]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/file.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
37 {
38 struct page *page = vmf->page;
39 struct inode *inode = file_inode(vmf->vma->vm_file);
40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 struct dnode_of_data dn;
42 int err;
43
44 sb_start_pagefault(inode->i_sb);
45
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
55 }
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
58
59 f2fs_balance_fs(sbi, dn.node_changed);
60
61 file_update_time(vmf->vma->vm_file);
62 lock_page(page);
63 if (unlikely(page->mapping != inode->i_mapping ||
64 page_offset(page) > i_size_read(inode) ||
65 !PageUptodate(page))) {
66 unlock_page(page);
67 err = -EFAULT;
68 goto out;
69 }
70
71 /*
72 * check to see if the page is mapped already (no holes)
73 */
74 if (PageMappedToDisk(page))
75 goto mapped;
76
77 /* page is wholly or partially inside EOF */
78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 i_size_read(inode)) {
80 unsigned offset;
81 offset = i_size_read(inode) & ~PAGE_MASK;
82 zero_user_segment(page, offset, PAGE_SIZE);
83 }
84 set_page_dirty(page);
85 if (!PageUptodate(page))
86 SetPageUptodate(page);
87
88 trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 /* fill the page */
91 f2fs_wait_on_page_writeback(page, DATA, false);
92
93 /* wait for GCed encrypted page writeback */
94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96
97 out:
98 sb_end_pagefault(inode->i_sb);
99 f2fs_update_time(sbi, REQ_TIME);
100 return block_page_mkwrite_return(err);
101 }
102
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 .fault = filemap_fault,
105 .map_pages = filemap_map_pages,
106 .page_mkwrite = f2fs_vm_page_mkwrite,
107 };
108
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 struct dentry *dentry;
112
113 inode = igrab(inode);
114 dentry = d_find_any_alias(inode);
115 iput(inode);
116 if (!dentry)
117 return 0;
118
119 if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 dput(dentry);
121 return 0;
122 }
123
124 *pino = parent_ino(dentry);
125 dput(dentry);
126 return 1;
127 }
128
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 bool need_cp = false;
133
134 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 need_cp = true;
136 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
137 need_cp = true;
138 else if (file_wrong_pino(inode))
139 need_cp = true;
140 else if (!space_for_roll_forward(sbi))
141 need_cp = true;
142 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 need_cp = true;
144 else if (test_opt(sbi, FASTBOOT))
145 need_cp = true;
146 else if (sbi->active_logs == 2)
147 need_cp = true;
148
149 return need_cp;
150 }
151
152 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
153 {
154 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
155 bool ret = false;
156 /* But we need to avoid that there are some inode updates */
157 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
158 ret = true;
159 f2fs_put_page(i, 0);
160 return ret;
161 }
162
163 static void try_to_fix_pino(struct inode *inode)
164 {
165 struct f2fs_inode_info *fi = F2FS_I(inode);
166 nid_t pino;
167
168 down_write(&fi->i_sem);
169 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
170 get_parent_ino(inode, &pino)) {
171 f2fs_i_pino_write(inode, pino);
172 file_got_pino(inode);
173 }
174 up_write(&fi->i_sem);
175 }
176
177 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
178 int datasync, bool atomic)
179 {
180 struct inode *inode = file->f_mapping->host;
181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
182 nid_t ino = inode->i_ino;
183 int ret = 0;
184 bool need_cp = false;
185 struct writeback_control wbc = {
186 .sync_mode = WB_SYNC_ALL,
187 .nr_to_write = LONG_MAX,
188 .for_reclaim = 0,
189 };
190
191 if (unlikely(f2fs_readonly(inode->i_sb)))
192 return 0;
193
194 trace_f2fs_sync_file_enter(inode);
195
196 /* if fdatasync is triggered, let's do in-place-update */
197 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
198 set_inode_flag(inode, FI_NEED_IPU);
199 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 clear_inode_flag(inode, FI_NEED_IPU);
201
202 if (ret) {
203 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
204 return ret;
205 }
206
207 /* if the inode is dirty, let's recover all the time */
208 if (!f2fs_skip_inode_update(inode, datasync)) {
209 f2fs_write_inode(inode, NULL);
210 goto go_write;
211 }
212
213 /*
214 * if there is no written data, don't waste time to write recovery info.
215 */
216 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
217 !exist_written_data(sbi, ino, APPEND_INO)) {
218
219 /* it may call write_inode just prior to fsync */
220 if (need_inode_page_update(sbi, ino))
221 goto go_write;
222
223 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
224 exist_written_data(sbi, ino, UPDATE_INO))
225 goto flush_out;
226 goto out;
227 }
228 go_write:
229 /*
230 * Both of fdatasync() and fsync() are able to be recovered from
231 * sudden-power-off.
232 */
233 down_read(&F2FS_I(inode)->i_sem);
234 need_cp = need_do_checkpoint(inode);
235 up_read(&F2FS_I(inode)->i_sem);
236
237 if (need_cp) {
238 /* all the dirty node pages should be flushed for POR */
239 ret = f2fs_sync_fs(inode->i_sb, 1);
240
241 /*
242 * We've secured consistency through sync_fs. Following pino
243 * will be used only for fsynced inodes after checkpoint.
244 */
245 try_to_fix_pino(inode);
246 clear_inode_flag(inode, FI_APPEND_WRITE);
247 clear_inode_flag(inode, FI_UPDATE_WRITE);
248 goto out;
249 }
250 sync_nodes:
251 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
252 if (ret)
253 goto out;
254
255 /* if cp_error was enabled, we should avoid infinite loop */
256 if (unlikely(f2fs_cp_error(sbi))) {
257 ret = -EIO;
258 goto out;
259 }
260
261 if (need_inode_block_update(sbi, ino)) {
262 f2fs_mark_inode_dirty_sync(inode, true);
263 f2fs_write_inode(inode, NULL);
264 goto sync_nodes;
265 }
266
267 ret = wait_on_node_pages_writeback(sbi, ino);
268 if (ret)
269 goto out;
270
271 /* once recovery info is written, don't need to tack this */
272 remove_ino_entry(sbi, ino, APPEND_INO);
273 clear_inode_flag(inode, FI_APPEND_WRITE);
274 flush_out:
275 remove_ino_entry(sbi, ino, UPDATE_INO);
276 clear_inode_flag(inode, FI_UPDATE_WRITE);
277 if (!atomic)
278 ret = f2fs_issue_flush(sbi);
279 f2fs_update_time(sbi, REQ_TIME);
280 out:
281 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
282 f2fs_trace_ios(NULL, 1);
283 return ret;
284 }
285
286 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
287 {
288 return f2fs_do_sync_file(file, start, end, datasync, false);
289 }
290
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 pgoff_t pgofs, int whence)
293 {
294 struct pagevec pvec;
295 int nr_pages;
296
297 if (whence != SEEK_DATA)
298 return 0;
299
300 /* find first dirty page index */
301 pagevec_init(&pvec, 0);
302 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 PAGECACHE_TAG_DIRTY, 1);
304 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
305 pagevec_release(&pvec);
306 return pgofs;
307 }
308
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 int whence)
311 {
312 switch (whence) {
313 case SEEK_DATA:
314 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 return true;
317 break;
318 case SEEK_HOLE:
319 if (blkaddr == NULL_ADDR)
320 return true;
321 break;
322 }
323 return false;
324 }
325
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 struct inode *inode = file->f_mapping->host;
329 loff_t maxbytes = inode->i_sb->s_maxbytes;
330 struct dnode_of_data dn;
331 pgoff_t pgofs, end_offset, dirty;
332 loff_t data_ofs = offset;
333 loff_t isize;
334 int err = 0;
335
336 inode_lock(inode);
337
338 isize = i_size_read(inode);
339 if (offset >= isize)
340 goto fail;
341
342 /* handle inline data case */
343 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 if (whence == SEEK_HOLE)
345 data_ofs = isize;
346 goto found;
347 }
348
349 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
350
351 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352
353 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
354 set_new_dnode(&dn, inode, NULL, NULL, 0);
355 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
356 if (err && err != -ENOENT) {
357 goto fail;
358 } else if (err == -ENOENT) {
359 /* direct node does not exists */
360 if (whence == SEEK_DATA) {
361 pgofs = get_next_page_offset(&dn, pgofs);
362 continue;
363 } else {
364 goto found;
365 }
366 }
367
368 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
