]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/file.c
f2fs: support issuing/waiting discard in range
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 sb_start_pagefault(inode->i_sb);
57
58 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
59
60 /* block allocation */
61 f2fs_lock_op(sbi);
62 set_new_dnode(&dn, inode, NULL, NULL, 0);
63 err = f2fs_reserve_block(&dn, page->index);
64 if (err) {
65 f2fs_unlock_op(sbi);
66 goto out;
67 }
68 f2fs_put_dnode(&dn);
69 f2fs_unlock_op(sbi);
70
71 f2fs_balance_fs(sbi, dn.node_changed);
72
73 file_update_time(vmf->vma->vm_file);
74 down_read(&F2FS_I(inode)->i_mmap_sem);
75 lock_page(page);
76 if (unlikely(page->mapping != inode->i_mapping ||
77 page_offset(page) > i_size_read(inode) ||
78 !PageUptodate(page))) {
79 unlock_page(page);
80 err = -EFAULT;
81 goto out_sem;
82 }
83
84 /*
85 * check to see if the page is mapped already (no holes)
86 */
87 if (PageMappedToDisk(page))
88 goto mapped;
89
90 /* page is wholly or partially inside EOF */
91 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
92 i_size_read(inode)) {
93 unsigned offset;
94 offset = i_size_read(inode) & ~PAGE_MASK;
95 zero_user_segment(page, offset, PAGE_SIZE);
96 }
97 set_page_dirty(page);
98 if (!PageUptodate(page))
99 SetPageUptodate(page);
100
101 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
102
103 trace_f2fs_vm_page_mkwrite(page, DATA);
104 mapped:
105 /* fill the page */
106 f2fs_wait_on_page_writeback(page, DATA, false);
107
108 /* wait for GCed encrypted page writeback */
109 if (f2fs_encrypted_file(inode))
110 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
111
112 out_sem:
113 up_read(&F2FS_I(inode)->i_mmap_sem);
114 out:
115 sb_end_pagefault(inode->i_sb);
116 f2fs_update_time(sbi, REQ_TIME);
117 return block_page_mkwrite_return(err);
118 }
119
120 static const struct vm_operations_struct f2fs_file_vm_ops = {
121 .fault = f2fs_filemap_fault,
122 .map_pages = filemap_map_pages,
123 .page_mkwrite = f2fs_vm_page_mkwrite,
124 };
125
126 static int get_parent_ino(struct inode *inode, nid_t *pino)
127 {
128 struct dentry *dentry;
129
130 inode = igrab(inode);
131 dentry = d_find_any_alias(inode);
132 iput(inode);
133 if (!dentry)
134 return 0;
135
136 *pino = parent_ino(dentry);
137 dput(dentry);
138 return 1;
139 }
140
141 static inline bool need_do_checkpoint(struct inode *inode)
142 {
143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
144 bool need_cp = false;
145
146 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
147 need_cp = true;
148 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
149 need_cp = true;
150 else if (file_wrong_pino(inode))
151 need_cp = true;
152 else if (!space_for_roll_forward(sbi))
153 need_cp = true;
154 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
155 need_cp = true;
156 else if (test_opt(sbi, FASTBOOT))
157 need_cp = true;
158 else if (sbi->active_logs == 2)
159 need_cp = true;
160
161 return need_cp;
162 }
163
164 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
165 {
166 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
167 bool ret = false;
168 /* But we need to avoid that there are some inode updates */
169 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
170 ret = true;
171 f2fs_put_page(i, 0);
172 return ret;
173 }
174
175 static void try_to_fix_pino(struct inode *inode)
176 {
177 struct f2fs_inode_info *fi = F2FS_I(inode);
178 nid_t pino;
179
180 down_write(&fi->i_sem);
181 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
182 get_parent_ino(inode, &pino)) {
183 f2fs_i_pino_write(inode, pino);
184 file_got_pino(inode);
185 }
186 up_write(&fi->i_sem);
187 }
188
189 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
190 int datasync, bool atomic)
191 {
192 struct inode *inode = file->f_mapping->host;
193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
194 nid_t ino = inode->i_ino;
195 int ret = 0;
196 bool need_cp = false;
197 struct writeback_control wbc = {
198 .sync_mode = WB_SYNC_ALL,
199 .nr_to_write = LONG_MAX,
200 .for_reclaim = 0,
201 };
202
203 if (unlikely(f2fs_readonly(inode->i_sb)))
204 return 0;
205
206 trace_f2fs_sync_file_enter(inode);
207
208 /* if fdatasync is triggered, let's do in-place-update */
209 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
210 set_inode_flag(inode, FI_NEED_IPU);
211 ret = file_write_and_wait_range(file, start, end);
212 clear_inode_flag(inode, FI_NEED_IPU);
213
214 if (ret) {
215 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
216 return ret;
217 }
218
219 /* if the inode is dirty, let's recover all the time */
220 if (!f2fs_skip_inode_update(inode, datasync)) {
221 f2fs_write_inode(inode, NULL);
222 goto go_write;
223 }
224
225 /*
226 * if there is no written data, don't waste time to write recovery info.
227 */
228 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
229 !exist_written_data(sbi, ino, APPEND_INO)) {
230
231 /* it may call write_inode just prior to fsync */
232 if (need_inode_page_update(sbi, ino))
233 goto go_write;
234
235 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
236 exist_written_data(sbi, ino, UPDATE_INO))
237 goto flush_out;
238 goto out;
239 }
240 go_write:
241 /*
242 * Both of fdatasync() and fsync() are able to be recovered from
243 * sudden-power-off.
244 */
245 down_read(&F2FS_I(inode)->i_sem);
246 need_cp = need_do_checkpoint(inode);
247 up_read(&F2FS_I(inode)->i_sem);
248
249 if (need_cp) {
250 /* all the dirty node pages should be flushed for POR */
251 ret = f2fs_sync_fs(inode->i_sb, 1);
252
253 /*
254 * We've secured consistency through sync_fs. Following pino
255 * will be used only for fsynced inodes after checkpoint.
256 */
257 try_to_fix_pino(inode);
258 clear_inode_flag(inode, FI_APPEND_WRITE);
259 clear_inode_flag(inode, FI_UPDATE_WRITE);
260 goto out;
261 }
262 sync_nodes:
263 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
264 if (ret)
265 goto out;
266
267 /* if cp_error was enabled, we should avoid infinite loop */
268 if (unlikely(f2fs_cp_error(sbi))) {
269 ret = -EIO;
270 goto out;
271 }
272
273 if (need_inode_block_update(sbi, ino)) {
274 f2fs_mark_inode_dirty_sync(inode, true);
275 f2fs_write_inode(inode, NULL);
276 goto sync_nodes;
277 }
278
279 /*
280 * If it's atomic_write, it's just fine to keep write ordering. So
281 * here we don't need to wait for node write completion, since we use
282 * node chain which serializes node blocks. If one of node writes are
283 * reordered, we can see simply broken chain, resulting in stopping
284 * roll-forward recovery. It means we'll recover all or none node blocks
285 * given fsync mark.
