]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/file.c
f2fs: inject fault to kvmalloc
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
59 }
60
61 sb_start_pagefault(inode->i_sb);
62
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64
65 /* block allocation */
66 f2fs_lock_op(sbi);
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
69 if (err) {
70 f2fs_unlock_op(sbi);
71 goto out;
72 }
73 f2fs_put_dnode(&dn);
74 f2fs_unlock_op(sbi);
75
76 f2fs_balance_fs(sbi, dn.node_changed);
77
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
80 lock_page(page);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
84 unlock_page(page);
85 err = -EFAULT;
86 goto out_sem;
87 }
88
89 /*
90 * check to see if the page is mapped already (no holes)
91 */
92 if (PageMappedToDisk(page))
93 goto mapped;
94
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 i_size_read(inode)) {
98 unsigned offset;
99 offset = i_size_read(inode) & ~PAGE_MASK;
100 zero_user_segment(page, offset, PAGE_SIZE);
101 }
102 set_page_dirty(page);
103 if (!PageUptodate(page))
104 SetPageUptodate(page);
105
106 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
107
108 trace_f2fs_vm_page_mkwrite(page, DATA);
109 mapped:
110 /* fill the page */
111 f2fs_wait_on_page_writeback(page, DATA, false);
112
113 /* wait for GCed encrypted page writeback */
114 if (f2fs_encrypted_file(inode))
115 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
116
117 out_sem:
118 up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 sb_end_pagefault(inode->i_sb);
121 f2fs_update_time(sbi, REQ_TIME);
122 err:
123 return block_page_mkwrite_return(err);
124 }
125
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 .fault = f2fs_filemap_fault,
128 .map_pages = filemap_map_pages,
129 .page_mkwrite = f2fs_vm_page_mkwrite,
130 };
131
132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 struct dentry *dentry;
135
136 inode = igrab(inode);
137 dentry = d_find_any_alias(inode);
138 iput(inode);
139 if (!dentry)
140 return 0;
141
142 *pino = parent_ino(dentry);
143 dput(dentry);
144 return 1;
145 }
146
147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 enum cp_reason_type cp_reason = CP_NO_NEEDED;
151
152 if (!S_ISREG(inode->i_mode))
153 cp_reason = CP_NON_REGULAR;
154 else if (inode->i_nlink != 1)
155 cp_reason = CP_HARDLINK;
156 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 cp_reason = CP_SB_NEED_CP;
158 else if (file_wrong_pino(inode))
159 cp_reason = CP_WRONG_PINO;
160 else if (!space_for_roll_forward(sbi))
161 cp_reason = CP_NO_SPC_ROLL;
162 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 cp_reason = CP_NODE_NEED_CP;
164 else if (test_opt(sbi, FASTBOOT))
165 cp_reason = CP_FASTBOOT_MODE;
166 else if (sbi->active_logs == 2)
167 cp_reason = CP_SPEC_LOG_NUM;
168
169 return cp_reason;
170 }
171
172 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
173 {
174 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
175 bool ret = false;
176 /* But we need to avoid that there are some inode updates */
177 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
178 ret = true;
179 f2fs_put_page(i, 0);
180 return ret;
181 }
182
183 static void try_to_fix_pino(struct inode *inode)
184 {
185 struct f2fs_inode_info *fi = F2FS_I(inode);
186 nid_t pino;
187
188 down_write(&fi->i_sem);
189 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
190 get_parent_ino(inode, &pino)) {
191 f2fs_i_pino_write(inode, pino);
192 file_got_pino(inode);
193 }
194 up_write(&fi->i_sem);
195 }
196
197 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
198 int datasync, bool atomic)
199 {
200 struct inode *inode = file->f_mapping->host;
201 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
202 nid_t ino = inode->i_ino;
203 int ret = 0;
204 enum cp_reason_type cp_reason = 0;
205 struct writeback_control wbc = {
206 .sync_mode = WB_SYNC_ALL,
207 .nr_to_write = LONG_MAX,
208 .for_reclaim = 0,
209 };
210
211 if (unlikely(f2fs_readonly(inode->i_sb)))
212 return 0;
213
214 trace_f2fs_sync_file_enter(inode);
215
216 /* if fdatasync is triggered, let's do in-place-update */
217 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
218 set_inode_flag(inode, FI_NEED_IPU);
219 ret = file_write_and_wait_range(file, start, end);
220 clear_inode_flag(inode, FI_NEED_IPU);
221
222 if (ret) {
223 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
224 return ret;
225 }
226
227 /* if the inode is dirty, let's recover all the time */
228 if (!f2fs_skip_inode_update(inode, datasync)) {
229 f2fs_write_inode(inode, NULL);
230 goto go_write;
231 }
232
233 /*
234 * if there is no written data, don't waste time to write recovery info.
235 */
236 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
237 !exist_written_data(sbi, ino, APPEND_INO)) {
238
239 /* it may call write_inode just prior to fsync */
240 if (need_inode_page_update(sbi, ino))
241 goto go_write;
242
243 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
244 exist_written_data(sbi, ino, UPDATE_INO))
245 goto flush_out;
246 goto out;
247 }
248 go_write:
249 /*
250 * Both of fdatasync() and fsync() are able to be recovered from
251 * sudden-power-off.
252 */
253 down_read(&F2FS_I(inode)->i_sem);
254 cp_reason = need_do_checkpoint(inode);
255 up_read(&F2FS_I(inode)->i_sem);
256
257 if (cp_reason) {
258 /* all the dirty node pages should be flushed for POR */
259 ret = f2fs_sync_fs(inode->i_sb, 1);
260
261 /*
262 * We've secured consistency through sync_fs. Following pino
263 * will be used only for fsynced inodes after checkpoint.
264 */
265 try_to_fix_pino(inode);
266 clear_inode_flag(inode, FI_APPEND_WRITE);
267 clear_inode_flag(inode, FI_UPDATE_WRITE);
268 goto out;
269 }
270 sync_nodes:
271 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
272 if (ret)
273 goto out;
274
275 /* if cp_error was enabled, we should avoid infinite loop */
276 if (unlikely(f2fs_cp_error(sbi))) {
277 ret = -EIO;
278 goto out;
279 }
280
281 if (need_inode_block_update(sbi, ino)) {
282 f2fs_mark_inode_dirty_sync(inode, true);
283 f2fs_write_inode(inode, NULL);
284 goto sync_nodes;
285 }
286
287 /*
288 * If it's atomic_write, it's just fine to keep write ordering. So
289 * here we don't need to wait for node write completion, since we use
290 * node chain which serializes node blocks. If one of node writes are
291 * reordered, we can see simply broken chain, resulting in stopping
292 * roll-forward recovery. It means we'll recover all or none node blocks
293 * given fsync mark.
294 */
295 if (!atomic) {
296 ret = wait_on_node_pages_writeback(sbi, ino);
297 if (ret)
298 goto out;
299 }
300
301 /* once recovery info is written, don't need to tack this */
302 remove_ino_entry(sbi, ino, APPEND_INO);
303 clear_inode_flag(inode, FI_APPEND_WRITE);
304 flush_out:
305 if (!atomic)
306 ret = f2fs_issue_flush(sbi, inode->i_ino);
307 if (!ret) {
308 remove_ino_entry(sbi, ino, UPDATE_INO);
309 clear_inode_flag(inode, FI_UPDATE_WRITE);
310 remove_ino_entry(sbi, ino, FLUSH_INO);
311 }
312 f2fs_update_time(sbi, REQ_TIME);
313 out:
314 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
315 f2fs_trace_ios(NULL, 1);
316 return ret;
317 }
318
319 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
320 {
321 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
322 return -EIO;
323 return f2fs_do_sync_file(file, start, end, datasync, false);
324 }
325
326 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
327 pgoff_t pgofs, int whence)
328 {
329 struct page *page;
330 int nr_pages;
331
332 if (whence != SEEK_DATA)
333 return 0;
334
335 /* find first dirty page index */
336 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
337 1, &page);
338 if (!nr_pages)
339 return ULONG_MAX;
340 pgofs = page->index;
341 put_page(page);
342 return pgofs;
343 }
344
345 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
346 int whence)
347 {
348 switch (whence) {
349 case SEEK_DATA:
350 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
351 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
352 return true;
353 break;
354 case SEEK_HOLE:
355 if (blkaddr == NULL_ADDR)
356 return true;
357 break;
358 }
359 return false;
360 }
361
362 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
363 {
364 struct inode *inode = file->f_mapping->host;
365 loff_t maxbytes = inode->i_sb->s_maxbytes;
366 struct dnode_of_data dn;
367 pgoff_t pgofs, end_offset, dirty;
368 loff_t data_ofs = offset;
369 loff_t isize;
370 int err = 0;
371
372 inode_lock(inode);
373
374 isize = i_size_read(inode);
375 if (offset >= isize)
376 goto fail;
377
378 /* handle inline data case */
379 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
380 if (whence == SEEK_HOLE)
381 data_ofs = isize;
382 goto found;
383 }
384
385 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
386
387 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
388
389 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
390 set_new_dnode(&dn, inode, NULL, NULL, 0);
391 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
392 if (err && err != -ENOENT) {
393 goto fail;
394 } else if (err == -ENOENT) {
395 /* direct node does not exists */
396 if (whence == SEEK_DATA) {
397 pgofs = get_next_page_offset(&dn, pgofs);
398 continue;
399 } else {
400 goto found;
401 }
402 }
403
404 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
405
406 /* find data/hole in dnode block */
407 for (; dn.ofs_in_node < end_offset;
408 dn.ofs_in_node++, pgofs++,
409 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
410 block_t blkaddr;
411 blkaddr = datablock_addr(dn.inode,
412 dn.node_page, dn.ofs_in_node);
413
414 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
415 f2fs_put_dnode(&dn);
416 goto found;
417 }
418 }
419 f2fs_put_dnode(&dn);
420 }
421
422 if (whence == SEEK_DATA)
423 goto fail;
424 found:
425 if (whence == SEEK_HOLE && data_ofs > isize)
426 data_ofs = isize;
427 inode_unlock(inode);
428 return vfs_setpos(file, data_ofs, maxbytes);
429 fail:
430 inode_unlock(inode);
431 return -ENXIO;
432 }
433
434 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
435 {
436 struct inode *inode = file->f_mapping->host;
437 loff_t maxbytes = inode->i_sb->s_maxbytes;
438
439 switch (whence) {
440 case SEEK_SET:
441 case SEEK_CUR:
442 case SEEK_END:
443 return generic_file_llseek_size(file, offset, whence,
444 maxbytes, i_size_read(inode));
445 case SEEK_DATA:
446 case SEEK_HOLE:
447 if (offset < 0)
448 return -ENXIO;
449 return f2fs_seek_block(file, offset, whence);
450 }
451
452 return -EINVAL;
453 }
454
455 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
456 {
457 struct inode *inode = file_inode(file);
458 int err;
459
460 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
461 return -EIO;
462
463 /* we don't need to use inline_data strictly */
464 err = f2fs_convert_inline_inode(inode);
465 if (err)
466 return err;
467
468 file_accessed(file);
469 vma->vm_ops = &f2fs_file_vm_ops;
470 return 0;
471 }
472
473 static int f2fs_file_open(struct inode *inode, struct file *filp)
474 {
475 int err = fscrypt_file_open(inode, filp);
476
477 if (err)
478 return err;
479 return dquot_file_open(inode, filp);
480 }
481
482 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
483 {
484 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
485 struct f2fs_node *raw_node;
486 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
487 __le32 *addr;
488 int base = 0;
489
490 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
491 base = get_extra_isize(dn->inode);
492
493 raw_node = F2FS_NODE(dn->node_page);
494 addr = blkaddr_in_node(raw_node) + base + ofs;
495
496 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
497 block_t blkaddr = le32_to_cpu(*addr);
498 if (blkaddr == NULL_ADDR)
499 continue;
500
501 dn->data_blkaddr = NULL_ADDR;
502 set_data_blkaddr(dn);
503 invalidate_blocks(sbi, blkaddr);
504 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
505 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
506 nr_free++;
507 }
508
509 if (nr_free) {
510 pgoff_t fofs;
511 /*
512 * once we invalidate valid blkaddr in range [ofs, ofs + count],
513 * we will invalidate all blkaddr in the whole range.