369
370 /* find data/hole in dnode block */
371 for (; dn.ofs_in_node < end_offset;
372 dn.ofs_in_node++, pgofs++,
373 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
374 block_t blkaddr;
375 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376
377 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 f2fs_put_dnode(&dn);
379 goto found;
380 }
381 }
382 f2fs_put_dnode(&dn);
383 }
384
385 if (whence == SEEK_DATA)
386 goto fail;
387 found:
388 if (whence == SEEK_HOLE && data_ofs > isize)
389 data_ofs = isize;
390 inode_unlock(inode);
391 return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 inode_unlock(inode);
394 return -ENXIO;
395 }
396
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 struct inode *inode = file->f_mapping->host;
400 loff_t maxbytes = inode->i_sb->s_maxbytes;
401
402 switch (whence) {
403 case SEEK_SET:
404 case SEEK_CUR:
405 case SEEK_END:
406 return generic_file_llseek_size(file, offset, whence,
407 maxbytes, i_size_read(inode));
408 case SEEK_DATA:
409 case SEEK_HOLE:
410 if (offset < 0)
411 return -ENXIO;
412 return f2fs_seek_block(file, offset, whence);
413 }
414
415 return -EINVAL;
416 }
417
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 struct inode *inode = file_inode(file);
421 int err;
422
423 if (f2fs_encrypted_inode(inode)) {
424 err = fscrypt_get_encryption_info(inode);
425 if (err)
426 return 0;
427 if (!f2fs_encrypted_inode(inode))
428 return -ENOKEY;
429 }
430
431 /* we don't need to use inline_data strictly */
432 err = f2fs_convert_inline_inode(inode);
433 if (err)
434 return err;
435
436 file_accessed(file);
437 vma->vm_ops = &f2fs_file_vm_ops;
438 return 0;
439 }
440
441 static int f2fs_file_open(struct inode *inode, struct file *filp)
442 {
443 int ret = generic_file_open(inode, filp);
444 struct dentry *dir;
445
446 if (!ret && f2fs_encrypted_inode(inode)) {
447 ret = fscrypt_get_encryption_info(inode);
448 if (ret)
449 return -EACCES;
450 if (!fscrypt_has_encryption_key(inode))
451 return -ENOKEY;
452 }
453 dir = dget_parent(file_dentry(filp));
454 if (f2fs_encrypted_inode(d_inode(dir)) &&
455 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
456 dput(dir);
457 return -EPERM;
458 }
459 dput(dir);
460 return ret;
461 }
462
463 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
464 {
465 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
466 struct f2fs_node *raw_node;
467 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
468 __le32 *addr;
469
470 raw_node = F2FS_NODE(dn->node_page);
471 addr = blkaddr_in_node(raw_node) + ofs;
472
473 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
474 block_t blkaddr = le32_to_cpu(*addr);
475 if (blkaddr == NULL_ADDR)
476 continue;
477
478 dn->data_blkaddr = NULL_ADDR;
479 set_data_blkaddr(dn);
480 invalidate_blocks(sbi, blkaddr);
481 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
482 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
483 nr_free++;
484 }
485
486 if (nr_free) {
487 pgoff_t fofs;
488 /*
489 * once we invalidate valid blkaddr in range [ofs, ofs + count],
490 * we will invalidate all blkaddr in the whole range.
491 */
492 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
493 dn->inode) + ofs;
494 f2fs_update_extent_cache_range(dn, fofs, 0, len);
495 dec_valid_block_count(sbi, dn->inode, nr_free);
496 }
497 dn->ofs_in_node = ofs;
498
499 f2fs_update_time(sbi, REQ_TIME);
500 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
501 dn->ofs_in_node, nr_free);
502 return nr_free;
503 }
504
505 void truncate_data_blocks(struct dnode_of_data *dn)
506 {
507 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
508 }
509
510 static int truncate_partial_data_page(struct inode *inode, u64 from,
511 bool cache_only)
512 {
513 unsigned offset = from & (PAGE_SIZE - 1);
514 pgoff_t index = from >> PAGE_SHIFT;
515 struct address_space *mapping = inode->i_mapping;
516 struct page *page;
517
518 if (!offset && !cache_only)
519 return 0;
520
521 if (cache_only) {
522 page = find_lock_page(mapping, index);
523 if (page && PageUptodate(page))
524 goto truncate_out;
525 f2fs_put_page(page, 1);
526 return 0;
527 }
528
529 page = get_lock_data_page(inode, index, true);
530 if (IS_ERR(page))
531 return 0;
532 truncate_out:
533 f2fs_wait_on_page_writeback(page, DATA, true);
534 zero_user(page, offset, PAGE_SIZE - offset);
535 if (!cache_only || !f2fs_encrypted_inode(inode) ||
536 !S_ISREG(inode->i_mode))
537 set_page_dirty(page);
538 f2fs_put_page(page, 1);
539 return 0;
540 }
541
542 int truncate_blocks(struct inode *inode, u64 from, bool lock)
543 {
544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
545 unsigned int blocksize = inode->i_sb->s_blocksize;
546 struct dnode_of_data dn;
547 pgoff_t free_from;
548 int count = 0, err = 0;
549 struct page *ipage;
550 bool truncate_page = false;
551
552 trace_f2fs_truncate_blocks_enter(inode, from);
553
554 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
555
556 if (free_from >= sbi->max_file_blocks)
557 goto free_partial;
558
559 if (lock)
560 f2fs_lock_op(sbi);
561
562 ipage = get_node_page(sbi, inode->i_ino);
563 if (IS_ERR(ipage)) {
564 err = PTR_ERR(ipage);
565 goto out;
566 }
567
568 if (f2fs_has_inline_data(inode)) {
569 truncate_inline_inode(ipage, from);
570 if (from == 0)
571 clear_inode_flag(inode, FI_DATA_EXIST);
572 f2fs_put_page(ipage, 1);
573 truncate_page = true;
574 goto out;
575 }
576
577 set_new_dnode(&dn, inode, ipage, NULL, 0);
578 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
579 if (err) {
580 if (err == -ENOENT)
581 goto free_next;
582 goto out;
583 }
584
585 count = ADDRS_PER_PAGE(dn.node_page, inode);
586
587 count -= dn.ofs_in_node;
588 f2fs_bug_on(sbi, count < 0);
589
590 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
591 truncate_data_blocks_range(&dn, count);
592 free_from += count;
593 }
594
595 f2fs_put_dnode(&dn);
596 free_next:
597 err = truncate_inode_blocks(inode, free_from);
598 out:
599 if (lock)
600 f2fs_unlock_op(sbi);
601 free_partial:
602 /* lastly zero out the first data page */
603 if (!err)
604 err = truncate_partial_data_page(inode, from, truncate_page);
605
606 trace_f2fs_truncate_blocks_exit(inode, err);
607 return err;
608 }
609
610 int f2fs_truncate(struct inode *inode)
611 {
612 int err;
613
614 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
615 S_ISLNK(inode->i_mode)))
616 return 0;
617
618 trace_f2fs_truncate(inode);
619
620 /* we should check inline_data size */
621 if (!f2fs_may_inline_data(inode)) {
622 err = f2fs_convert_inline_inode(inode);
623 if (err)
624 return err;
625 }
626
627 err = truncate_blocks(inode, i_size_read(inode), true);
628 if (err)
629 return err;
630
631 inode->i_mtime = inode->i_ctime = current_time(inode);
632 f2fs_mark_inode_dirty_sync(inode, false);
633 return 0;
634 }
635
636 int f2fs_getattr(struct vfsmount *mnt,
637 struct dentry *dentry, struct kstat *stat)
638 {
639 struct inode *inode = d_inode(dentry);
640 generic_fillattr(inode, stat);
641 stat->blocks <<= 3;
642 return 0;
643 }
644
645 #ifdef CONFIG_F2FS_FS_POSIX_ACL
646 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
647 {
648 unsigned int ia_valid = attr->ia_valid;
649
650 if (ia_valid & ATTR_UID)
651 inode->i_uid = attr->ia_uid;
652 if (ia_valid & ATTR_GID)
653 inode->i_gid = attr->ia_gid;
654 if (ia_valid & ATTR_ATIME)
655 inode->i_atime = timespec_trunc(attr->ia_atime,
656 inode->i_sb->s_time_gran);
657 if (ia_valid & ATTR_MTIME)
658 inode->i_mtime = timespec_trunc(attr->ia_mtime,
659 inode->i_sb->s_time_gran);
660 if (ia_valid & ATTR_CTIME)
661 inode->i_ctime = timespec_trunc(attr->ia_ctime,
662 inode->i_sb->s_time_gran);
663 if (ia_valid & ATTR_MODE) {
664 umode_t mode = attr->ia_mode;
665
666 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
667 mode &= ~S_ISGID;
668 set_acl_inode(inode, mode);
669 }
670 }
671 #else
672 #define __setattr_copy setattr_copy
673 #endif
674
675 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
676 {
677 struct inode *inode = d_inode(dentry);
678 int err;
679 bool size_changed = false;
680
681 err = setattr_prepare(dentry, attr);
682 if (err)
683 return err;
684
685 if (attr->ia_valid & ATTR_SIZE) {
686 if (f2fs_encrypted_inode(inode) &&
687 fscrypt_get_encryption_info(inode))
688 return -EACCES;
689
690 if (attr->ia_size <= i_size_read(inode)) {
691 truncate_setsize(inode, attr->ia_size);
692 err = f2fs_truncate(inode);
693 if (err)
694 return err;
695 } else {
696 /*
697 * do not trim all blocks after i_size if target size is
698 * larger than i_size.