286 */
287 if (!atomic) {
288 ret = wait_on_node_pages_writeback(sbi, ino);
289 if (ret)
290 goto out;
291 }
292
293 /* once recovery info is written, don't need to tack this */
294 remove_ino_entry(sbi, ino, APPEND_INO);
295 clear_inode_flag(inode, FI_APPEND_WRITE);
296 flush_out:
297 if (!atomic)
298 ret = f2fs_issue_flush(sbi, inode->i_ino);
299 if (!ret) {
300 remove_ino_entry(sbi, ino, UPDATE_INO);
301 clear_inode_flag(inode, FI_UPDATE_WRITE);
302 remove_ino_entry(sbi, ino, FLUSH_INO);
303 }
304 f2fs_update_time(sbi, REQ_TIME);
305 out:
306 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
307 f2fs_trace_ios(NULL, 1);
308 return ret;
309 }
310
311 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
312 {
313 return f2fs_do_sync_file(file, start, end, datasync, false);
314 }
315
316 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
317 pgoff_t pgofs, int whence)
318 {
319 struct pagevec pvec;
320 int nr_pages;
321
322 if (whence != SEEK_DATA)
323 return 0;
324
325 /* find first dirty page index */
326 pagevec_init(&pvec, 0);
327 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
328 PAGECACHE_TAG_DIRTY, 1);
329 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
330 pagevec_release(&pvec);
331 return pgofs;
332 }
333
334 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
335 int whence)
336 {
337 switch (whence) {
338 case SEEK_DATA:
339 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
340 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
341 return true;
342 break;
343 case SEEK_HOLE:
344 if (blkaddr == NULL_ADDR)
345 return true;
346 break;
347 }
348 return false;
349 }
350
351 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
352 {
353 struct inode *inode = file->f_mapping->host;
354 loff_t maxbytes = inode->i_sb->s_maxbytes;
355 struct dnode_of_data dn;
356 pgoff_t pgofs, end_offset, dirty;
357 loff_t data_ofs = offset;
358 loff_t isize;
359 int err = 0;
360
361 inode_lock(inode);
362
363 isize = i_size_read(inode);
364 if (offset >= isize)
365 goto fail;
366
367 /* handle inline data case */
368 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
369 if (whence == SEEK_HOLE)
370 data_ofs = isize;
371 goto found;
372 }
373
374 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
375
376 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
377
378 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
379 set_new_dnode(&dn, inode, NULL, NULL, 0);
380 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
381 if (err && err != -ENOENT) {
382 goto fail;
383 } else if (err == -ENOENT) {
384 /* direct node does not exists */
385 if (whence == SEEK_DATA) {
386 pgofs = get_next_page_offset(&dn, pgofs);
387 continue;
388 } else {
389 goto found;
390 }
391 }
392
393 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
394
395 /* find data/hole in dnode block */
396 for (; dn.ofs_in_node < end_offset;
397 dn.ofs_in_node++, pgofs++,
398 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
399 block_t blkaddr;
400 blkaddr = datablock_addr(dn.inode,
401 dn.node_page, dn.ofs_in_node);
402
403 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
404 f2fs_put_dnode(&dn);
405 goto found;
406 }
407 }
408 f2fs_put_dnode(&dn);
409 }
410
411 if (whence == SEEK_DATA)
412 goto fail;
413 found:
414 if (whence == SEEK_HOLE && data_ofs > isize)
415 data_ofs = isize;
416 inode_unlock(inode);
417 return vfs_setpos(file, data_ofs, maxbytes);
418 fail:
419 inode_unlock(inode);
420 return -ENXIO;
421 }
422
423 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
424 {
425 struct inode *inode = file->f_mapping->host;
426 loff_t maxbytes = inode->i_sb->s_maxbytes;
427
428 switch (whence) {
429 case SEEK_SET:
430 case SEEK_CUR:
431 case SEEK_END:
432 return generic_file_llseek_size(file, offset, whence,
433 maxbytes, i_size_read(inode));
434 case SEEK_DATA:
435 case SEEK_HOLE:
436 if (offset < 0)
437 return -ENXIO;
438 return f2fs_seek_block(file, offset, whence);
439 }
440
441 return -EINVAL;
442 }
443
444 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
445 {
446 struct inode *inode = file_inode(file);
447 int err;
448
449 /* we don't need to use inline_data strictly */
450 err = f2fs_convert_inline_inode(inode);
451 if (err)
452 return err;
453
454 file_accessed(file);
455 vma->vm_ops = &f2fs_file_vm_ops;
456 return 0;
457 }
458
459 static int f2fs_file_open(struct inode *inode, struct file *filp)
460 {
461 struct dentry *dir;
462
463 if (f2fs_encrypted_inode(inode)) {
464 int ret = fscrypt_get_encryption_info(inode);
465 if (ret)
466 return -EACCES;
467 if (!fscrypt_has_encryption_key(inode))
468 return -ENOKEY;
469 }
470 dir = dget_parent(file_dentry(filp));
471 if (f2fs_encrypted_inode(d_inode(dir)) &&
472 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
473 dput(dir);
474 return -EPERM;
475 }
476 dput(dir);
477 return dquot_file_open(inode, filp);
478 }
479
480 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
481 {
482 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
483 struct f2fs_node *raw_node;
484 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
485 __le32 *addr;
486 int base = 0;
487
488 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
489 base = get_extra_isize(dn->inode);
490
491 raw_node = F2FS_NODE(dn->node_page);
492 addr = blkaddr_in_node(raw_node) + base + ofs;
493
494 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
495 block_t blkaddr = le32_to_cpu(*addr);
496 if (blkaddr == NULL_ADDR)
497 continue;
498
499 dn->data_blkaddr = NULL_ADDR;
500 set_data_blkaddr(dn);
501 invalidate_blocks(sbi, blkaddr);
502 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
503 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
504 nr_free++;
505 }
506
507 if (nr_free) {
508 pgoff_t fofs;
509 /*
510 * once we invalidate valid blkaddr in range [ofs, ofs + count],
511 * we will invalidate all blkaddr in the whole range.
512 */
513 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
514 dn->inode) + ofs;
515 f2fs_update_extent_cache_range(dn, fofs, 0, len);
516 dec_valid_block_count(sbi, dn->inode, nr_free);
517 }
518 dn->ofs_in_node = ofs;
519
520 f2fs_update_time(sbi, REQ_TIME);
521 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
522 dn->ofs_in_node, nr_free);
523 return nr_free;
524 }
525
526 void truncate_data_blocks(struct dnode_of_data *dn)
527 {
528 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
529 }
530
531 static int truncate_partial_data_page(struct inode *inode, u64 from,
532 bool cache_only)
533 {
534 unsigned offset = from & (PAGE_SIZE - 1);
535 pgoff_t index = from >> PAGE_SHIFT;
536 struct address_space *mapping = inode->i_mapping;
537 struct page *page;
538
539 if (!offset && !cache_only)
540 return 0;
541
542 if (cache_only) {
543 page = find_lock_page(mapping, index);
544 if (page && PageUptodate(page))
545 goto truncate_out;
546 f2fs_put_page(page, 1);
547 return 0;
548 }
549
550 page = get_lock_data_page(inode, index, true);
551 if (IS_ERR(page))
552 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
553 truncate_out:
554 f2fs_wait_on_page_writeback(page, DATA, true);
555 zero_user(page, offset, PAGE_SIZE - offset);
556
557 /* An encrypted inode should have a key and truncate the last page. */
558 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
559 if (!cache_only)
560 set_page_dirty(page);
561 f2fs_put_page(page, 1);
562 return 0;
563 }
564
565 int truncate_blocks(struct inode *inode, u64 from, bool lock)
566 {
567 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
568 unsigned int blocksize = inode->i_sb->s_blocksize;
569 struct dnode_of_data dn;
570 pgoff_t free_from;
571 int count = 0, err = 0;
572 struct page *ipage;
573 bool truncate_page = false;
574
575 trace_f2fs_truncate_blocks_enter(inode, from);
576
577 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
578
579 if (free_from >= sbi->max_file_blocks)
580 goto free_partial;
581
582 if (lock)
583 f2fs_lock_op(sbi);
584
585 ipage = get_node_page(sbi, inode->i_ino);
586 if (IS_ERR(ipage)) {
587 err = PTR_ERR(ipage);
588 goto out;
589 }
590
591 if (f2fs_has_inline_data(inode)) {
592 truncate_inline_inode(inode, ipage, from);
593 f2fs_put_page(ipage, 1);
594 truncate_page = true;
595 goto out;
596 }
597
598 set_new_dnode(&dn, inode, ipage, NULL, 0);
599 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
600 if (err) {
601 if (err == -ENOENT)
602 goto free_next;
603 goto out;
604 }
605
606 count = ADDRS_PER_PAGE(dn.node_page, inode);
607
608 count -= dn.ofs_in_node;
609 f2fs_bug_on(sbi, count < 0);
610
611 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
612 truncate_data_blocks_range(&dn, count);
613 free_from += count;
614 }
615
616 f2fs_put_dnode(&dn);
617 free_next:
618 err = truncate_inode_blocks(inode, free_from);
619 out:
620 if (lock)
621 f2fs_unlock_op(sbi);
622 free_partial:
623 /* lastly zero out the first data page */
624 if (!err)
625 err = truncate_partial_data_page(inode, from, truncate_page);
626
627 trace_f2fs_truncate_blocks_exit(inode, err);
628 return err;
629 }
630
631 int f2fs_truncate(struct inode *inode)
632 {
633 int err;
634
635 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
636 S_ISLNK(inode->i_mode)))
637 return 0;
638
639 trace_f2fs_truncate(inode);
640
641 #ifdef CONFIG_F2FS_FAULT_INJECTION
642 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
643 f2fs_show_injection_info(FAULT_TRUNCATE);
644 return -EIO;
645 }
646 #endif
647 /* we should check inline_data size */
648 if (!f2fs_may_inline_data(inode)) {
649 err = f2fs_convert_inline_inode(inode);
650 if (err)
651 return err;
652 }
653
654 err = truncate_blocks(inode, i_size_read(inode), true);
655 if (err)
656 return err;
657
658 inode->i_mtime = inode->i_ctime = current_time(inode);
659 f2fs_mark_inode_dirty_sync(inode, false);
660 return 0;
661 }
662
663 int f2fs_getattr(const struct path *path, struct kstat *stat,
664 u32 request_mask, unsigned int query_flags)
665 {
666 struct inode *inode = d_inode(path->dentry);
667 struct f2fs_inode_info *fi = F2FS_I(inode);
668 unsigned int flags;
669
670 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
671 if (flags & FS_APPEND_FL)
672 stat->attributes |= STATX_ATTR_APPEND;
673 if (flags & FS_COMPR_FL)
674 stat->attributes |= STATX_ATTR_COMPRESSED;
675 if (f2fs_encrypted_inode(inode))
676 stat->attributes |= STATX_ATTR_ENCRYPTED;
677 if (flags & FS_IMMUTABLE_FL)
678 stat->attributes |= STATX_ATTR_IMMUTABLE;
679 if (flags & FS_NODUMP_FL)
680 stat->attributes |= STATX_ATTR_NODUMP;
681
682 stat->attributes_mask |= (STATX_ATTR_APPEND |
683 STATX_ATTR_COMPRESSED |
684 STATX_ATTR_ENCRYPTED |
685 STATX_ATTR_IMMUTABLE |
686 STATX_ATTR_NODUMP);
687
688 generic_fillattr(inode, stat);
689 return 0;
690 }
691
692 #ifdef CONFIG_F2FS_FS_POSIX_ACL
693 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
694 {
695 unsigned int ia_valid = attr->ia_valid;
696
697 if (ia_valid & ATTR_UID)
698 inode->i_uid = attr->ia_uid;
699 if (ia_valid & ATTR_GID)
700 inode->i_gid = attr->ia_gid;
701 if (ia_valid & ATTR_ATIME)
702 inode->i_atime = timespec_trunc(attr->ia_atime,
703 inode->i_sb->s_time_gran);
704 if (ia_valid & ATTR_MTIME)
705 inode->i_mtime = timespec_trunc(attr->ia_mtime,
706 inode->i_sb->s_time_gran);
707 if (ia_valid & ATTR_CTIME)
708 inode->i_ctime = timespec_trunc(attr->ia_ctime,
709 inode->i_sb->s_time_gran);
710 if (ia_valid & ATTR_MODE) {
711 umode_t mode = attr->ia_mode;
712
713 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
714 mode &= ~S_ISGID;
715 set_acl_inode(inode, mode);
716 }
717 }
718 #else
719 #define __setattr_copy setattr_copy
720 #endif
721
722 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
723 {
724 struct inode *inode = d_inode(dentry);
725 int err;
726 bool size_changed = false;
727
728 err = setattr_prepare(dentry, attr);
729 if (err)
730 return err;
731
732 if (is_quota_modification(inode, attr)) {
733 err = dquot_initialize(inode);
734 if (err)
735 return err;
736 }
737 if ((attr->ia_valid & ATTR_UID &&
738 !uid_eq(attr->ia_uid, inode->i_uid)) ||
739 (attr->ia_valid & ATTR_GID &&
740 !gid_eq(attr->ia_gid, inode->i_gid))) {
741 err = dquot_transfer(inode, attr);
742 if (err)
743 return err;
744 }
745
746 if (attr->ia_valid & ATTR_SIZE) {
747 if (f2fs_encrypted_inode(inode)) {
748 err = fscrypt_get_encryption_info(inode);
749 if (err)
750 return err;
751 if (!fscrypt_has_encryption_key(inode))
752 return -ENOKEY;
753 }
754
755 if (attr->ia_size <= i_size_read(inode)) {
756 down_write(&F2FS_I(inode)->i_mmap_sem);
757 truncate_setsize(inode, attr->ia_size);
758 err = f2fs_truncate(inode);
759 up_write(&F2FS_I(inode)->i_mmap_sem);
760 if (err)
761 return err;
762 } else {
763 /*
764 * do not trim all blocks after i_size if target size is
765 * larger than i_size.
