]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/file.c
dc79694e512ce89fd7108e0a384e71c12baebdea
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include <trace/events/f2fs.h>
33 #include <uapi/linux/f2fs.h>
34
35 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
36 {
37 struct inode *inode = file_inode(vmf->vma->vm_file);
38 vm_fault_t ret;
39
40 down_read(&F2FS_I(inode)->i_mmap_sem);
41 ret = filemap_fault(vmf);
42 up_read(&F2FS_I(inode)->i_mmap_sem);
43
44 if (!ret)
45 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO,
46 F2FS_BLKSIZE);
47
48 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
49
50 return ret;
51 }
52
53 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
54 {
55 struct page *page = vmf->page;
56 struct inode *inode = file_inode(vmf->vma->vm_file);
57 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 struct dnode_of_data dn;
59 bool need_alloc = true;
60 int err = 0;
61
62 if (unlikely(IS_IMMUTABLE(inode)))
63 return VM_FAULT_SIGBUS;
64
65 if (unlikely(f2fs_cp_error(sbi))) {
66 err = -EIO;
67 goto err;
68 }
69
70 if (!f2fs_is_checkpoint_ready(sbi)) {
71 err = -ENOSPC;
72 goto err;
73 }
74
75 err = f2fs_convert_inline_inode(inode);
76 if (err)
77 goto err;
78
79 #ifdef CONFIG_F2FS_FS_COMPRESSION
80 if (f2fs_compressed_file(inode)) {
81 int ret = f2fs_is_compressed_cluster(inode, page->index);
82
83 if (ret < 0) {
84 err = ret;
85 goto err;
86 } else if (ret) {
87 if (ret < F2FS_I(inode)->i_cluster_size) {
88 err = -EAGAIN;
89 goto err;
90 }
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 down_read(&F2FS_I(inode)->i_mmap_sem);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 set_new_dnode(&dn, inode, NULL, NULL, 0);
118 err = f2fs_get_block(&dn, page->index);
119 f2fs_put_dnode(&dn);
120 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
121 }
122
123 #ifdef CONFIG_F2FS_FS_COMPRESSION
124 if (!need_alloc) {
125 set_new_dnode(&dn, inode, NULL, NULL, 0);
126 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
127 f2fs_put_dnode(&dn);
128 }
129 #endif
130 if (err) {
131 unlock_page(page);
132 goto out_sem;
133 }
134
135 f2fs_wait_on_page_writeback(page, DATA, false, true);
136
137 /* wait for GCed page writeback via META_MAPPING */
138 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139
140 /*
141 * check to see if the page is mapped already (no holes)
142 */
143 if (PageMappedToDisk(page))
144 goto out_sem;
145
146 /* page is wholly or partially inside EOF */
147 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 i_size_read(inode)) {
149 loff_t offset;
150
151 offset = i_size_read(inode) & ~PAGE_MASK;
152 zero_user_segment(page, offset, PAGE_SIZE);
153 }
154 set_page_dirty(page);
155 if (!PageUptodate(page))
156 SetPageUptodate(page);
157
158 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
159 f2fs_update_time(sbi, REQ_TIME);
160
161 trace_f2fs_vm_page_mkwrite(page, DATA);
162 out_sem:
163 up_read(&F2FS_I(inode)->i_mmap_sem);
164
165 sb_end_pagefault(inode->i_sb);
166 err:
167 return block_page_mkwrite_return(err);
168 }
169
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 .fault = f2fs_filemap_fault,
172 .map_pages = filemap_map_pages,
173 .page_mkwrite = f2fs_vm_page_mkwrite,
174 };
175
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178 struct dentry *dentry;
179
180 /*
181 * Make sure to get the non-deleted alias. The alias associated with
182 * the open file descriptor being fsync()'ed may be deleted already.
