]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/file.c
Merge tag '9p-for-5.15-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40 struct inode *inode = file_inode(vmf->vma->vm_file);
41 vm_fault_t ret;
42
43 ret = filemap_fault(vmf);
44 if (!ret)
45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46 F2FS_BLKSIZE);
47
48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50 return ret;
51 }
52
53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55 struct page *page = vmf->page;
56 struct inode *inode = file_inode(vmf->vma->vm_file);
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct dnode_of_data dn;
59 bool need_alloc = true;
60 int err = 0;
61
62 if (unlikely(IS_IMMUTABLE(inode)))
63 return VM_FAULT_SIGBUS;
64
65 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
66 return VM_FAULT_SIGBUS;
67
68 if (unlikely(f2fs_cp_error(sbi))) {
69 err = -EIO;
70 goto err;
71 }
72
73 if (!f2fs_is_checkpoint_ready(sbi)) {
74 err = -ENOSPC;
75 goto err;
76 }
77
78 err = f2fs_convert_inline_inode(inode);
79 if (err)
80 goto err;
81
82 #ifdef CONFIG_F2FS_FS_COMPRESSION
83 if (f2fs_compressed_file(inode)) {
84 int ret = f2fs_is_compressed_cluster(inode, page->index);
85
86 if (ret < 0) {
87 err = ret;
88 goto err;
89 } else if (ret) {
90 need_alloc = false;
91 }
92 }
93 #endif
94 /* should do out of any locked page */
95 if (need_alloc)
96 f2fs_balance_fs(sbi, true);
97
98 sb_start_pagefault(inode->i_sb);
99
100 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
101
102 file_update_time(vmf->vma->vm_file);
103 filemap_invalidate_lock_shared(inode->i_mapping);
104 lock_page(page);
105 if (unlikely(page->mapping != inode->i_mapping ||
106 page_offset(page) > i_size_read(inode) ||
107 !PageUptodate(page))) {
108 unlock_page(page);
109 err = -EFAULT;
110 goto out_sem;
111 }
112
113 if (need_alloc) {
114 /* block allocation */
115 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
116 set_new_dnode(&dn, inode, NULL, NULL, 0);
117 err = f2fs_get_block(&dn, page->index);
118 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
119 }
120
121 #ifdef CONFIG_F2FS_FS_COMPRESSION
122 if (!need_alloc) {
123 set_new_dnode(&dn, inode, NULL, NULL, 0);
124 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
125 f2fs_put_dnode(&dn);
126 }
127 #endif
128 if (err) {
129 unlock_page(page);
130 goto out_sem;
131 }
132
133 f2fs_wait_on_page_writeback(page, DATA, false, true);
134
135 /* wait for GCed page writeback via META_MAPPING */
136 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
137
138 /*
139 * check to see if the page is mapped already (no holes)
140 */
141 if (PageMappedToDisk(page))
142 goto out_sem;
143
144 /* page is wholly or partially inside EOF */
145 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
146 i_size_read(inode)) {
147 loff_t offset;
148
149 offset = i_size_read(inode) & ~PAGE_MASK;
150 zero_user_segment(page, offset, PAGE_SIZE);
151 }
152 set_page_dirty(page);
153 if (!PageUptodate(page))
154 SetPageUptodate(page);
155
156 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
157 f2fs_update_time(sbi, REQ_TIME);
158
159 trace_f2fs_vm_page_mkwrite(page, DATA);
160 out_sem:
161 filemap_invalidate_unlock_shared(inode->i_mapping);
162
163 sb_end_pagefault(inode->i_sb);
164 err:
165 return block_page_mkwrite_return(err);
166 }
167
168 static const struct vm_operations_struct f2fs_file_vm_ops = {
169 .fault = f2fs_filemap_fault,
170 .map_pages = filemap_map_pages,
171 .page_mkwrite = f2fs_vm_page_mkwrite,
172 };
173
174 static int get_parent_ino(struct inode *inode, nid_t *pino)
175 {
176 struct dentry *dentry;
177
178 /*
179 * Make sure to get the non-deleted alias. The alias associated with
180 * the open file descriptor being fsync()'ed may be deleted already.
181 */
182 dentry = d_find_alias(inode);
183 if (!dentry)
184 return 0;
185
186 *pino = parent_ino(dentry);
187 dput(dentry);
188 return 1;
189 }
190
191 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
192 {
193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 enum cp_reason_type cp_reason = CP_NO_NEEDED;
195
196 if (!S_ISREG(inode->i_mode))
197 cp_reason = CP_NON_REGULAR;
198 else if (f2fs_compressed_file(inode))
199 cp_reason = CP_COMPRESSED;
200 else if (inode->i_nlink != 1)
201 cp_reason = CP_HARDLINK;
202 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
203 cp_reason = CP_SB_NEED_CP;
204 else if (file_wrong_pino(inode))
205 cp_reason = CP_WRONG_PINO;
206 else if (!f2fs_space_for_roll_forward(sbi))
207 cp_reason = CP_NO_SPC_ROLL;
208 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
209 cp_reason = CP_NODE_NEED_CP;
210 else if (test_opt(sbi, FASTBOOT))
211 cp_reason = CP_FASTBOOT_MODE;
212 else if (F2FS_OPTION(sbi).active_logs == 2)
213 cp_reason = CP_SPEC_LOG_NUM;
214 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
215 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
216 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
217 TRANS_DIR_INO))
218 cp_reason = CP_RECOVER_DIR;
219
220 return cp_reason;
221 }
222
223 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
224 {
225 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
226 bool ret = false;
227 /* But we need to avoid that there are some inode updates */
228 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
229 ret = true;
230 f2fs_put_page(i, 0);
231 return ret;
232 }
233
234 static void try_to_fix_pino(struct inode *inode)
235 {
236 struct f2fs_inode_info *fi = F2FS_I(inode);
237 nid_t pino;
238
239 down_write(&fi->i_sem);
240 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
241 get_parent_ino(inode, &pino)) {
242 f2fs_i_pino_write(inode, pino);
243 file_got_pino(inode);
244 }
245 up_write(&fi->i_sem);
246 }
247
248 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
249 int datasync, bool atomic)
250 {
251 struct inode *inode = file->f_mapping->host;
252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
253 nid_t ino = inode->i_ino;
254 int ret = 0;
255 enum cp_reason_type cp_reason = 0;
256 struct writeback_control wbc = {
257 .sync_mode = WB_SYNC_ALL,
258 .nr_to_write = LONG_MAX,
259 .for_reclaim = 0,
260 };
261 unsigned int seq_id = 0;
262
263 if (unlikely(f2fs_readonly(inode->i_sb)))
264 return 0;
265
266 trace_f2fs_sync_file_enter(inode);
267
268 if (S_ISDIR(inode->i_mode))
269 goto go_write;
270
271 /* if fdatasync is triggered, let's do in-place-update */
272 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
273 set_inode_flag(inode, FI_NEED_IPU);
274 ret = file_write_and_wait_range(file, start, end);
275 clear_inode_flag(inode, FI_NEED_IPU);
276
277 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
278 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
279 return ret;
280 }
281
282 /* if the inode is dirty, let's recover all the time */
283 if (!f2fs_skip_inode_update(inode, datasync)) {
284 f2fs_write_inode(inode, NULL);
285 goto go_write;
286 }
287
288 /*
289 * if there is no written data, don't waste time to write recovery info.
290 */
291 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
292 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
293
294 /* it may call write_inode just prior to fsync */
295 if (need_inode_page_update(sbi, ino))
296 goto go_write;
297
298 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
299 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
300 goto flush_out;
301 goto out;
302 } else {
303 /*
304 * for OPU case, during fsync(), node can be persisted before
305 * data when lower device doesn't support write barrier, result
306 * in data corruption after SPO.
307 * So for strict fsync mode, force to use atomic write sematics
308 * to keep write order in between data/node and last node to
309 * avoid potential data corruption.
310 */
311 if (F2FS_OPTION(sbi).fsync_mode ==
312 FSYNC_MODE_STRICT && !atomic)
313 atomic = true;
314 }
315 go_write:
316 /*
317 * Both of fdatasync() and fsync() are able to be recovered from
318 * sudden-power-off.
319 */
320 down_read(&F2FS_I(inode)->i_sem);
321 cp_reason = need_do_checkpoint(inode);
322 up_read(&F2FS_I(inode)->i_sem);
323
324 if (cp_reason) {
325 /* all the dirty node pages should be flushed for POR */
326 ret = f2fs_sync_fs(inode->i_sb, 1);
327
328 /*
329 * We've secured consistency through sync_fs. Following pino
330 * will be used only for fsynced inodes after checkpoint.
331 */
332 try_to_fix_pino(inode);
333 clear_inode_flag(inode, FI_APPEND_WRITE);
334 clear_inode_flag(inode, FI_UPDATE_WRITE);
335 goto out;
336 }
337 sync_nodes:
338 atomic_inc(&sbi->wb_sync_req[NODE]);
339 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
340 atomic_dec(&sbi->wb_sync_req[NODE]);
341 if (ret)
342 goto out;
343
344 /* if cp_error was enabled, we should avoid infinite loop */
345 if (unlikely(f2fs_cp_error(sbi))) {
346 ret = -EIO;
347 goto out;
348 }
349
350 if (f2fs_need_inode_block_update(sbi, ino)) {
351 f2fs_mark_inode_dirty_sync(inode, true);
352 f2fs_write_inode(inode, NULL);
353 goto sync_nodes;
354 }
355
356 /*
357 * If it's atomic_write, it's just fine to keep write ordering. So
358 * here we don't need to wait for node write completion, since we use
359 * node chain which serializes node blocks. If one of node writes are
360 * reordered, we can see simply broken chain, resulting in stopping
361 * roll-forward recovery. It means we'll recover all or none node blocks
362 * given fsync mark.
363 */
364 if (!atomic) {
365 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
366 if (ret)
367 goto out;
368 }
369
370 /* once recovery info is written, don't need to tack this */
371 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
372 clear_inode_flag(inode, FI_APPEND_WRITE);
373 flush_out:
374 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
375 ret = f2fs_issue_flush(sbi, inode->i_ino);
376 if (!ret) {
377 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
378 clear_inode_flag(inode, FI_UPDATE_WRITE);
379 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
380 }
381 f2fs_update_time(sbi, REQ_TIME);
382 out:
383 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
384 return ret;
385 }
386
387 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
388 {
389 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
390 return -EIO;
391 return f2fs_do_sync_file(file, start, end, datasync, false);
392 }
393
394 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
395 pgoff_t index, int whence)
396 {
397 switch (whence) {
398 case SEEK_DATA:
399 if (__is_valid_data_blkaddr(blkaddr))
400 return true;
401 if (blkaddr == NEW_ADDR &&
402 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
403 return true;
404 break;
405 case SEEK_HOLE:
406 if (blkaddr == NULL_ADDR)
407 return true;
408 break;
409 }
410 return false;
411 }
412
413 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
414 {
415 struct inode *inode = file->f_mapping->host;
416 loff_t maxbytes = inode->i_sb->s_maxbytes;
417 struct dnode_of_data dn;
418 pgoff_t pgofs, end_offset;
419 loff_t data_ofs = offset;
420 loff_t isize;
421 int err = 0;
422
423 inode_lock(inode);
424
425 isize = i_size_read(inode);
426 if (offset >= isize)
427 goto fail;
428
429 /* handle inline data case */
430 if (f2fs_has_inline_data(inode)) {
431 if (whence == SEEK_HOLE) {
432 data_ofs = isize;
433 goto found;
434 } else if (whence == SEEK_DATA) {
435 data_ofs = offset;
436 goto found;
437 }
438 }
439
440 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
441
442 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
443 set_new_dnode(&dn, inode, NULL, NULL, 0);
444 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
445 if (err && err != -ENOENT) {
446 goto fail;
447 } else if (err == -ENOENT) {
448 /* direct node does not exists */
449 if (whence == SEEK_DATA) {
450 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
451 continue;
452 } else {
453 goto found;
454 }
455 }
456
457 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
458
459 /* find data/hole in dnode block */
460 for (; dn.ofs_in_node < end_offset;
461 dn.ofs_in_node++, pgofs++,
462 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
463 block_t blkaddr;
464
465 blkaddr = f2fs_data_blkaddr(&dn);
466
467 if (__is_valid_data_blkaddr(blkaddr) &&
468 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
469 blkaddr, DATA_GENERIC_ENHANCE)) {
470 f2fs_put_dnode(&dn);
471 goto fail;
472 }
473
474 if (__found_offset(file->f_mapping, blkaddr,
475 pgofs, whence)) {
476 f2fs_put_dnode(&dn);
477 goto found;
478 }
479 }
480 f2fs_put_dnode(&dn);
481 }
482
483 if (whence == SEEK_DATA)
484 goto fail;
485 found:
486 if (whence == SEEK_HOLE && data_ofs > isize)
487 data_ofs = isize;
488 inode_unlock(inode);
489 return vfs_setpos(file, data_ofs, maxbytes);
490 fail:
491 inode_unlock(inode);
492 return -ENXIO;
493 }
494
495 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
496 {
497 struct inode *inode = file->f_mapping->host;
498 loff_t maxbytes = inode->i_sb->s_maxbytes;
499
500 if (f2fs_compressed_file(inode))
501 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
502
503 switch (whence) {
504 case SEEK_SET:
505 case SEEK_CUR:
506 case SEEK_END:
507 return generic_file_llseek_size(file, offset, whence,
508 maxbytes, i_size_read(inode));
509 case SEEK_DATA:
510 case SEEK_HOLE:
511 if (offset < 0)
512 return -ENXIO;
513 return f2fs_seek_block(file, offset, whence);
514 }
515
516 return -EINVAL;
517 }
518
519 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
520 {
521 struct inode *inode = file_inode(file);
522
523 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
524 return -EIO;
525
526 if (!f2fs_is_compress_backend_ready(inode))
527 return -EOPNOTSUPP;
528
529 file_accessed(file);
530 vma->vm_ops = &f2fs_file_vm_ops;
531 set_inode_flag(inode, FI_MMAP_FILE);
532 return 0;
533 }
534
535 static int f2fs_file_open(struct inode *inode, struct file *filp)
536 {
537 int err = fscrypt_file_open(inode, filp);
538
539 if (err)
540 return err;
541
542 if (!f2fs_is_compress_backend_ready(inode))
543 return -EOPNOTSUPP;
544
545 err = fsverity_file_open(inode, filp);
546 if (err)
547 return err;
548
549 filp->f_mode |= FMODE_NOWAIT;
550
551 return dquot_file_open(inode, filp);
552 }
553
554 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
555 {
556 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
557 struct f2fs_node *raw_node;
558 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
559 __le32 *addr;
560 int base = 0;
561 bool compressed_cluster = false;
562 int cluster_index = 0, valid_blocks = 0;
563 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
564 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
565
566 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
567 base = get_extra_isize(dn->inode);
568
569 raw_node = F2FS_NODE(dn->node_page);
570 addr = blkaddr_in_node(raw_node) + base + ofs;
571
572 /* Assumption: truncateion starts with cluster */
573 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
574 block_t blkaddr = le32_to_cpu(*addr);
575
576 if (f2fs_compressed_file(dn->inode) &&
577 !(cluster_index & (cluster_size - 1))) {
578 if (compressed_cluster)
579 f2fs_i_compr_blocks_update(dn->inode,
580 valid_blocks, false);
581 compressed_cluster = (blkaddr == COMPRESS_ADDR);
582 valid_blocks = 0;
583 }
584
585 if (blkaddr == NULL_ADDR)
586 continue;
587
588 dn->data_blkaddr = NULL_ADDR;
589 f2fs_set_data_blkaddr(dn);
590
591 if (__is_valid_data_blkaddr(blkaddr)) {
592 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
593 DATA_GENERIC_ENHANCE))
594 continue;
595 if (compressed_cluster)
596 valid_blocks++;
597 }
598
599 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
600 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
601
602 f2fs_invalidate_blocks(sbi, blkaddr);
603
604 if (!released || blkaddr != COMPRESS_ADDR)
605 nr_free++;
606 }
607
608 if (compressed_cluster)
609 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
610
611 if (nr_free) {
612 pgoff_t fofs;
613 /*
614 * once we invalidate valid blkaddr in range [ofs, ofs + count],
615 * we will invalidate all blkaddr in the whole range.