699 */
700 truncate_setsize(inode, attr->ia_size);
701
702 /* should convert inline inode here */
703 if (!f2fs_may_inline_data(inode)) {
704 err = f2fs_convert_inline_inode(inode);
705 if (err)
706 return err;
707 }
708 inode->i_mtime = inode->i_ctime = current_time(inode);
709 }
710
711 size_changed = true;
712 }
713
714 __setattr_copy(inode, attr);
715
716 if (attr->ia_valid & ATTR_MODE) {
717 err = posix_acl_chmod(inode, get_inode_mode(inode));
718 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
719 inode->i_mode = F2FS_I(inode)->i_acl_mode;
720 clear_inode_flag(inode, FI_ACL_MODE);
721 }
722 }
723
724 /* file size may changed here */
725 f2fs_mark_inode_dirty_sync(inode, size_changed);
726
727 /* inode change will produce dirty node pages flushed by checkpoint */
728 f2fs_balance_fs(F2FS_I_SB(inode), true);
729
730 return err;
731 }
732
733 const struct inode_operations f2fs_file_inode_operations = {
734 .getattr = f2fs_getattr,
735 .setattr = f2fs_setattr,
736 .get_acl = f2fs_get_acl,
737 .set_acl = f2fs_set_acl,
738 #ifdef CONFIG_F2FS_FS_XATTR
739 .listxattr = f2fs_listxattr,
740 #endif
741 .fiemap = f2fs_fiemap,
742 };
743
744 static int fill_zero(struct inode *inode, pgoff_t index,
745 loff_t start, loff_t len)
746 {
747 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
748 struct page *page;
749
750 if (!len)
751 return 0;
752
753 f2fs_balance_fs(sbi, true);
754
755 f2fs_lock_op(sbi);
756 page = get_new_data_page(inode, NULL, index, false);
757 f2fs_unlock_op(sbi);
758
759 if (IS_ERR(page))
760 return PTR_ERR(page);
761
762 f2fs_wait_on_page_writeback(page, DATA, true);
763 zero_user(page, start, len);
764 set_page_dirty(page);
765 f2fs_put_page(page, 1);
766 return 0;
767 }
768
769 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
770 {
771 int err;
772
773 while (pg_start < pg_end) {
774 struct dnode_of_data dn;
775 pgoff_t end_offset, count;
776
777 set_new_dnode(&dn, inode, NULL, NULL, 0);
778 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
779 if (err) {
780 if (err == -ENOENT) {
781 pg_start++;
782 continue;
783 }
784 return err;
785 }
786
787 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
788 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
789
790 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
791
792 truncate_data_blocks_range(&dn, count);
793 f2fs_put_dnode(&dn);
794
795 pg_start += count;
796 }
797 return 0;
798 }
799
800 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
801 {
802 pgoff_t pg_start, pg_end;
803 loff_t off_start, off_end;
804 int ret;
805
806 ret = f2fs_convert_inline_inode(inode);
807 if (ret)
808 return ret;
809
810 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
811 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
812
813 off_start = offset & (PAGE_SIZE - 1);
814 off_end = (offset + len) & (PAGE_SIZE - 1);
815
816 if (pg_start == pg_end) {
817 ret = fill_zero(inode, pg_start, off_start,
818 off_end - off_start);
819 if (ret)
820 return ret;
821 } else {
822 if (off_start) {
823 ret = fill_zero(inode, pg_start++, off_start,
824 PAGE_SIZE - off_start);
825 if (ret)
826 return ret;
827 }
828 if (off_end) {
829 ret = fill_zero(inode, pg_end, 0, off_end);
830 if (ret)
831 return ret;
832 }
833
834 if (pg_start < pg_end) {
835 struct address_space *mapping = inode->i_mapping;
836 loff_t blk_start, blk_end;
837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
838
839 f2fs_balance_fs(sbi, true);
840
841 blk_start = (loff_t)pg_start << PAGE_SHIFT;
842 blk_end = (loff_t)pg_end << PAGE_SHIFT;
843 truncate_inode_pages_range(mapping, blk_start,
844 blk_end - 1);
845
846 f2fs_lock_op(sbi);
847 ret = truncate_hole(inode, pg_start, pg_end);
848 f2fs_unlock_op(sbi);
849 }
850 }
851
852 return ret;
853 }
854
855 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
856 int *do_replace, pgoff_t off, pgoff_t len)
857 {
858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
859 struct dnode_of_data dn;
860 int ret, done, i;
861
862 next_dnode:
863 set_new_dnode(&dn, inode, NULL, NULL, 0);
864 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
865 if (ret && ret != -ENOENT) {
866 return ret;
867 } else if (ret == -ENOENT) {
868 if (dn.max_level == 0)
869 return -ENOENT;
870 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
871 blkaddr += done;
872 do_replace += done;
873 goto next;
874 }
875
876 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
877 dn.ofs_in_node, len);
878 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
879 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
880 if (!is_checkpointed_data(sbi, *blkaddr)) {
881
882 if (test_opt(sbi, LFS)) {
883 f2fs_put_dnode(&dn);
884 return -ENOTSUPP;
885 }
886
887 /* do not invalidate this block address */
888 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
889 *do_replace = 1;
890 }
891 }
892 f2fs_put_dnode(&dn);
893 next:
894 len -= done;
895 off += done;
896 if (len)
897 goto next_dnode;
898 return 0;
899 }
900
901 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
902 int *do_replace, pgoff_t off, int len)
903 {
904 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
905 struct dnode_of_data dn;
906 int ret, i;
907
908 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
909 if (*do_replace == 0)
910 continue;
911
912 set_new_dnode(&dn, inode, NULL, NULL, 0);
913 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
914 if (ret) {
915 dec_valid_block_count(sbi, inode, 1);
916 invalidate_blocks(sbi, *blkaddr);
917 } else {
918 f2fs_update_data_blkaddr(&dn, *blkaddr);
919 }