183 */
184 dentry = d_find_alias(inode);
185 if (!dentry)
186 return 0;
187
188 *pino = parent_ino(dentry);
189 dput(dentry);
190 return 1;
191 }
192
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 enum cp_reason_type cp_reason = CP_NO_NEEDED;
197
198 if (!S_ISREG(inode->i_mode))
199 cp_reason = CP_NON_REGULAR;
200 else if (f2fs_compressed_file(inode))
201 cp_reason = CP_COMPRESSED;
202 else if (inode->i_nlink != 1)
203 cp_reason = CP_HARDLINK;
204 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 cp_reason = CP_SB_NEED_CP;
206 else if (file_wrong_pino(inode))
207 cp_reason = CP_WRONG_PINO;
208 else if (!f2fs_space_for_roll_forward(sbi))
209 cp_reason = CP_NO_SPC_ROLL;
210 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 cp_reason = CP_NODE_NEED_CP;
212 else if (test_opt(sbi, FASTBOOT))
213 cp_reason = CP_FASTBOOT_MODE;
214 else if (F2FS_OPTION(sbi).active_logs == 2)
215 cp_reason = CP_SPEC_LOG_NUM;
216 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219 TRANS_DIR_INO))
220 cp_reason = CP_RECOVER_DIR;
221
222 return cp_reason;
223 }
224
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228 bool ret = false;
229 /* But we need to avoid that there are some inode updates */
230 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231 ret = true;
232 f2fs_put_page(i, 0);
233 return ret;
234 }
235
236 static void try_to_fix_pino(struct inode *inode)
237 {
238 struct f2fs_inode_info *fi = F2FS_I(inode);
239 nid_t pino;
240
241 down_write(&fi->i_sem);
242 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 get_parent_ino(inode, &pino)) {
244 f2fs_i_pino_write(inode, pino);
245 file_got_pino(inode);
246 }
247 up_write(&fi->i_sem);
248 }
249
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 int datasync, bool atomic)
252 {
253 struct inode *inode = file->f_mapping->host;
254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 nid_t ino = inode->i_ino;
256 int ret = 0;
257 enum cp_reason_type cp_reason = 0;
258 struct writeback_control wbc = {
259 .sync_mode = WB_SYNC_ALL,
260 .nr_to_write = LONG_MAX,
261 .for_reclaim = 0,
262 };
263 unsigned int seq_id = 0;
264
265 if (unlikely(f2fs_readonly(inode->i_sb) ||
266 is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
267 return 0;
268
269 trace_f2fs_sync_file_enter(inode);
270
271 if (S_ISDIR(inode->i_mode))
272 goto go_write;
273
274 /* if fdatasync is triggered, let's do in-place-update */
275 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
276 set_inode_flag(inode, FI_NEED_IPU);
277 ret = file_write_and_wait_range(file, start, end);
278 clear_inode_flag(inode, FI_NEED_IPU);
279
280 if (ret) {
281 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
282 return ret;
283 }
284
285 /* if the inode is dirty, let's recover all the time */
286 if (!f2fs_skip_inode_update(inode, datasync)) {
287 f2fs_write_inode(inode, NULL);
288 goto go_write;
289 }
290
291 /*
292 * if there is no written data, don't waste time to write recovery info.
293 */
294 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
295 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
296
297 /* it may call write_inode just prior to fsync */
298 if (need_inode_page_update(sbi, ino))
299 goto go_write;
300
301 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
302 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
303 goto flush_out;
304 goto out;
305 }
306 go_write:
307 /*
308 * Both of fdatasync() and fsync() are able to be recovered from
309 * sudden-power-off.
310 */
311 down_read(&F2FS_I(inode)->i_sem);
312 cp_reason = need_do_checkpoint(inode);
313 up_read(&F2FS_I(inode)->i_sem);
314
315 if (cp_reason) {
316 /* all the dirty node pages should be flushed for POR */
317 ret = f2fs_sync_fs(inode->i_sb, 1);
318
319 /*
320 * We've secured consistency through sync_fs. Following pino
321 * will be used only for fsynced inodes after checkpoint.
322 */
323 try_to_fix_pino(inode);
324 clear_inode_flag(inode, FI_APPEND_WRITE);
325 clear_inode_flag(inode, FI_UPDATE_WRITE);
326 goto out;
327 }
328 sync_nodes:
329 atomic_inc(&sbi->wb_sync_req[NODE]);
330 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
331 atomic_dec(&sbi->wb_sync_req[NODE]);
332 if (ret)
333 goto out;
334
335 /* if cp_error was enabled, we should avoid infinite loop */
336 if (unlikely(f2fs_cp_error(sbi))) {
337 ret = -EIO;
338 goto out;
339 }
340
341 if (f2fs_need_inode_block_update(sbi, ino)) {
342 f2fs_mark_inode_dirty_sync(inode, true);
343 f2fs_write_inode(inode, NULL);
344 goto sync_nodes;
345 }
346
347 /*
348 * If it's atomic_write, it's just fine to keep write ordering. So
349 * here we don't need to wait for node write completion, since we use
350 * node chain which serializes node blocks. If one of node writes are
351 * reordered, we can see simply broken chain, resulting in stopping
352 * roll-forward recovery. It means we'll recover all or none node blocks
353 * given fsync mark.