616 */
617 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
618 dn->inode) + ofs;
619 f2fs_update_extent_cache_range(dn, fofs, 0, len);
620 dec_valid_block_count(sbi, dn->inode, nr_free);
621 }
622 dn->ofs_in_node = ofs;
623
624 f2fs_update_time(sbi, REQ_TIME);
625 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
626 dn->ofs_in_node, nr_free);
627 }
628
629 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
630 {
631 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
632 }
633
634 static int truncate_partial_data_page(struct inode *inode, u64 from,
635 bool cache_only)
636 {
637 loff_t offset = from & (PAGE_SIZE - 1);
638 pgoff_t index = from >> PAGE_SHIFT;
639 struct address_space *mapping = inode->i_mapping;
640 struct page *page;
641
642 if (!offset && !cache_only)
643 return 0;
644
645 if (cache_only) {
646 page = find_lock_page(mapping, index);
647 if (page && PageUptodate(page))
648 goto truncate_out;
649 f2fs_put_page(page, 1);
650 return 0;
651 }
652
653 page = f2fs_get_lock_data_page(inode, index, true);
654 if (IS_ERR(page))
655 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
656 truncate_out:
657 f2fs_wait_on_page_writeback(page, DATA, true, true);
658 zero_user(page, offset, PAGE_SIZE - offset);
659
660 /* An encrypted inode should have a key and truncate the last page. */
661 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
662 if (!cache_only)
663 set_page_dirty(page);
664 f2fs_put_page(page, 1);
665 return 0;
666 }
667
668 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
669 {
670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671 struct dnode_of_data dn;
672 pgoff_t free_from;
673 int count = 0, err = 0;
674 struct page *ipage;
675 bool truncate_page = false;
676
677 trace_f2fs_truncate_blocks_enter(inode, from);
678
679 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
680
681 if (free_from >= max_file_blocks(inode))
682 goto free_partial;
683
684 if (lock)
685 f2fs_lock_op(sbi);
686
687 ipage = f2fs_get_node_page(sbi, inode->i_ino);
688 if (IS_ERR(ipage)) {
689 err = PTR_ERR(ipage);
690 goto out;
691 }
692
693 if (f2fs_has_inline_data(inode)) {
694 f2fs_truncate_inline_inode(inode, ipage, from);
695 f2fs_put_page(ipage, 1);
696 truncate_page = true;
697 goto out;
698 }
699
700 set_new_dnode(&dn, inode, ipage, NULL, 0);
701 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
702 if (err) {
703 if (err == -ENOENT)
704 goto free_next;
705 goto out;
706 }
707
708 count = ADDRS_PER_PAGE(dn.node_page, inode);
709
710 count -= dn.ofs_in_node;
711 f2fs_bug_on(sbi, count < 0);
712
713 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
714 f2fs_truncate_data_blocks_range(&dn, count);
715 free_from += count;
716 }
717
718 f2fs_put_dnode(&dn);
719 free_next:
720 err = f2fs_truncate_inode_blocks(inode, free_from);
721 out:
722 if (lock)
723 f2fs_unlock_op(sbi);
724 free_partial:
725 /* lastly zero out the first data page */
726 if (!err)
727 err = truncate_partial_data_page(inode, from, truncate_page);
728
729 trace_f2fs_truncate_blocks_exit(inode, err);
730 return err;
731 }
732
733 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
734 {
735 u64 free_from = from;
736 int err;
737
738 #ifdef CONFIG_F2FS_FS_COMPRESSION
739 /*
740 * for compressed file, only support cluster size
741 * aligned truncation.
742 */
743 if (f2fs_compressed_file(inode))
744 free_from = round_up(from,
745 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
746 #endif
747
748 err = f2fs_do_truncate_blocks(inode, free_from, lock);
749 if (err)
750 return err;
751
752 #ifdef CONFIG_F2FS_FS_COMPRESSION
753 /*
754 * For compressed file, after release compress blocks, don't allow write
755 * direct, but we should allow write direct after truncate to zero.
756 */
757 if (f2fs_compressed_file(inode) && !free_from
758 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
759 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
760
761 if (from != free_from) {
762 err = f2fs_truncate_partial_cluster(inode, from, lock);
763 if (err)
764 return err;
765 }
766 #endif
767
768 return 0;
769 }
770
771 int f2fs_truncate(struct inode *inode)
772 {
773 int err;
774
775 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
776 return -EIO;
777
778 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
779 S_ISLNK(inode->i_mode)))
780 return 0;
781
782 trace_f2fs_truncate(inode);
783
784 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
785 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
786 return -EIO;
787 }
788
789 err = dquot_initialize(inode);
790 if (err)
791 return err;
792
793 /* we should check inline_data size */
794 if (!f2fs_may_inline_data(inode)) {
795 err = f2fs_convert_inline_inode(inode);
796 if (err)
797 return err;
798 }
799
800 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
801 if (err)
802 return err;
803
804 inode->i_mtime = inode->i_ctime = current_time(inode);
805 f2fs_mark_inode_dirty_sync(inode, false);
806 return 0;
807 }
808
809 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
810 struct kstat *stat, u32 request_mask, unsigned int query_flags)
811 {
812 struct inode *inode = d_inode(path->dentry);
813 struct f2fs_inode_info *fi = F2FS_I(inode);
814 struct f2fs_inode *ri;
815 unsigned int flags;
816
817 if (f2fs_has_extra_attr(inode) &&
818 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
819 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
820 stat->result_mask |= STATX_BTIME;
821 stat->btime.tv_sec = fi->i_crtime.tv_sec;
822 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
823 }
824
825 flags = fi->i_flags;
826 if (flags & F2FS_COMPR_FL)
827 stat->attributes |= STATX_ATTR_COMPRESSED;
828 if (flags & F2FS_APPEND_FL)
829 stat->attributes |= STATX_ATTR_APPEND;
830 if (IS_ENCRYPTED(inode))
831 stat->attributes |= STATX_ATTR_ENCRYPTED;
832 if (flags & F2FS_IMMUTABLE_FL)
833 stat->attributes |= STATX_ATTR_IMMUTABLE;
834 if (flags & F2FS_NODUMP_FL)
835 stat->attributes |= STATX_ATTR_NODUMP;
836 if (IS_VERITY(inode))
837 stat->attributes |= STATX_ATTR_VERITY;
838
839 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
840 STATX_ATTR_APPEND |
841 STATX_ATTR_ENCRYPTED |
842 STATX_ATTR_IMMUTABLE |
843 STATX_ATTR_NODUMP |
844 STATX_ATTR_VERITY);
845
846 generic_fillattr(&init_user_ns, inode, stat);
847
848 /* we need to show initial sectors used for inline_data/dentries */
849 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
850 f2fs_has_inline_dentry(inode))
851 stat->blocks += (stat->size + 511) >> 9;
852
853 return 0;
854 }
855
856 #ifdef CONFIG_F2FS_FS_POSIX_ACL
857 static void __setattr_copy(struct user_namespace *mnt_userns,
858 struct inode *inode, const struct iattr *attr)
859 {
860 unsigned int ia_valid = attr->ia_valid;
861
862 if (ia_valid & ATTR_UID)
863 inode->i_uid = attr->ia_uid;
864 if (ia_valid & ATTR_GID)
865 inode->i_gid = attr->ia_gid;
866 if (ia_valid & ATTR_ATIME)
867 inode->i_atime = attr->ia_atime;
868 if (ia_valid & ATTR_MTIME)
869 inode->i_mtime = attr->ia_mtime;
870 if (ia_valid & ATTR_CTIME)
871 inode->i_ctime = attr->ia_ctime;
872 if (ia_valid & ATTR_MODE) {
873 umode_t mode = attr->ia_mode;
874 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
875
876 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
877 mode &= ~S_ISGID;
878 set_acl_inode(inode, mode);
879 }
880 }
881 #else
882 #define __setattr_copy setattr_copy
883 #endif
884
885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
886 struct iattr *attr)
887 {
888 struct inode *inode = d_inode(dentry);
889 int err;
890
891 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
892 return -EIO;
893
894 if (unlikely(IS_IMMUTABLE(inode)))
895 return -EPERM;
896
897 if (unlikely(IS_APPEND(inode) &&
898 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
899 ATTR_GID | ATTR_TIMES_SET))))
900 return -EPERM;
901
902 if ((attr->ia_valid & ATTR_SIZE) &&
903 !f2fs_is_compress_backend_ready(inode))
904 return -EOPNOTSUPP;
905
906 err = setattr_prepare(&init_user_ns, dentry, attr);
907 if (err)
908 return err;
909
910 err = fscrypt_prepare_setattr(dentry, attr);
911 if (err)
912 return err;
913
914 err = fsverity_prepare_setattr(dentry, attr);
915 if (err)
916 return err;
917
918 if (is_quota_modification(inode, attr)) {
919 err = dquot_initialize(inode);
920 if (err)
921 return err;
922 }
923 if ((attr->ia_valid & ATTR_UID &&
924 !uid_eq(attr->ia_uid, inode->i_uid)) ||
925 (attr->ia_valid & ATTR_GID &&
926 !gid_eq(attr->ia_gid, inode->i_gid))) {
927 f2fs_lock_op(F2FS_I_SB(inode));
928 err = dquot_transfer(inode, attr);
929 if (err) {
930 set_sbi_flag(F2FS_I_SB(inode),
931 SBI_QUOTA_NEED_REPAIR);
932 f2fs_unlock_op(F2FS_I_SB(inode));
933 return err;
934 }
935 /*
936 * update uid/gid under lock_op(), so that dquot and inode can
937 * be updated atomically.
938 */
939 if (attr->ia_valid & ATTR_UID)
940 inode->i_uid = attr->ia_uid;
941 if (attr->ia_valid & ATTR_GID)
942 inode->i_gid = attr->ia_gid;
943 f2fs_mark_inode_dirty_sync(inode, true);
944 f2fs_unlock_op(F2FS_I_SB(inode));
945 }
946
947 if (attr->ia_valid & ATTR_SIZE) {
948 loff_t old_size = i_size_read(inode);
949
950 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
951 /*
952 * should convert inline inode before i_size_write to
953 * keep smaller than inline_data size with inline flag.
954 */
955 err = f2fs_convert_inline_inode(inode);
956 if (err)
957 return err;
958 }
959
960 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
961 filemap_invalidate_lock(inode->i_mapping);
962
963 truncate_setsize(inode, attr->ia_size);
964
965 if (attr->ia_size <= old_size)
966 err = f2fs_truncate(inode);
967 /*
968 * do not trim all blocks after i_size if target size is
969 * larger than i_size.