920 f2fs_put_dnode(&dn);
921 }
922 return 0;
923 }
924
925 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
926 block_t *blkaddr, int *do_replace,
927 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
928 {
929 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
930 pgoff_t i = 0;
931 int ret;
932
933 while (i < len) {
934 if (blkaddr[i] == NULL_ADDR && !full) {
935 i++;
936 continue;
937 }
938
939 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
940 struct dnode_of_data dn;
941 struct node_info ni;
942 size_t new_size;
943 pgoff_t ilen;
944
945 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
946 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
947 if (ret)
948 return ret;
949
950 get_node_info(sbi, dn.nid, &ni);
951 ilen = min((pgoff_t)
952 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
953 dn.ofs_in_node, len - i);
954 do {
955 dn.data_blkaddr = datablock_addr(dn.node_page,
956 dn.ofs_in_node);
957 truncate_data_blocks_range(&dn, 1);
958
959 if (do_replace[i]) {
960 f2fs_i_blocks_write(src_inode,
961 1, false);
962 f2fs_i_blocks_write(dst_inode,
963 1, true);
964 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
965 blkaddr[i], ni.version, true, false);
966
967 do_replace[i] = 0;
968 }
969 dn.ofs_in_node++;
970 i++;
971 new_size = (dst + i) << PAGE_SHIFT;
972 if (dst_inode->i_size < new_size)
973 f2fs_i_size_write(dst_inode, new_size);
974 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
975
976 f2fs_put_dnode(&dn);
977 } else {
978 struct page *psrc, *pdst;
979
980 psrc = get_lock_data_page(src_inode, src + i, true);
981 if (IS_ERR(psrc))
982 return PTR_ERR(psrc);
983 pdst = get_new_data_page(dst_inode, NULL, dst + i,
984 true);
985 if (IS_ERR(pdst)) {
986 f2fs_put_page(psrc, 1);
987 return PTR_ERR(pdst);
988 }
989 f2fs_copy_page(psrc, pdst);
990 set_page_dirty(pdst);
991 f2fs_put_page(pdst, 1);
992 f2fs_put_page(psrc, 1);
993
994 ret = truncate_hole(src_inode, src + i, src + i + 1);
995 if (ret)
996 return ret;
997 i++;
998 }
999 }
1000 return 0;
1001 }
1002
1003 static int __exchange_data_block(struct inode *src_inode,
1004 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1005 pgoff_t len, bool full)
1006 {
1007 block_t *src_blkaddr;
1008 int *do_replace;
1009 pgoff_t olen;
1010 int ret;
1011
1012 while (len) {
1013 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1014
1015 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1016 if (!src_blkaddr)
1017 return -ENOMEM;
1018
1019 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1020 if (!do_replace) {
1021 kvfree(src_blkaddr);
1022 return -ENOMEM;
1023 }
1024
1025 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1026 do_replace, src, olen);
1027 if (ret)
1028 goto roll_back;
1029
1030 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1031 do_replace, src, dst, olen, full);
1032 if (ret)
1033 goto roll_back;
1034
1035 src += olen;
1036 dst += olen;
1037 len -= olen;
1038
1039 kvfree(src_blkaddr);
1040 kvfree(do_replace);
1041 }
1042 return 0;
1043
1044 roll_back:
1045 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1046 kvfree(src_blkaddr);
1047 kvfree(do_replace);
1048 return ret;
1049 }
1050
1051 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1052 {
1053 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1054 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1055 int ret;
1056
1057 f2fs_balance_fs(sbi, true);
1058 f2fs_lock_op(sbi);
1059
1060 f2fs_drop_extent_tree(inode);
1061
1062 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1063 f2fs_unlock_op(sbi);
1064 return ret;
1065 }
1066
1067 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1068 {
1069 pgoff_t pg_start, pg_end;
1070 loff_t new_size;
1071 int ret;
1072
1073 if (offset + len >= i_size_read(inode))
1074 return -EINVAL;
1075
1076 /* collapse range should be aligned to block size of f2fs. */
1077 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1078 return -EINVAL;
1079
1080 ret = f2fs_convert_inline_inode(inode);
1081 if (ret)
1082 return ret;
1083
1084 pg_start = offset >> PAGE_SHIFT;
1085 pg_end = (offset + len) >> PAGE_SHIFT;
1086
1087 /* write out all dirty pages from offset */
1088 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1089 if (ret)
1090 return ret;
1091
1092 truncate_pagecache(inode, offset);
1093
1094 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1095 if (ret)
1096 return ret;
1097
1098 /* write out all moved pages, if possible */
1099 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1100 truncate_pagecache(inode, offset);
1101
1102 new_size = i_size_read(inode) - len;
1103 truncate_pagecache(inode, new_size);
1104
1105 ret = truncate_blocks(inode, new_size, true);
1106 if (!ret)
1107 f2fs_i_size_write(inode, new_size);
1108
1109 return ret;
1110 }
1111
1112 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1113 pgoff_t end)
1114 {
1115 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1116 pgoff_t index = start;
1117 unsigned int ofs_in_node = dn->ofs_in_node;
1118 blkcnt_t count = 0;
1119 int ret;
1120
1121 for (; index < end; index++, dn->ofs_in_node++) {
1122 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1123 count++;
1124 }
1125
1126 dn->ofs_in_node = ofs_in_node;
1127 ret = reserve_new_blocks(dn, count);
1128 if (ret)
1129 return ret;
1130
1131 dn->ofs_in_node = ofs_in_node;
1132 for (index = start; index < end; index++, dn->ofs_in_node++) {
1133 dn->data_blkaddr =
1134 datablock_addr(dn->node_page, dn->ofs_in_node);
1135 /*
1136 * reserve_new_blocks will not guarantee entire block
1137 * allocation.