766 */
767 down_write(&F2FS_I(inode)->i_mmap_sem);
768 truncate_setsize(inode, attr->ia_size);
769 up_write(&F2FS_I(inode)->i_mmap_sem);
770
771 /* should convert inline inode here */
772 if (!f2fs_may_inline_data(inode)) {
773 err = f2fs_convert_inline_inode(inode);
774 if (err)
775 return err;
776 }
777 inode->i_mtime = inode->i_ctime = current_time(inode);
778 }
779
780 size_changed = true;
781 }
782
783 __setattr_copy(inode, attr);
784
785 if (attr->ia_valid & ATTR_MODE) {
786 err = posix_acl_chmod(inode, get_inode_mode(inode));
787 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
788 inode->i_mode = F2FS_I(inode)->i_acl_mode;
789 clear_inode_flag(inode, FI_ACL_MODE);
790 }
791 }
792
793 /* file size may changed here */
794 f2fs_mark_inode_dirty_sync(inode, size_changed);
795
796 /* inode change will produce dirty node pages flushed by checkpoint */
797 f2fs_balance_fs(F2FS_I_SB(inode), true);
798
799 return err;
800 }
801
802 const struct inode_operations f2fs_file_inode_operations = {
803 .getattr = f2fs_getattr,
804 .setattr = f2fs_setattr,
805 .get_acl = f2fs_get_acl,
806 .set_acl = f2fs_set_acl,
807 #ifdef CONFIG_F2FS_FS_XATTR
808 .listxattr = f2fs_listxattr,
809 #endif
810 .fiemap = f2fs_fiemap,
811 };
812
813 static int fill_zero(struct inode *inode, pgoff_t index,
814 loff_t start, loff_t len)
815 {
816 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
817 struct page *page;
818
819 if (!len)
820 return 0;
821
822 f2fs_balance_fs(sbi, true);
823
824 f2fs_lock_op(sbi);
825 page = get_new_data_page(inode, NULL, index, false);
826 f2fs_unlock_op(sbi);
827
828 if (IS_ERR(page))
829 return PTR_ERR(page);
830
831 f2fs_wait_on_page_writeback(page, DATA, true);
832 zero_user(page, start, len);
833 set_page_dirty(page);
834 f2fs_put_page(page, 1);
835 return 0;
836 }
837
838 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
839 {
840 int err;
841
842 while (pg_start < pg_end) {
843 struct dnode_of_data dn;
844 pgoff_t end_offset, count;
845
846 set_new_dnode(&dn, inode, NULL, NULL, 0);
847 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
848 if (err) {
849 if (err == -ENOENT) {
850 pg_start++;
851 continue;
852 }
853 return err;
854 }
855
856 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
857 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
858
859 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
860
861 truncate_data_blocks_range(&dn, count);
862 f2fs_put_dnode(&dn);
863
864 pg_start += count;
865 }
866 return 0;
867 }
868
869 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
870 {
871 pgoff_t pg_start, pg_end;
872 loff_t off_start, off_end;
873 int ret;
874
875 ret = f2fs_convert_inline_inode(inode);
876 if (ret)
877 return ret;
878
879 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
880 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
881
882 off_start = offset & (PAGE_SIZE - 1);
883 off_end = (offset + len) & (PAGE_SIZE - 1);
884
885 if (pg_start == pg_end) {
886 ret = fill_zero(inode, pg_start, off_start,
887 off_end - off_start);
888 if (ret)
889 return ret;
890 } else {
891 if (off_start) {
892 ret = fill_zero(inode, pg_start++, off_start,
893 PAGE_SIZE - off_start);
894 if (ret)
895 return ret;
896 }
897 if (off_end) {
898 ret = fill_zero(inode, pg_end, 0, off_end);
899 if (ret)
900 return ret;
901 }
902
903 if (pg_start < pg_end) {
904 struct address_space *mapping = inode->i_mapping;
905 loff_t blk_start, blk_end;
906 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
907
908 f2fs_balance_fs(sbi, true);
909
910 blk_start = (loff_t)pg_start << PAGE_SHIFT;
911 blk_end = (loff_t)pg_end << PAGE_SHIFT;
912 down_write(&F2FS_I(inode)->i_mmap_sem);
913 truncate_inode_pages_range(mapping, blk_start,
914 blk_end - 1);
915
916 f2fs_lock_op(sbi);
917 ret = truncate_hole(inode, pg_start, pg_end);
918 f2fs_unlock_op(sbi);
919 up_write(&F2FS_I(inode)->i_mmap_sem);
920 }
921 }
922
923 return ret;
924 }
925
926 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
927 int *do_replace, pgoff_t off, pgoff_t len)
928 {
929 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
930 struct dnode_of_data dn;
931 int ret, done, i;
932
933 next_dnode:
934 set_new_dnode(&dn, inode, NULL, NULL, 0);
935 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
936 if (ret && ret != -ENOENT) {
937 return ret;
938 } else if (ret == -ENOENT) {
939 if (dn.max_level == 0)
940 return -ENOENT;
941 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
942 blkaddr += done;
943 do_replace += done;
944 goto next;
945 }
946
947 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
948 dn.ofs_in_node, len);
949 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
950 *blkaddr = datablock_addr(dn.inode,
951 dn.node_page, dn.ofs_in_node);
952 if (!is_checkpointed_data(sbi, *blkaddr)) {
953
954 if (test_opt(sbi, LFS)) {
955 f2fs_put_dnode(&dn);
956 return -ENOTSUPP;
957 }
958
959 /* do not invalidate this block address */
960 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
961 *do_replace = 1;
962 }
963 }
964 f2fs_put_dnode(&dn);
965 next:
966 len -= done;
967 off += done;
968 if (len)
969 goto next_dnode;
970 return 0;
971 }
972
973 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
974 int *do_replace, pgoff_t off, int len)
975 {
976 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
977 struct dnode_of_data dn;
978 int ret, i;
979
980 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
981 if (*do_replace == 0)
982 continue;
983
984 set_new_dnode(&dn, inode, NULL, NULL, 0);
985 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
986 if (ret) {
987 dec_valid_block_count(sbi, inode, 1);
988 invalidate_blocks(sbi, *blkaddr);
989 } else {
990 f2fs_update_data_blkaddr(&dn, *blkaddr);
991 }
992 f2fs_put_dnode(&dn);
993 }
994 return 0;
995 }
996
997 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
998 block_t *blkaddr, int *do_replace,
999 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1000 {
1001 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1002 pgoff_t i = 0;
1003 int ret;
1004
1005 while (i < len) {
1006 if (blkaddr[i] == NULL_ADDR && !full) {
1007 i++;
1008 continue;
1009 }
1010
1011 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1012 struct dnode_of_data dn;
1013 struct node_info ni;
1014 size_t new_size;
1015 pgoff_t ilen;
1016
1017 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1018 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1019 if (ret)
1020 return ret;
1021
1022 get_node_info(sbi, dn.nid, &ni);
1023 ilen = min((pgoff_t)
1024 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1025 dn.ofs_in_node, len - i);
1026 do {
1027 dn.data_blkaddr = datablock_addr(dn.inode,
1028 dn.node_page, dn.ofs_in_node);
1029 truncate_data_blocks_range(&dn, 1);
1030
1031 if (do_replace[i]) {
1032 f2fs_i_blocks_write(src_inode,
1033 1, false, false);
1034 f2fs_i_blocks_write(dst_inode,
1035 1, true, false);
1036 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1037 blkaddr[i], ni.version, true, false);
1038
1039 do_replace[i] = 0;
1040 }
1041 dn.ofs_in_node++;
1042 i++;
1043 new_size = (dst + i) << PAGE_SHIFT;
1044 if (dst_inode->i_size < new_size)
1045 f2fs_i_size_write(dst_inode, new_size);
1046 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1047
1048 f2fs_put_dnode(&dn);
1049 } else {
1050 struct page *psrc, *pdst;
1051
1052 psrc = get_lock_data_page(src_inode, src + i, true);
1053 if (IS_ERR(psrc))
1054 return PTR_ERR(psrc);
1055 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1056 true);
1057 if (IS_ERR(pdst)) {
1058 f2fs_put_page(psrc, 1);
1059 return PTR_ERR(pdst);
1060 }
1061 f2fs_copy_page(psrc, pdst);
1062 set_page_dirty(pdst);
1063 f2fs_put_page(pdst, 1);
1064 f2fs_put_page(psrc, 1);
1065
1066 ret = truncate_hole(src_inode, src + i, src + i + 1);
1067 if (ret)
1068 return ret;
1069 i++;
1070 }
1071 }
1072 return 0;
1073 }
1074
1075 static int __exchange_data_block(struct inode *src_inode,
1076 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1077 pgoff_t len, bool full)
1078 {
1079 block_t *src_blkaddr;
1080 int *do_replace;
1081 pgoff_t olen;
1082 int ret;
1083
1084 while (len) {
1085 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1086
1087 src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1088 if (!src_blkaddr)
1089 return -ENOMEM;
1090
1091 do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1092 if (!do_replace) {
1093 kvfree(src_blkaddr);
1094 return -ENOMEM;
1095 }
1096
1097 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1098 do_replace, src, olen);
1099 if (ret)
1100 goto roll_back;
1101
1102 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1103 do_replace, src, dst, olen, full);
1104 if (ret)
1105 goto roll_back;
1106
1107 src += olen;
1108 dst += olen;
1109 len -= olen;
1110
1111 kvfree(src_blkaddr);
1112 kvfree(do_replace);
1113 }
1114 return 0;
1115
1116 roll_back:
1117 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1118 kvfree(src_blkaddr);
1119 kvfree(do_replace);
1120 return ret;
1121 }
1122
1123 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1124 {
1125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1127 int ret;
1128
1129 f2fs_balance_fs(sbi, true);
1130 f2fs_lock_op(sbi);
1131
1132 f2fs_drop_extent_tree(inode);
1133
1134 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1135 f2fs_unlock_op(sbi);
1136 return ret;
1137 }
1138
1139 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1140 {
1141 pgoff_t pg_start, pg_end;
1142 loff_t new_size;
1143 int ret;
1144
1145 if (offset + len >= i_size_read(inode))
1146 return -EINVAL;
1147
1148 /* collapse range should be aligned to block size of f2fs. */