970 */
971 filemap_invalidate_unlock(inode->i_mapping);
972 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
973 if (err)
974 return err;
975
976 spin_lock(&F2FS_I(inode)->i_size_lock);
977 inode->i_mtime = inode->i_ctime = current_time(inode);
978 F2FS_I(inode)->last_disk_size = i_size_read(inode);
979 spin_unlock(&F2FS_I(inode)->i_size_lock);
980 }
981
982 __setattr_copy(&init_user_ns, inode, attr);
983
984 if (attr->ia_valid & ATTR_MODE) {
985 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
986
987 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
988 if (!err)
989 inode->i_mode = F2FS_I(inode)->i_acl_mode;
990 clear_inode_flag(inode, FI_ACL_MODE);
991 }
992 }
993
994 /* file size may changed here */
995 f2fs_mark_inode_dirty_sync(inode, true);
996
997 /* inode change will produce dirty node pages flushed by checkpoint */
998 f2fs_balance_fs(F2FS_I_SB(inode), true);
999
1000 return err;
1001 }
1002
1003 const struct inode_operations f2fs_file_inode_operations = {
1004 .getattr = f2fs_getattr,
1005 .setattr = f2fs_setattr,
1006 .get_acl = f2fs_get_acl,
1007 .set_acl = f2fs_set_acl,
1008 .listxattr = f2fs_listxattr,
1009 .fiemap = f2fs_fiemap,
1010 .fileattr_get = f2fs_fileattr_get,
1011 .fileattr_set = f2fs_fileattr_set,
1012 };
1013
1014 static int fill_zero(struct inode *inode, pgoff_t index,
1015 loff_t start, loff_t len)
1016 {
1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1018 struct page *page;
1019
1020 if (!len)
1021 return 0;
1022
1023 f2fs_balance_fs(sbi, true);
1024
1025 f2fs_lock_op(sbi);
1026 page = f2fs_get_new_data_page(inode, NULL, index, false);
1027 f2fs_unlock_op(sbi);
1028
1029 if (IS_ERR(page))
1030 return PTR_ERR(page);
1031
1032 f2fs_wait_on_page_writeback(page, DATA, true, true);
1033 zero_user(page, start, len);
1034 set_page_dirty(page);
1035 f2fs_put_page(page, 1);
1036 return 0;
1037 }
1038
1039 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1040 {
1041 int err;
1042
1043 while (pg_start < pg_end) {
1044 struct dnode_of_data dn;
1045 pgoff_t end_offset, count;
1046
1047 set_new_dnode(&dn, inode, NULL, NULL, 0);
1048 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1049 if (err) {
1050 if (err == -ENOENT) {
1051 pg_start = f2fs_get_next_page_offset(&dn,
1052 pg_start);
1053 continue;
1054 }
1055 return err;
1056 }
1057
1058 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1059 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1060
1061 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1062
1063 f2fs_truncate_data_blocks_range(&dn, count);
1064 f2fs_put_dnode(&dn);
1065
1066 pg_start += count;
1067 }
1068 return 0;
1069 }
1070
1071 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1072 {
1073 pgoff_t pg_start, pg_end;
1074 loff_t off_start, off_end;
1075 int ret;
1076
1077 ret = f2fs_convert_inline_inode(inode);
1078 if (ret)
1079 return ret;
1080
1081 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1082 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1083
1084 off_start = offset & (PAGE_SIZE - 1);
1085 off_end = (offset + len) & (PAGE_SIZE - 1);
1086
1087 if (pg_start == pg_end) {
1088 ret = fill_zero(inode, pg_start, off_start,
1089 off_end - off_start);
1090 if (ret)
1091 return ret;
1092 } else {
1093 if (off_start) {
1094 ret = fill_zero(inode, pg_start++, off_start,
1095 PAGE_SIZE - off_start);
1096 if (ret)
1097 return ret;
1098 }
1099 if (off_end) {
1100 ret = fill_zero(inode, pg_end, 0, off_end);
1101 if (ret)
1102 return ret;
1103 }
1104
1105 if (pg_start < pg_end) {
1106 loff_t blk_start, blk_end;
1107 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1108
1109 f2fs_balance_fs(sbi, true);
1110
1111 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1112 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1113
1114 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1115 filemap_invalidate_lock(inode->i_mapping);
1116
1117 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1118
1119 f2fs_lock_op(sbi);
1120 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1121 f2fs_unlock_op(sbi);
1122
1123 filemap_invalidate_unlock(inode->i_mapping);
1124 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1125 }
1126 }
1127
1128 return ret;
1129 }
1130
1131 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1132 int *do_replace, pgoff_t off, pgoff_t len)
1133 {
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 struct dnode_of_data dn;
1136 int ret, done, i;
1137
1138 next_dnode:
1139 set_new_dnode(&dn, inode, NULL, NULL, 0);
1140 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1141 if (ret && ret != -ENOENT) {
1142 return ret;
1143 } else if (ret == -ENOENT) {
1144 if (dn.max_level == 0)
1145 return -ENOENT;
1146 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1147 dn.ofs_in_node, len);
1148 blkaddr += done;
1149 do_replace += done;
1150 goto next;
1151 }
1152
1153 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1154 dn.ofs_in_node, len);
1155 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1156 *blkaddr = f2fs_data_blkaddr(&dn);
1157
1158 if (__is_valid_data_blkaddr(*blkaddr) &&
1159 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1160 DATA_GENERIC_ENHANCE)) {
1161 f2fs_put_dnode(&dn);
1162 return -EFSCORRUPTED;
1163 }
1164
1165 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1166
1167 if (f2fs_lfs_mode(sbi)) {
1168 f2fs_put_dnode(&dn);
1169 return -EOPNOTSUPP;
1170 }
1171
1172 /* do not invalidate this block address */
1173 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1174 *do_replace = 1;
1175 }
1176 }
1177 f2fs_put_dnode(&dn);
1178 next:
1179 len -= done;
1180 off += done;
1181 if (len)
1182 goto next_dnode;
1183 return 0;
1184 }
1185
1186 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1187 int *do_replace, pgoff_t off, int len)
1188 {
1189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190 struct dnode_of_data dn;
1191 int ret, i;
1192
1193 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1194 if (*do_replace == 0)
1195 continue;
1196
1197 set_new_dnode(&dn, inode, NULL, NULL, 0);
1198 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1199 if (ret) {
1200 dec_valid_block_count(sbi, inode, 1);
1201 f2fs_invalidate_blocks(sbi, *blkaddr);
1202 } else {
1203 f2fs_update_data_blkaddr(&dn, *blkaddr);
1204 }
1205 f2fs_put_dnode(&dn);
1206 }
1207 return 0;
1208 }
1209
1210 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1211 block_t *blkaddr, int *do_replace,
1212 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1213 {
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1215 pgoff_t i = 0;
1216 int ret;
1217
1218 while (i < len) {
1219 if (blkaddr[i] == NULL_ADDR && !full) {
1220 i++;
1221 continue;
1222 }
1223
1224 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1225 struct dnode_of_data dn;
1226 struct node_info ni;
1227 size_t new_size;
1228 pgoff_t ilen;
1229
1230 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1231 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1232 if (ret)
1233 return ret;
1234
1235 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1236 if (ret) {
1237 f2fs_put_dnode(&dn);
1238 return ret;
1239 }
1240
1241 ilen = min((pgoff_t)
1242 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1243 dn.ofs_in_node, len - i);
1244 do {
1245 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1246 f2fs_truncate_data_blocks_range(&dn, 1);
1247
1248 if (do_replace[i]) {
1249 f2fs_i_blocks_write(src_inode,
1250 1, false, false);
1251 f2fs_i_blocks_write(dst_inode,
1252 1, true, false);
1253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1254 blkaddr[i], ni.version, true, false);
1255
1256 do_replace[i] = 0;
1257 }
1258 dn.ofs_in_node++;
1259 i++;
1260 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1261 if (dst_inode->i_size < new_size)
1262 f2fs_i_size_write(dst_inode, new_size);
1263 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1264
1265 f2fs_put_dnode(&dn);
1266 } else {
1267 struct page *psrc, *pdst;
1268
1269 psrc = f2fs_get_lock_data_page(src_inode,
1270 src + i, true);
1271 if (IS_ERR(psrc))
1272 return PTR_ERR(psrc);
1273 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1274 true);
1275 if (IS_ERR(pdst)) {
1276 f2fs_put_page(psrc, 1);
1277 return PTR_ERR(pdst);
1278 }
1279 f2fs_copy_page(psrc, pdst);
1280 set_page_dirty(pdst);
1281 f2fs_put_page(pdst, 1);
1282 f2fs_put_page(psrc, 1);
1283
1284 ret = f2fs_truncate_hole(src_inode,
1285 src + i, src + i + 1);
1286 if (ret)
1287 return ret;
1288 i++;
1289 }
1290 }
1291 return 0;
1292 }
1293
1294 static int __exchange_data_block(struct inode *src_inode,
1295 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1296 pgoff_t len, bool full)
1297 {
1298 block_t *src_blkaddr;
1299 int *do_replace;
1300 pgoff_t olen;
1301 int ret;
1302
1303 while (len) {
1304 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1305
1306 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1307 array_size(olen, sizeof(block_t)),
1308 GFP_NOFS);
1309 if (!src_blkaddr)
1310 return -ENOMEM;
1311
1312 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1313 array_size(olen, sizeof(int)),
1314 GFP_NOFS);
1315 if (!do_replace) {
1316 kvfree(src_blkaddr);
1317 return -ENOMEM;
1318 }
1319
1320 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1321 do_replace, src, olen);
1322 if (ret)
1323 goto roll_back;
1324
1325 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1326 do_replace, src, dst, olen, full);
1327 if (ret)
1328 goto roll_back;
1329
1330 src += olen;
1331 dst += olen;
1332 len -= olen;
1333
1334 kvfree(src_blkaddr);
1335 kvfree(do_replace);
1336 }
1337 return 0;
1338
1339 roll_back:
1340 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1341 kvfree(src_blkaddr);
1342 kvfree(do_replace);
1343 return ret;
1344 }
1345
1346 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1347 {
1348 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1349 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1350 pgoff_t start = offset >> PAGE_SHIFT;
1351 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1352 int ret;
1353
1354 f2fs_balance_fs(sbi, true);
1355
1356 /* avoid gc operation during block exchange */
1357 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1358 filemap_invalidate_lock(inode->i_mapping);
1359
1360 f2fs_lock_op(sbi);
1361 f2fs_drop_extent_tree(inode);
1362 truncate_pagecache(inode, offset);
1363 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1364 f2fs_unlock_op(sbi);
1365
1366 filemap_invalidate_unlock(inode->i_mapping);
1367 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1368 return ret;
1369 }
1370
1371 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1372 {
1373 loff_t new_size;
1374 int ret;
1375
1376 if (offset + len >= i_size_read(inode))
1377 return -EINVAL;
1378
1379 /* collapse range should be aligned to block size of f2fs. */
1380 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1381 return -EINVAL;
1382
1383 ret = f2fs_convert_inline_inode(inode);
1384 if (ret)
1385 return ret;
1386
1387 /* write out all dirty pages from offset */
1388 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1389 if (ret)
1390 return ret;
1391
1392 ret = f2fs_do_collapse(inode, offset, len);
1393 if (ret)
1394 return ret;
1395
1396 /* write out all moved pages, if possible */
1397 filemap_invalidate_lock(inode->i_mapping);
1398 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1399 truncate_pagecache(inode, offset);
1400
1401 new_size = i_size_read(inode) - len;
1402 ret = f2fs_truncate_blocks(inode, new_size, true);
1403 filemap_invalidate_unlock(inode->i_mapping);
1404 if (!ret)
1405 f2fs_i_size_write(inode, new_size);
1406 return ret;
1407 }
1408
1409 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1410 pgoff_t end)
1411 {
1412 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1413 pgoff_t index = start;
1414 unsigned int ofs_in_node = dn->ofs_in_node;
1415 blkcnt_t count = 0;
1416 int ret;
1417
1418 for (; index < end; index++, dn->ofs_in_node++) {
1419 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1420 count++;
1421 }
1422
1423 dn->ofs_in_node = ofs_in_node;
1424 ret = f2fs_reserve_new_blocks(dn, count);
1425 if (ret)
1426 return ret;
1427
1428 dn->ofs_in_node = ofs_in_node;
1429 for (index = start; index < end; index++, dn->ofs_in_node++) {
1430 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1431 /*
1432 * f2fs_reserve_new_blocks will not guarantee entire block
1433 * allocation.
1434 */
1435 if (dn->data_blkaddr == NULL_ADDR) {
1436 ret = -ENOSPC;
1437 break;
1438 }
1439 if (dn->data_blkaddr != NEW_ADDR) {
1440 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1441 dn->data_blkaddr = NEW_ADDR;
1442 f2fs_set_data_blkaddr(dn);
1443 }
1444 }
1445
1446 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1447
1448 return ret;
1449 }
1450
1451 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1452 int mode)
1453 {
1454 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1455 struct address_space *mapping = inode->i_mapping;
1456 pgoff_t index, pg_start, pg_end;
1457 loff_t new_size = i_size_read(inode);
1458 loff_t off_start, off_end;
1459 int ret = 0;
1460
1461 ret = inode_newsize_ok(inode, (len + offset));
1462 if (ret)
1463 return ret;
1464
1465 ret = f2fs_convert_inline_inode(inode);
1466 if (ret)
1467 return ret;
1468
1469 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1470 if (ret)
1471 return ret;
1472
1473 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1474 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1475
1476 off_start = offset & (PAGE_SIZE - 1);
1477 off_end = (offset + len) & (PAGE_SIZE - 1);
1478
1479 if (pg_start == pg_end) {
1480 ret = fill_zero(inode, pg_start, off_start,
1481 off_end - off_start);
1482 if (ret)
1483 return ret;
1484
1485 new_size = max_t(loff_t, new_size, offset + len);
1486 } else {
1487 if (off_start) {
1488 ret = fill_zero(inode, pg_start++, off_start,
1489 PAGE_SIZE - off_start);
1490 if (ret)
1491 return ret;
1492
1493 new_size = max_t(loff_t, new_size,
1494 (loff_t)pg_start << PAGE_SHIFT);
1495 }
1496
1497 for (index = pg_start; index < pg_end;) {
1498 struct dnode_of_data dn;
1499 unsigned int end_offset;
1500 pgoff_t end;
1501
1502 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1503 filemap_invalidate_lock(mapping);
1504
1505 truncate_pagecache_range(inode,
1506 (loff_t)index << PAGE_SHIFT,
1507 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1508
1509 f2fs_lock_op(sbi);
1510
1511 set_new_dnode(&dn, inode, NULL, NULL, 0);
1512 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1513 if (ret) {
1514 f2fs_unlock_op(sbi);
1515 filemap_invalidate_unlock(mapping);
1516 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1517 goto out;
1518 }
1519
1520 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1521 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1522
1523 ret = f2fs_do_zero_range(&dn, index, end);
1524 f2fs_put_dnode(&dn);
1525
1526 f2fs_unlock_op(sbi);
1527 filemap_invalidate_unlock(mapping);
1528 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1529
1530 f2fs_balance_fs(sbi, dn.node_changed);
1531
1532 if (ret)
1533 goto out;
1534
1535 index = end;
1536 new_size = max_t(loff_t, new_size,
1537 (loff_t)index << PAGE_SHIFT);
1538 }
1539
1540 if (off_end) {
1541 ret = fill_zero(inode, pg_end, 0, off_end);
1542 if (ret)
1543 goto out;
1544
1545 new_size = max_t(loff_t, new_size, offset + len);
1546 }
1547 }
1548
1549 out:
1550 if (new_size > i_size_read(inode)) {
1551 if (mode & FALLOC_FL_KEEP_SIZE)
1552 file_set_keep_isize(inode);
1553 else
1554 f2fs_i_size_write(inode, new_size);
1555 }
1556 return ret;
1557 }
1558
1559 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1560 {
1561 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562 struct address_space *mapping = inode->i_mapping;
1563 pgoff_t nr, pg_start, pg_end, delta, idx;
1564 loff_t new_size;
1565 int ret = 0;
1566
1567 new_size = i_size_read(inode) + len;
1568 ret = inode_newsize_ok(inode, new_size);
1569 if (ret)
1570 return ret;
1571
1572 if (offset >= i_size_read(inode))
1573 return -EINVAL;
1574
1575 /* insert range should be aligned to block size of f2fs. */
1576 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1577 return -EINVAL;
1578
1579 ret = f2fs_convert_inline_inode(inode);
1580 if (ret)
1581 return ret;
1582
1583 f2fs_balance_fs(sbi, true);
1584
1585 filemap_invalidate_lock(mapping);
1586 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1587 filemap_invalidate_unlock(mapping);
1588 if (ret)
1589 return ret;
1590
1591 /* write out all dirty pages from offset */
1592 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1593 if (ret)
1594 return ret;
1595
1596 pg_start = offset >> PAGE_SHIFT;
1597 pg_end = (offset + len) >> PAGE_SHIFT;
1598 delta = pg_end - pg_start;
1599 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1600
1601 /* avoid gc operation during block exchange */
1602 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1603 filemap_invalidate_lock(mapping);
1604 truncate_pagecache(inode, offset);
1605
1606 while (!ret && idx > pg_start) {
1607 nr = idx - pg_start;
1608 if (nr > delta)
1609 nr = delta;
1610 idx -= nr;
1611
1612 f2fs_lock_op(sbi);
1613 f2fs_drop_extent_tree(inode);
1614
1615 ret = __exchange_data_block(inode, inode, idx,
1616 idx + delta, nr, false);
1617 f2fs_unlock_op(sbi);
1618 }
1619 filemap_invalidate_unlock(mapping);
1620 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1621
1622 /* write out all moved pages, if possible */
1623 filemap_invalidate_lock(mapping);
1624 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1625 truncate_pagecache(inode, offset);
1626 filemap_invalidate_unlock(mapping);
1627
1628 if (!ret)
1629 f2fs_i_size_write(inode, new_size);
1630 return ret;
1631 }
1632
1633 static int expand_inode_data(struct inode *inode, loff_t offset,
1634 loff_t len, int mode)
1635 {
1636 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1637 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1638 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1639 .m_may_create = true };
1640 pgoff_t pg_start, pg_end;
1641 loff_t new_size = i_size_read(inode);
1642 loff_t off_end;
1643 block_t expanded = 0;
1644 int err;
1645
1646 err = inode_newsize_ok(inode, (len + offset));
1647 if (err)
1648 return err;
1649
1650 err = f2fs_convert_inline_inode(inode);
1651 if (err)
1652 return err;
1653
1654 f2fs_balance_fs(sbi, true);
1655
1656 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1657 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1658 off_end = (offset + len) & (PAGE_SIZE - 1);
1659
1660 map.m_lblk = pg_start;
1661 map.m_len = pg_end - pg_start;
1662 if (off_end)
1663 map.m_len++;
1664
1665 if (!map.m_len)
1666 return 0;
1667
1668 if (f2fs_is_pinned_file(inode)) {
1669 block_t sec_blks = BLKS_PER_SEC(sbi);
1670 block_t sec_len = roundup(map.m_len, sec_blks);
1671
1672 map.m_len = sec_blks;
1673 next_alloc:
1674 if (has_not_enough_free_secs(sbi, 0,
1675 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1676 down_write(&sbi->gc_lock);
1677 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1678 if (err && err != -ENODATA && err != -EAGAIN)
1679 goto out_err;
1680 }
1681
1682 down_write(&sbi->pin_sem);
1683
1684 f2fs_lock_op(sbi);
1685 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1686 f2fs_unlock_op(sbi);
1687
1688 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1689 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1690
1691 up_write(&sbi->pin_sem);
1692
1693 expanded += map.m_len;
1694 sec_len -= map.m_len;
1695 map.m_lblk += map.m_len;
1696 if (!err && sec_len)
1697 goto next_alloc;
1698
1699 map.m_len = expanded;
1700 } else {
1701 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1702 expanded = map.m_len;
1703 }
1704 out_err:
1705 if (err) {
1706 pgoff_t last_off;
1707
1708 if (!expanded)
1709 return err;
1710
1711 last_off = pg_start + expanded - 1;
1712
1713 /* update new size to the failed position */
1714 new_size = (last_off == pg_end) ? offset + len :
1715 (loff_t)(last_off + 1) << PAGE_SHIFT;
1716 } else {
1717 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1718 }
1719
1720 if (new_size > i_size_read(inode)) {
1721 if (mode & FALLOC_FL_KEEP_SIZE)
1722 file_set_keep_isize(inode);
1723 else
1724 f2fs_i_size_write(inode, new_size);
1725 }
1726
1727 return err;
1728 }
1729
1730 static long f2fs_fallocate(struct file *file, int mode,
1731 loff_t offset, loff_t len)
1732 {
1733 struct inode *inode = file_inode(file);
1734 long ret = 0;
1735
1736 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1737 return -EIO;
1738 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1739 return -ENOSPC;
1740 if (!f2fs_is_compress_backend_ready(inode))
1741 return -EOPNOTSUPP;
1742
1743 /* f2fs only support ->fallocate for regular file */
1744 if (!S_ISREG(inode->i_mode))
1745 return -EINVAL;
1746
1747 if (IS_ENCRYPTED(inode) &&
1748 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1749 return -EOPNOTSUPP;
1750
1751 if (f2fs_compressed_file(inode) &&
1752 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1753 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1754 return -EOPNOTSUPP;
1755
1756 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1757 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1758 FALLOC_FL_INSERT_RANGE))
1759 return -EOPNOTSUPP;
1760
1761 inode_lock(inode);
1762
1763 if (mode & FALLOC_FL_PUNCH_HOLE) {
1764 if (offset >= inode->i_size)
1765 goto out;
1766
1767 ret = punch_hole(inode, offset, len);
1768 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1769 ret = f2fs_collapse_range(inode, offset, len);
1770 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1771 ret = f2fs_zero_range(inode, offset, len, mode);
1772 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1773 ret = f2fs_insert_range(inode, offset, len);
1774 } else {
1775 ret = expand_inode_data(inode, offset, len, mode);
1776 }
1777
1778 if (!ret) {
1779 inode->i_mtime = inode->i_ctime = current_time(inode);
1780 f2fs_mark_inode_dirty_sync(inode, false);
1781 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1782 }
1783
1784 out:
1785 inode_unlock(inode);
1786
1787 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1788 return ret;
1789 }
1790
1791 static int f2fs_release_file(struct inode *inode, struct file *filp)
1792 {
1793 /*
1794 * f2fs_relase_file is called at every close calls. So we should
1795 * not drop any inmemory pages by close called by other process.