1138 */
1139 if (dn->data_blkaddr == NULL_ADDR) {
1140 ret = -ENOSPC;
1141 break;
1142 }
1143 if (dn->data_blkaddr != NEW_ADDR) {
1144 invalidate_blocks(sbi, dn->data_blkaddr);
1145 dn->data_blkaddr = NEW_ADDR;
1146 set_data_blkaddr(dn);
1147 }
1148 }
1149
1150 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1151
1152 return ret;
1153 }
1154
1155 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1156 int mode)
1157 {
1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 struct address_space *mapping = inode->i_mapping;
1160 pgoff_t index, pg_start, pg_end;
1161 loff_t new_size = i_size_read(inode);
1162 loff_t off_start, off_end;
1163 int ret = 0;
1164
1165 ret = inode_newsize_ok(inode, (len + offset));
1166 if (ret)
1167 return ret;
1168
1169 ret = f2fs_convert_inline_inode(inode);
1170 if (ret)
1171 return ret;
1172
1173 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1174 if (ret)
1175 return ret;
1176
1177 truncate_pagecache_range(inode, offset, offset + len - 1);
1178
1179 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1180 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1181
1182 off_start = offset & (PAGE_SIZE - 1);
1183 off_end = (offset + len) & (PAGE_SIZE - 1);
1184
1185 if (pg_start == pg_end) {
1186 ret = fill_zero(inode, pg_start, off_start,
1187 off_end - off_start);
1188 if (ret)
1189 return ret;
1190
1191 if (offset + len > new_size)
1192 new_size = offset + len;
1193 new_size = max_t(loff_t, new_size, offset + len);
1194 } else {
1195 if (off_start) {
1196 ret = fill_zero(inode, pg_start++, off_start,
1197 PAGE_SIZE - off_start);
1198 if (ret)
1199 return ret;
1200
1201 new_size = max_t(loff_t, new_size,
1202 (loff_t)pg_start << PAGE_SHIFT);
1203 }
1204
1205 for (index = pg_start; index < pg_end;) {
1206 struct dnode_of_data dn;
1207 unsigned int end_offset;
1208 pgoff_t end;
1209
1210 f2fs_lock_op(sbi);
1211
1212 set_new_dnode(&dn, inode, NULL, NULL, 0);
1213 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1214 if (ret) {
1215 f2fs_unlock_op(sbi);
1216 goto out;
1217 }
1218
1219 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1220 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1221
1222 ret = f2fs_do_zero_range(&dn, index, end);
1223 f2fs_put_dnode(&dn);
1224 f2fs_unlock_op(sbi);
1225
1226 f2fs_balance_fs(sbi, dn.node_changed);
1227
1228 if (ret)
1229 goto out;
1230
1231 index = end;
1232 new_size = max_t(loff_t, new_size,
1233 (loff_t)index << PAGE_SHIFT);
1234 }
1235
1236 if (off_end) {
1237 ret = fill_zero(inode, pg_end, 0, off_end);
1238 if (ret)
1239 goto out;
1240
1241 new_size = max_t(loff_t, new_size, offset + len);
1242 }
1243 }
1244
1245 out:
1246 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1247 f2fs_i_size_write(inode, new_size);
1248
1249 return ret;
1250 }
1251
1252 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1253 {
1254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1255 pgoff_t nr, pg_start, pg_end, delta, idx;
1256 loff_t new_size;
1257 int ret = 0;
1258
1259 new_size = i_size_read(inode) + len;
1260 if (new_size > inode->i_sb->s_maxbytes)
1261 return -EFBIG;
1262
1263 if (offset >= i_size_read(inode))
1264 return -EINVAL;
1265
1266 /* insert range should be aligned to block size of f2fs. */
1267 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1268 return -EINVAL;
1269
1270 ret = f2fs_convert_inline_inode(inode);
1271 if (ret)
1272 return ret;
1273
1274 f2fs_balance_fs(sbi, true);
1275
1276 ret = truncate_blocks(inode, i_size_read(inode), true);
1277 if (ret)
1278 return ret;
1279
1280 /* write out all dirty pages from offset */
1281 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1282 if (ret)
1283 return ret;
1284
1285 truncate_pagecache(inode, offset);
1286
1287 pg_start = offset >> PAGE_SHIFT;
1288 pg_end = (offset + len) >> PAGE_SHIFT;
1289 delta = pg_end - pg_start;
1290 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1291
1292 while (!ret && idx > pg_start) {
1293 nr = idx - pg_start;
1294 if (nr > delta)
1295 nr = delta;
1296 idx -= nr;
1297
1298 f2fs_lock_op(sbi);
1299 f2fs_drop_extent_tree(inode);
1300
1301 ret = __exchange_data_block(inode, inode, idx,
1302 idx + delta, nr, false);
1303 f2fs_unlock_op(sbi);
1304 }
1305
1306 /* write out all moved pages, if possible */
1307 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1308 truncate_pagecache(inode, offset);
1309
1310 if (!ret)
1311 f2fs_i_size_write(inode, new_size);
1312 return ret;
1313 }
1314
1315 static int expand_inode_data(struct inode *inode, loff_t offset,
1316 loff_t len, int mode)
1317 {
1318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1319 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1320 pgoff_t pg_end;
1321 loff_t new_size = i_size_read(inode);
1322 loff_t off_end;
1323 int err;
1324
1325 err = inode_newsize_ok(inode, (len + offset));
1326 if (err)
1327 return err;
1328
1329 err = f2fs_convert_inline_inode(inode);
1330 if (err)
1331 return err;
1332
1333 f2fs_balance_fs(sbi, true);
1334
1335 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1336 off_end = (offset + len) & (PAGE_SIZE - 1);
1337
1338 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1339 map.m_len = pg_end - map.m_lblk;
1340 if (off_end)
1341 map.m_len++;
1342
1343 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1344 if (err) {
1345 pgoff_t last_off;
1346
1347 if (!map.m_len)
1348 return err;
1349
1350 last_off = map.m_lblk + map.m_len - 1;
1351
1352 /* update new size to the failed position */
1353 new_size = (last_off == pg_end) ? offset + len:
1354 (loff_t)(last_off + 1) << PAGE_SHIFT;
1355 } else {
1356 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1357 }
1358
1359 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1360 f2fs_i_size_write(inode, new_size);
1361
1362 return err;
1363 }
1364
1365 static long f2fs_fallocate(struct file *file, int mode,
1366 loff_t offset, loff_t len)
1367 {
1368 struct inode *inode = file_inode(file);
1369 long ret = 0;
1370
1371 /* f2fs only support ->fallocate for regular file */
1372 if (!S_ISREG(inode->i_mode))
1373 return -EINVAL;
1374
1375 if (f2fs_encrypted_inode(inode) &&
1376 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1377 return -EOPNOTSUPP;
1378
1379 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1380 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1381 FALLOC_FL_INSERT_RANGE))
1382 return -EOPNOTSUPP;
1383
1384 inode_lock(inode);
1385
1386 if (mode & FALLOC_FL_PUNCH_HOLE) {
1387 if (offset >= inode->i_size)
1388 goto out;
1389
1390 ret = punch_hole(inode, offset, len);
1391 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1392 ret = f2fs_collapse_range(inode, offset, len);
1393 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1394 ret = f2fs_zero_range(inode, offset, len, mode);
1395 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1396 ret = f2fs_insert_range(inode, offset, len);
1397 } else {
1398 ret = expand_inode_data(inode, offset, len, mode);
1399 }
1400
1401 if (!ret) {
1402 inode->i_mtime = inode->i_ctime = current_time(inode);
1403 f2fs_mark_inode_dirty_sync(inode, false);
1404 if (mode & FALLOC_FL_KEEP_SIZE)
1405 file_set_keep_isize(inode);
1406 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1407 }
1408
1409 out:
1410 inode_unlock(inode);
1411
1412 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1413 return ret;
1414 }
1415
1416 static int f2fs_release_file(struct inode *inode, struct file *filp)
1417 {
1418 /*
1419 * f2fs_relase_file is called at every close calls. So we should
1420 * not drop any inmemory pages by close called by other process.