1149 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1150 return -EINVAL;
1151
1152 ret = f2fs_convert_inline_inode(inode);
1153 if (ret)
1154 return ret;
1155
1156 pg_start = offset >> PAGE_SHIFT;
1157 pg_end = (offset + len) >> PAGE_SHIFT;
1158
1159 down_write(&F2FS_I(inode)->i_mmap_sem);
1160 /* write out all dirty pages from offset */
1161 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1162 if (ret)
1163 goto out;
1164
1165 truncate_pagecache(inode, offset);
1166
1167 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1168 if (ret)
1169 goto out;
1170
1171 /* write out all moved pages, if possible */
1172 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1173 truncate_pagecache(inode, offset);
1174
1175 new_size = i_size_read(inode) - len;
1176 truncate_pagecache(inode, new_size);
1177
1178 ret = truncate_blocks(inode, new_size, true);
1179 if (!ret)
1180 f2fs_i_size_write(inode, new_size);
1181
1182 out:
1183 up_write(&F2FS_I(inode)->i_mmap_sem);
1184 return ret;
1185 }
1186
1187 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1188 pgoff_t end)
1189 {
1190 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1191 pgoff_t index = start;
1192 unsigned int ofs_in_node = dn->ofs_in_node;
1193 blkcnt_t count = 0;
1194 int ret;
1195
1196 for (; index < end; index++, dn->ofs_in_node++) {
1197 if (datablock_addr(dn->inode, dn->node_page,
1198 dn->ofs_in_node) == NULL_ADDR)
1199 count++;
1200 }
1201
1202 dn->ofs_in_node = ofs_in_node;
1203 ret = reserve_new_blocks(dn, count);
1204 if (ret)
1205 return ret;
1206
1207 dn->ofs_in_node = ofs_in_node;
1208 for (index = start; index < end; index++, dn->ofs_in_node++) {
1209 dn->data_blkaddr = datablock_addr(dn->inode,
1210 dn->node_page, dn->ofs_in_node);
1211 /*
1212 * reserve_new_blocks will not guarantee entire block
1213 * allocation.
1214 */
1215 if (dn->data_blkaddr == NULL_ADDR) {
1216 ret = -ENOSPC;
1217 break;
1218 }
1219 if (dn->data_blkaddr != NEW_ADDR) {
1220 invalidate_blocks(sbi, dn->data_blkaddr);
1221 dn->data_blkaddr = NEW_ADDR;
1222 set_data_blkaddr(dn);
1223 }
1224 }
1225
1226 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1227
1228 return ret;
1229 }
1230
1231 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1232 int mode)
1233 {
1234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1235 struct address_space *mapping = inode->i_mapping;
1236 pgoff_t index, pg_start, pg_end;
1237 loff_t new_size = i_size_read(inode);
1238 loff_t off_start, off_end;
1239 int ret = 0;
1240
1241 ret = inode_newsize_ok(inode, (len + offset));
1242 if (ret)
1243 return ret;
1244
1245 ret = f2fs_convert_inline_inode(inode);
1246 if (ret)
1247 return ret;
1248
1249 down_write(&F2FS_I(inode)->i_mmap_sem);
1250 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1251 if (ret)
1252 goto out_sem;
1253
1254 truncate_pagecache_range(inode, offset, offset + len - 1);
1255
1256 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1257 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1258
1259 off_start = offset & (PAGE_SIZE - 1);
1260 off_end = (offset + len) & (PAGE_SIZE - 1);
1261
1262 if (pg_start == pg_end) {
1263 ret = fill_zero(inode, pg_start, off_start,
1264 off_end - off_start);
1265 if (ret)
1266 goto out_sem;
1267
1268 new_size = max_t(loff_t, new_size, offset + len);
1269 } else {
1270 if (off_start) {
1271 ret = fill_zero(inode, pg_start++, off_start,
1272 PAGE_SIZE - off_start);
1273 if (ret)
1274 goto out_sem;
1275
1276 new_size = max_t(loff_t, new_size,
1277 (loff_t)pg_start << PAGE_SHIFT);
1278 }
1279
1280 for (index = pg_start; index < pg_end;) {
1281 struct dnode_of_data dn;
1282 unsigned int end_offset;
1283 pgoff_t end;
1284
1285 f2fs_lock_op(sbi);
1286
1287 set_new_dnode(&dn, inode, NULL, NULL, 0);
1288 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1289 if (ret) {
1290 f2fs_unlock_op(sbi);
1291 goto out;
1292 }
1293
1294 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1295 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1296
1297 ret = f2fs_do_zero_range(&dn, index, end);
1298 f2fs_put_dnode(&dn);
1299 f2fs_unlock_op(sbi);
1300
1301 f2fs_balance_fs(sbi, dn.node_changed);
1302
1303 if (ret)
1304 goto out;
1305
1306 index = end;
1307 new_size = max_t(loff_t, new_size,
1308 (loff_t)index << PAGE_SHIFT);
1309 }
1310
1311 if (off_end) {
1312 ret = fill_zero(inode, pg_end, 0, off_end);
1313 if (ret)
1314 goto out;
1315
1316 new_size = max_t(loff_t, new_size, offset + len);
1317 }
1318 }
1319
1320 out:
1321 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1322 f2fs_i_size_write(inode, new_size);
1323 out_sem:
1324 up_write(&F2FS_I(inode)->i_mmap_sem);
1325
1326 return ret;
1327 }
1328
1329 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1330 {
1331 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1332 pgoff_t nr, pg_start, pg_end, delta, idx;
1333 loff_t new_size;
1334 int ret = 0;
1335
1336 new_size = i_size_read(inode) + len;
1337 ret = inode_newsize_ok(inode, new_size);
1338 if (ret)
1339 return ret;
1340
1341 if (offset >= i_size_read(inode))
1342 return -EINVAL;
1343
1344 /* insert range should be aligned to block size of f2fs. */
1345 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1346 return -EINVAL;
1347
1348 ret = f2fs_convert_inline_inode(inode);
1349 if (ret)
1350 return ret;
1351
1352 f2fs_balance_fs(sbi, true);
1353
1354 down_write(&F2FS_I(inode)->i_mmap_sem);
1355 ret = truncate_blocks(inode, i_size_read(inode), true);
1356 if (ret)
1357 goto out;
1358
1359 /* write out all dirty pages from offset */
1360 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1361 if (ret)
1362 goto out;
1363
1364 truncate_pagecache(inode, offset);
1365
1366 pg_start = offset >> PAGE_SHIFT;
1367 pg_end = (offset + len) >> PAGE_SHIFT;
1368 delta = pg_end - pg_start;
1369 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1370
1371 while (!ret && idx > pg_start) {
1372 nr = idx - pg_start;
1373 if (nr > delta)
1374 nr = delta;
1375 idx -= nr;
1376
1377 f2fs_lock_op(sbi);
1378 f2fs_drop_extent_tree(inode);
1379
1380 ret = __exchange_data_block(inode, inode, idx,
1381 idx + delta, nr, false);
1382 f2fs_unlock_op(sbi);
1383 }
1384
1385 /* write out all moved pages, if possible */
1386 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1387 truncate_pagecache(inode, offset);
1388
1389 if (!ret)
1390 f2fs_i_size_write(inode, new_size);
1391 out:
1392 up_write(&F2FS_I(inode)->i_mmap_sem);
1393 return ret;
1394 }
1395
1396 static int expand_inode_data(struct inode *inode, loff_t offset,
1397 loff_t len, int mode)
1398 {
1399 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1400 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1401 pgoff_t pg_end;
1402 loff_t new_size = i_size_read(inode);
1403 loff_t off_end;
1404 int err;
1405
1406 err = inode_newsize_ok(inode, (len + offset));
1407 if (err)
1408 return err;
1409
1410 err = f2fs_convert_inline_inode(inode);
1411 if (err)
1412 return err;
1413
1414 f2fs_balance_fs(sbi, true);
1415
1416 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1417 off_end = (offset + len) & (PAGE_SIZE - 1);
1418
1419 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1420 map.m_len = pg_end - map.m_lblk;
1421 if (off_end)
1422 map.m_len++;
1423
1424 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1425 if (err) {
1426 pgoff_t last_off;
1427
1428 if (!map.m_len)
1429 return err;
1430
1431 last_off = map.m_lblk + map.m_len - 1;
1432
1433 /* update new size to the failed position */
1434 new_size = (last_off == pg_end) ? offset + len:
1435 (loff_t)(last_off + 1) << PAGE_SHIFT;
1436 } else {
1437 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1438 }
1439
1440 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1441 f2fs_i_size_write(inode, new_size);
1442
1443 return err;
1444 }
1445
1446 static long f2fs_fallocate(struct file *file, int mode,
1447 loff_t offset, loff_t len)
1448 {
1449 struct inode *inode = file_inode(file);
1450 long ret = 0;
1451
1452 /* f2fs only support ->fallocate for regular file */
1453 if (!S_ISREG(inode->i_mode))
1454 return -EINVAL;
1455
1456 if (f2fs_encrypted_inode(inode) &&
1457 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1458 return -EOPNOTSUPP;
1459
1460 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1461 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1462 FALLOC_FL_INSERT_RANGE))
1463 return -EOPNOTSUPP;
1464
1465 inode_lock(inode);
1466
1467 if (mode & FALLOC_FL_PUNCH_HOLE) {
1468 if (offset >= inode->i_size)
1469 goto out;
1470
1471 ret = punch_hole(inode, offset, len);
1472 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1473 ret = f2fs_collapse_range(inode, offset, len);
1474 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1475 ret = f2fs_zero_range(inode, offset, len, mode);
1476 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1477 ret = f2fs_insert_range(inode, offset, len);
1478 } else {
1479 ret = expand_inode_data(inode, offset, len, mode);
1480 }
1481
1482 if (!ret) {
1483 inode->i_mtime = inode->i_ctime = current_time(inode);
1484 f2fs_mark_inode_dirty_sync(inode, false);
1485 if (mode & FALLOC_FL_KEEP_SIZE)
1486 file_set_keep_isize(inode);
1487 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1488 }
1489
1490 out:
1491 inode_unlock(inode);
1492
1493 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1494 return ret;
1495 }
1496
1497 static int f2fs_release_file(struct inode *inode, struct file *filp)
1498 {
1499 /*
1500 * f2fs_relase_file is called at every close calls. So we should
1501 * not drop any inmemory pages by close called by other process.