354 */
355 if (!atomic) {
356 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
357 if (ret)
358 goto out;
359 }
360
361 /* once recovery info is written, don't need to tack this */
362 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
363 clear_inode_flag(inode, FI_APPEND_WRITE);
364 flush_out:
365 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
366 ret = f2fs_issue_flush(sbi, inode->i_ino);
367 if (!ret) {
368 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
369 clear_inode_flag(inode, FI_UPDATE_WRITE);
370 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
371 }
372 f2fs_update_time(sbi, REQ_TIME);
373 out:
374 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
375 return ret;
376 }
377
378 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
379 {
380 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
381 return -EIO;
382 return f2fs_do_sync_file(file, start, end, datasync, false);
383 }
384
385 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
386 pgoff_t index, int whence)
387 {
388 switch (whence) {
389 case SEEK_DATA:
390 if (__is_valid_data_blkaddr(blkaddr))
391 return true;
392 if (blkaddr == NEW_ADDR &&
393 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
394 return true;
395 break;
396 case SEEK_HOLE:
397 if (blkaddr == NULL_ADDR)
398 return true;
399 break;
400 }
401 return false;
402 }
403
404 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
405 {
406 struct inode *inode = file->f_mapping->host;
407 loff_t maxbytes = inode->i_sb->s_maxbytes;
408 struct dnode_of_data dn;
409 pgoff_t pgofs, end_offset;
410 loff_t data_ofs = offset;
411 loff_t isize;
412 int err = 0;
413
414 inode_lock(inode);
415
416 isize = i_size_read(inode);
417 if (offset >= isize)
418 goto fail;
419
420 /* handle inline data case */
421 if (f2fs_has_inline_data(inode)) {
422 if (whence == SEEK_HOLE) {
423 data_ofs = isize;
424 goto found;
425 } else if (whence == SEEK_DATA) {
426 data_ofs = offset;
427 goto found;
428 }
429 }
430
431 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
432
433 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
434 set_new_dnode(&dn, inode, NULL, NULL, 0);
435 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
436 if (err && err != -ENOENT) {
437 goto fail;
438 } else if (err == -ENOENT) {
439 /* direct node does not exists */
440 if (whence == SEEK_DATA) {
441 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
442 continue;
443 } else {
444 goto found;
445 }
446 }
447
448 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
449
450 /* find data/hole in dnode block */
451 for (; dn.ofs_in_node < end_offset;
452 dn.ofs_in_node++, pgofs++,
453 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
454 block_t blkaddr;
455
456 blkaddr = f2fs_data_blkaddr(&dn);
457
458 if (__is_valid_data_blkaddr(blkaddr) &&
459 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
460 blkaddr, DATA_GENERIC_ENHANCE)) {
461 f2fs_put_dnode(&dn);
462 goto fail;
463 }
464
465 if (__found_offset(file->f_mapping, blkaddr,
466 pgofs, whence)) {
467 f2fs_put_dnode(&dn);
468 goto found;
469 }
470 }
471 f2fs_put_dnode(&dn);
472 }
473
474 if (whence == SEEK_DATA)
475 goto fail;
476 found:
477 if (whence == SEEK_HOLE && data_ofs > isize)
478 data_ofs = isize;
479 inode_unlock(inode);
480 return vfs_setpos(file, data_ofs, maxbytes);
481 fail:
482 inode_unlock(inode);
483 return -ENXIO;
484 }
485
486 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
487 {
488 struct inode *inode = file->f_mapping->host;
489 loff_t maxbytes = inode->i_sb->s_maxbytes;
490
491 if (f2fs_compressed_file(inode))
492 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
493
494 switch (whence) {
495 case SEEK_SET:
496 case SEEK_CUR:
497 case SEEK_END:
498 return generic_file_llseek_size(file, offset, whence,
499 maxbytes, i_size_read(inode));
500 case SEEK_DATA:
501 case SEEK_HOLE:
502 if (offset < 0)
503 return -ENXIO;
504 return f2fs_seek_block(file, offset, whence);
505 }
506
507 return -EINVAL;
508 }
509
510 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
511 {
512 struct inode *inode = file_inode(file);
513
514 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
515 return -EIO;
516
517 if (!f2fs_is_compress_backend_ready(inode))
518 return -EOPNOTSUPP;
519
520 file_accessed(file);
521 vma->vm_ops = &f2fs_file_vm_ops;
522 set_inode_flag(inode, FI_MMAP_FILE);
523 return 0;
524 }
525
526 static int f2fs_file_open(struct inode *inode, struct file *filp)
527 {
528 int err = fscrypt_file_open(inode, filp);
529
530 if (err)
531 return err;
532
533 if (!f2fs_is_compress_backend_ready(inode))
534 return -EOPNOTSUPP;
535
536 err = fsverity_file_open(inode, filp);
537 if (err)
538 return err;
539
540 filp->f_mode |= FMODE_NOWAIT;
541
542 return dquot_file_open(inode, filp);
543 }
544
545 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
546 {
547 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
548 struct f2fs_node *raw_node;
549 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
