]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/file.c
ALSA: es18xx driver should use udelay error
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "xattr.h"
27 #include "acl.h"
28 #include <trace/events/f2fs.h>
29
30 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
31 struct vm_fault *vmf)
32 {
33 struct page *page = vmf->page;
34 struct inode *inode = file_inode(vma->vm_file);
35 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
36 struct dnode_of_data dn;
37 int err;
38
39 f2fs_balance_fs(sbi);
40
41 sb_start_pagefault(inode->i_sb);
42
43 /* block allocation */
44 f2fs_lock_op(sbi);
45 set_new_dnode(&dn, inode, NULL, NULL, 0);
46 err = f2fs_reserve_block(&dn, page->index);
47 f2fs_unlock_op(sbi);
48 if (err)
49 goto out;
50
51 file_update_time(vma->vm_file);
52 lock_page(page);
53 if (unlikely(page->mapping != inode->i_mapping ||
54 page_offset(page) > i_size_read(inode) ||
55 !PageUptodate(page))) {
56 unlock_page(page);
57 err = -EFAULT;
58 goto out;
59 }
60
61 /*
62 * check to see if the page is mapped already (no holes)
63 */
64 if (PageMappedToDisk(page))
65 goto mapped;
66
67 /* page is wholly or partially inside EOF */
68 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
69 unsigned offset;
70 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
71 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
72 }
73 set_page_dirty(page);
74 SetPageUptodate(page);
75
76 trace_f2fs_vm_page_mkwrite(page, DATA);
77 mapped:
78 /* fill the page */
79 f2fs_wait_on_page_writeback(page, DATA);
80 out:
81 sb_end_pagefault(inode->i_sb);
82 return block_page_mkwrite_return(err);
83 }
84
85 static const struct vm_operations_struct f2fs_file_vm_ops = {
86 .fault = filemap_fault,
87 .map_pages = filemap_map_pages,
88 .page_mkwrite = f2fs_vm_page_mkwrite,
89 .remap_pages = generic_file_remap_pages,
90 };
91
92 static int get_parent_ino(struct inode *inode, nid_t *pino)
93 {
94 struct dentry *dentry;
95
96 inode = igrab(inode);
97 dentry = d_find_any_alias(inode);
98 iput(inode);
99 if (!dentry)
100 return 0;
101
102 if (update_dent_inode(inode, &dentry->d_name)) {
103 dput(dentry);
104 return 0;
105 }
106
107 *pino = parent_ino(dentry);
108 dput(dentry);
109 return 1;
110 }
111
112 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
113 {
114 struct inode *inode = file->f_mapping->host;
115 struct f2fs_inode_info *fi = F2FS_I(inode);
116 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
117 int ret = 0;
118 bool need_cp = false;
119 struct writeback_control wbc = {
120 .sync_mode = WB_SYNC_ALL,
121 .nr_to_write = LONG_MAX,
122 .for_reclaim = 0,
123 };
124
125 if (unlikely(f2fs_readonly(inode->i_sb)))
126 return 0;
127
128 trace_f2fs_sync_file_enter(inode);
129 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
130 if (ret) {
131 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
132 return ret;
133 }
134
135 /* guarantee free sections for fsync */
136 f2fs_balance_fs(sbi);
137
138 down_read(&fi->i_sem);
139
140 /*
141 * Both of fdatasync() and fsync() are able to be recovered from
142 * sudden-power-off.