1502 */
1503 if (!(filp->f_mode & FMODE_WRITE) ||
1504 atomic_read(&inode->i_writecount) != 1)
1505 return 0;
1506
1507 /* some remained atomic pages should discarded */
1508 if (f2fs_is_atomic_file(inode))
1509 drop_inmem_pages(inode);
1510 if (f2fs_is_volatile_file(inode)) {
1511 clear_inode_flag(inode, FI_VOLATILE_FILE);
1512 stat_dec_volatile_write(inode);
1513 set_inode_flag(inode, FI_DROP_CACHE);
1514 filemap_fdatawrite(inode->i_mapping);
1515 clear_inode_flag(inode, FI_DROP_CACHE);
1516 }
1517 return 0;
1518 }
1519
1520 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1521 {
1522 struct inode *inode = file_inode(file);
1523
1524 /*
1525 * If the process doing a transaction is crashed, we should do
1526 * roll-back. Otherwise, other reader/write can see corrupted database
1527 * until all the writers close its file. Since this should be done
1528 * before dropping file lock, it needs to do in ->flush.
1529 */
1530 if (f2fs_is_atomic_file(inode) &&
1531 F2FS_I(inode)->inmem_task == current)
1532 drop_inmem_pages(inode);
1533 return 0;
1534 }
1535
1536 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1537 {
1538 struct inode *inode = file_inode(filp);
1539 struct f2fs_inode_info *fi = F2FS_I(inode);
1540 unsigned int flags = fi->i_flags &
1541 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1542 return put_user(flags, (int __user *)arg);
1543 }
1544
1545 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1546 {
1547 struct f2fs_inode_info *fi = F2FS_I(inode);
1548 unsigned int oldflags;
1549
1550 /* Is it quota file? Do not allow user to mess with it */
1551 if (IS_NOQUOTA(inode))
1552 return -EPERM;
1553
1554 flags = f2fs_mask_flags(inode->i_mode, flags);
1555
1556 oldflags = fi->i_flags;
1557
1558 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1559 if (!capable(CAP_LINUX_IMMUTABLE))
1560 return -EPERM;
1561
1562 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1563 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1564 fi->i_flags = flags;
1565
1566 if (fi->i_flags & FS_PROJINHERIT_FL)
1567 set_inode_flag(inode, FI_PROJ_INHERIT);
1568 else
1569 clear_inode_flag(inode, FI_PROJ_INHERIT);
1570
1571 inode->i_ctime = current_time(inode);
1572 f2fs_set_inode_flags(inode);
1573 f2fs_mark_inode_dirty_sync(inode, false);
1574 return 0;
1575 }
1576
1577 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1578 {
1579 struct inode *inode = file_inode(filp);
1580 unsigned int flags;
1581 int ret;
1582
1583 if (!inode_owner_or_capable(inode))
1584 return -EACCES;
1585
1586 if (get_user(flags, (int __user *)arg))
1587 return -EFAULT;
1588
1589 ret = mnt_want_write_file(filp);
1590 if (ret)
1591 return ret;
1592
1593 inode_lock(inode);
1594
1595 ret = __f2fs_ioc_setflags(inode, flags);
1596
1597 inode_unlock(inode);
1598 mnt_drop_write_file(filp);
1599 return ret;
1600 }
1601
1602 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1603 {
1604 struct inode *inode = file_inode(filp);
1605
1606 return put_user(inode->i_generation, (int __user *)arg);
1607 }
1608
1609 static int f2fs_ioc_start_atomic_write(struct file *filp)
1610 {
1611 struct inode *inode = file_inode(filp);
1612 int ret;
1613
1614 if (!inode_owner_or_capable(inode))
1615 return -EACCES;
1616
1617 if (!S_ISREG(inode->i_mode))
1618 return -EINVAL;
1619
1620 ret = mnt_want_write_file(filp);
1621 if (ret)
1622 return ret;
1623
1624 inode_lock(inode);
1625
1626 if (f2fs_is_atomic_file(inode))
1627 goto out;
1628
1629 ret = f2fs_convert_inline_inode(inode);
1630 if (ret)
1631 goto out;
1632
1633 set_inode_flag(inode, FI_ATOMIC_FILE);
1634 set_inode_flag(inode, FI_HOT_DATA);
1635 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1636
1637 if (!get_dirty_pages(inode))
1638 goto inc_stat;
1639
1640 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1641 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1642 inode->i_ino, get_dirty_pages(inode));
1643 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1644 if (ret) {
1645 clear_inode_flag(inode, FI_ATOMIC_FILE);
1646 clear_inode_flag(inode, FI_HOT_DATA);
1647 goto out;
1648 }
1649
1650 inc_stat:
1651 F2FS_I(inode)->inmem_task = current;
1652 stat_inc_atomic_write(inode);
1653 stat_update_max_atomic_write(inode);
1654 out:
1655 inode_unlock(inode);
1656 mnt_drop_write_file(filp);
1657 return ret;
1658 }
1659
1660 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1661 {
1662 struct inode *inode = file_inode(filp);
1663 int ret;
1664
1665 if (!inode_owner_or_capable(inode))
1666 return -EACCES;
1667
1668 ret = mnt_want_write_file(filp);
1669 if (ret)
1670 return ret;
1671
1672 inode_lock(inode);
1673
1674 if (f2fs_is_volatile_file(inode))
1675 goto err_out;
1676
1677 if (f2fs_is_atomic_file(inode)) {
1678 ret = commit_inmem_pages(inode);
1679 if (ret)
1680 goto err_out;
1681
1682 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1683 if (!ret) {
1684 clear_inode_flag(inode, FI_ATOMIC_FILE);
1685 clear_inode_flag(inode, FI_HOT_DATA);
1686 stat_dec_atomic_write(inode);
1687 }
1688 } else {
1689 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1690 }
1691 err_out:
1692 inode_unlock(inode);
1693 mnt_drop_write_file(filp);
1694 return ret;
1695 }
1696
1697 static int f2fs_ioc_start_volatile_write(struct file *filp)
1698 {
1699 struct inode *inode = file_inode(filp);
1700 int ret;
1701
1702 if (!inode_owner_or_capable(inode))
1703 return -EACCES;
1704
1705 if (!S_ISREG(inode->i_mode))
1706 return -EINVAL;
1707
1708 ret = mnt_want_write_file(filp);
1709 if (ret)
1710 return ret;
1711
1712 inode_lock(inode);
1713
1714 if (f2fs_is_volatile_file(inode))
1715 goto out;
1716
1717 ret = f2fs_convert_inline_inode(inode);
1718 if (ret)
1719 goto out;
1720
1721 stat_inc_volatile_write(inode);
1722 stat_update_max_volatile_write(inode);
1723
1724 set_inode_flag(inode, FI_VOLATILE_FILE);
1725 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1726 out:
1727 inode_unlock(inode);
1728 mnt_drop_write_file(filp);
1729 return ret;
1730 }
1731
1732 static int f2fs_ioc_release_volatile_write(struct file *filp)
1733 {
1734 struct inode *inode = file_inode(filp);
1735 int ret;
1736
1737 if (!inode_owner_or_capable(inode))
1738 return -EACCES;
1739
1740 ret = mnt_want_write_file(filp);
1741 if (ret)
1742 return ret;
1743
1744 inode_lock(inode);
1745
1746 if (!f2fs_is_volatile_file(inode))
1747 goto out;
1748
1749 if (!f2fs_is_first_block_written(inode)) {
1750 ret = truncate_partial_data_page(inode, 0, true);
1751 goto out;
1752 }
1753
1754 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1755 out:
1756 inode_unlock(inode);
1757 mnt_drop_write_file(filp);
1758 return ret;
1759 }
1760
1761 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1762 {
1763 struct inode *inode = file_inode(filp);
1764 int ret;
1765
1766 if (!inode_owner_or_capable(inode))
1767 return -EACCES;
1768
1769 ret = mnt_want_write_file(filp);
1770 if (ret)
1771 return ret;
1772
1773 inode_lock(inode);
1774
1775 if (f2fs_is_atomic_file(inode))
1776 drop_inmem_pages(inode);
1777 if (f2fs_is_volatile_file(inode)) {
1778 clear_inode_flag(inode, FI_VOLATILE_FILE);
1779 stat_dec_volatile_write(inode);
1780 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1781 }
1782
1783 inode_unlock(inode);
1784
1785 mnt_drop_write_file(filp);
1786 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1787 return ret;
