612 __u32 i, count;
1613
1614 if (!capable(CAP_SYS_ADMIN))
1615 return -EPERM;
1616
1617 if (get_user(count, (__u32 __user *)arg))
1618 return -EFAULT;
1619
1620 if (!count || count > F2FS_BATCH_GC_MAX_NUM)
1621 return -EINVAL;
1622
1623 for (i = 0; i < count; i++) {
1624 if (!mutex_trylock(&sbi->gc_mutex))
1625 break;
1626
1627 if (f2fs_gc(sbi))
1628 break;
1629 }
1630
1631 if (put_user(i, (__u32 __user *)arg))
1632 return -EFAULT;
1633
1634 return 0;
1635 }
1636
1637 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1638 {
1639 switch (cmd) {
1640 case F2FS_IOC_GETFLAGS:
1641 return f2fs_ioc_getflags(filp, arg);
1642 case F2FS_IOC_SETFLAGS:
1643 return f2fs_ioc_setflags(filp, arg);
1644 case F2FS_IOC_GETVERSION:
1645 return f2fs_ioc_getversion(filp, arg);
1646 case F2FS_IOC_START_ATOMIC_WRITE:
1647 return f2fs_ioc_start_atomic_write(filp);
1648 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1649 return f2fs_ioc_commit_atomic_write(filp);
1650 case F2FS_IOC_START_VOLATILE_WRITE:
1651 return f2fs_ioc_start_volatile_write(filp);
1652 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1653 return f2fs_ioc_release_volatile_write(filp);
1654 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1655 return f2fs_ioc_abort_volatile_write(filp);
1656 case F2FS_IOC_SHUTDOWN:
1657 return f2fs_ioc_shutdown(filp, arg);
1658 case FITRIM:
1659 return f2fs_ioc_fitrim(filp, arg);
1660 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1661 return f2fs_ioc_set_encryption_policy(filp, arg);
1662 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1663 return f2fs_ioc_get_encryption_policy(filp, arg);
1664 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1665 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1666 case F2FS_IOC_GARBAGE_COLLECT:
1667 return f2fs_ioc_gc(filp, arg);
1668 default:
1669 return -ENOTTY;
1670 }
1671 }
1672
1673 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1674 {
1675 struct inode *inode = file_inode(iocb->ki_filp);
1676
1677 if (f2fs_encrypted_inode(inode) &&
1678 !f2fs_has_encryption_key(inode) &&
1679 f2fs_get_encryption_info(inode))
1680 return -EACCES;
1681
1682 return generic_file_write_iter(iocb, from);
1683 }
1684
1685 #ifdef CONFIG_COMPAT
1686 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1687 {
1688 switch (cmd) {
1689 case F2FS_IOC32_GETFLAGS:
1690 cmd = F2FS_IOC_GETFLAGS;
1691 break;
1692 case F2FS_IOC32_SETFLAGS:
1693 cmd = F2FS_IOC_SETFLAGS;
1694 break;
1695 default:
1696 return -ENOIOCTLCMD;
1697 }
1698 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1699 }
1700 #endif
1701
1702 const struct file_operations f2fs_file_operations = {
1703 .llseek = f2fs_llseek,
1704 .read_iter = generic_file_read_iter,
1705 .write_iter = f2fs_file_write_iter,
1706 .open = f2fs_file_open,
1707 .release = f2fs_release_file,
1708 .mmap = f2fs_file_mmap,
1709 .fsync = f2fs_sync_file,
1710 .fallocate = f2fs_fallocate,
1711 .unlocked_ioctl = f2fs_ioctl,
1712 #ifdef CONFIG_COMPAT
1713 .compat_ioctl = f2fs_compat_ioctl,
1714 #endif
1715 .splice_read = generic_file_splice_read,
1716 .splice_write = iter_file_splice_write,
1717 };