1796 */
1797 if (!(filp->f_mode & FMODE_WRITE) ||
1798 atomic_read(&inode->i_writecount) != 1)
1799 return 0;
1800
1801 /* some remained atomic pages should discarded */
1802 if (f2fs_is_atomic_file(inode))
1803 f2fs_drop_inmem_pages(inode);
1804 if (f2fs_is_volatile_file(inode)) {
1805 set_inode_flag(inode, FI_DROP_CACHE);
1806 filemap_fdatawrite(inode->i_mapping);
1807 clear_inode_flag(inode, FI_DROP_CACHE);
1808 clear_inode_flag(inode, FI_VOLATILE_FILE);
1809 stat_dec_volatile_write(inode);
1810 }
1811 return 0;
1812 }
1813
1814 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1815 {
1816 struct inode *inode = file_inode(file);
1817
1818 /*
1819 * If the process doing a transaction is crashed, we should do
1820 * roll-back. Otherwise, other reader/write can see corrupted database
1821 * until all the writers close its file. Since this should be done
1822 * before dropping file lock, it needs to do in ->flush.
1823 */
1824 if (f2fs_is_atomic_file(inode) &&
1825 F2FS_I(inode)->inmem_task == current)
1826 f2fs_drop_inmem_pages(inode);
1827 return 0;
1828 }
1829
1830 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1831 {
1832 struct f2fs_inode_info *fi = F2FS_I(inode);
1833 u32 masked_flags = fi->i_flags & mask;
1834
1835 /* mask can be shrunk by flags_valid selector */
1836 iflags &= mask;
1837
1838 /* Is it quota file? Do not allow user to mess with it */
1839 if (IS_NOQUOTA(inode))
1840 return -EPERM;
1841
1842 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1843 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1844 return -EOPNOTSUPP;
1845 if (!f2fs_empty_dir(inode))
1846 return -ENOTEMPTY;
1847 }
1848
1849 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1850 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1851 return -EOPNOTSUPP;
1852 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1853 return -EINVAL;
1854 }
1855
1856 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1857 if (masked_flags & F2FS_COMPR_FL) {
1858 if (!f2fs_disable_compressed_file(inode))
1859 return -EINVAL;
1860 }
1861 if (iflags & F2FS_NOCOMP_FL)
1862 return -EINVAL;
1863 if (iflags & F2FS_COMPR_FL) {
1864 if (!f2fs_may_compress(inode))
1865 return -EINVAL;
1866 if (S_ISREG(inode->i_mode) && inode->i_size)
1867 return -EINVAL;
1868
1869 set_compress_context(inode);
1870 }
1871 }
1872 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1873 if (masked_flags & F2FS_COMPR_FL)
1874 return -EINVAL;
1875 }
1876
1877 fi->i_flags = iflags | (fi->i_flags & ~mask);
1878 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1879 (fi->i_flags & F2FS_NOCOMP_FL));
1880
1881 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1882 set_inode_flag(inode, FI_PROJ_INHERIT);
1883 else
1884 clear_inode_flag(inode, FI_PROJ_INHERIT);
1885
1886 inode->i_ctime = current_time(inode);
1887 f2fs_set_inode_flags(inode);
1888 f2fs_mark_inode_dirty_sync(inode, true);
1889 return 0;
1890 }
1891
1892 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1893
1894 /*
1895 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1896 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1897 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1898 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1899 *
1900 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1901 * FS_IOC_FSSETXATTR is done by the VFS.
1902 */
1903
1904 static const struct {
1905 u32 iflag;
1906 u32 fsflag;
1907 } f2fs_fsflags_map[] = {
1908 { F2FS_COMPR_FL, FS_COMPR_FL },
1909 { F2FS_SYNC_FL, FS_SYNC_FL },
1910 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1911 { F2FS_APPEND_FL, FS_APPEND_FL },
1912 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1913 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1914 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1915 { F2FS_INDEX_FL, FS_INDEX_FL },
1916 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1917 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1918 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1919 };
1920
1921 #define F2FS_GETTABLE_FS_FL ( \
1922 FS_COMPR_FL | \
1923 FS_SYNC_FL | \
1924 FS_IMMUTABLE_FL | \
1925 FS_APPEND_FL | \
1926 FS_NODUMP_FL | \
1927 FS_NOATIME_FL | \
1928 FS_NOCOMP_FL | \
1929 FS_INDEX_FL | \
1930 FS_DIRSYNC_FL | \
1931 FS_PROJINHERIT_FL | \
1932 FS_ENCRYPT_FL | \
1933 FS_INLINE_DATA_FL | \
1934 FS_NOCOW_FL | \
1935 FS_VERITY_FL | \
1936 FS_CASEFOLD_FL)
1937
1938 #define F2FS_SETTABLE_FS_FL ( \
1939 FS_COMPR_FL | \
1940 FS_SYNC_FL | \
1941 FS_IMMUTABLE_FL | \
1942 FS_APPEND_FL | \
1943 FS_NODUMP_FL | \
1944 FS_NOATIME_FL | \
1945 FS_NOCOMP_FL | \
1946 FS_DIRSYNC_FL | \
1947 FS_PROJINHERIT_FL | \
1948 FS_CASEFOLD_FL)
1949
1950 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1951 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1952 {
1953 u32 fsflags = 0;
1954 int i;
1955
1956 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1957 if (iflags & f2fs_fsflags_map[i].iflag)
1958 fsflags |= f2fs_fsflags_map[i].fsflag;
1959
1960 return fsflags;
1961 }
1962
1963 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1964 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1965 {
1966 u32 iflags = 0;
1967 int i;
1968
1969 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1970 if (fsflags & f2fs_fsflags_map[i].fsflag)
1971 iflags |= f2fs_fsflags_map[i].iflag;
1972
1973 return iflags;
1974 }
1975
1976 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1977 {
1978 struct inode *inode = file_inode(filp);
1979
1980 return put_user(inode->i_generation, (int __user *)arg);
1981 }
1982
1983 static int f2fs_ioc_start_atomic_write(struct file *filp)
1984 {
1985 struct inode *inode = file_inode(filp);
1986 struct f2fs_inode_info *fi = F2FS_I(inode);
1987 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1988 int ret;
1989
1990 if (!inode_owner_or_capable(&init_user_ns, inode))
1991 return -EACCES;
1992
1993 if (!S_ISREG(inode->i_mode))
1994 return -EINVAL;
1995
1996 if (filp->f_flags & O_DIRECT)
1997 return -EINVAL;
1998
1999 ret = mnt_want_write_file(filp);
2000 if (ret)
2001 return ret;
2002
2003 inode_lock(inode);
2004
2005 f2fs_disable_compressed_file(inode);
2006
2007 if (f2fs_is_atomic_file(inode)) {
2008 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2009 ret = -EINVAL;
2010 goto out;
2011 }
2012
2013 ret = f2fs_convert_inline_inode(inode);
2014 if (ret)
2015 goto out;
2016
2017 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2018
2019 /*
2020 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2021 * f2fs_is_atomic_file.
2022 */
2023 if (get_dirty_pages(inode))
2024 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2025 inode->i_ino, get_dirty_pages(inode));
2026 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2027 if (ret) {
2028 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2029 goto out;
2030 }
2031
2032 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2033 if (list_empty(&fi->inmem_ilist))
2034 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2035 sbi->atomic_files++;
2036 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2037
2038 /* add inode in inmem_list first and set atomic_file */
2039 set_inode_flag(inode, FI_ATOMIC_FILE);
2040 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2041 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2042
2043 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044 F2FS_I(inode)->inmem_task = current;
2045 stat_update_max_atomic_write(inode);
2046 out:
2047 inode_unlock(inode);
2048 mnt_drop_write_file(filp);
2049 return ret;
2050 }
2051
2052 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2053 {
2054 struct inode *inode = file_inode(filp);
2055 int ret;
2056
2057 if (!inode_owner_or_capable(&init_user_ns, inode))
2058 return -EACCES;
2059
2060 ret = mnt_want_write_file(filp);
2061 if (ret)
2062 return ret;
2063
2064 f2fs_balance_fs(F2FS_I_SB(inode), true);
2065
2066 inode_lock(inode);
2067
2068 if (f2fs_is_volatile_file(inode)) {
2069 ret = -EINVAL;
2070 goto err_out;
2071 }
2072
2073 if (f2fs_is_atomic_file(inode)) {
2074 ret = f2fs_commit_inmem_pages(inode);
2075 if (ret)
2076 goto err_out;
2077
2078 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2079 if (!ret)
2080 f2fs_drop_inmem_pages(inode);
2081 } else {
2082 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2083 }
2084 err_out:
2085 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2086 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2087 ret = -EINVAL;
2088 }
2089 inode_unlock(inode);
2090 mnt_drop_write_file(filp);
2091 return ret;
2092 }
2093
2094 static int f2fs_ioc_start_volatile_write(struct file *filp)
2095 {
2096 struct inode *inode = file_inode(filp);
2097 int ret;
2098
2099 if (!inode_owner_or_capable(&init_user_ns, inode))
2100 return -EACCES;
2101
2102 if (!S_ISREG(inode->i_mode))
2103 return -EINVAL;
2104
2105 ret = mnt_want_write_file(filp);
2106 if (ret)
2107 return ret;
2108
2109 inode_lock(inode);
2110
2111 if (f2fs_is_volatile_file(inode))
2112 goto out;
2113
2114 ret = f2fs_convert_inline_inode(inode);
2115 if (ret)
2116 goto out;
2117
2118 stat_inc_volatile_write(inode);
2119 stat_update_max_volatile_write(inode);
2120
2121 set_inode_flag(inode, FI_VOLATILE_FILE);
2122 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2123 out:
2124 inode_unlock(inode);
2125 mnt_drop_write_file(filp);
2126 return ret;
2127 }
2128
2129 static int f2fs_ioc_release_volatile_write(struct file *filp)
2130 {
2131 struct inode *inode = file_inode(filp);
2132 int ret;
2133
2134 if (!inode_owner_or_capable(&init_user_ns, inode))
2135 return -EACCES;
2136
2137 ret = mnt_want_write_file(filp);
2138 if (ret)
2139 return ret;
2140
2141 inode_lock(inode);
2142
2143 if (!f2fs_is_volatile_file(inode))
2144 goto out;
2145
2146 if (!f2fs_is_first_block_written(inode)) {
2147 ret = truncate_partial_data_page(inode, 0, true);
2148 goto out;
2149 }
2150
2151 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2152 out:
2153 inode_unlock(inode);
2154 mnt_drop_write_file(filp);
2155 return ret;
2156 }
2157
2158 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2159 {
2160 struct inode *inode = file_inode(filp);
2161 int ret;
2162
2163 if (!inode_owner_or_capable(&init_user_ns, inode))
2164 return -EACCES;
2165
2166 ret = mnt_want_write_file(filp);
2167 if (ret)
2168 return ret;
2169
2170 inode_lock(inode);
2171
2172 if (f2fs_is_atomic_file(inode))
2173 f2fs_drop_inmem_pages(inode);
2174 if (f2fs_is_volatile_file(inode)) {
2175 clear_inode_flag(inode, FI_VOLATILE_FILE);
2176 stat_dec_volatile_write(inode);
2177 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2178 }
2179
2180 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2181
2182 inode_unlock(inode);
2183
2184 mnt_drop_write_file(filp);
2185 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2186 return ret;
2187 }
2188
2189 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2190 {
2191 struct inode *inode = file_inode(filp);
2192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193 struct super_block *sb = sbi->sb;
2194 __u32 in;
2195 int ret = 0;
2196
2197 if (!capable(CAP_SYS_ADMIN))
2198 return -EPERM;
2199
2200 if (get_user(in, (__u32 __user *)arg))
2201 return -EFAULT;
2202
2203 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2204 ret = mnt_want_write_file(filp);
2205 if (ret) {
2206 if (ret == -EROFS) {
2207 ret = 0;
2208 f2fs_stop_checkpoint(sbi, false);
2209 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2210 trace_f2fs_shutdown(sbi, in, ret);
2211 }
2212 return ret;
2213 }
2214 }
2215
2216 switch (in) {
2217 case F2FS_GOING_DOWN_FULLSYNC:
2218 ret = freeze_bdev(sb->s_bdev);
2219 if (ret)
2220 goto out;
2221 f2fs_stop_checkpoint(sbi, false);
2222 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2223 thaw_bdev(sb->s_bdev);
2224 break;
2225 case F2FS_GOING_DOWN_METASYNC:
2226 /* do checkpoint only */
2227 ret = f2fs_sync_fs(sb, 1);
2228 if (ret)
2229 goto out;
2230 f2fs_stop_checkpoint(sbi, false);
2231 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2232 break;
2233 case F2FS_GOING_DOWN_NOSYNC:
2234 f2fs_stop_checkpoint(sbi, false);
2235 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2236 break;
2237 case F2FS_GOING_DOWN_METAFLUSH:
2238 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2239 f2fs_stop_checkpoint(sbi, false);
2240 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2241 break;
2242 case F2FS_GOING_DOWN_NEED_FSCK:
2243 set_sbi_flag(sbi, SBI_NEED_FSCK);
2244 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2245 set_sbi_flag(sbi, SBI_IS_DIRTY);
2246 /* do checkpoint only */
2247 ret = f2fs_sync_fs(sb, 1);
2248 goto out;
2249 default:
2250 ret = -EINVAL;
2251 goto out;
2252 }
2253
2254 f2fs_stop_gc_thread(sbi);
2255 f2fs_stop_discard_thread(sbi);
2256
2257 f2fs_drop_discard_cmd(sbi);
2258 clear_opt(sbi, DISCARD);
2259
2260 f2fs_update_time(sbi, REQ_TIME);
2261 out:
2262 if (in != F2FS_GOING_DOWN_FULLSYNC)
2263 mnt_drop_write_file(filp);
2264
2265 trace_f2fs_shutdown(sbi, in, ret);
2266
2267 return ret;
2268 }
2269
2270 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2271 {
2272 struct inode *inode = file_inode(filp);
2273 struct super_block *sb = inode->i_sb;
2274 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2275 struct fstrim_range range;
2276 int ret;
2277
2278 if (!capable(CAP_SYS_ADMIN))
2279 return -EPERM;
2280
2281 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2282 return -EOPNOTSUPP;
2283
2284 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2285 sizeof(range)))
2286 return -EFAULT;
2287
2288 ret = mnt_want_write_file(filp);
2289 if (ret)
2290 return ret;
2291
2292 range.minlen = max((unsigned int)range.minlen,
2293 q->limits.discard_granularity);
2294 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2295 mnt_drop_write_file(filp);
2296 if (ret < 0)
2297 return ret;
2298
2299 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2300 sizeof(range)))
2301 return -EFAULT;
2302 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2303 return 0;
2304 }
2305
2306 static bool uuid_is_nonzero(__u8 u[16])
2307 {
2308 int i;
2309
2310 for (i = 0; i < 16; i++)
2311 if (u[i])
2312 return true;
2313 return false;
2314 }
2315
2316 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2317 {
2318 struct inode *inode = file_inode(filp);
2319
2320 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2321 return -EOPNOTSUPP;
2322
2323 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2324
2325 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2326 }
2327
2328 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2329 {
2330 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2331 return -EOPNOTSUPP;