1788 }
1789
1790 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1791 {
1792 struct inode *inode = file_inode(filp);
1793 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1794 struct super_block *sb = sbi->sb;
1795 __u32 in;
1796 int ret;
1797
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800
1801 if (get_user(in, (__u32 __user *)arg))
1802 return -EFAULT;
1803
1804 ret = mnt_want_write_file(filp);
1805 if (ret)
1806 return ret;
1807
1808 switch (in) {
1809 case F2FS_GOING_DOWN_FULLSYNC:
1810 sb = freeze_bdev(sb->s_bdev);
1811 if (sb && !IS_ERR(sb)) {
1812 f2fs_stop_checkpoint(sbi, false);
1813 thaw_bdev(sb->s_bdev, sb);
1814 }
1815 break;
1816 case F2FS_GOING_DOWN_METASYNC:
1817 /* do checkpoint only */
1818 f2fs_sync_fs(sb, 1);
1819 f2fs_stop_checkpoint(sbi, false);
1820 break;
1821 case F2FS_GOING_DOWN_NOSYNC:
1822 f2fs_stop_checkpoint(sbi, false);
1823 break;
1824 case F2FS_GOING_DOWN_METAFLUSH:
1825 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1826 f2fs_stop_checkpoint(sbi, false);
1827 break;
1828 default:
1829 ret = -EINVAL;
1830 goto out;
1831 }
1832 f2fs_update_time(sbi, REQ_TIME);
1833 out:
1834 mnt_drop_write_file(filp);
1835 return ret;
1836 }
1837
1838 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1839 {
1840 struct inode *inode = file_inode(filp);
1841 struct super_block *sb = inode->i_sb;
1842 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1843 struct fstrim_range range;
1844 int ret;
1845
1846 if (!capable(CAP_SYS_ADMIN))
1847 return -EPERM;
1848
1849 if (!blk_queue_discard(q))
1850 return -EOPNOTSUPP;
1851
1852 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1853 sizeof(range)))
1854 return -EFAULT;
1855
1856 ret = mnt_want_write_file(filp);
1857 if (ret)
1858 return ret;
1859
1860 range.minlen = max((unsigned int)range.minlen,
1861 q->limits.discard_granularity);
1862 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1863 mnt_drop_write_file(filp);
1864 if (ret < 0)
1865 return ret;
1866
1867 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1868 sizeof(range)))
1869 return -EFAULT;
1870 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1871 return 0;
1872 }
1873
1874 static bool uuid_is_nonzero(__u8 u[16])
1875 {
1876 int i;
1877
1878 for (i = 0; i < 16; i++)
1879 if (u[i])
1880 return true;
1881 return false;
1882 }
1883
1884 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1885 {
1886 struct inode *inode = file_inode(filp);
1887
1888 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1889
1890 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1891 }
1892
1893 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1894 {
1895 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1896 }
1897
1898 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1899 {
1900 struct inode *inode = file_inode(filp);
1901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1902 int err;
1903
1904 if (!f2fs_sb_has_crypto(inode->i_sb))
1905 return -EOPNOTSUPP;
1906
1907 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1908 goto got_it;
1909
1910 err = mnt_want_write_file(filp);
1911 if (err)
1912 return err;
1913
1914 /* update superblock with uuid */
1915 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1916
1917 err = f2fs_commit_super(sbi, false);
1918 if (err) {
1919 /* undo new data */
1920 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1921 mnt_drop_write_file(filp);
1922 return err;
1923 }
1924 mnt_drop_write_file(filp);
1925 got_it:
1926 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1927 16))
1928 return -EFAULT;
1929 return 0;
1930 }
1931
1932 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1933 {
1934 struct inode *inode = file_inode(filp);
1935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1936 __u32 sync;
1937 int ret;
1938
1939 if (!capable(CAP_SYS_ADMIN))
1940 return -EPERM;
1941
1942 if (get_user(sync, (__u32 __user *)arg))
1943 return -EFAULT;
1944
1945 if (f2fs_readonly(sbi->sb))
1946 return -EROFS;
1947
1948 ret = mnt_want_write_file(filp);
1949 if (ret)
1950 return ret;
1951
1952 if (!sync) {
1953 if (!mutex_trylock(&sbi->gc_mutex)) {
1954 ret = -EBUSY;
1955 goto out;
1956 }
1957 } else {
1958 mutex_lock(&sbi->gc_mutex);
1959 }
1960
1961 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1962 out:
1963 mnt_drop_write_file(filp);
1964 return ret;
1965 }
1966
1967 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
1968 {
1969 struct inode *inode = file_inode(filp);
1970 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1971 struct f2fs_gc_range range;
1972 u64 end;
1973 int ret;
1974
1975 if (!capable(CAP_SYS_ADMIN))
1976 return -EPERM;
1977
1978 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
1979 sizeof(range)))
1980 return -EFAULT;
1981
1982 if (f2fs_readonly(sbi->sb))
1983 return -EROFS;
1984
1985 ret = mnt_want_write_file(filp);
1986 if (ret)
1987 return ret;
1988
1989 end = range.start + range.len;
1990 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
1991 return -EINVAL;
1992 do_more:
1993 if (!range.sync) {
1994 if (!mutex_trylock(&sbi->gc_mutex)) {
1995 ret = -EBUSY;
1996 goto out;
1997 }
1998 } else {
1999 mutex_lock(&sbi->gc_mutex);
2000 }
2001
2002 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2003 range.start += sbi->blocks_per_seg;
2004 if (range.start <= end)
2005 goto do_more;
2006 out:
2007 mnt_drop_write_file(filp);
2008 return ret;
2009 }
2010
2011 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2012 {
2013 struct inode *inode = file_inode(filp);
2014 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2015 int ret;
2016
2017 if (!capable(CAP_SYS_ADMIN))
2018 return -EPERM;
2019
2020 if (f2fs_readonly(sbi->sb))
2021 return -EROFS;
2022
2023 ret = mnt_want_write_file(filp);
2024 if (ret)
2025 return ret;
2026
2027 ret = f2fs_sync_fs(sbi->sb, 1);
2028
2029 mnt_drop_write_file(filp);
2030 return ret;
2031 }
2032
2033 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2034 struct file *filp,
2035 struct f2fs_defragment *range)
2036 {
2037 struct inode *inode = file_inode(filp);
2038 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2039 struct extent_info ei = {0,0,0};
2040 pgoff_t pg_start, pg_end;
2041 unsigned int blk_per_seg = sbi->blocks_per_seg;
2042 unsigned int total = 0, sec_num;
2043 block_t blk_end = 0;
2044 bool fragmented = false;
2045 int err;
2046
2047 /* if in-place-update policy is enabled, don't waste time here */
2048 if (need_inplace_update_policy(inode, NULL))
2049 return -EINVAL;
2050
2051 pg_start = range->start >> PAGE_SHIFT;
2052 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2053
2054 f2fs_balance_fs(sbi, true);
2055
2056 inode_lock(inode);
2057
2058 /* writeback all dirty pages in the range */
2059 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2060 range->start + range->len - 1);
2061 if (err)
2062 goto out;
2063
2064 /*
2065 * lookup mapping info in extent cache, skip defragmenting if physical
2066 * block addresses are continuous.
2067 */
2068 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2069 if (ei.fofs + ei.len >= pg_end)
2070 goto out;
2071 }
2072
2073 map.m_lblk = pg_start;
2074
2075 /*
2076 * lookup mapping info in dnode page cache, skip defragmenting if all
2077 * physical block addresses are continuous even if there are hole(s)
2078 * in logical blocks.