514 */
515 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
516 dn->inode) + ofs;
517 f2fs_update_extent_cache_range(dn, fofs, 0, len);
518 dec_valid_block_count(sbi, dn->inode, nr_free);
519 }
520 dn->ofs_in_node = ofs;
521
522 f2fs_update_time(sbi, REQ_TIME);
523 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
524 dn->ofs_in_node, nr_free);
525 return nr_free;
526 }
527
528 void truncate_data_blocks(struct dnode_of_data *dn)
529 {
530 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
531 }
532
533 static int truncate_partial_data_page(struct inode *inode, u64 from,
534 bool cache_only)
535 {
536 unsigned offset = from & (PAGE_SIZE - 1);
537 pgoff_t index = from >> PAGE_SHIFT;
538 struct address_space *mapping = inode->i_mapping;
539 struct page *page;
540
541 if (!offset && !cache_only)
542 return 0;
543
544 if (cache_only) {
545 page = find_lock_page(mapping, index);
546 if (page && PageUptodate(page))
547 goto truncate_out;
548 f2fs_put_page(page, 1);
549 return 0;
550 }
551
552 page = get_lock_data_page(inode, index, true);
553 if (IS_ERR(page))
554 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
555 truncate_out:
556 f2fs_wait_on_page_writeback(page, DATA, true);
557 zero_user(page, offset, PAGE_SIZE - offset);
558
559 /* An encrypted inode should have a key and truncate the last page. */
560 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
561 if (!cache_only)
562 set_page_dirty(page);
563 f2fs_put_page(page, 1);
564 return 0;
565 }
566
567 int truncate_blocks(struct inode *inode, u64 from, bool lock)
568 {
569 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
570 unsigned int blocksize = inode->i_sb->s_blocksize;
571 struct dnode_of_data dn;
572 pgoff_t free_from;
573 int count = 0, err = 0;
574 struct page *ipage;
575 bool truncate_page = false;
576
577 trace_f2fs_truncate_blocks_enter(inode, from);
578
579 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
580
581 if (free_from >= sbi->max_file_blocks)
582 goto free_partial;
583
584 if (lock)
585 f2fs_lock_op(sbi);
586
587 ipage = get_node_page(sbi, inode->i_ino);
588 if (IS_ERR(ipage)) {
589 err = PTR_ERR(ipage);
590 goto out;
591 }
592
593 if (f2fs_has_inline_data(inode)) {
594 truncate_inline_inode(inode, ipage, from);
595 f2fs_put_page(ipage, 1);
596 truncate_page = true;
597 goto out;
598 }
599
600 set_new_dnode(&dn, inode, ipage, NULL, 0);
601 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
602 if (err) {
603 if (err == -ENOENT)
604 goto free_next;
605 goto out;
606 }
607
608 count = ADDRS_PER_PAGE(dn.node_page, inode);
609
610 count -= dn.ofs_in_node;
611 f2fs_bug_on(sbi, count < 0);
612
613 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
614 truncate_data_blocks_range(&dn, count);
615 free_from += count;
616 }
617
618 f2fs_put_dnode(&dn);
619 free_next:
620 err = truncate_inode_blocks(inode, free_from);
621 out:
622 if (lock)
623 f2fs_unlock_op(sbi);
624 free_partial:
625 /* lastly zero out the first data page */
626 if (!err)
627 err = truncate_partial_data_page(inode, from, truncate_page);
628
629 trace_f2fs_truncate_blocks_exit(inode, err);
630 return err;
631 }
632
633 int f2fs_truncate(struct inode *inode)
634 {
635 int err;
636
637 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
638 return -EIO;
639
640 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
641 S_ISLNK(inode->i_mode)))
642 return 0;
643
644 trace_f2fs_truncate(inode);
645
646 #ifdef CONFIG_F2FS_FAULT_INJECTION
647 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
648 f2fs_show_injection_info(FAULT_TRUNCATE);
649 return -EIO;
650 }
651 #endif
652 /* we should check inline_data size */
653 if (!f2fs_may_inline_data(inode)) {
654 err = f2fs_convert_inline_inode(inode);
655 if (err)
656 return err;
657 }
658
659 err = truncate_blocks(inode, i_size_read(inode), true);
660 if (err)
661 return err;
662
663 inode->i_mtime = inode->i_ctime = current_time(inode);
664 f2fs_mark_inode_dirty_sync(inode, false);
665 return 0;
666 }
667
668 int f2fs_getattr(const struct path *path, struct kstat *stat,
669 u32 request_mask, unsigned int query_flags)
670 {
671 struct inode *inode = d_inode(path->dentry);
672 struct f2fs_inode_info *fi = F2FS_I(inode);
673 unsigned int flags;
674
675 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
676 if (flags & FS_APPEND_FL)
677 stat->attributes |= STATX_ATTR_APPEND;
678 if (flags & FS_COMPR_FL)
679 stat->attributes |= STATX_ATTR_COMPRESSED;
680 if (f2fs_encrypted_inode(inode))
681 stat->attributes |= STATX_ATTR_ENCRYPTED;
682 if (flags & FS_IMMUTABLE_FL)
683 stat->attributes |= STATX_ATTR_IMMUTABLE;
684 if (flags & FS_NODUMP_FL)
685 stat->attributes |= STATX_ATTR_NODUMP;
686
687 stat->attributes_mask |= (STATX_ATTR_APPEND |
688 STATX_ATTR_COMPRESSED |
689 STATX_ATTR_ENCRYPTED |
690 STATX_ATTR_IMMUTABLE |
691 STATX_ATTR_NODUMP);
692
693 generic_fillattr(inode, stat);
694
695 /* we need to show initial sectors used for inline_data/dentries */
696 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
697 f2fs_has_inline_dentry(inode))
698 stat->blocks += (stat->size + 511) >> 9;
699
700 return 0;
701 }
702
703 #ifdef CONFIG_F2FS_FS_POSIX_ACL
704 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
705 {
706 unsigned int ia_valid = attr->ia_valid;
707
708 if (ia_valid & ATTR_UID)
709 inode->i_uid = attr->ia_uid;
710 if (ia_valid & ATTR_GID)
711 inode->i_gid = attr->ia_gid;
712 if (ia_valid & ATTR_ATIME)
713 inode->i_atime = timespec_trunc(attr->ia_atime,
714 inode->i_sb->s_time_gran);
715 if (ia_valid & ATTR_MTIME)
716 inode->i_mtime = timespec_trunc(attr->ia_mtime,
717 inode->i_sb->s_time_gran);
718 if (ia_valid & ATTR_CTIME)
719 inode->i_ctime = timespec_trunc(attr->ia_ctime,
720 inode->i_sb->s_time_gran);
721 if (ia_valid & ATTR_MODE) {
722 umode_t mode = attr->ia_mode;
723
724 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
725 mode &= ~S_ISGID;
726 set_acl_inode(inode, mode);
727 }
728 }
729 #else
730 #define __setattr_copy setattr_copy
731 #endif
732
733 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
734 {
735 struct inode *inode = d_inode(dentry);
736 int err;
737 bool size_changed = false;
738
739 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
740 return -EIO;
741
742 err = setattr_prepare(dentry, attr);
743 if (err)
744 return err;
745
746 err = fscrypt_prepare_setattr(dentry, attr);
747 if (err)
748 return err;
749
750 if (is_quota_modification(inode, attr)) {
751 err = dquot_initialize(inode);
752 if (err)
753 return err;
754 }
755 if ((attr->ia_valid & ATTR_UID &&
756 !uid_eq(attr->ia_uid, inode->i_uid)) ||
757 (attr->ia_valid & ATTR_GID &&
758 !gid_eq(attr->ia_gid, inode->i_gid))) {
759 err = dquot_transfer(inode, attr);
760 if (err)
761 return err;
762 }
763
764 if (attr->ia_valid & ATTR_SIZE) {
765 if (attr->ia_size <= i_size_read(inode)) {
766 down_write(&F2FS_I(inode)->i_mmap_sem);
767 truncate_setsize(inode, attr->ia_size);
768 err = f2fs_truncate(inode);
769 up_write(&F2FS_I(inode)->i_mmap_sem);
770 if (err)
771 return err;
772 } else {
773 /*
774 * do not trim all blocks after i_size if target size is
775 * larger than i_size.