550 __le32 *addr;
551 int base = 0;
552 bool compressed_cluster = false;
553 int cluster_index = 0, valid_blocks = 0;
554 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
555 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
556
557 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
558 base = get_extra_isize(dn->inode);
559
560 raw_node = F2FS_NODE(dn->node_page);
561 addr = blkaddr_in_node(raw_node) + base + ofs;
562
563 /* Assumption: truncateion starts with cluster */
564 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
565 block_t blkaddr = le32_to_cpu(*addr);
566
567 if (f2fs_compressed_file(dn->inode) &&
568 !(cluster_index & (cluster_size - 1))) {
569 if (compressed_cluster)
570 f2fs_i_compr_blocks_update(dn->inode,
571 valid_blocks, false);
572 compressed_cluster = (blkaddr == COMPRESS_ADDR);
573 valid_blocks = 0;
574 }
575
576 if (blkaddr == NULL_ADDR)
577 continue;
578
579 dn->data_blkaddr = NULL_ADDR;
580 f2fs_set_data_blkaddr(dn);
581
582 if (__is_valid_data_blkaddr(blkaddr)) {
583 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
584 DATA_GENERIC_ENHANCE))
585 continue;
586 if (compressed_cluster)
587 valid_blocks++;
588 }
589
590 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
591 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
592
593 f2fs_invalidate_blocks(sbi, blkaddr);
594
595 if (!released || blkaddr != COMPRESS_ADDR)
596 nr_free++;
597 }
598
599 if (compressed_cluster)
600 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
601
602 if (nr_free) {
603 pgoff_t fofs;
604 /*
605 * once we invalidate valid blkaddr in range [ofs, ofs + count],
606 * we will invalidate all blkaddr in the whole range.
607 */
608 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
609 dn->inode) + ofs;
610 f2fs_update_extent_cache_range(dn, fofs, 0, len);
611 dec_valid_block_count(sbi, dn->inode, nr_free);
612 }
613 dn->ofs_in_node = ofs;
614
615 f2fs_update_time(sbi, REQ_TIME);
616 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
617 dn->ofs_in_node, nr_free);
618 }
619
620 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
621 {
622 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
623 }
624
625 static int truncate_partial_data_page(struct inode *inode, u64 from,
626 bool cache_only)
627 {
628 loff_t offset = from & (PAGE_SIZE - 1);
629 pgoff_t index = from >> PAGE_SHIFT;
630 struct address_space *mapping = inode->i_mapping;
631 struct page *page;
632
633 if (!offset && !cache_only)
634 return 0;
635
636 if (cache_only) {
637 page = find_lock_page(mapping, index);
638 if (page && PageUptodate(page))
639 goto truncate_out;
640 f2fs_put_page(page, 1);
641 return 0;
642 }
643
644 page = f2fs_get_lock_data_page(inode, index, true);
645 if (IS_ERR(page))
646 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
647 truncate_out:
648 f2fs_wait_on_page_writeback(page, DATA, true, true);
649 zero_user(page, offset, PAGE_SIZE - offset);
650
651 /* An encrypted inode should have a key and truncate the last page. */
652 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
653 if (!cache_only)
654 set_page_dirty(page);
655 f2fs_put_page(page, 1);
656 return 0;
657 }
658
659 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
660 {
661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
662 struct dnode_of_data dn;
663 pgoff_t free_from;
664 int count = 0, err = 0;
665 struct page *ipage;
666 bool truncate_page = false;
667
668 trace_f2fs_truncate_blocks_enter(inode, from);
669
670 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
671
672 if (free_from >= max_file_blocks(inode))
673 goto free_partial;
674
675 if (lock)
676 f2fs_lock_op(sbi);
677
678 ipage = f2fs_get_node_page(sbi, inode->i_ino);
679 if (IS_ERR(ipage)) {
680 err = PTR_ERR(ipage);
681 goto out;
682 }
683
684 if (f2fs_has_inline_data(inode)) {
685 f2fs_truncate_inline_inode(inode, ipage, from);
686 f2fs_put_page(ipage, 1);
687 truncate_page = true;
688 goto out;
689 }
690
691 set_new_dnode(&dn, inode, ipage, NULL, 0);
692 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
693 if (err) {
694 if (err == -ENOENT)
695 goto free_next;
696 goto out;
697 }
698
699 count = ADDRS_PER_PAGE(dn.node_page, inode);
700
701 count -= dn.ofs_in_node;
702 f2fs_bug_on(sbi, count < 0);
703
704 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
705 f2fs_truncate_data_blocks_range(&dn, count);
706 free_from += count;
707 }
708
709 f2fs_put_dnode(&dn);
710 free_next:
711 err = f2fs_truncate_inode_blocks(inode, free_from);
712 out:
713 if (lock)
714 f2fs_unlock_op(sbi);
715 free_partial:
716 /* lastly zero out the first data page */
717 if (!err)
718 err = truncate_partial_data_page(inode, from, truncate_page);
719
720 trace_f2fs_truncate_blocks_exit(inode, err);
721 return err;
722 }
723
724 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
725 {
726 u64 free_from = from;
727 int err;
728
729 #ifdef CONFIG_F2FS_FS_COMPRESSION
730 /*
731 * for compressed file, only support cluster size
732 * aligned truncation.