143 */
144 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
145 need_cp = true;
146 else if (file_wrong_pino(inode))
147 need_cp = true;
148 else if (!space_for_roll_forward(sbi))
149 need_cp = true;
150 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
151 need_cp = true;
152 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
153 need_cp = true;
154
155 up_read(&fi->i_sem);
156
157 if (need_cp) {
158 nid_t pino;
159
160 /* all the dirty node pages should be flushed for POR */
161 ret = f2fs_sync_fs(inode->i_sb, 1);
162
163 down_write(&fi->i_sem);
164 F2FS_I(inode)->xattr_ver = 0;
165 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
166 get_parent_ino(inode, &pino)) {
167 F2FS_I(inode)->i_pino = pino;
168 file_got_pino(inode);
169 up_write(&fi->i_sem);
170 mark_inode_dirty_sync(inode);
171 ret = f2fs_write_inode(inode, NULL);
172 if (ret)
173 goto out;
174 } else {
175 up_write(&fi->i_sem);
176 }
177 } else {
178 /* if there is no written node page, write its inode page */
179 while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
180 if (fsync_mark_done(sbi, inode->i_ino))
181 goto out;
182 mark_inode_dirty_sync(inode);
183 ret = f2fs_write_inode(inode, NULL);
184 if (ret)
185 goto out;
186 }
187 ret = wait_on_node_pages_writeback(sbi, inode->i_ino);
188 if (ret)
189 goto out;
190 ret = f2fs_issue_flush(F2FS_SB(inode->i_sb));
191 }
192 out:
193 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
194 return ret;
195 }
196
197 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
198 {
199 file_accessed(file);
200 vma->vm_ops = &f2fs_file_vm_ops;
201 return 0;
202 }
203
204 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
205 {
206 int nr_free = 0, ofs = dn->ofs_in_node;
207 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
208 struct f2fs_node *raw_node;
209 __le32 *addr;
210
211 raw_node = F2FS_NODE(dn->node_page);
212 addr = blkaddr_in_node(raw_node) + ofs;
213
214 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
215 block_t blkaddr = le32_to_cpu(*addr);
216 if (blkaddr == NULL_ADDR)
217 continue;
218
219 update_extent_cache(NULL_ADDR, dn);
220 invalidate_blocks(sbi, blkaddr);
221 nr_free++;
222 }
223 if (nr_free) {
224 dec_valid_block_count(sbi, dn->inode, nr_free);
225 set_page_dirty(dn->node_page);
226 sync_inode_page(dn);
227 }
228 dn->ofs_in_node = ofs;
229
230 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
231 dn->ofs_in_node, nr_free);
232 return nr_free;
233 }
234
235 void truncate_data_blocks(struct dnode_of_data *dn)
236 {
237 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
238 }
239
240 static void truncate_partial_data_page(struct inode *inode, u64 from)
241 {
242 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
243 struct page *page;
244
245 if (!offset)
246 return;
247
248 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
249 if (IS_ERR(page))
250 return;
251
252 lock_page(page);
253 if (unlikely(page->mapping != inode->i_mapping)) {
254 f2fs_put_page(page, 1);
255 return;
256 }
257 f2fs_wait_on_page_writeback(page, DATA);
258 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
259 set_page_dirty(page);
260 f2fs_put_page(page, 1);
261 }
262
263 int truncate_blocks(struct inode *inode, u64 from)
264 {
265 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
266 unsigned int blocksize = inode->i_sb->s_blocksize;
267 struct dnode_of_data dn;
268 pgoff_t free_from;
269 int count = 0, err = 0;
270
271 trace_f2fs_truncate_blocks_enter(inode, from);
272
273 if (f2fs_has_inline_data(inode))
274 goto done;
275
276 free_from = (pgoff_t)