2079 */
2080 while (map.m_lblk < pg_end) {
2081 map.m_len = pg_end - map.m_lblk;
2082 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2083 if (err)
2084 goto out;
2085
2086 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2087 map.m_lblk++;
2088 continue;
2089 }
2090
2091 if (blk_end && blk_end != map.m_pblk) {
2092 fragmented = true;
2093 break;
2094 }
2095 blk_end = map.m_pblk + map.m_len;
2096
2097 map.m_lblk += map.m_len;
2098 }
2099
2100 if (!fragmented)
2101 goto out;
2102
2103 map.m_lblk = pg_start;
2104 map.m_len = pg_end - pg_start;
2105
2106 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2107
2108 /*
2109 * make sure there are enough free section for LFS allocation, this can
2110 * avoid defragment running in SSR mode when free section are allocated
2111 * intensively
2112 */
2113 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2114 err = -EAGAIN;
2115 goto out;
2116 }
2117
2118 while (map.m_lblk < pg_end) {
2119 pgoff_t idx;
2120 int cnt = 0;
2121
2122 do_map:
2123 map.m_len = pg_end - map.m_lblk;
2124 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2125 if (err)
2126 goto clear_out;
2127
2128 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2129 map.m_lblk++;
2130 continue;
2131 }
2132
2133 set_inode_flag(inode, FI_DO_DEFRAG);
2134
2135 idx = map.m_lblk;
2136 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2137 struct page *page;
2138
2139 page = get_lock_data_page(inode, idx, true);
2140 if (IS_ERR(page)) {
2141 err = PTR_ERR(page);
2142 goto clear_out;
2143 }
2144
2145 set_page_dirty(page);
2146 f2fs_put_page(page, 1);
2147
2148 idx++;
2149 cnt++;
2150 total++;
2151 }
2152
2153 map.m_lblk = idx;
2154
2155 if (idx < pg_end && cnt < blk_per_seg)
2156 goto do_map;
2157
2158 clear_inode_flag(inode, FI_DO_DEFRAG);
2159
2160 err = filemap_fdatawrite(inode->i_mapping);
2161 if (err)
2162 goto out;
2163 }
2164 clear_out:
2165 clear_inode_flag(inode, FI_DO_DEFRAG);
2166 out:
2167 inode_unlock(inode);
2168 if (!err)
2169 range->len = (u64)total << PAGE_SHIFT;
2170 return err;
2171 }
2172
2173 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2174 {
2175 struct inode *inode = file_inode(filp);
2176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2177 struct f2fs_defragment range;
2178 int err;
2179
2180 if (!capable(CAP_SYS_ADMIN))
2181 return -EPERM;
2182
2183 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2184 return -EINVAL;
2185
2186 if (f2fs_readonly(sbi->sb))
2187 return -EROFS;
2188
2189 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2190 sizeof(range)))
2191 return -EFAULT;
2192
2193 /* verify alignment of offset & size */
2194 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2195 return -EINVAL;
2196
2197 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2198 sbi->max_file_blocks))
2199 return -EINVAL;
2200
2201 err = mnt_want_write_file(filp);
2202 if (err)
2203 return err;
2204
2205 err = f2fs_defragment_range(sbi, filp, &range);
2206 mnt_drop_write_file(filp);
2207
2208 f2fs_update_time(sbi, REQ_TIME);
2209 if (err < 0)
2210 return err;
2211
2212 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2213 sizeof(range)))
2214 return -EFAULT;
2215
2216 return 0;
2217 }
2218
2219 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2220 struct file *file_out, loff_t pos_out, size_t len)
2221 {
2222 struct inode *src = file_inode(file_in);
2223 struct inode *dst = file_inode(file_out);
2224 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2225 size_t olen = len, dst_max_i_size = 0;
2226 size_t dst_osize;
2227 int ret;
2228
2229 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2230 src->i_sb != dst->i_sb)
2231 return -EXDEV;
2232
2233 if (unlikely(f2fs_readonly(src->i_sb)))
2234 return -EROFS;
2235
2236 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2237 return -EINVAL;
2238
2239 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2240 return -EOPNOTSUPP;
2241
2242 if (src == dst) {
2243 if (pos_in == pos_out)
2244 return 0;
2245 if (pos_out > pos_in && pos_out < pos_in + len)
2246 return -EINVAL;
2247 }
2248
2249 inode_lock(src);
2250 if (src != dst) {
2251 if (!inode_trylock(dst)) {
2252 ret = -EBUSY;
2253 goto out;
2254 }
2255 }
2256
2257 ret = -EINVAL;
2258 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2259 goto out_unlock;
2260 if (len == 0)
2261 olen = len = src->i_size - pos_in;
2262 if (pos_in + len == src->i_size)
2263 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2264 if (len == 0) {
2265 ret = 0;
2266 goto out_unlock;
2267 }
2268
2269 dst_osize = dst->i_size;
2270 if (pos_out + olen > dst->i_size)
2271 dst_max_i_size = pos_out + olen;
2272
2273 /* verify the end result is block aligned */
2274 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2275 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2276 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2277 goto out_unlock;
2278
2279 ret = f2fs_convert_inline_inode(src);
2280 if (ret)
2281 goto out_unlock;
2282
2283 ret = f2fs_convert_inline_inode(dst);
2284 if (ret)
2285 goto out_unlock;
2286
2287 /* write out all dirty pages from offset */
2288 ret = filemap_write_and_wait_range(src->i_mapping,
2289 pos_in, pos_in + len);
2290 if (ret)
2291 goto out_unlock;
2292
2293 ret = filemap_write_and_wait_range(dst->i_mapping,
2294 pos_out, pos_out + len);
2295 if (ret)
2296 goto out_unlock;
2297
2298 f2fs_balance_fs(sbi, true);
2299 f2fs_lock_op(sbi);
2300 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2301 pos_out >> F2FS_BLKSIZE_BITS,
2302 len >> F2FS_BLKSIZE_BITS, false);
2303
2304 if (!ret) {
2305 if (dst_max_i_size)
2306 f2fs_i_size_write(dst, dst_max_i_size);
2307 else if (dst_osize != dst->i_size)
2308 f2fs_i_size_write(dst, dst_osize);
2309 }
2310 f2fs_unlock_op(sbi);
2311 out_unlock:
2312 if (src != dst)
2313 inode_unlock(dst);
2314 out:
2315 inode_unlock(src);
2316 return ret;
2317 }
2318
2319 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2320 {
2321 struct f2fs_move_range range;
2322 struct fd dst;
2323 int err;
2324
2325 if (!(filp->f_mode & FMODE_READ) ||
2326 !(filp->f_mode & FMODE_WRITE))
2327 return -EBADF;
2328
2329 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2330 sizeof(range)))
2331 return -EFAULT;
2332
2333 dst = fdget(range.dst_fd);
2334 if (!dst.file)
2335 return -EBADF;
2336
2337 if (!(dst.file->f_mode & FMODE_WRITE)) {
2338 err = -EBADF;
2339 goto err_out;
2340 }
2341
2342 err = mnt_want_write_file(filp);
2343 if (err)
2344 goto err_out;
2345
2346 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2347 range.pos_out, range.len);
2348
2349 mnt_drop_write_file(filp);
2350 if (err)
2351 goto err_out;
2352
2353 if (copy_to_user((struct f2fs_move_range __user *)arg,
2354 &range, sizeof(range)))
2355 err = -EFAULT;
2356 err_out:
2357 fdput(dst);
2358 return err;
2359 }
2360
2361 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2362 {
2363 struct inode *inode = file_inode(filp);
2364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2365 struct sit_info *sm = SIT_I(sbi);
2366 unsigned int start_segno = 0, end_segno = 0;
2367 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2368 struct f2fs_flush_device range;
2369 int ret;
2370
2371 if (!capable(CAP_SYS_ADMIN))
2372 return -EPERM;
2373
2374 if (f2fs_readonly(sbi->sb))
2375 return -EROFS;
2376
2377 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2378 sizeof(range)))
2379 return -EFAULT;
2380
2381 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2382 sbi->segs_per_sec != 1) {
2383 f2fs_msg(sbi->sb, KERN_WARNING,
2384 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2385 range.dev_num, sbi->s_ndevs,
2386 sbi->segs_per_sec);
2387 return -EINVAL;
2388 }
2389
2390 ret = mnt_want_write_file(filp);
2391 if (ret)
2392 return ret;
2393
2394 if (range.dev_num != 0)
2395 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2396 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2397
2398 start_segno = sm->last_victim[FLUSH_DEVICE];
2399 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2400 start_segno = dev_start_segno;
2401 end_segno = min(start_segno + range.segments, dev_end_segno);
2402
2403 while (start_segno < end_segno) {
2404 if (!mutex_trylock(&sbi->gc_mutex)) {
2405 ret = -EBUSY;
2406 goto out;
2407 }
2408 sm->last_victim[GC_CB] = end_segno + 1;
2409 sm->last_victim[GC_GREEDY] = end_segno + 1;
2410 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2411 ret = f2fs_gc(sbi, true, true, start_segno);
2412 if (ret == -EAGAIN)
2413 ret = 0;
2414 else if (ret < 0)
2415 break;
2416 start_segno++;
2417 }
2418 out:
2419 mnt_drop_write_file(filp);
2420 return ret;
2421 }
2422
2423 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2424 {
2425 struct inode *inode = file_inode(filp);
2426 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2427
2428 /* Must validate to set it with SQLite behavior in Android. */
2429 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2430
2431 return put_user(sb_feature, (u32 __user *)arg);
2432 }
2433
2434 #ifdef CONFIG_QUOTA
2435 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2436 {
2437 struct inode *inode = file_inode(filp);
2438 struct f2fs_inode_info *fi = F2FS_I(inode);
2439 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2440 struct super_block *sb = sbi->sb;
2441 struct dquot *transfer_to[MAXQUOTAS] = {};
2442 struct page *ipage;
2443 kprojid_t kprojid;
2444 int err;
2445
2446 if (!f2fs_sb_has_project_quota(sb)) {
2447 if (projid != F2FS_DEF_PROJID)
2448 return -EOPNOTSUPP;
2449 else
2450 return 0;
2451 }