733 */
734 if (f2fs_compressed_file(inode))
735 free_from = round_up(from,
736 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
737 #endif
738
739 err = f2fs_do_truncate_blocks(inode, free_from, lock);
740 if (err)
741 return err;
742
743 #ifdef CONFIG_F2FS_FS_COMPRESSION
744 if (from != free_from) {
745 err = f2fs_truncate_partial_cluster(inode, from, lock);
746 if (err)
747 return err;
748 }
749 #endif
750
751 return 0;
752 }
753
754 int f2fs_truncate(struct inode *inode)
755 {
756 int err;
757
758 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
759 return -EIO;
760
761 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
762 S_ISLNK(inode->i_mode)))
763 return 0;
764
765 trace_f2fs_truncate(inode);
766
767 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
768 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
769 return -EIO;
770 }
771
772 err = dquot_initialize(inode);
773 if (err)
774 return err;
775
776 /* we should check inline_data size */
777 if (!f2fs_may_inline_data(inode)) {
778 err = f2fs_convert_inline_inode(inode);
779 if (err)
780 return err;
781 }
782
783 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
784 if (err)
785 return err;
786
787 inode->i_mtime = inode->i_ctime = current_time(inode);
788 f2fs_mark_inode_dirty_sync(inode, false);
789 return 0;
790 }
791
792 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
793 struct kstat *stat, u32 request_mask, unsigned int query_flags)
794 {
795 struct inode *inode = d_inode(path->dentry);
796 struct f2fs_inode_info *fi = F2FS_I(inode);
797 struct f2fs_inode *ri;
798 unsigned int flags;
799
800 if (f2fs_has_extra_attr(inode) &&
801 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
802 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
803 stat->result_mask |= STATX_BTIME;
804 stat->btime.tv_sec = fi->i_crtime.tv_sec;
805 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
806 }
807
808 flags = fi->i_flags;
809 if (flags & F2FS_COMPR_FL)
810 stat->attributes |= STATX_ATTR_COMPRESSED;
811 if (flags & F2FS_APPEND_FL)
812 stat->attributes |= STATX_ATTR_APPEND;
813 if (IS_ENCRYPTED(inode))
814 stat->attributes |= STATX_ATTR_ENCRYPTED;
815 if (flags & F2FS_IMMUTABLE_FL)
816 stat->attributes |= STATX_ATTR_IMMUTABLE;
817 if (flags & F2FS_NODUMP_FL)
818 stat->attributes |= STATX_ATTR_NODUMP;
819 if (IS_VERITY(inode))
820 stat->attributes |= STATX_ATTR_VERITY;
821
822 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
823 STATX_ATTR_APPEND |
824 STATX_ATTR_ENCRYPTED |
825 STATX_ATTR_IMMUTABLE |
826 STATX_ATTR_NODUMP |
827 STATX_ATTR_VERITY);
828
829 generic_fillattr(&init_user_ns, inode, stat);
830
831 /* we need to show initial sectors used for inline_data/dentries */
832 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
833 f2fs_has_inline_dentry(inode))
834 stat->blocks += (stat->size + 511) >> 9;
835
836 return 0;
837 }
838
839 #ifdef CONFIG_F2FS_FS_POSIX_ACL
840 static void __setattr_copy(struct user_namespace *mnt_userns,
841 struct inode *inode, const struct iattr *attr)
842 {
843 unsigned int ia_valid = attr->ia_valid;
844
845 if (ia_valid & ATTR_UID)
846 inode->i_uid = attr->ia_uid;
847 if (ia_valid & ATTR_GID)
848 inode->i_gid = attr->ia_gid;
849 if (ia_valid & ATTR_ATIME)
850 inode->i_atime = attr->ia_atime;
851 if (ia_valid & ATTR_MTIME)
852 inode->i_mtime = attr->ia_mtime;
853 if (ia_valid & ATTR_CTIME)
854 inode->i_ctime = attr->ia_ctime;
855 if (ia_valid & ATTR_MODE) {
856 umode_t mode = attr->ia_mode;
857 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
858
859 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
860 mode &= ~S_ISGID;
861 set_acl_inode(inode, mode);
862 }
863 }
864 #else
865 #define __setattr_copy setattr_copy
866 #endif
867
868 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
869 struct iattr *attr)
870 {
871 struct inode *inode = d_inode(dentry);
872 int err;
873
874 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
875 return -EIO;
876
877 if (unlikely(IS_IMMUTABLE(inode)))
878 return -EPERM;
879
880 if (unlikely(IS_APPEND(inode) &&
881 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
882 ATTR_GID | ATTR_TIMES_SET))))
883 return -EPERM;
884
885 if ((attr->ia_valid & ATTR_SIZE) &&
886 !f2fs_is_compress_backend_ready(inode))
887 return -EOPNOTSUPP;
888