277 ((from + blocksize - 1) >> (sbi->log_blocksize));
278
279 f2fs_lock_op(sbi);
280
281 set_new_dnode(&dn, inode, NULL, NULL, 0);
282 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
283 if (err) {
284 if (err == -ENOENT)
285 goto free_next;
286 f2fs_unlock_op(sbi);
287 trace_f2fs_truncate_blocks_exit(inode, err);
288 return err;
289 }
290
291 if (IS_INODE(dn.node_page))
292 count = ADDRS_PER_INODE(F2FS_I(inode));
293 else
294 count = ADDRS_PER_BLOCK;
295
296 count -= dn.ofs_in_node;
297 f2fs_bug_on(count < 0);
298
299 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
300 truncate_data_blocks_range(&dn, count);
301 free_from += count;
302 }
303
304 f2fs_put_dnode(&dn);
305 free_next:
306 err = truncate_inode_blocks(inode, free_from);
307 f2fs_unlock_op(sbi);
308 done:
309 /* lastly zero out the first data page */
310 truncate_partial_data_page(inode, from);
311
312 trace_f2fs_truncate_blocks_exit(inode, err);
313 return err;
314 }
315
316 void f2fs_truncate(struct inode *inode)
317 {
318 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
319 S_ISLNK(inode->i_mode)))
320 return;
321
322 trace_f2fs_truncate(inode);
323
324 if (!truncate_blocks(inode, i_size_read(inode))) {
325 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
326 mark_inode_dirty(inode);
327 }
328 }
329
330 int f2fs_getattr(struct vfsmount *mnt,
331 struct dentry *dentry, struct kstat *stat)
332 {
333 struct inode *inode = dentry->d_inode;
334 generic_fillattr(inode, stat);
335 stat->blocks <<= 3;
336 return 0;
337 }
338
339 #ifdef CONFIG_F2FS_FS_POSIX_ACL
340 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
341 {
342 struct f2fs_inode_info *fi = F2FS_I(inode);
343 unsigned int ia_valid = attr->ia_valid;
344
345 if (ia_valid & ATTR_UID)
346 inode->i_uid = attr->ia_uid;
347 if (ia_valid & ATTR_GID)
348 inode->i_gid = attr->ia_gid;
349 if (ia_valid & ATTR_ATIME)
350 inode->i_atime = timespec_trunc(attr->ia_atime,
351 inode->i_sb->s_time_gran);
352 if (ia_valid & ATTR_MTIME)
353 inode->i_mtime = timespec_trunc(attr->ia_mtime,
354 inode->i_sb->s_time_gran);
355 if (ia_valid & ATTR_CTIME)
356 inode->i_ctime = timespec_trunc(attr->ia_ctime,
357 inode->i_sb->s_time_gran);
358 if (ia_valid & ATTR_MODE) {
359 umode_t mode = attr->ia_mode;
360
361 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
362 mode &= ~S_ISGID;
363 set_acl_inode(fi, mode);
364 }
365 }
366 #else
367 #define __setattr_copy setattr_copy
368 #endif
369
370 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
371 {
372 struct inode *inode = dentry->d_inode;
373 struct f2fs_inode_info *fi = F2FS_I(inode);
374 int err;
375
376 err = inode_change_ok(inode, attr);
377 if (err)
378 return err;
379
380 if ((attr->ia_valid & ATTR_SIZE) &&
381 attr->ia_size != i_size_read(inode)) {
382 err = f2fs_convert_inline_data(inode, attr->ia_size);
383 if (err)
384 return err;
385
386 truncate_setsize(inode, attr->ia_size);
387 f2fs_truncate(inode);
388 f2fs_balance_fs(F2FS_SB(inode->i_sb));
389 }
390
391 __setattr_copy(inode, attr);
392
393 if (attr->ia_valid & ATTR_MODE) {
394 err = posix_acl_chmod(inode, get_inode_mode(inode));
395 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
396 inode->i_mode = fi->i_acl_mode;
397 clear_inode_flag(fi, FI_ACL_MODE);
398 }
399 }
400
401 mark_inode_dirty(inode);
402 return err;
403 }
404
405 const struct inode_operations f2fs_file_inode_operations = {
406 .getattr = f2fs_getattr,
407 .setattr = f2fs_setattr,
408 .get_acl = f2fs_get_acl,
409 .set_acl = f2fs_set_acl,
410 #ifdef CONFIG_F2FS_FS_XATTR