776 */
777 down_write(&F2FS_I(inode)->i_mmap_sem);
778 truncate_setsize(inode, attr->ia_size);
779 up_write(&F2FS_I(inode)->i_mmap_sem);
780
781 /* should convert inline inode here */
782 if (!f2fs_may_inline_data(inode)) {
783 err = f2fs_convert_inline_inode(inode);
784 if (err)
785 return err;
786 }
787 inode->i_mtime = inode->i_ctime = current_time(inode);
788 }
789
790 down_write(&F2FS_I(inode)->i_sem);
791 F2FS_I(inode)->last_disk_size = i_size_read(inode);
792 up_write(&F2FS_I(inode)->i_sem);
793
794 size_changed = true;
795 }
796
797 __setattr_copy(inode, attr);
798
799 if (attr->ia_valid & ATTR_MODE) {
800 err = posix_acl_chmod(inode, get_inode_mode(inode));
801 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
802 inode->i_mode = F2FS_I(inode)->i_acl_mode;
803 clear_inode_flag(inode, FI_ACL_MODE);
804 }
805 }
806
807 /* file size may changed here */
808 f2fs_mark_inode_dirty_sync(inode, size_changed);
809
810 /* inode change will produce dirty node pages flushed by checkpoint */
811 f2fs_balance_fs(F2FS_I_SB(inode), true);
812
813 return err;
814 }
815
816 const struct inode_operations f2fs_file_inode_operations = {
817 .getattr = f2fs_getattr,
818 .setattr = f2fs_setattr,
819 .get_acl = f2fs_get_acl,
820 .set_acl = f2fs_set_acl,
821 #ifdef CONFIG_F2FS_FS_XATTR
822 .listxattr = f2fs_listxattr,
823 #endif
824 .fiemap = f2fs_fiemap,
825 };
826
827 static int fill_zero(struct inode *inode, pgoff_t index,
828 loff_t start, loff_t len)
829 {
830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
831 struct page *page;
832
833 if (!len)
834 return 0;
835
836 f2fs_balance_fs(sbi, true);
837
838 f2fs_lock_op(sbi);
839 page = get_new_data_page(inode, NULL, index, false);
840 f2fs_unlock_op(sbi);
841
842 if (IS_ERR(page))
843 return PTR_ERR(page);
844
845 f2fs_wait_on_page_writeback(page, DATA, true);
846 zero_user(page, start, len);
847 set_page_dirty(page);
848 f2fs_put_page(page, 1);
849 return 0;
850 }
851
852 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
853 {
854 int err;
855
856 while (pg_start < pg_end) {
857 struct dnode_of_data dn;
858 pgoff_t end_offset, count;
859
860 set_new_dnode(&dn, inode, NULL, NULL, 0);
861 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
862 if (err) {
863 if (err == -ENOENT) {
864 pg_start = get_next_page_offset(&dn, pg_start);
865 continue;
866 }
867 return err;
868 }
869
870 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
871 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
872
873 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
874
875 truncate_data_blocks_range(&dn, count);
876 f2fs_put_dnode(&dn);
877
878 pg_start += count;
879 }
880 return 0;
881 }
882
883 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
884 {
885 pgoff_t pg_start, pg_end;
886 loff_t off_start, off_end;
887 int ret;
888
889 ret = f2fs_convert_inline_inode(inode);
890 if (ret)
891 return ret;
892
893 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
894 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
895
896 off_start = offset & (PAGE_SIZE - 1);
897 off_end = (offset + len) & (PAGE_SIZE - 1);
898
899 if (pg_start == pg_end) {
900 ret = fill_zero(inode, pg_start, off_start,
901 off_end - off_start);
902 if (ret)
903 return ret;
904 } else {
905 if (off_start) {
906 ret = fill_zero(inode, pg_start++, off_start,
907 PAGE_SIZE - off_start);
908 if (ret)
909 return ret;
910 }
911 if (off_end) {
912 ret = fill_zero(inode, pg_end, 0, off_end);
913 if (ret)
914 return ret;
915 }
916
917 if (pg_start < pg_end) {
918 struct address_space *mapping = inode->i_mapping;
919 loff_t blk_start, blk_end;
920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
921
922 f2fs_balance_fs(sbi, true);
923
924 blk_start = (loff_t)pg_start << PAGE_SHIFT;
925 blk_end = (loff_t)pg_end << PAGE_SHIFT;
926 down_write(&F2FS_I(inode)->i_mmap_sem);
927 truncate_inode_pages_range(mapping, blk_start,
928 blk_end - 1);
929
930 f2fs_lock_op(sbi);
931 ret = truncate_hole(inode, pg_start, pg_end);
932 f2fs_unlock_op(sbi);
933 up_write(&F2FS_I(inode)->i_mmap_sem);
934 }
935 }
936
937 return ret;
938 }
939
940 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
941 int *do_replace, pgoff_t off, pgoff_t len)
942 {
943 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944 struct dnode_of_data dn;
945 int ret, done, i;
946
947 next_dnode:
948 set_new_dnode(&dn, inode, NULL, NULL, 0);
949 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
950 if (ret && ret != -ENOENT) {
951 return ret;
952 } else if (ret == -ENOENT) {
953 if (dn.max_level == 0)
954 return -ENOENT;
955 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
956 blkaddr += done;
957 do_replace += done;
958 goto next;
959 }
960
961 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
962 dn.ofs_in_node, len);
963 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
964 *blkaddr = datablock_addr(dn.inode,
965 dn.node_page, dn.ofs_in_node);
966 if (!is_checkpointed_data(sbi, *blkaddr)) {
967
968 if (test_opt(sbi, LFS)) {
969 f2fs_put_dnode(&dn);
970 return -ENOTSUPP;
971 }
972
973 /* do not invalidate this block address */
974 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
975 *do_replace = 1;
976 }
977 }
978 f2fs_put_dnode(&dn);
979 next:
980 len -= done;
981 off += done;
982 if (len)
983 goto next_dnode;
984 return 0;
985 }
986
987 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
988 int *do_replace, pgoff_t off, int len)
989 {
990 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
991 struct dnode_of_data dn;
992 int ret, i;
993
994 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
995 if (*do_replace == 0)
996 continue;
997
998 set_new_dnode(&dn, inode, NULL, NULL, 0);
999 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1000 if (ret) {
1001 dec_valid_block_count(sbi, inode, 1);
1002 invalidate_blocks(sbi, *blkaddr);
1003 } else {
1004 f2fs_update_data_blkaddr(&dn, *blkaddr);
1005 }
1006 f2fs_put_dnode(&dn);
1007 }
1008 return 0;
1009 }
1010
1011 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1012 block_t *blkaddr, int *do_replace,
1013 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1014 {
1015 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1016 pgoff_t i = 0;
1017 int ret;
1018
1019 while (i < len) {
1020 if (blkaddr[i] == NULL_ADDR && !full) {
1021 i++;
1022 continue;
1023 }
1024
1025 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1026 struct dnode_of_data dn;
1027 struct node_info ni;
1028 size_t new_size;
1029 pgoff_t ilen;
1030
1031 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1032 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1033 if (ret)
1034 return ret;
1035
1036 get_node_info(sbi, dn.nid, &ni);
1037 ilen = min((pgoff_t)
1038 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1039 dn.ofs_in_node, len - i);
1040 do {
1041 dn.data_blkaddr = datablock_addr(dn.inode,
1042 dn.node_page, dn.ofs_in_node);
1043 truncate_data_blocks_range(&dn, 1);
1044
1045 if (do_replace[i]) {
1046 f2fs_i_blocks_write(src_inode,
1047 1, false, false);
1048 f2fs_i_blocks_write(dst_inode,
1049 1, true, false);
1050 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1051 blkaddr[i], ni.version, true, false);
1052
1053 do_replace[i] = 0;
1054 }
1055 dn.ofs_in_node++;
1056 i++;
1057 new_size = (dst + i) << PAGE_SHIFT;
1058 if (dst_inode->i_size < new_size)
1059 f2fs_i_size_write(dst_inode, new_size);
1060 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1061
1062 f2fs_put_dnode(&dn);
1063 } else {
1064 struct page *psrc, *pdst;
1065
1066 psrc = get_lock_data_page(src_inode, src + i, true);
1067 if (IS_ERR(psrc))
1068 return PTR_ERR(psrc);
1069 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1070 true);
1071 if (IS_ERR(pdst)) {
1072 f2fs_put_page(psrc, 1);
1073 return PTR_ERR(pdst);
1074 }
1075 f2fs_copy_page(psrc, pdst);
1076 set_page_dirty(pdst);
1077 f2fs_put_page(pdst, 1);
1078 f2fs_put_page(psrc, 1);
1079
1080 ret = truncate_hole(src_inode, src + i, src + i + 1);
1081 if (ret)
1082 return ret;
1083 i++;
1084 }
1085 }
1086 return 0;
1087 }
1088
1089 static int __exchange_data_block(struct inode *src_inode,
1090 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1091 pgoff_t len, bool full)
1092 {
1093 block_t *src_blkaddr;
1094 int *do_replace;
1095 pgoff_t olen;
1096 int ret;
1097
1098 while (len) {
1099 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1100
1101 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1102 sizeof(block_t) * olen, GFP_KERNEL);
1103 if (!src_blkaddr)
1104 return -ENOMEM;
1105
1106 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1107 sizeof(int) * olen, GFP_KERNEL);
1108 if (!do_replace) {
1109 kvfree(src_blkaddr);
1110 return -ENOMEM;
1111 }
1112
1113 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1114 do_replace, src, olen);
1115 if (ret)
1116 goto roll_back;
1117
1118 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1119 do_replace, src, dst, olen, full);
1120 if (ret)
1121 goto roll_back;
1122
1123 src += olen;
1124 dst += olen;
1125 len -= olen;
1126
1127 kvfree(src_blkaddr);
1128 kvfree(do_replace);
1129 }
1130 return 0;
1131
1132 roll_back:
1133 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1134 kvfree(src_blkaddr);
1135 kvfree(do_replace);
1136 return ret;
1137 }
1138
1139 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1140 {
1141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1142 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1143 int ret;
1144
1145 f2fs_balance_fs(sbi, true);
1146 f2fs_lock_op(sbi);
1147
1148 f2fs_drop_extent_tree(inode);
1149
1150 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1151 f2fs_unlock_op(sbi);
1152 return ret;
1153 }
1154
1155 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1156 {
1157 pgoff_t pg_start, pg_end;
1158 loff_t new_size;
1159 int ret;
1160
1161 if (offset + len >= i_size_read(inode))
1162 return -EINVAL;
1163
1164 /* collapse range should be aligned to block size of f2fs. */
1165 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1166 return -EINVAL;