1421 */
1422 if (!(filp->f_mode & FMODE_WRITE) ||
1423 atomic_read(&inode->i_writecount) != 1)
1424 return 0;
1425
1426 /* some remained atomic pages should discarded */
1427 if (f2fs_is_atomic_file(inode))
1428 drop_inmem_pages(inode);
1429 if (f2fs_is_volatile_file(inode)) {
1430 clear_inode_flag(inode, FI_VOLATILE_FILE);
1431 set_inode_flag(inode, FI_DROP_CACHE);
1432 filemap_fdatawrite(inode->i_mapping);
1433 clear_inode_flag(inode, FI_DROP_CACHE);
1434 }
1435 return 0;
1436 }
1437
1438 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1439 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1440
1441 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1442 {
1443 if (S_ISDIR(mode))
1444 return flags;
1445 else if (S_ISREG(mode))
1446 return flags & F2FS_REG_FLMASK;
1447 else
1448 return flags & F2FS_OTHER_FLMASK;
1449 }
1450
1451 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1452 {
1453 struct inode *inode = file_inode(filp);
1454 struct f2fs_inode_info *fi = F2FS_I(inode);
1455 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1456 return put_user(flags, (int __user *)arg);
1457 }
1458
1459 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1460 {
1461 struct inode *inode = file_inode(filp);
1462 struct f2fs_inode_info *fi = F2FS_I(inode);
1463 unsigned int flags;
1464 unsigned int oldflags;
1465 int ret;
1466
1467 if (!inode_owner_or_capable(inode))
1468 return -EACCES;
1469
1470 if (get_user(flags, (int __user *)arg))
1471 return -EFAULT;
1472
1473 ret = mnt_want_write_file(filp);
1474 if (ret)
1475 return ret;
1476
1477 flags = f2fs_mask_flags(inode->i_mode, flags);
1478
1479 inode_lock(inode);
1480
1481 oldflags = fi->i_flags;
1482
1483 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1484 if (!capable(CAP_LINUX_IMMUTABLE)) {
1485 inode_unlock(inode);
1486 ret = -EPERM;
1487 goto out;
1488 }
1489 }
1490
1491 flags = flags & FS_FL_USER_MODIFIABLE;
1492 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1493 fi->i_flags = flags;
1494 inode_unlock(inode);
1495
1496 inode->i_ctime = current_time(inode);
1497 f2fs_set_inode_flags(inode);
1498 out:
1499 mnt_drop_write_file(filp);
1500 return ret;
1501 }
1502
1503 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1504 {
1505 struct inode *inode = file_inode(filp);
1506
1507 return put_user(inode->i_generation, (int __user *)arg);
1508 }
1509
1510 static int f2fs_ioc_start_atomic_write(struct file *filp)
1511 {
1512 struct inode *inode = file_inode(filp);
1513 int ret;
1514
1515 if (!inode_owner_or_capable(inode))
1516 return -EACCES;
1517
1518 ret = mnt_want_write_file(filp);
1519 if (ret)
1520 return ret;
1521
1522 inode_lock(inode);
1523
1524 if (f2fs_is_atomic_file(inode))
1525 goto out;
1526
1527 ret = f2fs_convert_inline_inode(inode);
1528 if (ret)
1529 goto out;
1530
1531 set_inode_flag(inode, FI_ATOMIC_FILE);
1532 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1533
1534 if (!get_dirty_pages(inode))
1535 goto out;
1536
1537 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1538 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1539 inode->i_ino, get_dirty_pages(inode));
1540 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1541 if (ret)
1542 clear_inode_flag(inode, FI_ATOMIC_FILE);
1543 out:
1544 stat_inc_atomic_write(inode);
1545 stat_update_max_atomic_write(inode);
1546 inode_unlock(inode);
1547 mnt_drop_write_file(filp);
1548 return ret;
1549 }
1550
1551 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1552 {
1553 struct inode *inode = file_inode(filp);
1554 int ret;
1555
1556 if (!inode_owner_or_capable(inode))
1557 return -EACCES;
1558
1559 ret = mnt_want_write_file(filp);
1560 if (ret)
1561 return ret;
1562
1563 inode_lock(inode);
1564
1565 if (f2fs_is_volatile_file(inode))
1566 goto err_out;
1567
1568 if (f2fs_is_atomic_file(inode)) {
1569 ret = commit_inmem_pages(inode);
1570 if (ret)
1571 goto err_out;
1572
1573 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1574 if (!ret) {
1575 clear_inode_flag(inode, FI_ATOMIC_FILE);
1576 stat_dec_atomic_write(inode);
1577 }
1578 } else {
1579 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1580 }
1581 err_out:
1582 inode_unlock(inode);
1583 mnt_drop_write_file(filp);
1584 return ret;
1585 }
1586
1587 static int f2fs_ioc_start_volatile_write(struct file *filp)
1588 {
1589 struct inode *inode = file_inode(filp);
1590 int ret;
1591
1592 if (!inode_owner_or_capable(inode))
1593 return -EACCES;
1594
1595 ret = mnt_want_write_file(filp);
1596 if (ret)
1597 return ret;
1598
1599 inode_lock(inode);
1600
1601 if (f2fs_is_volatile_file(inode))
1602 goto out;
1603
1604 ret = f2fs_convert_inline_inode(inode);
1605 if (ret)
1606 goto out;
1607
1608 set_inode_flag(inode, FI_VOLATILE_FILE);
1609 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1610 out:
1611 inode_unlock(inode);
1612 mnt_drop_write_file(filp);
1613 return ret;
1614 }
1615
1616 static int f2fs_ioc_release_volatile_write(struct file *filp)
1617 {
1618 struct inode *inode = file_inode(filp);
1619 int ret;
1620
1621 if (!inode_owner_or_capable(inode))
1622 return -EACCES;
1623
1624 ret = mnt_want_write_file(filp);
1625 if (ret)
1626 return ret;
1627
1628 inode_lock(inode);
1629
1630 if (!f2fs_is_volatile_file(inode))
1631 goto out;
1632
1633 if (!f2fs_is_first_block_written(inode)) {
1634 ret = truncate_partial_data_page(inode, 0, true);
1635 goto out;
1636 }
1637
1638 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1639 out:
1640 inode_unlock(inode);
1641 mnt_drop_write_file(filp);
1642 return ret;
1643 }
1644
1645 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1646 {
1647 struct inode *inode = file_inode(filp);
1648 int ret;
1649
1650 if (!inode_owner_or_capable(inode))
1651 return -EACCES;
1652
1653 ret = mnt_want_write_file(filp);
1654 if (ret)
1655 return ret;
1656
1657 inode_lock(inode);
1658
1659 if (f2fs_is_atomic_file(inode))
1660 drop_inmem_pages(inode);
1661 if (f2fs_is_volatile_file(inode)) {
1662 clear_inode_flag(inode, FI_VOLATILE_FILE);
1663 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1664 }
1665
1666 inode_unlock(inode);
1667
1668 mnt_drop_write_file(filp);
1669 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1670 return ret;
1671 }
1672
1673 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1674 {
1675 struct inode *inode = file_inode(filp);
1676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1677 struct super_block *sb = sbi->sb;
1678 __u32 in;
1679 int ret;
1680
1681 if (!capable(CAP_SYS_ADMIN))
1682 return -EPERM;
1683
1684 if (get_user(in, (__u32 __user *)arg))
1685 return -EFAULT;
1686
1687 ret = mnt_want_write_file(filp);
1688 if (ret)
1689 return ret;
1690
1691 switch (in) {
1692 case F2FS_GOING_DOWN_FULLSYNC:
1693 sb = freeze_bdev(sb->s_bdev);
1694 if (sb && !IS_ERR(sb)) {
1695 f2fs_stop_checkpoint(sbi, false);
1696 thaw_bdev(sb->s_bdev, sb);
1697 }
1698 break;
1699 case F2FS_GOING_DOWN_METASYNC:
1700 /* do checkpoint only */
1701 f2fs_sync_fs(sb, 1);
1702 f2fs_stop_checkpoint(sbi, false);
1703 break;
1704 case F2FS_GOING_DOWN_NOSYNC:
1705 f2fs_stop_checkpoint(sbi, false);
1706 break;
1707 case F2FS_GOING_DOWN_METAFLUSH:
1708 sync_meta_pages(sbi, META, LONG_MAX);
1709 f2fs_stop_checkpoint(sbi, false);
1710 break;
1711 default:
1712 ret = -EINVAL;
1713 goto out;
1714 }
1715 f2fs_update_time(sbi, REQ_TIME);
1716 out:
1717 mnt_drop_write_file(filp);
1718 return ret;
1719 }
1720
1721 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1722 {
1723 struct inode *inode = file_inode(filp);
1724 struct super_block *sb = inode->i_sb;
1725 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1726 struct fstrim_range range;
1727 int ret;
1728
1729 if (!capable(CAP_SYS_ADMIN))
1730 return -EPERM;
1731
1732 if (!blk_queue_discard(q))
1733 return -EOPNOTSUPP;
1734