411 .setxattr = generic_setxattr,
412 .getxattr = generic_getxattr,
413 .listxattr = f2fs_listxattr,
414 .removexattr = generic_removexattr,
415 #endif
416 };
417
418 static void fill_zero(struct inode *inode, pgoff_t index,
419 loff_t start, loff_t len)
420 {
421 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
422 struct page *page;
423
424 if (!len)
425 return;
426
427 f2fs_balance_fs(sbi);
428
429 f2fs_lock_op(sbi);
430 page = get_new_data_page(inode, NULL, index, false);
431 f2fs_unlock_op(sbi);
432
433 if (!IS_ERR(page)) {
434 f2fs_wait_on_page_writeback(page, DATA);
435 zero_user(page, start, len);
436 set_page_dirty(page);
437 f2fs_put_page(page, 1);
438 }
439 }
440
441 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
442 {
443 pgoff_t index;
444 int err;
445
446 for (index = pg_start; index < pg_end; index++) {
447 struct dnode_of_data dn;
448
449 set_new_dnode(&dn, inode, NULL, NULL, 0);
450 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
451 if (err) {
452 if (err == -ENOENT)
453 continue;
454 return err;
455 }
456
457 if (dn.data_blkaddr != NULL_ADDR)
458 truncate_data_blocks_range(&dn, 1);
459 f2fs_put_dnode(&dn);
460 }
461 return 0;
462 }
463
464 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
465 {
466 pgoff_t pg_start, pg_end;
467 loff_t off_start, off_end;
468 int ret = 0;
469
470 ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1);
471 if (ret)
472 return ret;
473
474 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
475 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
476
477 off_start = offset & (PAGE_CACHE_SIZE - 1);
478 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
479
480 if (pg_start == pg_end) {
481 fill_zero(inode, pg_start, off_start,
482 off_end - off_start);
483 } else {
484 if (off_start)
485 fill_zero(inode, pg_start++, off_start,
486 PAGE_CACHE_SIZE - off_start);
487 if (off_end)
488 fill_zero(inode, pg_end, 0, off_end);
489
490 if (pg_start < pg_end) {
491 struct address_space *mapping = inode->i_mapping;
492 loff_t blk_start, blk_end;
493 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
494
495 f2fs_balance_fs(sbi);
496
497 blk_start = pg_start << PAGE_CACHE_SHIFT;
498 blk_end = pg_end << PAGE_CACHE_SHIFT;
499 truncate_inode_pages_range(mapping, blk_start,
500 blk_end - 1);
501
502 f2fs_lock_op(sbi);
503 ret = truncate_hole(inode, pg_start, pg_end);
504 f2fs_unlock_op(sbi);
505 }
506 }
507
508 return ret;
509 }
510
511 static int expand_inode_data(struct inode *inode, loff_t offset,
512 loff_t len, int mode)
513 {
514 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
515 pgoff_t index, pg_start, pg_end;
516 loff_t new_size = i_size_read(inode);
517 loff_t off_start, off_end;
518 int ret = 0;
519
520 ret = inode_newsize_ok(inode, (len + offset));
521 if (ret)
522 return ret;
523
524 ret = f2fs_convert_inline_data(inode, offset + len);
525 if (ret)
526 return ret;
527
528 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
529 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
530
531 off_start = offset & (PAGE_CACHE_SIZE - 1);
532 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
533
534 for (index = pg_start; index <= pg_end; index++) {
535 struct dnode_of_data dn;
536
537 f2fs_lock_op(sbi);
538 set_new_dnode(&dn, inode, NULL, NULL, 0);
539 ret = f2fs_reserve_block(&dn, index);
540 f2fs_unlock_op(sbi);
541 if (ret)
542 break;
543
544 if (pg_start == pg_end)
545 new_size = offset + len;
546 else if (index == pg_start && off_start)
547 new_size = (index + 1) << PAGE_CACHE_SHIFT;
548 else if (index == pg_end)