2452
2453 if (!f2fs_has_extra_attr(inode))
2454 return -EOPNOTSUPP;
2455
2456 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2457
2458 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2459 return 0;
2460
2461 err = mnt_want_write_file(filp);
2462 if (err)
2463 return err;
2464
2465 err = -EPERM;
2466 inode_lock(inode);
2467
2468 /* Is it quota file? Do not allow user to mess with it */
2469 if (IS_NOQUOTA(inode))
2470 goto out_unlock;
2471
2472 ipage = get_node_page(sbi, inode->i_ino);
2473 if (IS_ERR(ipage)) {
2474 err = PTR_ERR(ipage);
2475 goto out_unlock;
2476 }
2477
2478 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2479 i_projid)) {
2480 err = -EOVERFLOW;
2481 f2fs_put_page(ipage, 1);
2482 goto out_unlock;
2483 }
2484 f2fs_put_page(ipage, 1);
2485
2486 dquot_initialize(inode);
2487
2488 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2489 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2490 err = __dquot_transfer(inode, transfer_to);
2491 dqput(transfer_to[PRJQUOTA]);
2492 if (err)
2493 goto out_dirty;
2494 }
2495
2496 F2FS_I(inode)->i_projid = kprojid;
2497 inode->i_ctime = current_time(inode);
2498 out_dirty:
2499 f2fs_mark_inode_dirty_sync(inode, true);
2500 out_unlock:
2501 inode_unlock(inode);
2502 mnt_drop_write_file(filp);
2503 return err;
2504 }
2505 #else
2506 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2507 {
2508 if (projid != F2FS_DEF_PROJID)
2509 return -EOPNOTSUPP;
2510 return 0;
2511 }
2512 #endif
2513
2514 /* Transfer internal flags to xflags */
2515 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2516 {
2517 __u32 xflags = 0;
2518
2519 if (iflags & FS_SYNC_FL)
2520 xflags |= FS_XFLAG_SYNC;
2521 if (iflags & FS_IMMUTABLE_FL)
2522 xflags |= FS_XFLAG_IMMUTABLE;
2523 if (iflags & FS_APPEND_FL)
2524 xflags |= FS_XFLAG_APPEND;
2525 if (iflags & FS_NODUMP_FL)
2526 xflags |= FS_XFLAG_NODUMP;
2527 if (iflags & FS_NOATIME_FL)
2528 xflags |= FS_XFLAG_NOATIME;
2529 if (iflags & FS_PROJINHERIT_FL)
2530 xflags |= FS_XFLAG_PROJINHERIT;
2531 return xflags;
2532 }
2533
2534 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2535 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2536 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2537
2538 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2539 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2540 FS_IMMUTABLE_FL | \
2541 FS_APPEND_FL | \
2542 FS_NODUMP_FL | \
2543 FS_NOATIME_FL | \
2544 FS_PROJINHERIT_FL)
2545
2546 /* Transfer xflags flags to internal */
2547 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2548 {
2549 unsigned long iflags = 0;
2550
2551 if (xflags & FS_XFLAG_SYNC)
2552 iflags |= FS_SYNC_FL;
2553 if (xflags & FS_XFLAG_IMMUTABLE)
2554 iflags |= FS_IMMUTABLE_FL;
2555 if (xflags & FS_XFLAG_APPEND)
2556 iflags |= FS_APPEND_FL;
2557 if (xflags & FS_XFLAG_NODUMP)
2558 iflags |= FS_NODUMP_FL;
2559 if (xflags & FS_XFLAG_NOATIME)
2560 iflags |= FS_NOATIME_FL;
2561 if (xflags & FS_XFLAG_PROJINHERIT)
2562 iflags |= FS_PROJINHERIT_FL;
2563
2564 return iflags;
2565 }
2566
2567 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2568 {
2569 struct inode *inode = file_inode(filp);
2570 struct f2fs_inode_info *fi = F2FS_I(inode);
2571 struct fsxattr fa;
2572
2573 memset(&fa, 0, sizeof(struct fsxattr));
2574 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2575 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2576
2577 if (f2fs_sb_has_project_quota(inode->i_sb))
2578 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2579 fi->i_projid);
2580
2581 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2582 return -EFAULT;
2583 return 0;
2584 }
2585
2586 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2587 {
2588 struct inode *inode = file_inode(filp);
2589 struct f2fs_inode_info *fi = F2FS_I(inode);
2590 struct fsxattr fa;
2591 unsigned int flags;
2592 int err;
2593
2594 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2595 return -EFAULT;
2596
2597 /* Make sure caller has proper permission */
2598 if (!inode_owner_or_capable(inode))
2599 return -EACCES;
2600
2601 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2602 return -EOPNOTSUPP;
2603
2604 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2605 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2606 return -EOPNOTSUPP;
2607
2608 err = mnt_want_write_file(filp);
2609 if (err)
2610 return err;
2611
2612 inode_lock(inode);
2613 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2614 (flags & F2FS_FL_XFLAG_VISIBLE);
2615 err = __f2fs_ioc_setflags(inode, flags);
2616 inode_unlock(inode);
2617 mnt_drop_write_file(filp);
2618 if (err)
2619 return err;
2620
2621 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2622 if (err)
2623 return err;
2624
2625 return 0;
2626 }
2627
2628 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2629 {
2630 switch (cmd) {
2631 case F2FS_IOC_GETFLAGS:
2632 return f2fs_ioc_getflags(filp, arg);
2633 case F2FS_IOC_SETFLAGS:
2634 return f2fs_ioc_setflags(filp, arg);
2635 case F2FS_IOC_GETVERSION:
2636 return f2fs_ioc_getversion(filp, arg);
2637 case F2FS_IOC_START_ATOMIC_WRITE:
2638 return f2fs_ioc_start_atomic_write(filp);
2639 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2640 return f2fs_ioc_commit_atomic_write(filp);
2641 case F2FS_IOC_START_VOLATILE_WRITE:
2642 return f2fs_ioc_start_volatile_write(filp);
2643 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2644 return f2fs_ioc_release_volatile_write(filp);
2645 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2646 return f2fs_ioc_abort_volatile_write(filp);
2647 case F2FS_IOC_SHUTDOWN:
2648 return f2fs_ioc_shutdown(filp, arg);
2649 case FITRIM:
2650 return f2fs_ioc_fitrim(filp, arg);
2651 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2652 return f2fs_ioc_set_encryption_policy(filp, arg);
2653 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2654 return f2fs_ioc_get_encryption_policy(filp, arg);
2655 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2656 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2657 case F2FS_IOC_GARBAGE_COLLECT:
2658 return f2fs_ioc_gc(filp, arg);
2659 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2660 return f2fs_ioc_gc_range(filp, arg);
2661 case F2FS_IOC_WRITE_CHECKPOINT:
2662 return f2fs_ioc_write_checkpoint(filp, arg);
2663 case F2FS_IOC_DEFRAGMENT:
2664 return f2fs_ioc_defragment(filp, arg);
2665 case F2FS_IOC_MOVE_RANGE:
2666 return f2fs_ioc_move_range(filp, arg);
2667 case F2FS_IOC_FLUSH_DEVICE:
2668 return f2fs_ioc_flush_device(filp, arg);
2669 case F2FS_IOC_GET_FEATURES:
2670 return f2fs_ioc_get_features(filp, arg);
2671 case F2FS_IOC_FSGETXATTR:
2672 return f2fs_ioc_fsgetxattr(filp, arg);
2673 case F2FS_IOC_FSSETXATTR:
2674 return f2fs_ioc_fssetxattr(filp, arg);
2675 default:
2676 return -ENOTTY;
2677 }
2678 }
2679
2680 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2681 {
2682 struct file *file = iocb->ki_filp;
2683 struct inode *inode = file_inode(file);
2684 struct blk_plug plug;
2685 ssize_t ret;
2686
2687 inode_lock(inode);
2688 ret = generic_write_checks(iocb, from);
2689 if (ret > 0) {
2690 int err;
2691
2692 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2693 set_inode_flag(inode, FI_NO_PREALLOC);
2694
2695 err = f2fs_preallocate_blocks(iocb, from);
2696 if (err) {
2697 inode_unlock(inode);
2698 return err;
2699 }
2700 blk_start_plug(&plug);
2701 ret = __generic_file_write_iter(iocb, from);
2702 blk_finish_plug(&plug);
2703 clear_inode_flag(inode, FI_NO_PREALLOC);
2704
2705 if (ret > 0)
2706 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2707 }
2708 inode_unlock(inode);
2709
2710 if (ret > 0)
2711 ret = generic_write_sync(iocb, ret);
2712 return ret;
2713 }
2714
2715 #ifdef CONFIG_COMPAT
2716 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2717 {
2718 switch (cmd) {
2719 case F2FS_IOC32_GETFLAGS:
2720 cmd = F2FS_IOC_GETFLAGS;
2721 break;
2722 case F2FS_IOC32_SETFLAGS:
2723 cmd = F2FS_IOC_SETFLAGS;
2724 break;
2725 case F2FS_IOC32_GETVERSION:
2726 cmd = F2FS_IOC_GETVERSION;
2727 break;
2728 case F2FS_IOC_START_ATOMIC_WRITE:
2729 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2730 case F2FS_IOC_START_VOLATILE_WRITE:
2731 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2732 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2733 case F2FS_IOC_SHUTDOWN:
2734 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2735 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2736 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2737 case F2FS_IOC_GARBAGE_COLLECT:
2738 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2739 case F2FS_IOC_WRITE_CHECKPOINT:
2740 case F2FS_IOC_DEFRAGMENT:
2741 case F2FS_IOC_MOVE_RANGE:
2742 case F2FS_IOC_FLUSH_DEVICE:
2743 case F2FS_IOC_GET_FEATURES:
2744 case F2FS_IOC_FSGETXATTR:
2745 case F2FS_IOC_FSSETXATTR:
2746 break;
2747 default:
2748 return -ENOIOCTLCMD;
2749 }
2750 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2751 }
2752 #endif
2753
2754 const struct file_operations f2fs_file_operations = {
2755 .llseek = f2fs_llseek,
2756 .read_iter = generic_file_read_iter,
2757 .write_iter = f2fs_file_write_iter,
2758 .open = f2fs_file_open,
2759 .release = f2fs_release_file,
2760 .mmap = f2fs_file_mmap,
2761 .flush = f2fs_file_flush,
2762 .fsync = f2fs_sync_file,
2763 .fallocate = f2fs_fallocate,
2764 .unlocked_ioctl = f2fs_ioctl,
2765 #ifdef CONFIG_COMPAT
2766 .compat_ioctl = f2fs_compat_ioctl,
2767 #endif
2768 .splice_read = generic_file_splice_read,
2769 .splice_write = iter_file_splice_write,
2770 };