1167
1168 ret = f2fs_convert_inline_inode(inode);
1169 if (ret)
1170 return ret;
1171
1172 pg_start = offset >> PAGE_SHIFT;
1173 pg_end = (offset + len) >> PAGE_SHIFT;
1174
1175 /* avoid gc operation during block exchange */
1176 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1177
1178 down_write(&F2FS_I(inode)->i_mmap_sem);
1179 /* write out all dirty pages from offset */
1180 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1181 if (ret)
1182 goto out_unlock;
1183
1184 truncate_pagecache(inode, offset);
1185
1186 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1187 if (ret)
1188 goto out_unlock;
1189
1190 /* write out all moved pages, if possible */
1191 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1192 truncate_pagecache(inode, offset);
1193
1194 new_size = i_size_read(inode) - len;
1195 truncate_pagecache(inode, new_size);
1196
1197 ret = truncate_blocks(inode, new_size, true);
1198 if (!ret)
1199 f2fs_i_size_write(inode, new_size);
1200 out_unlock:
1201 up_write(&F2FS_I(inode)->i_mmap_sem);
1202 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1203 return ret;
1204 }
1205
1206 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1207 pgoff_t end)
1208 {
1209 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1210 pgoff_t index = start;
1211 unsigned int ofs_in_node = dn->ofs_in_node;
1212 blkcnt_t count = 0;
1213 int ret;
1214
1215 for (; index < end; index++, dn->ofs_in_node++) {
1216 if (datablock_addr(dn->inode, dn->node_page,
1217 dn->ofs_in_node) == NULL_ADDR)
1218 count++;
1219 }
1220
1221 dn->ofs_in_node = ofs_in_node;
1222 ret = reserve_new_blocks(dn, count);
1223 if (ret)
1224 return ret;
1225
1226 dn->ofs_in_node = ofs_in_node;
1227 for (index = start; index < end; index++, dn->ofs_in_node++) {
1228 dn->data_blkaddr = datablock_addr(dn->inode,
1229 dn->node_page, dn->ofs_in_node);
1230 /*
1231 * reserve_new_blocks will not guarantee entire block
1232 * allocation.
1233 */
1234 if (dn->data_blkaddr == NULL_ADDR) {
1235 ret = -ENOSPC;
1236 break;
1237 }
1238 if (dn->data_blkaddr != NEW_ADDR) {
1239 invalidate_blocks(sbi, dn->data_blkaddr);
1240 dn->data_blkaddr = NEW_ADDR;
1241 set_data_blkaddr(dn);
1242 }
1243 }
1244
1245 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1246
1247 return ret;
1248 }
1249
1250 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1251 int mode)
1252 {
1253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1254 struct address_space *mapping = inode->i_mapping;
1255 pgoff_t index, pg_start, pg_end;
1256 loff_t new_size = i_size_read(inode);
1257 loff_t off_start, off_end;
1258 int ret = 0;
1259
1260 ret = inode_newsize_ok(inode, (len + offset));
1261 if (ret)
1262 return ret;
1263
1264 ret = f2fs_convert_inline_inode(inode);
1265 if (ret)
1266 return ret;
1267
1268 down_write(&F2FS_I(inode)->i_mmap_sem);
1269 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1270 if (ret)
1271 goto out_sem;
1272
1273 truncate_pagecache_range(inode, offset, offset + len - 1);
1274
1275 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1276 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1277
1278 off_start = offset & (PAGE_SIZE - 1);
1279 off_end = (offset + len) & (PAGE_SIZE - 1);
1280
1281 if (pg_start == pg_end) {
1282 ret = fill_zero(inode, pg_start, off_start,
1283 off_end - off_start);
1284 if (ret)
1285 goto out_sem;
1286
1287 new_size = max_t(loff_t, new_size, offset + len);
1288 } else {
1289 if (off_start) {
1290 ret = fill_zero(inode, pg_start++, off_start,
1291 PAGE_SIZE - off_start);
1292 if (ret)
1293 goto out_sem;
1294
1295 new_size = max_t(loff_t, new_size,
1296 (loff_t)pg_start << PAGE_SHIFT);
1297 }
1298
1299 for (index = pg_start; index < pg_end;) {
1300 struct dnode_of_data dn;
1301 unsigned int end_offset;
1302 pgoff_t end;
1303
1304 f2fs_lock_op(sbi);
1305
1306 set_new_dnode(&dn, inode, NULL, NULL, 0);
1307 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1308 if (ret) {
1309 f2fs_unlock_op(sbi);
1310 goto out;
1311 }
1312
1313 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1314 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1315
1316 ret = f2fs_do_zero_range(&dn, index, end);
1317 f2fs_put_dnode(&dn);
1318 f2fs_unlock_op(sbi);
1319
1320 f2fs_balance_fs(sbi, dn.node_changed);
1321
1322 if (ret)
1323 goto out;
1324
1325 index = end;
1326 new_size = max_t(loff_t, new_size,
1327 (loff_t)index << PAGE_SHIFT);
1328 }
1329
1330 if (off_end) {
1331 ret = fill_zero(inode, pg_end, 0, off_end);
1332 if (ret)
1333 goto out;
1334
1335 new_size = max_t(loff_t, new_size, offset + len);
1336 }
1337 }
1338
1339 out:
1340 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1341 f2fs_i_size_write(inode, new_size);
1342 out_sem:
1343 up_write(&F2FS_I(inode)->i_mmap_sem);
1344
1345 return ret;
1346 }
1347
1348 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1349 {
1350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1351 pgoff_t nr, pg_start, pg_end, delta, idx;
1352 loff_t new_size;
1353 int ret = 0;
1354
1355 new_size = i_size_read(inode) + len;
1356 ret = inode_newsize_ok(inode, new_size);
1357 if (ret)
1358 return ret;
1359
1360 if (offset >= i_size_read(inode))
1361 return -EINVAL;
1362
1363 /* insert range should be aligned to block size of f2fs. */
1364 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1365 return -EINVAL;
1366
1367 ret = f2fs_convert_inline_inode(inode);
1368 if (ret)
1369 return ret;
1370
1371 f2fs_balance_fs(sbi, true);
1372
1373 /* avoid gc operation during block exchange */
1374 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1375
1376 down_write(&F2FS_I(inode)->i_mmap_sem);
1377 ret = truncate_blocks(inode, i_size_read(inode), true);
1378 if (ret)
1379 goto out;
1380
1381 /* write out all dirty pages from offset */
1382 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1383 if (ret)
1384 goto out;
1385
1386 truncate_pagecache(inode, offset);
1387
1388 pg_start = offset >> PAGE_SHIFT;
1389 pg_end = (offset + len) >> PAGE_SHIFT;
1390 delta = pg_end - pg_start;
1391 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1392
1393 while (!ret && idx > pg_start) {
1394 nr = idx - pg_start;
1395 if (nr > delta)
1396 nr = delta;
1397 idx -= nr;
1398
1399 f2fs_lock_op(sbi);
1400 f2fs_drop_extent_tree(inode);
1401
1402 ret = __exchange_data_block(inode, inode, idx,
1403 idx + delta, nr, false);
1404 f2fs_unlock_op(sbi);
1405 }
1406
1407 /* write out all moved pages, if possible */
1408 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1409 truncate_pagecache(inode, offset);
1410
1411 if (!ret)
1412 f2fs_i_size_write(inode, new_size);
1413 out:
1414 up_write(&F2FS_I(inode)->i_mmap_sem);
1415 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1416 return ret;
1417 }
1418
1419 static int expand_inode_data(struct inode *inode, loff_t offset,
1420 loff_t len, int mode)
1421 {
1422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1423 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1424 .m_seg_type = NO_CHECK_TYPE };
1425 pgoff_t pg_end;
1426 loff_t new_size = i_size_read(inode);
1427 loff_t off_end;
1428 int err;
1429
1430 err = inode_newsize_ok(inode, (len + offset));
1431 if (err)
1432 return err;
1433
1434 err = f2fs_convert_inline_inode(inode);
1435 if (err)
1436 return err;
1437
1438 f2fs_balance_fs(sbi, true);
1439
1440 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1441 off_end = (offset + len) & (PAGE_SIZE - 1);
1442
1443 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1444 map.m_len = pg_end - map.m_lblk;
1445 if (off_end)
1446 map.m_len++;
1447
1448 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1449 if (err) {
1450 pgoff_t last_off;
1451
1452 if (!map.m_len)
1453 return err;
1454
1455 last_off = map.m_lblk + map.m_len - 1;
1456
1457 /* update new size to the failed position */
1458 new_size = (last_off == pg_end) ? offset + len:
1459 (loff_t)(last_off + 1) << PAGE_SHIFT;
1460 } else {
1461 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1462 }
1463
1464 if (new_size > i_size_read(inode)) {
1465 if (mode & FALLOC_FL_KEEP_SIZE)
1466 file_set_keep_isize(inode);
1467 else
1468 f2fs_i_size_write(inode, new_size);
1469 }
1470
1471 return err;
1472 }
1473
1474 static long f2fs_fallocate(struct file *file, int mode,
1475 loff_t offset, loff_t len)
1476 {
1477 struct inode *inode = file_inode(file);
1478 long ret = 0;
1479
1480 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1481 return -EIO;
1482
1483 /* f2fs only support ->fallocate for regular file */
1484 if (!S_ISREG(inode->i_mode))
1485 return -EINVAL;
1486
1487 if (f2fs_encrypted_inode(inode) &&
1488 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1489 return -EOPNOTSUPP;
1490
1491 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1492 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1493 FALLOC_FL_INSERT_RANGE))
1494 return -EOPNOTSUPP;
1495
1496 inode_lock(inode);
1497
1498 if (mode & FALLOC_FL_PUNCH_HOLE) {
1499 if (offset >= inode->i_size)
1500 goto out;
1501
1502 ret = punch_hole(inode, offset, len);
1503 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1504 ret = f2fs_collapse_range(inode, offset, len);
1505 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1506 ret = f2fs_zero_range(inode, offset, len, mode);
1507 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1508 ret = f2fs_insert_range(inode, offset, len);
1509 } else {
1510 ret = expand_inode_data(inode, offset, len, mode);
1511 }
1512
1513 if (!ret) {
1514 inode->i_mtime = inode->i_ctime = current_time(inode);
1515 f2fs_mark_inode_dirty_sync(inode, false);
1516 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1517 }
1518
1519 out:
1520 inode_unlock(inode);
1521
1522 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1523 return ret;
1524 }
1525
1526 static int f2fs_release_file(struct inode *inode, struct file *filp)
1527 {
1528 /*
1529 * f2fs_relase_file is called at every close calls. So we should
1530 * not drop any inmemory pages by close called by other process.