889 err = setattr_prepare(&init_user_ns, dentry, attr);
890 if (err)
891 return err;
892
893 err = fscrypt_prepare_setattr(dentry, attr);
894 if (err)
895 return err;
896
897 err = fsverity_prepare_setattr(dentry, attr);
898 if (err)
899 return err;
900
901 if (is_quota_modification(inode, attr)) {
902 err = dquot_initialize(inode);
903 if (err)
904 return err;
905 }
906 if ((attr->ia_valid & ATTR_UID &&
907 !uid_eq(attr->ia_uid, inode->i_uid)) ||
908 (attr->ia_valid & ATTR_GID &&
909 !gid_eq(attr->ia_gid, inode->i_gid))) {
910 f2fs_lock_op(F2FS_I_SB(inode));
911 err = dquot_transfer(inode, attr);
912 if (err) {
913 set_sbi_flag(F2FS_I_SB(inode),
914 SBI_QUOTA_NEED_REPAIR);
915 f2fs_unlock_op(F2FS_I_SB(inode));
916 return err;
917 }
918 /*
919 * update uid/gid under lock_op(), so that dquot and inode can
920 * be updated atomically.
921 */
922 if (attr->ia_valid & ATTR_UID)
923 inode->i_uid = attr->ia_uid;
924 if (attr->ia_valid & ATTR_GID)
925 inode->i_gid = attr->ia_gid;
926 f2fs_mark_inode_dirty_sync(inode, true);
927 f2fs_unlock_op(F2FS_I_SB(inode));
928 }
929
930 if (attr->ia_valid & ATTR_SIZE) {
931 loff_t old_size = i_size_read(inode);
932
933 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
934 /*
935 * should convert inline inode before i_size_write to
936 * keep smaller than inline_data size with inline flag.
937 */
938 err = f2fs_convert_inline_inode(inode);
939 if (err)
940 return err;
941 }
942
943 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
944 down_write(&F2FS_I(inode)->i_mmap_sem);
945
946 truncate_setsize(inode, attr->ia_size);
947
948 if (attr->ia_size <= old_size)
949 err = f2fs_truncate(inode);
950 /*
951 * do not trim all blocks after i_size if target size is
952 * larger than i_size.
953 */
954 up_write(&F2FS_I(inode)->i_mmap_sem);
955 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
956 if (err)
957 return err;
958
959 spin_lock(&F2FS_I(inode)->i_size_lock);
960 inode->i_mtime = inode->i_ctime = current_time(inode);
961 F2FS_I(inode)->last_disk_size = i_size_read(inode);
962 spin_unlock(&F2FS_I(inode)->i_size_lock);
963 }
964
965 __setattr_copy(&init_user_ns, inode, attr);
966
967 if (attr->ia_valid & ATTR_MODE) {
968 err = posix_acl_chmod(&init_user_ns, inode, f2fs_get_inode_mode(inode));
969
970 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
971 if (!err)
972 inode->i_mode = F2FS_I(inode)->i_acl_mode;
973 clear_inode_flag(inode, FI_ACL_MODE);
974 }
975 }
976
977 /* file size may changed here */
978 f2fs_mark_inode_dirty_sync(inode, true);
979
980 /* inode change will produce dirty node pages flushed by checkpoint */
981 f2fs_balance_fs(F2FS_I_SB(inode), true);
982
983 return err;
984 }
985
986 const struct inode_operations f2fs_file_inode_operations = {
987 .getattr = f2fs_getattr,
988 .setattr = f2fs_setattr,
989 .get_acl = f2fs_get_acl,
990 .set_acl = f2fs_set_acl,
991 .listxattr = f2fs_listxattr,
992 .fiemap = f2fs_fiemap,
993 };
994
995 static int fill_zero(struct inode *inode, pgoff_t index,
996 loff_t start, loff_t len)
997 {
998 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
999 struct page *page;
1000
1001 if (!len)
1002 return 0;
1003
1004 f2fs_balance_fs(sbi, true);
1005
1006 f2fs_lock_op(sbi);
1007 page = f2fs_get_new_data_page(inode, NULL, index, false);
1008 f2fs_unlock_op(sbi);
1009
1010 if (IS_ERR(page))
1011 return PTR_ERR(page);
1012
1013 f2fs_wait_on_page_writeback(page, DATA, true, true);
1014 zero_user(page, start, len);
1015 set_page_dirty(page);
1016 f2fs_put_page(page, 1);
1017 return 0;
1018 }
1019
1020 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1021 {
1022 int err;
1023
1024 while (pg_start < pg_end) {
1025 struct dnode_of_data dn;
1026 pgoff_t end_offset, count;
1027
1028 set_new_dnode(&dn, inode, NULL, NULL, 0);
1029 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1030 if (err) {
1031 if (err == -ENOENT) {
1032 pg_start = f2fs_get_next_page_offset(&dn,
1033 pg_start);
1034 continue;
1035 }
1036 return err;
1037 }
1038
1039 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1040 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1041
1042 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1043
1044 f2fs_truncate_data_blocks_range(&dn, count);
1045 f2fs_put_dnode(&dn);
1046
1047 pg_start += count;
1048 }
1049 return 0;
1050 }
1051