549 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
550 else
551 new_size += PAGE_CACHE_SIZE;
552 }
553
554 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
555 i_size_read(inode) < new_size) {
556 i_size_write(inode, new_size);
557 mark_inode_dirty(inode);
558 }
559
560 return ret;
561 }
562
563 static long f2fs_fallocate(struct file *file, int mode,
564 loff_t offset, loff_t len)
565 {
566 struct inode *inode = file_inode(file);
567 long ret;
568
569 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
570 return -EOPNOTSUPP;
571
572 mutex_lock(&inode->i_mutex);
573
574 if (mode & FALLOC_FL_PUNCH_HOLE)
575 ret = punch_hole(inode, offset, len);
576 else
577 ret = expand_inode_data(inode, offset, len, mode);
578
579 if (!ret) {
580 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
581 mark_inode_dirty(inode);
582 }
583
584 mutex_unlock(&inode->i_mutex);
585
586 trace_f2fs_fallocate(inode, mode, offset, len, ret);
587 return ret;
588 }
589
590 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
591 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
592
593 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
594 {
595 if (S_ISDIR(mode))
596 return flags;
597 else if (S_ISREG(mode))
598 return flags & F2FS_REG_FLMASK;
599 else
600 return flags & F2FS_OTHER_FLMASK;
601 }
602
603 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
604 {
605 struct inode *inode = file_inode(filp);
606 struct f2fs_inode_info *fi = F2FS_I(inode);
607 unsigned int flags;
608 int ret;
609
610 switch (cmd) {
611 case F2FS_IOC_GETFLAGS:
612 flags = fi->i_flags & FS_FL_USER_VISIBLE;
613 return put_user(flags, (int __user *) arg);
614 case F2FS_IOC_SETFLAGS:
615 {
616 unsigned int oldflags;
617
618 ret = mnt_want_write_file(filp);
619 if (ret)
620 return ret;
621
622 if (!inode_owner_or_capable(inode)) {
623 ret = -EACCES;
624 goto out;
625 }
626
627 if (get_user(flags, (int __user *) arg)) {
628 ret = -EFAULT;
629 goto out;
630 }
631
632 flags = f2fs_mask_flags(inode->i_mode, flags);
633
634 mutex_lock(&inode->i_mutex);
635
636 oldflags = fi->i_flags;
637
638 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
639 if (!capable(CAP_LINUX_IMMUTABLE)) {
640 mutex_unlock(&inode->i_mutex);
641 ret = -EPERM;
642 goto out;
643 }
644 }
645
646 flags = flags & FS_FL_USER_MODIFIABLE;
647 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
648 fi->i_flags = flags;
649 mutex_unlock(&inode->i_mutex);
650
651 f2fs_set_inode_flags(inode);
652 inode->i_ctime = CURRENT_TIME;
653 mark_inode_dirty(inode);
654 out:
655 mnt_drop_write_file(filp);
656 return ret;
657 }
658 default:
659 return -ENOTTY;
660 }
661 }
662
663 #ifdef CONFIG_COMPAT
664 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
665 {
666 switch (cmd) {
667 case F2FS_IOC32_GETFLAGS:
668 cmd = F2FS_IOC_GETFLAGS;
669 break;
670 case F2FS_IOC32_SETFLAGS:
671 cmd = F2FS_IOC_SETFLAGS;
672 break;
673 default:
674 return -ENOIOCTLCMD;
675 }
676 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
677 }
678 #endif
679
680 const struct file_operations f2fs_file_operations = {
681 .llseek = generic_file_llseek,
682 .read = do_sync_read,
683 .write = do_sync_write,
684 .aio_read = generic_file_aio_read,
685 .aio_write = generic_file_aio_write,
686 .open = generic_file_open,
687 .mmap = f2fs_file_mmap,
688 .fsync = f2fs_sync_file,
689 .fallocate = f2fs_fallocate,
690 .unlocked_ioctl = f2fs_ioctl,
691 #ifdef CONFIG_COMPAT
692 .compat_ioctl = f2fs_compat_ioctl,
693 #endif
694 .splice_read = generic_file_splice_read,
695 .splice_write = generic_file_splice_write,
696 };