1531 */
1532 if (!(filp->f_mode & FMODE_WRITE) ||
1533 atomic_read(&inode->i_writecount) != 1)
1534 return 0;
1535
1536 /* some remained atomic pages should discarded */
1537 if (f2fs_is_atomic_file(inode))
1538 drop_inmem_pages(inode);
1539 if (f2fs_is_volatile_file(inode)) {
1540 clear_inode_flag(inode, FI_VOLATILE_FILE);
1541 stat_dec_volatile_write(inode);
1542 set_inode_flag(inode, FI_DROP_CACHE);
1543 filemap_fdatawrite(inode->i_mapping);
1544 clear_inode_flag(inode, FI_DROP_CACHE);
1545 }
1546 return 0;
1547 }
1548
1549 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1550 {
1551 struct inode *inode = file_inode(file);
1552
1553 /*
1554 * If the process doing a transaction is crashed, we should do
1555 * roll-back. Otherwise, other reader/write can see corrupted database
1556 * until all the writers close its file. Since this should be done
1557 * before dropping file lock, it needs to do in ->flush.
1558 */
1559 if (f2fs_is_atomic_file(inode) &&
1560 F2FS_I(inode)->inmem_task == current)
1561 drop_inmem_pages(inode);
1562 return 0;
1563 }
1564
1565 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1566 {
1567 struct inode *inode = file_inode(filp);
1568 struct f2fs_inode_info *fi = F2FS_I(inode);
1569 unsigned int flags = fi->i_flags &
1570 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1571 return put_user(flags, (int __user *)arg);
1572 }
1573
1574 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1575 {
1576 struct f2fs_inode_info *fi = F2FS_I(inode);
1577 unsigned int oldflags;
1578
1579 /* Is it quota file? Do not allow user to mess with it */
1580 if (IS_NOQUOTA(inode))
1581 return -EPERM;
1582
1583 flags = f2fs_mask_flags(inode->i_mode, flags);
1584
1585 oldflags = fi->i_flags;
1586
1587 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1588 if (!capable(CAP_LINUX_IMMUTABLE))
1589 return -EPERM;
1590
1591 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1592 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1593 fi->i_flags = flags;
1594
1595 if (fi->i_flags & FS_PROJINHERIT_FL)
1596 set_inode_flag(inode, FI_PROJ_INHERIT);
1597 else
1598 clear_inode_flag(inode, FI_PROJ_INHERIT);
1599
1600 inode->i_ctime = current_time(inode);
1601 f2fs_set_inode_flags(inode);
1602 f2fs_mark_inode_dirty_sync(inode, false);
1603 return 0;
1604 }
1605
1606 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1607 {
1608 struct inode *inode = file_inode(filp);
1609 unsigned int flags;
1610 int ret;
1611
1612 if (!inode_owner_or_capable(inode))
1613 return -EACCES;
1614
1615 if (get_user(flags, (int __user *)arg))
1616 return -EFAULT;
1617
1618 ret = mnt_want_write_file(filp);
1619 if (ret)
1620 return ret;
1621
1622 inode_lock(inode);
1623
1624 ret = __f2fs_ioc_setflags(inode, flags);
1625
1626 inode_unlock(inode);
1627 mnt_drop_write_file(filp);
1628 return ret;
1629 }
1630
1631 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1632 {
1633 struct inode *inode = file_inode(filp);
1634
1635 return put_user(inode->i_generation, (int __user *)arg);
1636 }
1637
1638 static int f2fs_ioc_start_atomic_write(struct file *filp)
1639 {
1640 struct inode *inode = file_inode(filp);
1641 int ret;
1642
1643 if (!inode_owner_or_capable(inode))
1644 return -EACCES;
1645
1646 if (!S_ISREG(inode->i_mode))
1647 return -EINVAL;
1648
1649 ret = mnt_want_write_file(filp);
1650 if (ret)
1651 return ret;
1652
1653 inode_lock(inode);
1654
1655 if (f2fs_is_atomic_file(inode))
1656 goto out;
1657
1658 ret = f2fs_convert_inline_inode(inode);
1659 if (ret)
1660 goto out;
1661
1662 set_inode_flag(inode, FI_ATOMIC_FILE);
1663 set_inode_flag(inode, FI_HOT_DATA);
1664 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1665
1666 if (!get_dirty_pages(inode))
1667 goto inc_stat;
1668
1669 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1670 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1671 inode->i_ino, get_dirty_pages(inode));
1672 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1673 if (ret) {
1674 clear_inode_flag(inode, FI_ATOMIC_FILE);
1675 clear_inode_flag(inode, FI_HOT_DATA);
1676 goto out;
1677 }
1678
1679 inc_stat:
1680 F2FS_I(inode)->inmem_task = current;
1681 stat_inc_atomic_write(inode);
1682 stat_update_max_atomic_write(inode);
1683 out:
1684 inode_unlock(inode);
1685 mnt_drop_write_file(filp);
1686 return ret;
1687 }
1688
1689 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1690 {
1691 struct inode *inode = file_inode(filp);
1692 int ret;
1693
1694 if (!inode_owner_or_capable(inode))
1695 return -EACCES;
1696
1697 ret = mnt_want_write_file(filp);
1698 if (ret)
1699 return ret;
1700
1701 inode_lock(inode);
1702
1703 if (f2fs_is_volatile_file(inode))
1704 goto err_out;
1705
1706 if (f2fs_is_atomic_file(inode)) {
1707 ret = commit_inmem_pages(inode);
1708 if (ret)
1709 goto err_out;
1710
1711 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1712 if (!ret) {
1713 clear_inode_flag(inode, FI_ATOMIC_FILE);
1714 clear_inode_flag(inode, FI_HOT_DATA);
1715 stat_dec_atomic_write(inode);
1716 }
1717 } else {
1718 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1719 }
1720 err_out:
1721 inode_unlock(inode);
1722 mnt_drop_write_file(filp);
1723 return ret;
1724 }
1725
1726 static int f2fs_ioc_start_volatile_write(struct file *filp)
1727 {
1728 struct inode *inode = file_inode(filp);
1729 int ret;
1730
1731 if (!inode_owner_or_capable(inode))
1732 return -EACCES;
1733
1734 if (!S_ISREG(inode->i_mode))
1735 return -EINVAL;
1736
1737 ret = mnt_want_write_file(filp);
1738 if (ret)
1739 return ret;
1740
1741 inode_lock(inode);
1742
1743 if (f2fs_is_volatile_file(inode))
1744 goto out;
1745
1746 ret = f2fs_convert_inline_inode(inode);
1747 if (ret)
1748 goto out;
1749
1750 stat_inc_volatile_write(inode);
1751 stat_update_max_volatile_write(inode);
1752
1753 set_inode_flag(inode, FI_VOLATILE_FILE);
1754 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1755 out:
1756 inode_unlock(inode);
1757 mnt_drop_write_file(filp);
1758 return ret;
1759 }
1760
1761 static int f2fs_ioc_release_volatile_write(struct file *filp)
1762 {
1763 struct inode *inode = file_inode(filp);
1764 int ret;
1765
1766 if (!inode_owner_or_capable(inode))
1767 return -EACCES;
1768
1769 ret = mnt_want_write_file(filp);
1770 if (ret)
1771 return ret;
1772
1773 inode_lock(inode);
1774
1775 if (!f2fs_is_volatile_file(inode))
1776 goto out;
1777
1778 if (!f2fs_is_first_block_written(inode)) {
1779 ret = truncate_partial_data_page(inode, 0, true);
1780 goto out;
1781 }
1782
1783 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1784 out:
1785 inode_unlock(inode);
1786 mnt_drop_write_file(filp);
1787 return ret;
1788 }
1789
1790 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1791 {
1792 struct inode *inode = file_inode(filp);
1793 int ret;
1794
1795 if (!inode_owner_or_capable(inode))
1796 return -EACCES;
1797
1798 ret = mnt_want_write_file(filp);
1799 if (ret)
1800 return ret;
1801
1802 inode_lock(inode);
1803
1804 if (f2fs_is_atomic_file(inode))
1805 drop_inmem_pages(inode);
1806 if (f2fs_is_volatile_file(inode)) {
1807 clear_inode_flag(inode, FI_VOLATILE_FILE);
1808 stat_dec_volatile_write(inode);
1809 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1810 }
1811
1812 inode_unlock(inode);
1813
1814 mnt_drop_write_file(filp);
1815 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1816 return ret;
1817 }
1818
1819 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1820 {