2332 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2333 }
2334
2335 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2336 {
2337 struct inode *inode = file_inode(filp);
2338 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2339 int err;
2340
2341 if (!f2fs_sb_has_encrypt(sbi))
2342 return -EOPNOTSUPP;
2343
2344 err = mnt_want_write_file(filp);
2345 if (err)
2346 return err;
2347
2348 down_write(&sbi->sb_lock);
2349
2350 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2351 goto got_it;
2352
2353 /* update superblock with uuid */
2354 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2355
2356 err = f2fs_commit_super(sbi, false);
2357 if (err) {
2358 /* undo new data */
2359 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2360 goto out_err;
2361 }
2362 got_it:
2363 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2364 16))
2365 err = -EFAULT;
2366 out_err:
2367 up_write(&sbi->sb_lock);
2368 mnt_drop_write_file(filp);
2369 return err;
2370 }
2371
2372 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2373 unsigned long arg)
2374 {
2375 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2376 return -EOPNOTSUPP;
2377
2378 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2379 }
2380
2381 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2382 {
2383 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2384 return -EOPNOTSUPP;
2385
2386 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2387 }
2388
2389 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2390 {
2391 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2392 return -EOPNOTSUPP;
2393
2394 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2395 }
2396
2397 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2398 unsigned long arg)
2399 {
2400 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 return -EOPNOTSUPP;
2402
2403 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2404 }
2405
2406 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2407 unsigned long arg)
2408 {
2409 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2410 return -EOPNOTSUPP;
2411
2412 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2413 }
2414
2415 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2416 {
2417 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418 return -EOPNOTSUPP;
2419
2420 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2421 }
2422
2423 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2424 {
2425 struct inode *inode = file_inode(filp);
2426 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2427 __u32 sync;
2428 int ret;
2429
2430 if (!capable(CAP_SYS_ADMIN))
2431 return -EPERM;
2432
2433 if (get_user(sync, (__u32 __user *)arg))
2434 return -EFAULT;
2435
2436 if (f2fs_readonly(sbi->sb))
2437 return -EROFS;
2438
2439 ret = mnt_want_write_file(filp);
2440 if (ret)
2441 return ret;
2442
2443 if (!sync) {
2444 if (!down_write_trylock(&sbi->gc_lock)) {
2445 ret = -EBUSY;
2446 goto out;
2447 }
2448 } else {
2449 down_write(&sbi->gc_lock);
2450 }
2451
2452 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2453 out:
2454 mnt_drop_write_file(filp);
2455 return ret;
2456 }
2457
2458 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2459 {
2460 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2461 u64 end;
2462 int ret;
2463
2464 if (!capable(CAP_SYS_ADMIN))
2465 return -EPERM;
2466 if (f2fs_readonly(sbi->sb))
2467 return -EROFS;
2468
2469 end = range->start + range->len;
2470 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2471 end >= MAX_BLKADDR(sbi))
2472 return -EINVAL;
2473
2474 ret = mnt_want_write_file(filp);
2475 if (ret)
2476 return ret;
2477
2478 do_more:
2479 if (!range->sync) {
2480 if (!down_write_trylock(&sbi->gc_lock)) {
2481 ret = -EBUSY;
2482 goto out;
2483 }
2484 } else {
2485 down_write(&sbi->gc_lock);
2486 }
2487
2488 ret = f2fs_gc(sbi, range->sync, true, false,
2489 GET_SEGNO(sbi, range->start));
2490 if (ret) {
2491 if (ret == -EBUSY)
2492 ret = -EAGAIN;
2493 goto out;
2494 }
2495 range->start += BLKS_PER_SEC(sbi);
2496 if (range->start <= end)
2497 goto do_more;
2498 out:
2499 mnt_drop_write_file(filp);
2500 return ret;
2501 }
2502
2503 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2504 {
2505 struct f2fs_gc_range range;
2506
2507 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2508 sizeof(range)))
2509 return -EFAULT;
2510 return __f2fs_ioc_gc_range(filp, &range);
2511 }
2512
2513 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2514 {
2515 struct inode *inode = file_inode(filp);
2516 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517 int ret;
2518
2519 if (!capable(CAP_SYS_ADMIN))
2520 return -EPERM;
2521
2522 if (f2fs_readonly(sbi->sb))
2523 return -EROFS;
2524
2525 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2526 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2527 return -EINVAL;
2528 }
2529
2530 ret = mnt_want_write_file(filp);
2531 if (ret)
2532 return ret;
2533
2534 ret = f2fs_sync_fs(sbi->sb, 1);
2535
2536 mnt_drop_write_file(filp);
2537 return ret;
2538 }
2539
2540 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2541 struct file *filp,
2542 struct f2fs_defragment *range)
2543 {
2544 struct inode *inode = file_inode(filp);
2545 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2546 .m_seg_type = NO_CHECK_TYPE,
2547 .m_may_create = false };
2548 struct extent_info ei = {0, 0, 0};
2549 pgoff_t pg_start, pg_end, next_pgofs;
2550 unsigned int blk_per_seg = sbi->blocks_per_seg;
2551 unsigned int total = 0, sec_num;
2552 block_t blk_end = 0;
2553 bool fragmented = false;
2554 int err;
2555
2556 /* if in-place-update policy is enabled, don't waste time here */
2557 if (f2fs_should_update_inplace(inode, NULL))
2558 return -EINVAL;
2559
2560 pg_start = range->start >> PAGE_SHIFT;
2561 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2562
2563 f2fs_balance_fs(sbi, true);
2564
2565 inode_lock(inode);
2566
2567 /* writeback all dirty pages in the range */
2568 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2569 range->start + range->len - 1);
2570 if (err)
2571 goto out;
2572
2573 /*
2574 * lookup mapping info in extent cache, skip defragmenting if physical
2575 * block addresses are continuous.
2576 */
2577 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2578 if (ei.fofs + ei.len >= pg_end)
2579 goto out;
2580 }
2581
2582 map.m_lblk = pg_start;
2583 map.m_next_pgofs = &next_pgofs;
2584
2585 /*
2586 * lookup mapping info in dnode page cache, skip defragmenting if all
2587 * physical block addresses are continuous even if there are hole(s)
2588 * in logical blocks.
2589 */
2590 while (map.m_lblk < pg_end) {
2591 map.m_len = pg_end - map.m_lblk;
2592 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2593 if (err)
2594 goto out;
2595
2596 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2597 map.m_lblk = next_pgofs;
2598 continue;
2599 }
2600
2601 if (blk_end && blk_end != map.m_pblk)
2602 fragmented = true;
2603
2604 /* record total count of block that we're going to move */
2605 total += map.m_len;
2606
2607 blk_end = map.m_pblk + map.m_len;
2608
2609 map.m_lblk += map.m_len;
2610 }
2611
2612 if (!fragmented) {
2613 total = 0;
2614 goto out;
2615 }
2616
2617 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2618
2619 /*
2620 * make sure there are enough free section for LFS allocation, this can
2621 * avoid defragment running in SSR mode when free section are allocated
2622 * intensively
2623 */
2624 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2625 err = -EAGAIN;
2626 goto out;
2627 }
2628
2629 map.m_lblk = pg_start;
2630 map.m_len = pg_end - pg_start;
2631 total = 0;
2632
2633 while (map.m_lblk < pg_end) {
2634 pgoff_t idx;
2635 int cnt = 0;
2636
2637 do_map:
2638 map.m_len = pg_end - map.m_lblk;
2639 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2640 if (err)
2641 goto clear_out;
2642
2643 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2644 map.m_lblk = next_pgofs;
2645 goto check;
2646 }
2647
2648 set_inode_flag(inode, FI_DO_DEFRAG);
2649
2650 idx = map.m_lblk;
2651 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2652 struct page *page;
2653
2654 page = f2fs_get_lock_data_page(inode, idx, true);
2655 if (IS_ERR(page)) {
2656 err = PTR_ERR(page);
2657 goto clear_out;
2658 }
2659
2660 set_page_dirty(page);
2661 f2fs_put_page(page, 1);
2662
2663 idx++;
2664 cnt++;
2665 total++;
2666 }
2667
2668 map.m_lblk = idx;
2669 check:
2670 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2671 goto do_map;
2672
2673 clear_inode_flag(inode, FI_DO_DEFRAG);
2674
2675 err = filemap_fdatawrite(inode->i_mapping);
2676 if (err)
2677 goto out;
2678 }
2679 clear_out:
2680 clear_inode_flag(inode, FI_DO_DEFRAG);
2681 out:
2682 inode_unlock(inode);
2683 if (!err)
2684 range->len = (u64)total << PAGE_SHIFT;
2685 return err;
2686 }
2687
2688 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2689 {
2690 struct inode *inode = file_inode(filp);
2691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 struct f2fs_defragment range;
2693 int err;
2694
2695 if (!capable(CAP_SYS_ADMIN))
2696 return -EPERM;
2697
2698 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2699 return -EINVAL;
2700
2701 if (f2fs_readonly(sbi->sb))
2702 return -EROFS;
2703
2704 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2705 sizeof(range)))
2706 return -EFAULT;
2707
2708 /* verify alignment of offset & size */
2709 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2710 return -EINVAL;
2711
2712 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2713 max_file_blocks(inode)))
2714 return -EINVAL;
2715
2716 err = mnt_want_write_file(filp);
2717 if (err)
2718 return err;
2719
2720 err = f2fs_defragment_range(sbi, filp, &range);
2721 mnt_drop_write_file(filp);
2722
2723 f2fs_update_time(sbi, REQ_TIME);
2724 if (err < 0)
2725 return err;
2726
2727 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2728 sizeof(range)))
2729 return -EFAULT;
2730
2731 return 0;
2732 }
2733
2734 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2735 struct file *file_out, loff_t pos_out, size_t len)
2736 {
2737 struct inode *src = file_inode(file_in);
2738 struct inode *dst = file_inode(file_out);
2739 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2740 size_t olen = len, dst_max_i_size = 0;
2741 size_t dst_osize;
2742 int ret;
2743
2744 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2745 src->i_sb != dst->i_sb)
2746 return -EXDEV;
2747
2748 if (unlikely(f2fs_readonly(src->i_sb)))
2749 return -EROFS;
2750
2751 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2752 return -EINVAL;
2753
2754 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2755 return -EOPNOTSUPP;
2756
2757 if (pos_out < 0 || pos_in < 0)
2758 return -EINVAL;
2759
2760 if (src == dst) {
2761 if (pos_in == pos_out)
2762 return 0;
2763 if (pos_out > pos_in && pos_out < pos_in + len)
2764 return -EINVAL;
2765 }
2766
2767 inode_lock(src);
2768 if (src != dst) {
2769 ret = -EBUSY;
2770 if (!inode_trylock(dst))
2771 goto out;
2772 }
2773
2774 ret = -EINVAL;
2775 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2776 goto out_unlock;
2777 if (len == 0)
2778 olen = len = src->i_size - pos_in;
2779 if (pos_in + len == src->i_size)
2780 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2781 if (len == 0) {
2782 ret = 0;
2783 goto out_unlock;
2784 }
2785
2786 dst_osize = dst->i_size;
2787 if (pos_out + olen > dst->i_size)
2788 dst_max_i_size = pos_out + olen;
2789
2790 /* verify the end result is block aligned */
2791 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2792 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2793 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2794 goto out_unlock;
2795
2796 ret = f2fs_convert_inline_inode(src);
2797 if (ret)
2798 goto out_unlock;
2799
2800 ret = f2fs_convert_inline_inode(dst);
2801 if (ret)
2802 goto out_unlock;
2803
2804 /* write out all dirty pages from offset */
2805 ret = filemap_write_and_wait_range(src->i_mapping,
2806 pos_in, pos_in + len);
2807 if (ret)
2808 goto out_unlock;
2809
2810 ret = filemap_write_and_wait_range(dst->i_mapping,
2811 pos_out, pos_out + len);
2812 if (ret)
2813 goto out_unlock;
2814
2815 f2fs_balance_fs(sbi, true);
2816
2817 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2818 if (src != dst) {
2819 ret = -EBUSY;
2820 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2821 goto out_src;
2822 }
2823
2824 f2fs_lock_op(sbi);
2825 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2826 pos_out >> F2FS_BLKSIZE_BITS,
2827 len >> F2FS_BLKSIZE_BITS, false);
2828
2829 if (!ret) {
2830 if (dst_max_i_size)
2831 f2fs_i_size_write(dst, dst_max_i_size);
2832 else if (dst_osize != dst->i_size)
2833 f2fs_i_size_write(dst, dst_osize);
2834 }
2835 f2fs_unlock_op(sbi);
2836
2837 if (src != dst)
2838 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2839 out_src:
2840 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2841 out_unlock:
2842 if (src != dst)
2843 inode_unlock(dst);
2844 out:
2845 inode_unlock(src);
2846 return ret;
2847 }
2848
2849 static int __f2fs_ioc_move_range(struct file *filp,
2850 struct f2fs_move_range *range)
2851 {
2852 struct fd dst;
2853 int err;
2854
2855 if (!(filp->f_mode & FMODE_READ) ||
2856 !(filp->f_mode & FMODE_WRITE))
2857 return -EBADF;
2858
2859 dst = fdget(range->dst_fd);
2860 if (!dst.file)
2861 return -EBADF;
2862
2863 if (!(dst.file->f_mode & FMODE_WRITE)) {
2864 err = -EBADF;
2865 goto err_out;
2866 }
2867
2868 err = mnt_want_write_file(filp);
2869 if (err)
2870 goto err_out;
2871
2872 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2873 range->pos_out, range->len);
2874
2875 mnt_drop_write_file(filp);
2876 err_out:
2877 fdput(dst);
2878 return err;
2879 }
2880
2881 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2882 {
2883 struct f2fs_move_range range;
2884
2885 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2886 sizeof(range)))
2887 return -EFAULT;
2888 return __f2fs_ioc_move_range(filp, &range);
2889 }
2890
2891 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2892 {
2893 struct inode *inode = file_inode(filp);
2894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2895 struct sit_info *sm = SIT_I(sbi);
2896 unsigned int start_segno = 0, end_segno = 0;
2897 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2898 struct f2fs_flush_device range;
2899 int ret;
2900
2901 if (!capable(CAP_SYS_ADMIN))
2902 return -EPERM;
2903
2904 if (f2fs_readonly(sbi->sb))
2905 return -EROFS;
2906
2907 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2908 return -EINVAL;
2909
2910 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2911 sizeof(range)))
2912 return -EFAULT;
2913