1735 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1736 sizeof(range)))
1737 return -EFAULT;
1738
1739 ret = mnt_want_write_file(filp);
1740 if (ret)
1741 return ret;
1742
1743 range.minlen = max((unsigned int)range.minlen,
1744 q->limits.discard_granularity);
1745 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1746 mnt_drop_write_file(filp);
1747 if (ret < 0)
1748 return ret;
1749
1750 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1751 sizeof(range)))
1752 return -EFAULT;
1753 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1754 return 0;
1755 }
1756
1757 static bool uuid_is_nonzero(__u8 u[16])
1758 {
1759 int i;
1760
1761 for (i = 0; i < 16; i++)
1762 if (u[i])
1763 return true;
1764 return false;
1765 }
1766
1767 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1768 {
1769 struct inode *inode = file_inode(filp);
1770
1771 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1772
1773 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1774 }
1775
1776 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1777 {
1778 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1779 }
1780
1781 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1782 {
1783 struct inode *inode = file_inode(filp);
1784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 int err;
1786
1787 if (!f2fs_sb_has_crypto(inode->i_sb))
1788 return -EOPNOTSUPP;
1789
1790 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1791 goto got_it;
1792
1793 err = mnt_want_write_file(filp);
1794 if (err)
1795 return err;
1796
1797 /* update superblock with uuid */
1798 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1799
1800 err = f2fs_commit_super(sbi, false);
1801 if (err) {
1802 /* undo new data */
1803 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1804 mnt_drop_write_file(filp);
1805 return err;
1806 }
1807 mnt_drop_write_file(filp);
1808 got_it:
1809 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1810 16))
1811 return -EFAULT;
1812 return 0;
1813 }
1814
1815 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1816 {
1817 struct inode *inode = file_inode(filp);
1818 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1819 __u32 sync;
1820 int ret;
1821
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EPERM;
1824
1825 if (get_user(sync, (__u32 __user *)arg))
1826 return -EFAULT;
1827
1828 if (f2fs_readonly(sbi->sb))
1829 return -EROFS;
1830
1831 ret = mnt_want_write_file(filp);
1832 if (ret)
1833 return ret;
1834
1835 if (!sync) {
1836 if (!mutex_trylock(&sbi->gc_mutex)) {
1837 ret = -EBUSY;
1838 goto out;
1839 }
1840 } else {
1841 mutex_lock(&sbi->gc_mutex);
1842 }
1843
1844 ret = f2fs_gc(sbi, sync, true);
1845 out:
1846 mnt_drop_write_file(filp);
1847 return ret;
1848 }
1849
1850 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1851 {
1852 struct inode *inode = file_inode(filp);
1853 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1854 int ret;
1855
1856 if (!capable(CAP_SYS_ADMIN))
1857 return -EPERM;
1858
1859 if (f2fs_readonly(sbi->sb))
1860 return -EROFS;
1861
1862 ret = mnt_want_write_file(filp);
1863 if (ret)
1864 return ret;
1865
1866 ret = f2fs_sync_fs(sbi->sb, 1);
1867
1868 mnt_drop_write_file(filp);
1869 return ret;
1870 }
1871
1872 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1873 struct file *filp,
1874 struct f2fs_defragment *range)
1875 {
1876 struct inode *inode = file_inode(filp);
1877 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1878 struct extent_info ei = {0,0,0};
1879 pgoff_t pg_start, pg_end;
1880 unsigned int blk_per_seg = sbi->blocks_per_seg;
1881 unsigned int total = 0, sec_num;
1882 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1883 block_t blk_end = 0;
1884 bool fragmented = false;
1885 int err;
1886
1887 /* if in-place-update policy is enabled, don't waste time here */
1888 if (need_inplace_update(inode))
1889 return -EINVAL;
1890
1891 pg_start = range->start >> PAGE_SHIFT;
1892 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1893
1894 f2fs_balance_fs(sbi, true);
1895
1896 inode_lock(inode);
1897
1898 /* writeback all dirty pages in the range */
1899 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1900 range->start + range->len - 1);
1901 if (err)
1902 goto out;
1903
1904 /*
1905 * lookup mapping info in extent cache, skip defragmenting if physical
1906 * block addresses are continuous.
1907 */
1908 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1909 if (ei.fofs + ei.len >= pg_end)
1910 goto out;
1911 }
1912
1913 map.m_lblk = pg_start;
1914
1915 /*
1916 * lookup mapping info in dnode page cache, skip defragmenting if all
1917 * physical block addresses are continuous even if there are hole(s)
1918 * in logical blocks.
1919 */
1920 while (map.m_lblk < pg_end) {
1921 map.m_len = pg_end - map.m_lblk;
1922 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1923 if (err)
1924 goto out;
1925
1926 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1927 map.m_lblk++;
1928 continue;
1929 }
1930
1931 if (blk_end && blk_end != map.m_pblk) {
1932 fragmented = true;
1933 break;
1934 }
1935 blk_end = map.m_pblk + map.m_len;
1936
1937 map.m_lblk += map.m_len;
1938 }
1939
1940 if (!fragmented)
1941 goto out;
1942
1943 map.m_lblk = pg_start;
1944 map.m_len = pg_end - pg_start;
1945
1946 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1947
1948 /*
1949 * make sure there are enough free section for LFS allocation, this can
1950 * avoid defragment running in SSR mode when free section are allocated
1951 * intensively
1952 */
1953 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1954 err = -EAGAIN;
1955 goto out;
1956 }
1957
1958 while (map.m_lblk < pg_end) {
1959 pgoff_t idx;
1960 int cnt = 0;
1961
1962 do_map:
1963 map.m_len = pg_end - map.m_lblk;
1964 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1965 if (err)
1966 goto clear_out;
1967
1968 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1969 map.m_lblk++;
1970 continue;
1971 }
1972
1973 set_inode_flag(inode, FI_DO_DEFRAG);
1974
1975 idx = map.m_lblk;
1976 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1977 struct page *page;
1978
1979 page = get_lock_data_page(inode, idx, true);
1980 if (IS_ERR(page)) {
1981 err = PTR_ERR(page);
1982 goto clear_out;
1983 }
1984
1985 set_page_dirty(page);
1986 f2fs_put_page(page, 1);
1987
1988 idx++;
1989 cnt++;
1990 total++;
1991 }
1992
1993 map.m_lblk = idx;
1994
1995 if (idx < pg_end && cnt < blk_per_seg)
1996 goto do_map;
1997
1998 clear_inode_flag(inode, FI_DO_DEFRAG);
1999
2000 err = filemap_fdatawrite(inode->i_mapping);
2001 if (err)
2002 goto out;
2003 }
2004 clear_out:
2005 clear_inode_flag(inode, FI_DO_DEFRAG);
2006 out:
2007 inode_unlock(inode);
2008 if (!err)
2009 range->len = (u64)total << PAGE_SHIFT;
2010 return err;
2011 }
2012
2013 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2014 {
2015 struct inode *inode = file_inode(filp);
2016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2017 struct f2fs_defragment range;
2018 int err;
2019
2020 if (!capable(CAP_SYS_ADMIN))
2021 return -EPERM;
2022
2023 if (!S_ISREG(inode->i_mode))
2024 return -EINVAL;
2025
2026 err = mnt_want_write_file(filp);
2027 if (err)
2028 return err;
2029
2030 if (f2fs_readonly(sbi->sb)) {
2031 err = -EROFS;
2032 goto out;
2033 }
2034
2035 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2036 sizeof(range))) {
2037 err = -EFAULT;
2038 goto out;
2039 }
2040
2041 /* verify alignment of offset & size */
2042 if (range.start & (F2FS_BLKSIZE - 1) ||
2043 range.len & (F2FS_BLKSIZE - 1)) {
2044 err = -EINVAL;
2045 goto out;
2046 }
2047
2048 err = f2fs_defragment_range(sbi, filp, &range);
2049 f2fs_update_time(sbi, REQ_TIME);
2050 if (err < 0)
2051 goto out;
2052
2053 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2054 sizeof(range)))
2055 err = -EFAULT;
2056 out:
2057 mnt_drop_write_file(filp);