1821 struct inode *inode = file_inode(filp);
1822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1823 struct super_block *sb = sbi->sb;
1824 __u32 in;
1825 int ret;
1826
1827 if (!capable(CAP_SYS_ADMIN))
1828 return -EPERM;
1829
1830 if (get_user(in, (__u32 __user *)arg))
1831 return -EFAULT;
1832
1833 ret = mnt_want_write_file(filp);
1834 if (ret)
1835 return ret;
1836
1837 switch (in) {
1838 case F2FS_GOING_DOWN_FULLSYNC:
1839 sb = freeze_bdev(sb->s_bdev);
1840 if (sb && !IS_ERR(sb)) {
1841 f2fs_stop_checkpoint(sbi, false);
1842 thaw_bdev(sb->s_bdev, sb);
1843 }
1844 break;
1845 case F2FS_GOING_DOWN_METASYNC:
1846 /* do checkpoint only */
1847 f2fs_sync_fs(sb, 1);
1848 f2fs_stop_checkpoint(sbi, false);
1849 break;
1850 case F2FS_GOING_DOWN_NOSYNC:
1851 f2fs_stop_checkpoint(sbi, false);
1852 break;
1853 case F2FS_GOING_DOWN_METAFLUSH:
1854 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1855 f2fs_stop_checkpoint(sbi, false);
1856 break;
1857 default:
1858 ret = -EINVAL;
1859 goto out;
1860 }
1861 f2fs_update_time(sbi, REQ_TIME);
1862 out:
1863 mnt_drop_write_file(filp);
1864 return ret;
1865 }
1866
1867 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1868 {
1869 struct inode *inode = file_inode(filp);
1870 struct super_block *sb = inode->i_sb;
1871 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1872 struct fstrim_range range;
1873 int ret;
1874
1875 if (!capable(CAP_SYS_ADMIN))
1876 return -EPERM;
1877
1878 if (!blk_queue_discard(q))
1879 return -EOPNOTSUPP;
1880
1881 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1882 sizeof(range)))
1883 return -EFAULT;
1884
1885 ret = mnt_want_write_file(filp);
1886 if (ret)
1887 return ret;
1888
1889 range.minlen = max((unsigned int)range.minlen,
1890 q->limits.discard_granularity);
1891 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1892 mnt_drop_write_file(filp);
1893 if (ret < 0)
1894 return ret;
1895
1896 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1897 sizeof(range)))
1898 return -EFAULT;
1899 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1900 return 0;
1901 }
1902
1903 static bool uuid_is_nonzero(__u8 u[16])
1904 {
1905 int i;
1906
1907 for (i = 0; i < 16; i++)
1908 if (u[i])
1909 return true;
1910 return false;
1911 }
1912
1913 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1914 {
1915 struct inode *inode = file_inode(filp);
1916
1917 if (!f2fs_sb_has_crypto(inode->i_sb))
1918 return -EOPNOTSUPP;
1919
1920 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1921
1922 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1923 }
1924
1925 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1926 {
1927 if (!f2fs_sb_has_crypto(file_inode(filp)->i_sb))
1928 return -EOPNOTSUPP;
1929 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1930 }
1931
1932 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1933 {
1934 struct inode *inode = file_inode(filp);
1935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1936 int err;
1937
1938 if (!f2fs_sb_has_crypto(inode->i_sb))
1939 return -EOPNOTSUPP;
1940
1941 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1942 goto got_it;
1943
1944 err = mnt_want_write_file(filp);
1945 if (err)
1946 return err;
1947
1948 /* update superblock with uuid */
1949 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1950
1951 err = f2fs_commit_super(sbi, false);
1952 if (err) {
1953 /* undo new data */
1954 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1955 mnt_drop_write_file(filp);
1956 return err;
1957 }
1958 mnt_drop_write_file(filp);
1959 got_it:
1960 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1961 16))
1962 return -EFAULT;
1963 return 0;
1964 }
1965
1966 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1967 {
1968 struct inode *inode = file_inode(filp);
1969 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1970 __u32 sync;
1971 int ret;
1972
1973 if (!capable(CAP_SYS_ADMIN))
1974 return -EPERM;
1975
1976 if (get_user(sync, (__u32 __user *)arg))
1977 return -EFAULT;
1978
1979 if (f2fs_readonly(sbi->sb))
1980 return -EROFS;
1981
1982 ret = mnt_want_write_file(filp);
1983 if (ret)
1984 return ret;
1985
1986 if (!sync) {
1987 if (!mutex_trylock(&sbi->gc_mutex)) {
1988 ret = -EBUSY;
1989 goto out;
1990 }
1991 } else {
1992 mutex_lock(&sbi->gc_mutex);
1993 }
1994
1995 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1996 out:
1997 mnt_drop_write_file(filp);
1998 return ret;
1999 }
2000
2001 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2002 {
2003 struct inode *inode = file_inode(filp);
2004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2005 struct f2fs_gc_range range;
2006 u64 end;
2007 int ret;
2008
2009 if (!capable(CAP_SYS_ADMIN))
2010 return -EPERM;
2011
2012 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2013 sizeof(range)))
2014 return -EFAULT;
2015
2016 if (f2fs_readonly(sbi->sb))
2017 return -EROFS;
2018
2019 ret = mnt_want_write_file(filp);
2020 if (ret)
2021 return ret;
2022
2023 end = range.start + range.len;
2024 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
2025 return -EINVAL;
2026 do_more:
2027 if (!range.sync) {
2028 if (!mutex_trylock(&sbi->gc_mutex)) {
2029 ret = -EBUSY;
2030 goto out;
2031 }
2032 } else {
2033 mutex_lock(&sbi->gc_mutex);
2034 }
2035
2036 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2037 range.start += sbi->blocks_per_seg;
2038 if (range.start <= end)
2039 goto do_more;
2040 out:
2041 mnt_drop_write_file(filp);
2042 return ret;
2043 }
2044
2045 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2046 {
2047 struct inode *inode = file_inode(filp);
2048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2049 int ret;
2050
2051 if (!capable(CAP_SYS_ADMIN))
2052 return -EPERM;
2053
2054 if (f2fs_readonly(sbi->sb))
2055 return -EROFS;
2056
2057 ret = mnt_want_write_file(filp);
2058 if (ret)
2059 return ret;
2060
2061 ret = f2fs_sync_fs(sbi->sb, 1);
2062
2063 mnt_drop_write_file(filp);
2064 return ret;
2065 }
2066
2067 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2068 struct file *filp,
2069 struct f2fs_defragment *range)
2070 {
2071 struct inode *inode = file_inode(filp);
2072 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
2073 .m_seg_type = NO_CHECK_TYPE };
2074 struct extent_info ei = {0,0,0};
2075 pgoff_t pg_start, pg_end;
2076 unsigned int blk_per_seg = sbi->blocks_per_seg;
2077 unsigned int total = 0, sec_num;
2078 block_t blk_end = 0;
2079 bool fragmented = false;
2080 int err;
2081
2082 /* if in-place-update policy is enabled, don't waste time here */
2083 if (need_inplace_update_policy(inode, NULL))
2084 return -EINVAL;
2085
2086 pg_start = range->start >> PAGE_SHIFT;
2087 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2088
2089 f2fs_balance_fs(sbi, true);
2090
2091 inode_lock(inode);
2092
2093 /* writeback all dirty pages in the range */
2094 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2095 range->start + range->len - 1);
2096 if (err)
2097 goto out;
2098
2099 /*
2100 * lookup mapping info in extent cache, skip defragmenting if physical
2101 * block addresses are continuous.
2102 */
2103 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2104 if (ei.fofs + ei.len >= pg_end)
2105 goto out;
2106 }
2107
2108 map.m_lblk = pg_start;
2109
2110 /*
2111 * lookup mapping info in dnode page cache, skip defragmenting if all
2112 * physical block addresses are continuous even if there are hole(s)
2113 * in logical blocks.