2914 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2915 __is_large_section(sbi)) {
2916 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2917 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2918 return -EINVAL;
2919 }
2920
2921 ret = mnt_want_write_file(filp);
2922 if (ret)
2923 return ret;
2924
2925 if (range.dev_num != 0)
2926 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2927 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2928
2929 start_segno = sm->last_victim[FLUSH_DEVICE];
2930 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2931 start_segno = dev_start_segno;
2932 end_segno = min(start_segno + range.segments, dev_end_segno);
2933
2934 while (start_segno < end_segno) {
2935 if (!down_write_trylock(&sbi->gc_lock)) {
2936 ret = -EBUSY;
2937 goto out;
2938 }
2939 sm->last_victim[GC_CB] = end_segno + 1;
2940 sm->last_victim[GC_GREEDY] = end_segno + 1;
2941 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2942 ret = f2fs_gc(sbi, true, true, true, start_segno);
2943 if (ret == -EAGAIN)
2944 ret = 0;
2945 else if (ret < 0)
2946 break;
2947 start_segno++;
2948 }
2949 out:
2950 mnt_drop_write_file(filp);
2951 return ret;
2952 }
2953
2954 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2955 {
2956 struct inode *inode = file_inode(filp);
2957 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2958
2959 /* Must validate to set it with SQLite behavior in Android. */
2960 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2961
2962 return put_user(sb_feature, (u32 __user *)arg);
2963 }
2964
2965 #ifdef CONFIG_QUOTA
2966 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2967 {
2968 struct dquot *transfer_to[MAXQUOTAS] = {};
2969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2970 struct super_block *sb = sbi->sb;
2971 int err = 0;
2972
2973 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2974 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2975 err = __dquot_transfer(inode, transfer_to);
2976 if (err)
2977 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2978 dqput(transfer_to[PRJQUOTA]);
2979 }
2980 return err;
2981 }
2982
2983 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2984 {
2985 struct f2fs_inode_info *fi = F2FS_I(inode);
2986 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2987 struct page *ipage;
2988 kprojid_t kprojid;
2989 int err;
2990
2991 if (!f2fs_sb_has_project_quota(sbi)) {
2992 if (projid != F2FS_DEF_PROJID)
2993 return -EOPNOTSUPP;
2994 else
2995 return 0;
2996 }
2997
2998 if (!f2fs_has_extra_attr(inode))
2999 return -EOPNOTSUPP;
3000
3001 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3002
3003 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3004 return 0;
3005
3006 err = -EPERM;
3007 /* Is it quota file? Do not allow user to mess with it */
3008 if (IS_NOQUOTA(inode))
3009 return err;
3010
3011 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3012 if (IS_ERR(ipage))
3013 return PTR_ERR(ipage);
3014
3015 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3016 i_projid)) {
3017 err = -EOVERFLOW;
3018 f2fs_put_page(ipage, 1);
3019 return err;
3020 }
3021 f2fs_put_page(ipage, 1);
3022
3023 err = dquot_initialize(inode);
3024 if (err)
3025 return err;
3026
3027 f2fs_lock_op(sbi);
3028 err = f2fs_transfer_project_quota(inode, kprojid);
3029 if (err)
3030 goto out_unlock;
3031
3032 F2FS_I(inode)->i_projid = kprojid;
3033 inode->i_ctime = current_time(inode);
3034 f2fs_mark_inode_dirty_sync(inode, true);
3035 out_unlock:
3036 f2fs_unlock_op(sbi);
3037 return err;
3038 }
3039 #else
3040 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3041 {
3042 return 0;
3043 }
3044
3045 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3046 {
3047 if (projid != F2FS_DEF_PROJID)
3048 return -EOPNOTSUPP;
3049 return 0;
3050 }
3051 #endif
3052
3053 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3054 {
3055 struct inode *inode = d_inode(dentry);
3056 struct f2fs_inode_info *fi = F2FS_I(inode);
3057 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3058
3059 if (IS_ENCRYPTED(inode))
3060 fsflags |= FS_ENCRYPT_FL;
3061 if (IS_VERITY(inode))
3062 fsflags |= FS_VERITY_FL;
3063 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3064 fsflags |= FS_INLINE_DATA_FL;
3065 if (is_inode_flag_set(inode, FI_PIN_FILE))
3066 fsflags |= FS_NOCOW_FL;
3067
3068 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3069
3070 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3071 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3072
3073 return 0;
3074 }
3075
3076 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3077 struct dentry *dentry, struct fileattr *fa)
3078 {
3079 struct inode *inode = d_inode(dentry);
3080 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3081 u32 iflags;
3082 int err;
3083
3084 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3085 return -EIO;
3086 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3087 return -ENOSPC;
3088 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3089 return -EOPNOTSUPP;
3090 fsflags &= F2FS_SETTABLE_FS_FL;
3091 if (!fa->flags_valid)
3092 mask &= FS_COMMON_FL;
3093
3094 iflags = f2fs_fsflags_to_iflags(fsflags);
3095 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3096 return -EOPNOTSUPP;
3097
3098 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3099 if (!err)
3100 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3101
3102 return err;
3103 }
3104
3105 int f2fs_pin_file_control(struct inode *inode, bool inc)
3106 {
3107 struct f2fs_inode_info *fi = F2FS_I(inode);
3108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109
3110 /* Use i_gc_failures for normal file as a risk signal. */
3111 if (inc)
3112 f2fs_i_gc_failures_write(inode,
3113 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3114
3115 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3116 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3117 __func__, inode->i_ino,
3118 fi->i_gc_failures[GC_FAILURE_PIN]);
3119 clear_inode_flag(inode, FI_PIN_FILE);
3120 return -EAGAIN;
3121 }
3122 return 0;
3123 }
3124
3125 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3126 {
3127 struct inode *inode = file_inode(filp);
3128 __u32 pin;
3129 int ret = 0;
3130
3131 if (get_user(pin, (__u32 __user *)arg))
3132 return -EFAULT;
3133
3134 if (!S_ISREG(inode->i_mode))
3135 return -EINVAL;
3136
3137 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3138 return -EROFS;
3139
3140 ret = mnt_want_write_file(filp);
3141 if (ret)
3142 return ret;
3143
3144 inode_lock(inode);
3145
3146 if (f2fs_should_update_outplace(inode, NULL)) {
3147 ret = -EINVAL;
3148 goto out;
3149 }
3150
3151 if (!pin) {
3152 clear_inode_flag(inode, FI_PIN_FILE);
3153 f2fs_i_gc_failures_write(inode, 0);
3154 goto done;
3155 }
3156
3157 if (f2fs_pin_file_control(inode, false)) {
3158 ret = -EAGAIN;
3159 goto out;
3160 }
3161
3162 ret = f2fs_convert_inline_inode(inode);
3163 if (ret)
3164 goto out;
3165
3166 if (!f2fs_disable_compressed_file(inode)) {
3167 ret = -EOPNOTSUPP;
3168 goto out;
3169 }
3170
3171 set_inode_flag(inode, FI_PIN_FILE);
3172 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3173 done:
3174 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3175 out:
3176 inode_unlock(inode);
3177 mnt_drop_write_file(filp);
3178 return ret;
3179 }
3180
3181 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3182 {
3183 struct inode *inode = file_inode(filp);
3184 __u32 pin = 0;
3185
3186 if (is_inode_flag_set(inode, FI_PIN_FILE))
3187 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3188 return put_user(pin, (u32 __user *)arg);
3189 }
3190
3191 int f2fs_precache_extents(struct inode *inode)
3192 {
3193 struct f2fs_inode_info *fi = F2FS_I(inode);
3194 struct f2fs_map_blocks map;
3195 pgoff_t m_next_extent;
3196 loff_t end;
3197 int err;
3198
3199 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3200 return -EOPNOTSUPP;
3201
3202 map.m_lblk = 0;
3203 map.m_next_pgofs = NULL;
3204 map.m_next_extent = &m_next_extent;
3205 map.m_seg_type = NO_CHECK_TYPE;
3206 map.m_may_create = false;
3207 end = max_file_blocks(inode);
3208
3209 while (map.m_lblk < end) {
3210 map.m_len = end - map.m_lblk;
3211
3212 down_write(&fi->i_gc_rwsem[WRITE]);
3213 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3214 up_write(&fi->i_gc_rwsem[WRITE]);
3215 if (err)
3216 return err;
3217
3218 map.m_lblk = m_next_extent;
3219 }
3220
3221 return 0;
3222 }
3223
3224 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3225 {
3226 return f2fs_precache_extents(file_inode(filp));
3227 }
3228
3229 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3230 {
3231 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3232 __u64 block_count;
3233
3234 if (!capable(CAP_SYS_ADMIN))
3235 return -EPERM;
3236
3237 if (f2fs_readonly(sbi->sb))
3238 return -EROFS;
3239
3240 if (copy_from_user(&block_count, (void __user *)arg,
3241 sizeof(block_count)))
3242 return -EFAULT;
3243
3244 return f2fs_resize_fs(sbi, block_count);
3245 }
3246
3247 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3248 {
3249 struct inode *inode = file_inode(filp);
3250
3251 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3252
3253 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3254 f2fs_warn(F2FS_I_SB(inode),
3255 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3256 inode->i_ino);
3257 return -EOPNOTSUPP;
3258 }
3259
3260 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3261 }
3262
3263 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3264 {
3265 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3266 return -EOPNOTSUPP;
3267
3268 return fsverity_ioctl_measure(filp, (void __user *)arg);
3269 }
3270
3271 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3272 {
3273 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3274 return -EOPNOTSUPP;
3275
3276 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3277 }
3278
3279 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3280 {
3281 struct inode *inode = file_inode(filp);
3282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3283 char *vbuf;
3284 int count;
3285 int err = 0;
3286
3287 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3288 if (!vbuf)
3289 return -ENOMEM;
3290
3291 down_read(&sbi->sb_lock);
3292 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3293 ARRAY_SIZE(sbi->raw_super->volume_name),
3294 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3295 up_read(&sbi->sb_lock);
3296
3297 if (copy_to_user((char __user *)arg, vbuf,
3298 min(FSLABEL_MAX, count)))
3299 err = -EFAULT;
3300
3301 kfree(vbuf);
3302 return err;
3303 }
3304
3305 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3306 {
3307 struct inode *inode = file_inode(filp);
3308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3309 char *vbuf;
3310 int err = 0;
3311
3312 if (!capable(CAP_SYS_ADMIN))
3313 return -EPERM;
3314
3315 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3316 if (IS_ERR(vbuf))
3317 return PTR_ERR(vbuf);
3318
3319 err = mnt_want_write_file(filp);
3320 if (err)
3321 goto out;
3322
3323 down_write(&sbi->sb_lock);
3324
3325 memset(sbi->raw_super->volume_name, 0,
3326 sizeof(sbi->raw_super->volume_name));
3327 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3328 sbi->raw_super->volume_name,
3329 ARRAY_SIZE(sbi->raw_super->volume_name));
3330
3331 err = f2fs_commit_super(sbi, false);
3332
3333 up_write(&sbi->sb_lock);
3334
3335 mnt_drop_write_file(filp);
3336 out:
3337 kfree(vbuf);
3338 return err;
3339 }
3340
3341 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3342 {
3343 struct inode *inode = file_inode(filp);
3344 __u64 blocks;
3345
3346 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3347 return -EOPNOTSUPP;
3348
3349 if (!f2fs_compressed_file(inode))
3350 return -EINVAL;
3351
3352 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3353 return put_user(blocks, (u64 __user *)arg);
3354 }
3355
3356 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3357 {
3358 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3359 unsigned int released_blocks = 0;
3360 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3361 block_t blkaddr;
3362 int i;
3363
3364 for (i = 0; i < count; i++) {
3365 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3366 dn->ofs_in_node + i);
3367
3368 if (!__is_valid_data_blkaddr(blkaddr))
3369 continue;
3370 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3371 DATA_GENERIC_ENHANCE)))
3372 return -EFSCORRUPTED;
3373 }
3374
3375 while (count) {
3376 int compr_blocks = 0;
3377
3378 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3379 blkaddr = f2fs_data_blkaddr(dn);
3380
3381 if (i == 0) {
3382 if (blkaddr == COMPRESS_ADDR)
3383 continue;
3384 dn->ofs_in_node += cluster_size;
3385 goto next;
3386 }
3387
3388 if (__is_valid_data_blkaddr(blkaddr))
3389 compr_blocks++;
3390
3391 if (blkaddr != NEW_ADDR)
3392 continue;
3393
3394 dn->data_blkaddr = NULL_ADDR;
3395 f2fs_set_data_blkaddr(dn);
3396 }
3397
3398 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3399 dec_valid_block_count(sbi, dn->inode,
3400 cluster_size - compr_blocks);
3401
3402 released_blocks += cluster_size - compr_blocks;
3403 next:
3404 count -= cluster_size;
3405 }
3406
3407 return released_blocks;
3408 }
3409
3410 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3411 {
3412 struct inode *inode = file_inode(filp);
3413 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3414 pgoff_t page_idx = 0, last_idx;
3415 unsigned int released_blocks = 0;
3416 int ret;
3417 int writecount;
3418
3419 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3420 return -EOPNOTSUPP;
3421
3422 if (!f2fs_compressed_file(inode))
3423 return -EINVAL;
3424
3425 if (f2fs_readonly(sbi->sb))
3426 return -EROFS;
3427
3428 ret = mnt_want_write_file(filp);
3429 if (ret)
3430 return ret;
3431
3432 f2fs_balance_fs(F2FS_I_SB(inode), true);
3433
3434 inode_lock(inode);
3435
3436 writecount = atomic_read(&inode->i_writecount);
3437 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3438 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3439 ret = -EBUSY;
3440 goto out;
3441 }
3442
3443 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3444 ret = -EINVAL;
3445 goto out;
3446 }
3447
3448 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3449 if (ret)
3450 goto out;
3451
3452 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3453 inode->i_ctime = current_time(inode);
3454 f2fs_mark_inode_dirty_sync(inode, true);
3455
3456 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3457 goto out;
3458
3459 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3460 filemap_invalidate_lock(inode->i_mapping);
3461
3462 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3463
3464 while (page_idx < last_idx) {