1052 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1053 {
1054 pgoff_t pg_start, pg_end;
1055 loff_t off_start, off_end;
1056 int ret;
1057
1058 ret = f2fs_convert_inline_inode(inode);
1059 if (ret)
1060 return ret;
1061
1062 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1063 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1064
1065 off_start = offset & (PAGE_SIZE - 1);
1066 off_end = (offset + len) & (PAGE_SIZE - 1);
1067
1068 if (pg_start == pg_end) {
1069 ret = fill_zero(inode, pg_start, off_start,
1070 off_end - off_start);
1071 if (ret)
1072 return ret;
1073 } else {
1074 if (off_start) {
1075 ret = fill_zero(inode, pg_start++, off_start,
1076 PAGE_SIZE - off_start);
1077 if (ret)
1078 return ret;
1079 }
1080 if (off_end) {
1081 ret = fill_zero(inode, pg_end, 0, off_end);
1082 if (ret)
1083 return ret;
1084 }
1085
1086 if (pg_start < pg_end) {
1087 struct address_space *mapping = inode->i_mapping;
1088 loff_t blk_start, blk_end;
1089 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1090
1091 f2fs_balance_fs(sbi, true);
1092
1093 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1094 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1095
1096 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1097 down_write(&F2FS_I(inode)->i_mmap_sem);
1098
1099 truncate_inode_pages_range(mapping, blk_start,
1100 blk_end - 1);
1101
1102 f2fs_lock_op(sbi);
1103 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1104 f2fs_unlock_op(sbi);
1105
1106 up_write(&F2FS_I(inode)->i_mmap_sem);
1107 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1108 }
1109 }
1110
1111 return ret;
1112 }
1113
1114 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1115 int *do_replace, pgoff_t off, pgoff_t len)
1116 {
1117 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1118 struct dnode_of_data dn;
1119 int ret, done, i;
1120
1121 next_dnode:
1122 set_new_dnode(&dn, inode, NULL, NULL, 0);
1123 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1124 if (ret && ret != -ENOENT) {
1125 return ret;
1126 } else if (ret == -ENOENT) {
1127 if (dn.max_level == 0)
1128 return -ENOENT;
1129 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1130 dn.ofs_in_node, len);
1131 blkaddr += done;
1132 do_replace += done;
1133 goto next;
1134 }
1135
1136 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1137 dn.ofs_in_node, len);
1138 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1139 *blkaddr = f2fs_data_blkaddr(&dn);
1140
1141 if (__is_valid_data_blkaddr(*blkaddr) &&
1142 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1143 DATA_GENERIC_ENHANCE)) {
1144 f2fs_put_dnode(&dn);
1145 return -EFSCORRUPTED;
1146 }
1147
1148 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1149
1150 if (f2fs_lfs_mode(sbi)) {
1151 f2fs_put_dnode(&dn);
1152 return -EOPNOTSUPP;
1153 }
1154
1155 /* do not invalidate this block address */
1156 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1157 *do_replace = 1;
1158 }
1159 }
1160 f2fs_put_dnode(&dn);
1161 next:
1162 len -= done;
1163 off += done;
1164 if (len)
1165 goto next_dnode;
1166 return 0;
1167 }
1168
1169 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1170 int *do_replace, pgoff_t off, int len)
1171 {
1172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 struct dnode_of_data dn;
1174 int ret, i;
1175
1176 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1177 if (*do_replace == 0)
1178 continue;
1179
1180 set_new_dnode(&dn, inode, NULL, NULL, 0);
1181 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1182 if (ret) {
1183 dec_valid_block_count(sbi, inode, 1);
1184 f2fs_invalidate_blocks(sbi, *blkaddr);
1185 } else {
1186 f2fs_update_data_blkaddr(&dn, *blkaddr);
1187 }
1188 f2fs_put_dnode(&dn);
1189 }
1190 return 0;
1191 }
1192
1193 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1194 block_t *blkaddr, int *do_replace,
1195 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1196 {
1197 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1198 pgoff_t i = 0;
1199 int ret;
1200
1201 while (i < len) {
1202 if (blkaddr[i] == NULL_ADDR && !full) {
1203 i++;
1204 continue;
1205 }
1206
1207 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1208 struct dnode_of_data dn;
1209 struct node_info ni;
1210 size_t new_size;
1211 pgoff_t ilen;
1212