2058 return err;
2059 }
2060
2061 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2062 struct file *file_out, loff_t pos_out, size_t len)
2063 {
2064 struct inode *src = file_inode(file_in);
2065 struct inode *dst = file_inode(file_out);
2066 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2067 size_t olen = len, dst_max_i_size = 0;
2068 size_t dst_osize;
2069 int ret;
2070
2071 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2072 src->i_sb != dst->i_sb)
2073 return -EXDEV;
2074
2075 if (unlikely(f2fs_readonly(src->i_sb)))
2076 return -EROFS;
2077
2078 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2079 return -EINVAL;
2080
2081 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2082 return -EOPNOTSUPP;
2083
2084 if (src == dst) {
2085 if (pos_in == pos_out)
2086 return 0;
2087 if (pos_out > pos_in && pos_out < pos_in + len)
2088 return -EINVAL;
2089 }
2090
2091 inode_lock(src);
2092 if (src != dst) {
2093 if (!inode_trylock(dst)) {
2094 ret = -EBUSY;
2095 goto out;
2096 }
2097 }
2098
2099 ret = -EINVAL;
2100 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2101 goto out_unlock;
2102 if (len == 0)
2103 olen = len = src->i_size - pos_in;
2104 if (pos_in + len == src->i_size)
2105 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2106 if (len == 0) {
2107 ret = 0;
2108 goto out_unlock;
2109 }
2110
2111 dst_osize = dst->i_size;
2112 if (pos_out + olen > dst->i_size)
2113 dst_max_i_size = pos_out + olen;
2114
2115 /* verify the end result is block aligned */
2116 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2117 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2118 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2119 goto out_unlock;
2120
2121 ret = f2fs_convert_inline_inode(src);
2122 if (ret)
2123 goto out_unlock;
2124
2125 ret = f2fs_convert_inline_inode(dst);
2126 if (ret)
2127 goto out_unlock;
2128
2129 /* write out all dirty pages from offset */
2130 ret = filemap_write_and_wait_range(src->i_mapping,
2131 pos_in, pos_in + len);
2132 if (ret)
2133 goto out_unlock;
2134
2135 ret = filemap_write_and_wait_range(dst->i_mapping,
2136 pos_out, pos_out + len);
2137 if (ret)
2138 goto out_unlock;
2139
2140 f2fs_balance_fs(sbi, true);
2141 f2fs_lock_op(sbi);
2142 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2143 pos_out >> F2FS_BLKSIZE_BITS,
2144 len >> F2FS_BLKSIZE_BITS, false);
2145
2146 if (!ret) {
2147 if (dst_max_i_size)
2148 f2fs_i_size_write(dst, dst_max_i_size);
2149 else if (dst_osize != dst->i_size)
2150 f2fs_i_size_write(dst, dst_osize);
2151 }
2152 f2fs_unlock_op(sbi);
2153 out_unlock:
2154 if (src != dst)
2155 inode_unlock(dst);
2156 out:
2157 inode_unlock(src);
2158 return ret;
2159 }
2160
2161 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2162 {
2163 struct f2fs_move_range range;
2164 struct fd dst;
2165 int err;
2166
2167 if (!(filp->f_mode & FMODE_READ) ||
2168 !(filp->f_mode & FMODE_WRITE))
2169 return -EBADF;
2170
2171 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2172 sizeof(range)))
2173 return -EFAULT;
2174
2175 dst = fdget(range.dst_fd);
2176 if (!dst.file)
2177 return -EBADF;
2178
2179 if (!(dst.file->f_mode & FMODE_WRITE)) {
2180 err = -EBADF;
2181 goto err_out;
2182 }
2183
2184 err = mnt_want_write_file(filp);
2185 if (err)
2186 goto err_out;
2187
2188 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2189 range.pos_out, range.len);
2190
2191 mnt_drop_write_file(filp);
2192
2193 if (copy_to_user((struct f2fs_move_range __user *)arg,
2194 &range, sizeof(range)))
2195 err = -EFAULT;
2196 err_out:
2197 fdput(dst);
2198 return err;
2199 }
2200
2201 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2202 {
2203 switch (cmd) {
2204 case F2FS_IOC_GETFLAGS:
2205 return f2fs_ioc_getflags(filp, arg);
2206 case F2FS_IOC_SETFLAGS:
2207 return f2fs_ioc_setflags(filp, arg);
2208 case F2FS_IOC_GETVERSION:
2209 return f2fs_ioc_getversion(filp, arg);
2210 case F2FS_IOC_START_ATOMIC_WRITE:
2211 return f2fs_ioc_start_atomic_write(filp);
2212 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2213 return f2fs_ioc_commit_atomic_write(filp);
2214 case F2FS_IOC_START_VOLATILE_WRITE:
2215 return f2fs_ioc_start_volatile_write(filp);
2216 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2217 return f2fs_ioc_release_volatile_write(filp);
2218 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2219 return f2fs_ioc_abort_volatile_write(filp);
2220 case F2FS_IOC_SHUTDOWN:
2221 return f2fs_ioc_shutdown(filp, arg);
2222 case FITRIM:
2223 return f2fs_ioc_fitrim(filp, arg);
2224 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2225 return f2fs_ioc_set_encryption_policy(filp, arg);
2226 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2227 return f2fs_ioc_get_encryption_policy(filp, arg);
2228 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2229 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2230 case F2FS_IOC_GARBAGE_COLLECT:
2231 return f2fs_ioc_gc(filp, arg);
2232 case F2FS_IOC_WRITE_CHECKPOINT:
2233 return f2fs_ioc_write_checkpoint(filp, arg);
2234 case F2FS_IOC_DEFRAGMENT:
2235 return f2fs_ioc_defragment(filp, arg);
2236 case F2FS_IOC_MOVE_RANGE:
2237 return f2fs_ioc_move_range(filp, arg);
2238 default:
2239 return -ENOTTY;
2240 }
2241 }
2242
2243 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2244 {
2245 struct file *file = iocb->ki_filp;
2246 struct inode *inode = file_inode(file);
2247 struct blk_plug plug;
2248 ssize_t ret;
2249
2250 if (f2fs_encrypted_inode(inode) &&
2251 !fscrypt_has_encryption_key(inode) &&
2252 fscrypt_get_encryption_info(inode))
2253 return -EACCES;
2254
2255 inode_lock(inode);
2256 ret = generic_write_checks(iocb, from);
2257 if (ret > 0) {
2258 int err;
2259
2260 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2261 set_inode_flag(inode, FI_NO_PREALLOC);
2262
2263 err = f2fs_preallocate_blocks(iocb, from);
2264 if (err) {
2265 inode_unlock(inode);
2266 return err;
2267 }
2268 blk_start_plug(&plug);
2269 ret = __generic_file_write_iter(iocb, from);
2270 blk_finish_plug(&plug);
2271 clear_inode_flag(inode, FI_NO_PREALLOC);
2272 }
2273 inode_unlock(inode);
2274
2275 if (ret > 0)
2276 ret = generic_write_sync(iocb, ret);
2277 return ret;
2278 }
2279
2280 #ifdef CONFIG_COMPAT
2281 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2282 {
2283 switch (cmd) {
2284 case F2FS_IOC32_GETFLAGS:
2285 cmd = F2FS_IOC_GETFLAGS;
2286 break;
2287 case F2FS_IOC32_SETFLAGS:
2288 cmd = F2FS_IOC_SETFLAGS;
2289 break;
2290 case F2FS_IOC32_GETVERSION:
2291 cmd = F2FS_IOC_GETVERSION;
2292 break;
2293 case F2FS_IOC_START_ATOMIC_WRITE:
2294 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2295 case F2FS_IOC_START_VOLATILE_WRITE:
2296 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2297 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2298 case F2FS_IOC_SHUTDOWN:
2299 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2300 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2301 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2302 case F2FS_IOC_GARBAGE_COLLECT:
2303 case F2FS_IOC_WRITE_CHECKPOINT:
2304 case F2FS_IOC_DEFRAGMENT:
2305 break;
2306 case F2FS_IOC_MOVE_RANGE:
2307 break;
2308 default:
2309 return -ENOIOCTLCMD;
2310 }
2311 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2312 }
2313 #endif
2314
2315 const struct file_operations f2fs_file_operations = {
2316 .llseek = f2fs_llseek,
2317 .read_iter = generic_file_read_iter,
2318 .write_iter = f2fs_file_write_iter,
2319 .open = f2fs_file_open,
2320 .release = f2fs_release_file,
2321 .mmap = f2fs_file_mmap,
2322 .fsync = f2fs_sync_file,
2323 .fallocate = f2fs_fallocate,
2324 .unlocked_ioctl = f2fs_ioctl,
2325 #ifdef CONFIG_COMPAT
2326 .compat_ioctl = f2fs_compat_ioctl,
2327 #endif
2328 .splice_read = generic_file_splice_read,
2329 .splice_write = iter_file_splice_write,
2330 };