3465 struct dnode_of_data dn;
3466 pgoff_t end_offset, count;
3467
3468 set_new_dnode(&dn, inode, NULL, NULL, 0);
3469 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3470 if (ret) {
3471 if (ret == -ENOENT) {
3472 page_idx = f2fs_get_next_page_offset(&dn,
3473 page_idx);
3474 ret = 0;
3475 continue;
3476 }
3477 break;
3478 }
3479
3480 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3481 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3482 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3483
3484 ret = release_compress_blocks(&dn, count);
3485
3486 f2fs_put_dnode(&dn);
3487
3488 if (ret < 0)
3489 break;
3490
3491 page_idx += count;
3492 released_blocks += ret;
3493 }
3494
3495 filemap_invalidate_unlock(inode->i_mapping);
3496 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3497 out:
3498 inode_unlock(inode);
3499
3500 mnt_drop_write_file(filp);
3501
3502 if (ret >= 0) {
3503 ret = put_user(released_blocks, (u64 __user *)arg);
3504 } else if (released_blocks &&
3505 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3506 set_sbi_flag(sbi, SBI_NEED_FSCK);
3507 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3508 "iblocks=%llu, released=%u, compr_blocks=%u, "
3509 "run fsck to fix.",
3510 __func__, inode->i_ino, inode->i_blocks,
3511 released_blocks,
3512 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3513 }
3514
3515 return ret;
3516 }
3517
3518 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3519 {
3520 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3521 unsigned int reserved_blocks = 0;
3522 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3523 block_t blkaddr;
3524 int i;
3525
3526 for (i = 0; i < count; i++) {
3527 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3528 dn->ofs_in_node + i);
3529
3530 if (!__is_valid_data_blkaddr(blkaddr))
3531 continue;
3532 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3533 DATA_GENERIC_ENHANCE)))
3534 return -EFSCORRUPTED;
3535 }
3536
3537 while (count) {
3538 int compr_blocks = 0;
3539 blkcnt_t reserved;
3540 int ret;
3541
3542 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3543 blkaddr = f2fs_data_blkaddr(dn);
3544
3545 if (i == 0) {
3546 if (blkaddr == COMPRESS_ADDR)
3547 continue;
3548 dn->ofs_in_node += cluster_size;
3549 goto next;
3550 }
3551
3552 if (__is_valid_data_blkaddr(blkaddr)) {
3553 compr_blocks++;
3554 continue;
3555 }
3556
3557 dn->data_blkaddr = NEW_ADDR;
3558 f2fs_set_data_blkaddr(dn);
3559 }
3560
3561 reserved = cluster_size - compr_blocks;
3562 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3563 if (ret)
3564 return ret;
3565
3566 if (reserved != cluster_size - compr_blocks)
3567 return -ENOSPC;
3568
3569 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3570
3571 reserved_blocks += reserved;
3572 next:
3573 count -= cluster_size;
3574 }
3575
3576 return reserved_blocks;
3577 }
3578
3579 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3580 {
3581 struct inode *inode = file_inode(filp);
3582 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3583 pgoff_t page_idx = 0, last_idx;
3584 unsigned int reserved_blocks = 0;
3585 int ret;
3586
3587 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3588 return -EOPNOTSUPP;
3589
3590 if (!f2fs_compressed_file(inode))
3591 return -EINVAL;
3592
3593 if (f2fs_readonly(sbi->sb))
3594 return -EROFS;
3595
3596 ret = mnt_want_write_file(filp);
3597 if (ret)
3598 return ret;
3599
3600 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3601 goto out;
3602
3603 f2fs_balance_fs(F2FS_I_SB(inode), true);
3604
3605 inode_lock(inode);
3606
3607 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3608 ret = -EINVAL;
3609 goto unlock_inode;
3610 }
3611
3612 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3613 filemap_invalidate_lock(inode->i_mapping);
3614
3615 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3616
3617 while (page_idx < last_idx) {
3618 struct dnode_of_data dn;
3619 pgoff_t end_offset, count;
3620
3621 set_new_dnode(&dn, inode, NULL, NULL, 0);
3622 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3623 if (ret) {
3624 if (ret == -ENOENT) {
3625 page_idx = f2fs_get_next_page_offset(&dn,
3626 page_idx);
3627 ret = 0;
3628 continue;
3629 }
3630 break;
3631 }
3632
3633 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3634 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3635 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3636
3637 ret = reserve_compress_blocks(&dn, count);
3638
3639 f2fs_put_dnode(&dn);
3640
3641 if (ret < 0)
3642 break;
3643
3644 page_idx += count;
3645 reserved_blocks += ret;
3646 }
3647
3648 filemap_invalidate_unlock(inode->i_mapping);
3649 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3650
3651 if (ret >= 0) {
3652 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3653 inode->i_ctime = current_time(inode);
3654 f2fs_mark_inode_dirty_sync(inode, true);
3655 }
3656 unlock_inode:
3657 inode_unlock(inode);
3658 out:
3659 mnt_drop_write_file(filp);
3660
3661 if (ret >= 0) {
3662 ret = put_user(reserved_blocks, (u64 __user *)arg);
3663 } else if (reserved_blocks &&
3664 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3665 set_sbi_flag(sbi, SBI_NEED_FSCK);
3666 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3667 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3668 "run fsck to fix.",
3669 __func__, inode->i_ino, inode->i_blocks,
3670 reserved_blocks,
3671 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3672 }
3673
3674 return ret;
3675 }
3676
3677 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3678 pgoff_t off, block_t block, block_t len, u32 flags)
3679 {
3680 struct request_queue *q = bdev_get_queue(bdev);
3681 sector_t sector = SECTOR_FROM_BLOCK(block);
3682 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3683 int ret = 0;
3684
3685 if (!q)
3686 return -ENXIO;
3687
3688 if (flags & F2FS_TRIM_FILE_DISCARD)
3689 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3690 blk_queue_secure_erase(q) ?
3691 BLKDEV_DISCARD_SECURE : 0);
3692
3693 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3694 if (IS_ENCRYPTED(inode))
3695 ret = fscrypt_zeroout_range(inode, off, block, len);
3696 else
3697 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3698 GFP_NOFS, 0);
3699 }
3700
3701 return ret;
3702 }
3703
3704 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3705 {
3706 struct inode *inode = file_inode(filp);
3707 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3708 struct address_space *mapping = inode->i_mapping;
3709 struct block_device *prev_bdev = NULL;
3710 struct f2fs_sectrim_range range;
3711 pgoff_t index, pg_end, prev_index = 0;
3712 block_t prev_block = 0, len = 0;
3713 loff_t end_addr;
3714 bool to_end = false;
3715 int ret = 0;
3716
3717 if (!(filp->f_mode & FMODE_WRITE))
3718 return -EBADF;
3719
3720 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3721 sizeof(range)))
3722 return -EFAULT;
3723
3724 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3725 !S_ISREG(inode->i_mode))
3726 return -EINVAL;
3727
3728 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3729 !f2fs_hw_support_discard(sbi)) ||
3730 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3731 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3732 return -EOPNOTSUPP;
3733
3734 file_start_write(filp);
3735 inode_lock(inode);
3736
3737 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3738 range.start >= inode->i_size) {
3739 ret = -EINVAL;
3740 goto err;
3741 }
3742
3743 if (range.len == 0)
3744 goto err;
3745
3746 if (inode->i_size - range.start > range.len) {
3747 end_addr = range.start + range.len;
3748 } else {
3749 end_addr = range.len == (u64)-1 ?
3750 sbi->sb->s_maxbytes : inode->i_size;
3751 to_end = true;
3752 }
3753
3754 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3755 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3756 ret = -EINVAL;
3757 goto err;
3758 }
3759
3760 index = F2FS_BYTES_TO_BLK(range.start);
3761 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3762
3763 ret = f2fs_convert_inline_inode(inode);
3764 if (ret)
3765 goto err;
3766
3767 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3768 filemap_invalidate_lock(mapping);
3769
3770 ret = filemap_write_and_wait_range(mapping, range.start,
3771 to_end ? LLONG_MAX : end_addr - 1);
3772 if (ret)
3773 goto out;
3774
3775 truncate_inode_pages_range(mapping, range.start,
3776 to_end ? -1 : end_addr - 1);
3777
3778 while (index < pg_end) {
3779 struct dnode_of_data dn;
3780 pgoff_t end_offset, count;
3781 int i;
3782
3783 set_new_dnode(&dn, inode, NULL, NULL, 0);
3784 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3785 if (ret) {
3786 if (ret == -ENOENT) {
3787 index = f2fs_get_next_page_offset(&dn, index);
3788 continue;
3789 }
3790 goto out;
3791 }
3792
3793 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3795 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3796 struct block_device *cur_bdev;
3797 block_t blkaddr = f2fs_data_blkaddr(&dn);
3798
3799 if (!__is_valid_data_blkaddr(blkaddr))
3800 continue;
3801
3802 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3803 DATA_GENERIC_ENHANCE)) {
3804 ret = -EFSCORRUPTED;
3805 f2fs_put_dnode(&dn);
3806 goto out;
3807 }
3808
3809 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3810 if (f2fs_is_multi_device(sbi)) {
3811 int di = f2fs_target_device_index(sbi, blkaddr);
3812
3813 blkaddr -= FDEV(di).start_blk;
3814 }
3815
3816 if (len) {
3817 if (prev_bdev == cur_bdev &&
3818 index == prev_index + len &&
3819 blkaddr == prev_block + len) {
3820 len++;
3821 } else {
3822 ret = f2fs_secure_erase(prev_bdev,
3823 inode, prev_index, prev_block,
3824 len, range.flags);
3825 if (ret) {
3826 f2fs_put_dnode(&dn);
3827 goto out;
3828 }
3829
3830 len = 0;
3831 }
3832 }
3833
3834 if (!len) {
3835 prev_bdev = cur_bdev;
3836 prev_index = index;
3837 prev_block = blkaddr;
3838 len = 1;
3839 }
3840 }
3841
3842 f2fs_put_dnode(&dn);
3843
3844 if (fatal_signal_pending(current)) {
3845 ret = -EINTR;
3846 goto out;
3847 }
3848 cond_resched();
3849 }
3850
3851 if (len)
3852 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3853 prev_block, len, range.flags);
3854 out:
3855 filemap_invalidate_unlock(mapping);
3856 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3857 err:
3858 inode_unlock(inode);
3859 file_end_write(filp);
3860
3861 return ret;
3862 }
3863
3864 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3865 {
3866 struct inode *inode = file_inode(filp);
3867 struct f2fs_comp_option option;
3868
3869 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3870 return -EOPNOTSUPP;
3871
3872 inode_lock_shared(inode);
3873
3874 if (!f2fs_compressed_file(inode)) {
3875 inode_unlock_shared(inode);
3876 return -ENODATA;
3877 }
3878
3879 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3880 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3881
3882 inode_unlock_shared(inode);
3883
3884 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3885 sizeof(option)))
3886 return -EFAULT;
3887
3888 return 0;
3889 }
3890
3891 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3892 {
3893 struct inode *inode = file_inode(filp);
3894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3895 struct f2fs_comp_option option;
3896 int ret = 0;
3897
3898 if (!f2fs_sb_has_compression(sbi))
3899 return -EOPNOTSUPP;
3900
3901 if (!(filp->f_mode & FMODE_WRITE))
3902 return -EBADF;
3903
3904 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3905 sizeof(option)))
3906 return -EFAULT;
3907
3908 if (!f2fs_compressed_file(inode) ||
3909 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3910 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3911 option.algorithm >= COMPRESS_MAX)
3912 return -EINVAL;
3913
3914 file_start_write(filp);
3915 inode_lock(inode);
3916
3917 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3918 ret = -EBUSY;
3919 goto out;
3920 }
3921
3922 if (inode->i_size != 0) {
3923 ret = -EFBIG;
3924 goto out;
3925 }
3926
3927 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3928 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3929 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3930 f2fs_mark_inode_dirty_sync(inode, true);
3931
3932 if (!f2fs_is_compress_backend_ready(inode))
3933 f2fs_warn(sbi, "compression algorithm is successfully set, "
3934 "but current kernel doesn't support this algorithm.");
3935 out:
3936 inode_unlock(inode);
3937 file_end_write(filp);
3938
3939 return ret;
3940 }
3941
3942 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3943 {
3944 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3945 struct address_space *mapping = inode->i_mapping;
3946 struct page *page;
3947 pgoff_t redirty_idx = page_idx;
3948 int i, page_len = 0, ret = 0;
3949
3950 page_cache_ra_unbounded(&ractl, len, 0);
3951
3952 for (i = 0; i < len; i++, page_idx++) {
3953 page = read_cache_page(mapping, page_idx, NULL, NULL);
3954 if (IS_ERR(page)) {
3955 ret = PTR_ERR(page);
3956 break;
3957 }
3958 page_len++;
3959 }
3960
3961 for (i = 0; i < page_len; i++, redirty_idx++) {
3962 page = find_lock_page(mapping, redirty_idx);
3963 if (!page) {
3964 ret = -ENOMEM;
3965 break;
3966 }
3967 set_page_dirty(page);
3968 f2fs_put_page(page, 1);
3969 f2fs_put_page(page, 0);
3970 }
3971
3972 return ret;
3973 }
3974
3975 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3976 {
3977 struct inode *inode = file_inode(filp);
3978 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3979 struct f2fs_inode_info *fi = F2FS_I(inode);
3980 pgoff_t page_idx = 0, last_idx;
3981 unsigned int blk_per_seg = sbi->blocks_per_seg;
3982 int cluster_size = F2FS_I(inode)->i_cluster_size;
3983 int count, ret;
3984
3985 if (!f2fs_sb_has_compression(sbi) ||
3986 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3987 return -EOPNOTSUPP;
3988
3989 if (!(filp->f_mode & FMODE_WRITE))
3990 return -EBADF;
3991
3992 if (!f2fs_compressed_file(inode))
3993 return -EINVAL;
3994
3995 f2fs_balance_fs(F2FS_I_SB(inode), true);
3996
3997 file_start_write(filp);
3998 inode_lock(inode);
3999
4000 if (!f2fs_is_compress_backend_ready(inode)) {
4001 ret = -EOPNOTSUPP;
4002 goto out;
4003 }
4004
4005 if (f2fs_is_mmap_file(inode)) {
4006 ret = -EBUSY;
4007 goto out;
4008 }
4009
4010 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4011 if (ret)
4012 goto out;
4013
4014 if (!atomic_read(&fi->i_compr_blocks))
4015 goto out;
4016
4017 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4018
4019 count = last_idx - page_idx;
4020 while (count) {
4021 int len = min(cluster_size, count);
4022
4023 ret = redirty_blocks(inode, page_idx, len);
4024 if (ret < 0)
4025 break;
4026
4027 if (get_dirty_pages(inode) >= blk_per_seg)