2114 */
2115 while (map.m_lblk < pg_end) {
2116 map.m_len = pg_end - map.m_lblk;
2117 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2118 if (err)
2119 goto out;
2120
2121 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2122 map.m_lblk++;
2123 continue;
2124 }
2125
2126 if (blk_end && blk_end != map.m_pblk) {
2127 fragmented = true;
2128 break;
2129 }
2130 blk_end = map.m_pblk + map.m_len;
2131
2132 map.m_lblk += map.m_len;
2133 }
2134
2135 if (!fragmented)
2136 goto out;
2137
2138 map.m_lblk = pg_start;
2139 map.m_len = pg_end - pg_start;
2140
2141 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2142
2143 /*
2144 * make sure there are enough free section for LFS allocation, this can
2145 * avoid defragment running in SSR mode when free section are allocated
2146 * intensively
2147 */
2148 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2149 err = -EAGAIN;
2150 goto out;
2151 }
2152
2153 while (map.m_lblk < pg_end) {
2154 pgoff_t idx;
2155 int cnt = 0;
2156
2157 do_map:
2158 map.m_len = pg_end - map.m_lblk;
2159 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2160 if (err)
2161 goto clear_out;
2162
2163 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2164 map.m_lblk++;
2165 continue;
2166 }
2167
2168 set_inode_flag(inode, FI_DO_DEFRAG);
2169
2170 idx = map.m_lblk;
2171 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2172 struct page *page;
2173
2174 page = get_lock_data_page(inode, idx, true);
2175 if (IS_ERR(page)) {
2176 err = PTR_ERR(page);
2177 goto clear_out;
2178 }
2179
2180 set_page_dirty(page);
2181 f2fs_put_page(page, 1);
2182
2183 idx++;
2184 cnt++;
2185 total++;
2186 }
2187
2188 map.m_lblk = idx;
2189
2190 if (idx < pg_end && cnt < blk_per_seg)
2191 goto do_map;
2192
2193 clear_inode_flag(inode, FI_DO_DEFRAG);
2194
2195 err = filemap_fdatawrite(inode->i_mapping);
2196 if (err)
2197 goto out;
2198 }
2199 clear_out:
2200 clear_inode_flag(inode, FI_DO_DEFRAG);
2201 out:
2202 inode_unlock(inode);
2203 if (!err)
2204 range->len = (u64)total << PAGE_SHIFT;
2205 return err;
2206 }
2207
2208 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2209 {
2210 struct inode *inode = file_inode(filp);
2211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2212 struct f2fs_defragment range;
2213 int err;
2214
2215 if (!capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2219 return -EINVAL;
2220
2221 if (f2fs_readonly(sbi->sb))
2222 return -EROFS;
2223
2224 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2225 sizeof(range)))
2226 return -EFAULT;
2227
2228 /* verify alignment of offset & size */
2229 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2230 return -EINVAL;
2231
2232 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2233 sbi->max_file_blocks))
2234 return -EINVAL;
2235
2236 err = mnt_want_write_file(filp);
2237 if (err)
2238 return err;
2239
2240 err = f2fs_defragment_range(sbi, filp, &range);
2241 mnt_drop_write_file(filp);
2242
2243 f2fs_update_time(sbi, REQ_TIME);
2244 if (err < 0)
2245 return err;
2246
2247 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2248 sizeof(range)))
2249 return -EFAULT;
2250
2251 return 0;
2252 }
2253
2254 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2255 struct file *file_out, loff_t pos_out, size_t len)
2256 {
2257 struct inode *src = file_inode(file_in);
2258 struct inode *dst = file_inode(file_out);
2259 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2260 size_t olen = len, dst_max_i_size = 0;
2261 size_t dst_osize;
2262 int ret;
2263
2264 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2265 src->i_sb != dst->i_sb)
2266 return -EXDEV;
2267
2268 if (unlikely(f2fs_readonly(src->i_sb)))
2269 return -EROFS;
2270
2271 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2272 return -EINVAL;
2273
2274 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2275 return -EOPNOTSUPP;
2276
2277 if (src == dst) {
2278 if (pos_in == pos_out)
2279 return 0;
2280 if (pos_out > pos_in && pos_out < pos_in + len)
2281 return -EINVAL;
2282 }
2283
2284 inode_lock(src);
2285 down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2286 if (src != dst) {
2287 ret = -EBUSY;
2288 if (!inode_trylock(dst))
2289 goto out;
2290 if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2291 inode_unlock(dst);
2292 goto out;
2293 }
2294 }
2295
2296 ret = -EINVAL;
2297 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2298 goto out_unlock;
2299 if (len == 0)
2300 olen = len = src->i_size - pos_in;
2301 if (pos_in + len == src->i_size)
2302 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2303 if (len == 0) {
2304 ret = 0;
2305 goto out_unlock;
2306 }
2307
2308 dst_osize = dst->i_size;
2309 if (pos_out + olen > dst->i_size)
2310 dst_max_i_size = pos_out + olen;
2311
2312 /* verify the end result is block aligned */
2313 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2314 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2315 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2316 goto out_unlock;
2317
2318 ret = f2fs_convert_inline_inode(src);
2319 if (ret)
2320 goto out_unlock;
2321
2322 ret = f2fs_convert_inline_inode(dst);
2323 if (ret)
2324 goto out_unlock;
2325
2326 /* write out all dirty pages from offset */
2327 ret = filemap_write_and_wait_range(src->i_mapping,
2328 pos_in, pos_in + len);
2329 if (ret)
2330 goto out_unlock;
2331
2332 ret = filemap_write_and_wait_range(dst->i_mapping,
2333 pos_out, pos_out + len);
2334 if (ret)
2335 goto out_unlock;
2336
2337 f2fs_balance_fs(sbi, true);
2338 f2fs_lock_op(sbi);
2339 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2340 pos_out >> F2FS_BLKSIZE_BITS,
2341 len >> F2FS_BLKSIZE_BITS, false);
2342
2343 if (!ret) {
2344 if (dst_max_i_size)
2345 f2fs_i_size_write(dst, dst_max_i_size);
2346 else if (dst_osize != dst->i_size)
2347 f2fs_i_size_write(dst, dst_osize);
2348 }
2349 f2fs_unlock_op(sbi);
2350 out_unlock:
2351 if (src != dst) {
2352 up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2353 inode_unlock(dst);
2354 }
2355 out:
2356 up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2357 inode_unlock(src);
2358 return ret;
2359 }
2360
2361 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2362 {
2363 struct f2fs_move_range range;
2364 struct fd dst;
2365 int err;
2366
2367 if (!(filp->f_mode & FMODE_READ) ||
2368 !(filp->f_mode & FMODE_WRITE))
2369 return -EBADF;
2370
2371 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2372 sizeof(range)))
2373 return -EFAULT;
2374
2375 dst = fdget(range.dst_fd);
2376 if (!dst.file)
2377 return -EBADF;
2378
2379 if (!(dst.file->f_mode & FMODE_WRITE)) {
2380 err = -EBADF;
2381 goto err_out;
2382 }
2383
2384 err = mnt_want_write_file(filp);
2385 if (err)
2386 goto err_out;
2387
2388 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2389 range.pos_out, range.len);
2390
2391 mnt_drop_write_file(filp);
2392 if (err)
2393 goto err_out;
2394
2395 if (copy_to_user((struct f2fs_move_range __user *)arg,
2396 &range, sizeof(range)))
2397 err = -EFAULT;
2398 err_out:
2399 fdput(dst);
2400 return err;
2401 }
2402
2403 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2404 {
2405 struct inode *inode = file_inode(filp);
2406 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2407 struct sit_info *sm = SIT_I(sbi);
2408 unsigned int start_segno = 0, end_segno = 0;
2409 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2410 struct f2fs_flush_device range;
2411 int ret;
2412
2413 if (!capable(CAP_SYS_ADMIN))
2414 return -EPERM;
2415
2416 if (f2fs_readonly(sbi->sb))
2417 return -EROFS;
2418
2419 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2420 sizeof(range)))
2421 return -EFAULT;
2422
2423 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2424 sbi->segs_per_sec != 1) {
2425 f2fs_msg(sbi->sb, KERN_WARNING,
2426 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2427 range.dev_num, sbi->s_ndevs,
2428 sbi->segs_per_sec);
2429 return -EINVAL;
2430 }
2431
2432 ret = mnt_want_write_file(filp);
2433 if (ret)
2434 return ret;
2435
2436 if (range.dev_num != 0)
2437 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2438 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2439
2440 start_segno = sm->last_victim[FLUSH_DEVICE];
2441 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2442 start_segno = dev_start_segno;
2443 end_segno = min(start_segno + range.segments, dev_end_segno);
2444
2445 while (start_segno < end_segno) {
2446 if (!mutex_trylock(&sbi->gc_mutex)) {
2447 ret = -EBUSY;
2448 goto out;
2449 }
2450 sm->last_victim[GC_CB] = end_segno + 1;
2451 sm->last_victim[GC_GREEDY] = end_segno + 1;
2452 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2453 ret = f2fs_gc(sbi, true, true, start_segno);
2454 if (ret == -EAGAIN)
2455 ret = 0;
2456 else if (ret < 0)
2457 break;
2458 start_segno++;
2459 }
2460 out:
2461 mnt_drop_write_file(filp);
2462 return ret;
2463 }
2464
2465 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2466 {
2467 struct inode *inode = file_inode(filp);
2468 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2469
2470 /* Must validate to set it with SQLite behavior in Android. */
2471 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2472
2473 return put_user(sb_feature, (u32 __user *)arg);
2474 }
2475
2476 #ifdef CONFIG_QUOTA
2477 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2478 {
2479 struct inode *inode = file_inode(filp);
2480 struct f2fs_inode_info *fi = F2FS_I(inode);
2481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2482 struct super_block *sb = sbi->sb;
2483 struct dquot *transfer_to[MAXQUOTAS] = {};
2484 struct page *ipage;
2485 kprojid_t kprojid;
2486 int err;
2487
2488 if (!f2fs_sb_has_project_quota(sb)) {
2489 if (projid != F2FS_DEF_PROJID)
2490 return -EOPNOTSUPP;
2491 else
2492 return 0;