4028 filemap_fdatawrite(inode->i_mapping);
4029
4030 count -= len;
4031 page_idx += len;
4032 }
4033
4034 if (!ret)
4035 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4036 LLONG_MAX);
4037
4038 if (ret)
4039 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4040 __func__, ret);
4041 out:
4042 inode_unlock(inode);
4043 file_end_write(filp);
4044
4045 return ret;
4046 }
4047
4048 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4049 {
4050 struct inode *inode = file_inode(filp);
4051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4052 pgoff_t page_idx = 0, last_idx;
4053 unsigned int blk_per_seg = sbi->blocks_per_seg;
4054 int cluster_size = F2FS_I(inode)->i_cluster_size;
4055 int count, ret;
4056
4057 if (!f2fs_sb_has_compression(sbi) ||
4058 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4059 return -EOPNOTSUPP;
4060
4061 if (!(filp->f_mode & FMODE_WRITE))
4062 return -EBADF;
4063
4064 if (!f2fs_compressed_file(inode))
4065 return -EINVAL;
4066
4067 f2fs_balance_fs(F2FS_I_SB(inode), true);
4068
4069 file_start_write(filp);
4070 inode_lock(inode);
4071
4072 if (!f2fs_is_compress_backend_ready(inode)) {
4073 ret = -EOPNOTSUPP;
4074 goto out;
4075 }
4076
4077 if (f2fs_is_mmap_file(inode)) {
4078 ret = -EBUSY;
4079 goto out;
4080 }
4081
4082 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4083 if (ret)
4084 goto out;
4085
4086 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4087
4088 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4089
4090 count = last_idx - page_idx;
4091 while (count) {
4092 int len = min(cluster_size, count);
4093
4094 ret = redirty_blocks(inode, page_idx, len);
4095 if (ret < 0)
4096 break;
4097
4098 if (get_dirty_pages(inode) >= blk_per_seg)
4099 filemap_fdatawrite(inode->i_mapping);
4100
4101 count -= len;
4102 page_idx += len;
4103 }
4104
4105 if (!ret)
4106 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4107 LLONG_MAX);
4108
4109 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4110
4111 if (ret)
4112 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4113 __func__, ret);
4114 out:
4115 inode_unlock(inode);
4116 file_end_write(filp);
4117
4118 return ret;
4119 }
4120
4121 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4122 {
4123 switch (cmd) {
4124 case FS_IOC_GETVERSION:
4125 return f2fs_ioc_getversion(filp, arg);
4126 case F2FS_IOC_START_ATOMIC_WRITE:
4127 return f2fs_ioc_start_atomic_write(filp);
4128 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4129 return f2fs_ioc_commit_atomic_write(filp);
4130 case F2FS_IOC_START_VOLATILE_WRITE:
4131 return f2fs_ioc_start_volatile_write(filp);
4132 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4133 return f2fs_ioc_release_volatile_write(filp);
4134 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4135 return f2fs_ioc_abort_volatile_write(filp);
4136 case F2FS_IOC_SHUTDOWN:
4137 return f2fs_ioc_shutdown(filp, arg);
4138 case FITRIM:
4139 return f2fs_ioc_fitrim(filp, arg);
4140 case FS_IOC_SET_ENCRYPTION_POLICY:
4141 return f2fs_ioc_set_encryption_policy(filp, arg);
4142 case FS_IOC_GET_ENCRYPTION_POLICY:
4143 return f2fs_ioc_get_encryption_policy(filp, arg);
4144 case FS_IOC_GET_ENCRYPTION_PWSALT:
4145 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4146 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4147 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4148 case FS_IOC_ADD_ENCRYPTION_KEY:
4149 return f2fs_ioc_add_encryption_key(filp, arg);
4150 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4151 return f2fs_ioc_remove_encryption_key(filp, arg);
4152 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4153 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4154 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4155 return f2fs_ioc_get_encryption_key_status(filp, arg);
4156 case FS_IOC_GET_ENCRYPTION_NONCE:
4157 return f2fs_ioc_get_encryption_nonce(filp, arg);
4158 case F2FS_IOC_GARBAGE_COLLECT:
4159 return f2fs_ioc_gc(filp, arg);
4160 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4161 return f2fs_ioc_gc_range(filp, arg);
4162 case F2FS_IOC_WRITE_CHECKPOINT:
4163 return f2fs_ioc_write_checkpoint(filp, arg);
4164 case F2FS_IOC_DEFRAGMENT:
4165 return f2fs_ioc_defragment(filp, arg);
4166 case F2FS_IOC_MOVE_RANGE:
4167 return f2fs_ioc_move_range(filp, arg);
4168 case F2FS_IOC_FLUSH_DEVICE:
4169 return f2fs_ioc_flush_device(filp, arg);
4170 case F2FS_IOC_GET_FEATURES:
4171 return f2fs_ioc_get_features(filp, arg);
4172 case F2FS_IOC_GET_PIN_FILE:
4173 return f2fs_ioc_get_pin_file(filp, arg);
4174 case F2FS_IOC_SET_PIN_FILE:
4175 return f2fs_ioc_set_pin_file(filp, arg);
4176 case F2FS_IOC_PRECACHE_EXTENTS:
4177 return f2fs_ioc_precache_extents(filp, arg);
4178 case F2FS_IOC_RESIZE_FS:
4179 return f2fs_ioc_resize_fs(filp, arg);
4180 case FS_IOC_ENABLE_VERITY:
4181 return f2fs_ioc_enable_verity(filp, arg);
4182 case FS_IOC_MEASURE_VERITY:
4183 return f2fs_ioc_measure_verity(filp, arg);
4184 case FS_IOC_READ_VERITY_METADATA:
4185 return f2fs_ioc_read_verity_metadata(filp, arg);
4186 case FS_IOC_GETFSLABEL:
4187 return f2fs_ioc_getfslabel(filp, arg);
4188 case FS_IOC_SETFSLABEL:
4189 return f2fs_ioc_setfslabel(filp, arg);
4190 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4191 return f2fs_get_compress_blocks(filp, arg);
4192 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4193 return f2fs_release_compress_blocks(filp, arg);
4194 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4195 return f2fs_reserve_compress_blocks(filp, arg);
4196 case F2FS_IOC_SEC_TRIM_FILE:
4197 return f2fs_sec_trim_file(filp, arg);
4198 case F2FS_IOC_GET_COMPRESS_OPTION:
4199 return f2fs_ioc_get_compress_option(filp, arg);
4200 case F2FS_IOC_SET_COMPRESS_OPTION:
4201 return f2fs_ioc_set_compress_option(filp, arg);
4202 case F2FS_IOC_DECOMPRESS_FILE:
4203 return f2fs_ioc_decompress_file(filp, arg);
4204 case F2FS_IOC_COMPRESS_FILE:
4205 return f2fs_ioc_compress_file(filp, arg);
4206 default:
4207 return -ENOTTY;
4208 }
4209 }
4210
4211 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4212 {
4213 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4214 return -EIO;
4215 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4216 return -ENOSPC;
4217
4218 return __f2fs_ioctl(filp, cmd, arg);
4219 }
4220
4221 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4222 {
4223 struct file *file = iocb->ki_filp;
4224 struct inode *inode = file_inode(file);
4225 int ret;
4226
4227 if (!f2fs_is_compress_backend_ready(inode))
4228 return -EOPNOTSUPP;
4229
4230 ret = generic_file_read_iter(iocb, iter);
4231
4232 if (ret > 0)
4233 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4234
4235 return ret;
4236 }
4237
4238 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4239 {
4240 struct file *file = iocb->ki_filp;
4241 struct inode *inode = file_inode(file);
4242 ssize_t ret;
4243
4244 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4245 ret = -EIO;
4246 goto out;
4247 }
4248
4249 if (!f2fs_is_compress_backend_ready(inode)) {
4250 ret = -EOPNOTSUPP;
4251 goto out;
4252 }
4253
4254 if (iocb->ki_flags & IOCB_NOWAIT) {
4255 if (!inode_trylock(inode)) {
4256 ret = -EAGAIN;
4257 goto out;
4258 }
4259 } else {
4260 inode_lock(inode);
4261 }
4262
4263 if (unlikely(IS_IMMUTABLE(inode))) {
4264 ret = -EPERM;
4265 goto unlock;
4266 }
4267
4268 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4269 ret = -EPERM;
4270 goto unlock;
4271 }
4272
4273 ret = generic_write_checks(iocb, from);
4274 if (ret > 0) {
4275 bool preallocated = false;
4276 size_t target_size = 0;
4277 int err;
4278
4279 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4280 set_inode_flag(inode, FI_NO_PREALLOC);
4281
4282 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4283 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4284 iov_iter_count(from)) ||
4285 f2fs_has_inline_data(inode) ||
4286 f2fs_force_buffered_io(inode, iocb, from)) {
4287 clear_inode_flag(inode, FI_NO_PREALLOC);
4288 inode_unlock(inode);
4289 ret = -EAGAIN;
4290 goto out;
4291 }
4292 goto write;
4293 }
4294
4295 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4296 goto write;
4297
4298 if (iocb->ki_flags & IOCB_DIRECT) {
4299 /*
4300 * Convert inline data for Direct I/O before entering
4301 * f2fs_direct_IO().
4302 */
4303 err = f2fs_convert_inline_inode(inode);
4304 if (err)
4305 goto out_err;
4306 /*
4307 * If force_buffere_io() is true, we have to allocate
4308 * blocks all the time, since f2fs_direct_IO will fall
4309 * back to buffered IO.
4310 */
4311 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4312 f2fs_lfs_mode(F2FS_I_SB(inode)))
4313 goto write;
4314 }
4315 preallocated = true;
4316 target_size = iocb->ki_pos + iov_iter_count(from);
4317
4318 err = f2fs_preallocate_blocks(iocb, from);
4319 if (err) {
4320 out_err:
4321 clear_inode_flag(inode, FI_NO_PREALLOC);
4322 inode_unlock(inode);
4323 ret = err;
4324 goto out;
4325 }
4326 write:
4327 ret = __generic_file_write_iter(iocb, from);
4328 clear_inode_flag(inode, FI_NO_PREALLOC);
4329
4330 /* if we couldn't write data, we should deallocate blocks. */
4331 if (preallocated && i_size_read(inode) < target_size) {
4332 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4333 filemap_invalidate_lock(inode->i_mapping);
4334 f2fs_truncate(inode);
4335 filemap_invalidate_unlock(inode->i_mapping);
4336 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4337 }
4338
4339 if (ret > 0)
4340 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4341 }
4342 unlock:
4343 inode_unlock(inode);
4344 out:
4345 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4346 iov_iter_count(from), ret);
4347 if (ret > 0)
4348 ret = generic_write_sync(iocb, ret);
4349 return ret;
4350 }
4351
4352 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4353 int advice)
4354 {
4355 struct inode *inode;
4356 struct address_space *mapping;
4357 struct backing_dev_info *bdi;
4358
4359 if (advice == POSIX_FADV_SEQUENTIAL) {
4360 inode = file_inode(filp);
4361 if (S_ISFIFO(inode->i_mode))
4362 return -ESPIPE;
4363
4364 mapping = filp->f_mapping;
4365 if (!mapping || len < 0)
4366 return -EINVAL;
4367
4368 bdi = inode_to_bdi(mapping->host);
4369 filp->f_ra.ra_pages = bdi->ra_pages *
4370 F2FS_I_SB(inode)->seq_file_ra_mul;
4371 spin_lock(&filp->f_lock);
4372 filp->f_mode &= ~FMODE_RANDOM;
4373 spin_unlock(&filp->f_lock);
4374 return 0;
4375 }
4376
4377 return generic_fadvise(filp, offset, len, advice);
4378 }
4379
4380 #ifdef CONFIG_COMPAT
4381 struct compat_f2fs_gc_range {
4382 u32 sync;
4383 compat_u64 start;
4384 compat_u64 len;
4385 };
4386 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4387 struct compat_f2fs_gc_range)
4388
4389 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4390 {
4391 struct compat_f2fs_gc_range __user *urange;
4392 struct f2fs_gc_range range;
4393 int err;
4394
4395 urange = compat_ptr(arg);
4396 err = get_user(range.sync, &urange->sync);
4397 err |= get_user(range.start, &urange->start);
4398 err |= get_user(range.len, &urange->len);
4399 if (err)
4400 return -EFAULT;
4401
4402 return __f2fs_ioc_gc_range(file, &range);
4403 }
4404
4405 struct compat_f2fs_move_range {
4406 u32 dst_fd;
4407 compat_u64 pos_in;
4408 compat_u64 pos_out;
4409 compat_u64 len;
4410 };
4411 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4412 struct compat_f2fs_move_range)
4413
4414 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4415 {
4416 struct compat_f2fs_move_range __user *urange;
4417 struct f2fs_move_range range;
4418 int err;
4419
4420 urange = compat_ptr(arg);
4421 err = get_user(range.dst_fd, &urange->dst_fd);
4422 err |= get_user(range.pos_in, &urange->pos_in);
4423 err |= get_user(range.pos_out, &urange->pos_out);
4424 err |= get_user(range.len, &urange->len);
4425 if (err)
4426 return -EFAULT;
4427
4428 return __f2fs_ioc_move_range(file, &range);
4429 }
4430
4431 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4432 {
4433 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4434 return -EIO;
4435 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4436 return -ENOSPC;
4437
4438 switch (cmd) {
4439 case FS_IOC32_GETVERSION:
4440 cmd = FS_IOC_GETVERSION;
4441 break;
4442 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4443 return f2fs_compat_ioc_gc_range(file, arg);
4444 case F2FS_IOC32_MOVE_RANGE:
4445 return f2fs_compat_ioc_move_range(file, arg);
4446 case F2FS_IOC_START_ATOMIC_WRITE:
4447 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4448 case F2FS_IOC_START_VOLATILE_WRITE:
4449 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4450 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4451 case F2FS_IOC_SHUTDOWN:
4452 case FITRIM:
4453 case FS_IOC_SET_ENCRYPTION_POLICY:
4454 case FS_IOC_GET_ENCRYPTION_PWSALT:
4455 case FS_IOC_GET_ENCRYPTION_POLICY:
4456 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4457 case FS_IOC_ADD_ENCRYPTION_KEY:
4458 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4459 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4460 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4461 case FS_IOC_GET_ENCRYPTION_NONCE:
4462 case F2FS_IOC_GARBAGE_COLLECT:
4463 case F2FS_IOC_WRITE_CHECKPOINT:
4464 case F2FS_IOC_DEFRAGMENT:
4465 case F2FS_IOC_FLUSH_DEVICE:
4466 case F2FS_IOC_GET_FEATURES:
4467 case F2FS_IOC_GET_PIN_FILE:
4468 case F2FS_IOC_SET_PIN_FILE:
4469 case F2FS_IOC_PRECACHE_EXTENTS:
4470 case F2FS_IOC_RESIZE_FS:
4471 case FS_IOC_ENABLE_VERITY:
4472 case FS_IOC_MEASURE_VERITY:
4473 case FS_IOC_READ_VERITY_METADATA:
4474 case FS_IOC_GETFSLABEL:
4475 case FS_IOC_SETFSLABEL:
4476 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4477 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4478 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4479 case F2FS_IOC_SEC_TRIM_FILE:
4480 case F2FS_IOC_GET_COMPRESS_OPTION:
4481 case F2FS_IOC_SET_COMPRESS_OPTION:
4482 case F2FS_IOC_DECOMPRESS_FILE:
4483 case F2FS_IOC_COMPRESS_FILE:
4484 break;
4485 default:
4486 return -ENOIOCTLCMD;
4487 }
4488 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4489 }
4490 #endif
4491
4492 const struct file_operations f2fs_file_operations = {
4493 .llseek = f2fs_llseek,
4494 .read_iter = f2fs_file_read_iter,
4495 .write_iter = f2fs_file_write_iter,
4496 .open = f2fs_file_open,
4497 .release = f2fs_release_file,
4498 .mmap = f2fs_file_mmap,
4499 .flush = f2fs_file_flush,
4500 .fsync = f2fs_sync_file,
4501 .fallocate = f2fs_fallocate,
4502 .unlocked_ioctl = f2fs_ioctl,
4503 #ifdef CONFIG_COMPAT
4504 .compat_ioctl = f2fs_compat_ioctl,
4505 #endif
4506 .splice_read = generic_file_splice_read,
4507 .splice_write = iter_file_splice_write,
4508 .fadvise = f2fs_file_fadvise,
4509 };