2493 }
2494
2495 if (!f2fs_has_extra_attr(inode))
2496 return -EOPNOTSUPP;
2497
2498 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2499
2500 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2501 return 0;
2502
2503 err = mnt_want_write_file(filp);
2504 if (err)
2505 return err;
2506
2507 err = -EPERM;
2508 inode_lock(inode);
2509
2510 /* Is it quota file? Do not allow user to mess with it */
2511 if (IS_NOQUOTA(inode))
2512 goto out_unlock;
2513
2514 ipage = get_node_page(sbi, inode->i_ino);
2515 if (IS_ERR(ipage)) {
2516 err = PTR_ERR(ipage);
2517 goto out_unlock;
2518 }
2519
2520 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2521 i_projid)) {
2522 err = -EOVERFLOW;
2523 f2fs_put_page(ipage, 1);
2524 goto out_unlock;
2525 }
2526 f2fs_put_page(ipage, 1);
2527
2528 dquot_initialize(inode);
2529
2530 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2531 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2532 err = __dquot_transfer(inode, transfer_to);
2533 dqput(transfer_to[PRJQUOTA]);
2534 if (err)
2535 goto out_dirty;
2536 }
2537
2538 F2FS_I(inode)->i_projid = kprojid;
2539 inode->i_ctime = current_time(inode);
2540 out_dirty:
2541 f2fs_mark_inode_dirty_sync(inode, true);
2542 out_unlock:
2543 inode_unlock(inode);
2544 mnt_drop_write_file(filp);
2545 return err;
2546 }
2547 #else
2548 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2549 {
2550 if (projid != F2FS_DEF_PROJID)
2551 return -EOPNOTSUPP;
2552 return 0;
2553 }
2554 #endif
2555
2556 /* Transfer internal flags to xflags */
2557 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2558 {
2559 __u32 xflags = 0;
2560
2561 if (iflags & FS_SYNC_FL)
2562 xflags |= FS_XFLAG_SYNC;
2563 if (iflags & FS_IMMUTABLE_FL)
2564 xflags |= FS_XFLAG_IMMUTABLE;
2565 if (iflags & FS_APPEND_FL)
2566 xflags |= FS_XFLAG_APPEND;
2567 if (iflags & FS_NODUMP_FL)
2568 xflags |= FS_XFLAG_NODUMP;
2569 if (iflags & FS_NOATIME_FL)
2570 xflags |= FS_XFLAG_NOATIME;
2571 if (iflags & FS_PROJINHERIT_FL)
2572 xflags |= FS_XFLAG_PROJINHERIT;
2573 return xflags;
2574 }
2575
2576 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2577 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2578 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2579
2580 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2581 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2582 FS_IMMUTABLE_FL | \
2583 FS_APPEND_FL | \
2584 FS_NODUMP_FL | \
2585 FS_NOATIME_FL | \
2586 FS_PROJINHERIT_FL)
2587
2588 /* Transfer xflags flags to internal */
2589 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2590 {
2591 unsigned long iflags = 0;
2592
2593 if (xflags & FS_XFLAG_SYNC)
2594 iflags |= FS_SYNC_FL;
2595 if (xflags & FS_XFLAG_IMMUTABLE)
2596 iflags |= FS_IMMUTABLE_FL;
2597 if (xflags & FS_XFLAG_APPEND)
2598 iflags |= FS_APPEND_FL;
2599 if (xflags & FS_XFLAG_NODUMP)
2600 iflags |= FS_NODUMP_FL;
2601 if (xflags & FS_XFLAG_NOATIME)
2602 iflags |= FS_NOATIME_FL;
2603 if (xflags & FS_XFLAG_PROJINHERIT)
2604 iflags |= FS_PROJINHERIT_FL;
2605
2606 return iflags;
2607 }
2608
2609 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2610 {
2611 struct inode *inode = file_inode(filp);
2612 struct f2fs_inode_info *fi = F2FS_I(inode);
2613 struct fsxattr fa;
2614
2615 memset(&fa, 0, sizeof(struct fsxattr));
2616 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2617 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2618
2619 if (f2fs_sb_has_project_quota(inode->i_sb))
2620 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2621 fi->i_projid);
2622
2623 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2624 return -EFAULT;
2625 return 0;
2626 }
2627
2628 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2629 {
2630 struct inode *inode = file_inode(filp);
2631 struct f2fs_inode_info *fi = F2FS_I(inode);
2632 struct fsxattr fa;
2633 unsigned int flags;
2634 int err;
2635
2636 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2637 return -EFAULT;
2638
2639 /* Make sure caller has proper permission */
2640 if (!inode_owner_or_capable(inode))
2641 return -EACCES;
2642
2643 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2644 return -EOPNOTSUPP;
2645
2646 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2647 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2648 return -EOPNOTSUPP;
2649
2650 err = mnt_want_write_file(filp);
2651 if (err)
2652 return err;
2653
2654 inode_lock(inode);
2655 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2656 (flags & F2FS_FL_XFLAG_VISIBLE);
2657 err = __f2fs_ioc_setflags(inode, flags);
2658 inode_unlock(inode);
2659 mnt_drop_write_file(filp);
2660 if (err)
2661 return err;
2662
2663 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2664 if (err)
2665 return err;
2666
2667 return 0;
2668 }
2669
2670 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2671 {
2672 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2673 return -EIO;
2674
2675 switch (cmd) {
2676 case F2FS_IOC_GETFLAGS:
2677 return f2fs_ioc_getflags(filp, arg);
2678 case F2FS_IOC_SETFLAGS:
2679 return f2fs_ioc_setflags(filp, arg);
2680 case F2FS_IOC_GETVERSION:
2681 return f2fs_ioc_getversion(filp, arg);
2682 case F2FS_IOC_START_ATOMIC_WRITE:
2683 return f2fs_ioc_start_atomic_write(filp);
2684 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2685 return f2fs_ioc_commit_atomic_write(filp);
2686 case F2FS_IOC_START_VOLATILE_WRITE:
2687 return f2fs_ioc_start_volatile_write(filp);
2688 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2689 return f2fs_ioc_release_volatile_write(filp);
2690 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2691 return f2fs_ioc_abort_volatile_write(filp);
2692 case F2FS_IOC_SHUTDOWN:
2693 return f2fs_ioc_shutdown(filp, arg);
2694 case FITRIM:
2695 return f2fs_ioc_fitrim(filp, arg);
2696 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2697 return f2fs_ioc_set_encryption_policy(filp, arg);
2698 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2699 return f2fs_ioc_get_encryption_policy(filp, arg);
2700 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2701 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2702 case F2FS_IOC_GARBAGE_COLLECT:
2703 return f2fs_ioc_gc(filp, arg);
2704 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2705 return f2fs_ioc_gc_range(filp, arg);
2706 case F2FS_IOC_WRITE_CHECKPOINT:
2707 return f2fs_ioc_write_checkpoint(filp, arg);
2708 case F2FS_IOC_DEFRAGMENT:
2709 return f2fs_ioc_defragment(filp, arg);
2710 case F2FS_IOC_MOVE_RANGE:
2711 return f2fs_ioc_move_range(filp, arg);
2712 case F2FS_IOC_FLUSH_DEVICE:
2713 return f2fs_ioc_flush_device(filp, arg);
2714 case F2FS_IOC_GET_FEATURES:
2715 return f2fs_ioc_get_features(filp, arg);
2716 case F2FS_IOC_FSGETXATTR:
2717 return f2fs_ioc_fsgetxattr(filp, arg);
2718 case F2FS_IOC_FSSETXATTR:
2719 return f2fs_ioc_fssetxattr(filp, arg);
2720 default:
2721 return -ENOTTY;
2722 }
2723 }
2724
2725 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2726 {
2727 struct file *file = iocb->ki_filp;
2728 struct inode *inode = file_inode(file);
2729 struct blk_plug plug;
2730 ssize_t ret;
2731
2732 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2733 return -EIO;
2734
2735 inode_lock(inode);
2736 ret = generic_write_checks(iocb, from);
2737 if (ret > 0) {
2738 int err;
2739
2740 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2741 set_inode_flag(inode, FI_NO_PREALLOC);
2742
2743 err = f2fs_preallocate_blocks(iocb, from);
2744 if (err) {
2745 clear_inode_flag(inode, FI_NO_PREALLOC);
2746 inode_unlock(inode);
2747 return err;
2748 }
2749 blk_start_plug(&plug);
2750 ret = __generic_file_write_iter(iocb, from);
2751 blk_finish_plug(&plug);
2752 clear_inode_flag(inode, FI_NO_PREALLOC);
2753
2754 if (ret > 0)
2755 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2756 }
2757 inode_unlock(inode);
2758
2759 if (ret > 0)
2760 ret = generic_write_sync(iocb, ret);
2761 return ret;
2762 }
2763
2764 #ifdef CONFIG_COMPAT
2765 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2766 {
2767 switch (cmd) {
2768 case F2FS_IOC32_GETFLAGS:
2769 cmd = F2FS_IOC_GETFLAGS;
2770 break;
2771 case F2FS_IOC32_SETFLAGS:
2772 cmd = F2FS_IOC_SETFLAGS;
2773 break;
2774 case F2FS_IOC32_GETVERSION:
2775 cmd = F2FS_IOC_GETVERSION;
2776 break;
2777 case F2FS_IOC_START_ATOMIC_WRITE:
2778 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2779 case F2FS_IOC_START_VOLATILE_WRITE:
2780 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2781 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2782 case F2FS_IOC_SHUTDOWN:
2783 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2784 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2785 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2786 case F2FS_IOC_GARBAGE_COLLECT:
2787 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2788 case F2FS_IOC_WRITE_CHECKPOINT:
2789 case F2FS_IOC_DEFRAGMENT:
2790 case F2FS_IOC_MOVE_RANGE:
2791 case F2FS_IOC_FLUSH_DEVICE:
2792 case F2FS_IOC_GET_FEATURES:
2793 case F2FS_IOC_FSGETXATTR:
2794 case F2FS_IOC_FSSETXATTR:
2795 break;
2796 default:
2797 return -ENOIOCTLCMD;
2798 }
2799 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2800 }
2801 #endif
2802
2803 const struct file_operations f2fs_file_operations = {
2804 .llseek = f2fs_llseek,
2805 .read_iter = generic_file_read_iter,
2806 .write_iter = f2fs_file_write_iter,
2807 .open = f2fs_file_open,
2808 .release = f2fs_release_file,
2809 .mmap = f2fs_file_mmap,
2810 .flush = f2fs_file_flush,
2811 .fsync = f2fs_sync_file,
2812 .fallocate = f2fs_fallocate,
2813 .unlocked_ioctl = f2fs_ioctl,
2814 #ifdef CONFIG_COMPAT
2815 .compat_ioctl = f2fs_compat_ioctl,
2816 #endif
2817 .splice_read = generic_file_splice_read,
2818 .splice_write = iter_file_splice_write,
2819 };