1213 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1214 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1215 if (ret)
1216 return ret;
1217
1218 ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1219 if (ret) {
1220 f2fs_put_dnode(&dn);
1221 return ret;
1222 }
1223
1224 ilen = min((pgoff_t)
1225 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1226 dn.ofs_in_node, len - i);
1227 do {
1228 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1229 f2fs_truncate_data_blocks_range(&dn, 1);
1230
1231 if (do_replace[i]) {
1232 f2fs_i_blocks_write(src_inode,
1233 1, false, false);
1234 f2fs_i_blocks_write(dst_inode,
1235 1, true, false);
1236 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1237 blkaddr[i], ni.version, true, false);
1238
1239 do_replace[i] = 0;
1240 }
1241 dn.ofs_in_node++;
1242 i++;
1243 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1244 if (dst_inode->i_size < new_size)
1245 f2fs_i_size_write(dst_inode, new_size);
1246 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1247
1248 f2fs_put_dnode(&dn);
1249 } else {
1250 struct page *psrc, *pdst;
1251
1252 psrc = f2fs_get_lock_data_page(src_inode,
1253 src + i, true);
1254 if (IS_ERR(psrc))
1255 return PTR_ERR(psrc);
1256 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1257 true);
1258 if (IS_ERR(pdst)) {
1259 f2fs_put_page(psrc, 1);
1260 return PTR_ERR(pdst);
1261 }
1262 f2fs_copy_page(psrc, pdst);
1263 set_page_dirty(pdst);
1264 f2fs_put_page(pdst, 1);
1265 f2fs_put_page(psrc, 1);
1266
1267 ret = f2fs_truncate_hole(src_inode,
1268 src + i, src + i + 1);
1269 if (ret)
1270 return ret;
1271 i++;
1272 }
1273 }
1274 return 0;
1275 }
1276
1277 static int __exchange_data_block(struct inode *src_inode,
1278 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1279 pgoff_t len, bool full)
1280 {
1281 block_t *src_blkaddr;
1282 int *do_replace;
1283 pgoff_t olen;
1284 int ret;
1285
1286 while (len) {
1287 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1288
1289 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1290 array_size(olen, sizeof(block_t)),
1291 GFP_NOFS);
1292 if (!src_blkaddr)
1293 return -ENOMEM;
1294
1295 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1296 array_size(olen, sizeof(int)),
1297 GFP_NOFS);
1298 if (!do_replace) {
1299 kvfree(src_blkaddr);
1300 return -ENOMEM;
1301 }
1302
1303 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1304 do_replace, src, olen);
1305 if (ret)
1306 goto roll_back;
1307
1308 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1309 do_replace, src, dst, olen, full);
1310 if (ret)
1311 goto roll_back;
1312
1313 src += olen;
1314 dst += olen;
1315 len -= olen;
1316
1317 kvfree(src_blkaddr);
1318 kvfree(do_replace);
1319 }
1320 return 0;
1321
1322 roll_back:
1323 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1324 kvfree(src_blkaddr);
1325 kvfree(do_replace);
1326 return ret;
1327 }
1328
1329 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1330 {
1331 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1332 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1333 pgoff_t start = offset >> PAGE_SHIFT;
1334 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1335 int ret;
1336
1337 f2fs_balance_fs(sbi, true);
1338
1339 /* avoid gc operation during block exchange */
1340 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1341 down_write(&F2FS_I(inode)->i_mmap_sem);
1342
1343 f2fs_lock_op(sbi);
1344 f2fs_drop_extent_tree(inode);
1345 truncate_pagecache(inode, offset);
1346 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1347 f2fs_unlock_op(sbi);
1348
1349 up_write(&F2FS_I(inode)->i_mmap_sem);
1350 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1351 return ret;
1352 }
1353
1354 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1355 {
1356 loff_t new_size;
1357 int ret;
1358
1359 if (offset + len >= i_size_read(inode))
1360 return -EINVAL;
1361
1362 /* collapse range should be aligned to block size of f2fs. */
1363 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1364 return -EINVAL;
1365
1366 ret = f2fs_convert_inline_inode(inode);
1367 if (ret)
1368 return ret;
1369
1370 /* write out all dirty pages from offset */
1371 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1372 if (ret)
1373 return ret;
1374
1375 ret = f2fs_do_collapse(inode, offset, len);
1376 if (ret)
1377 return ret;
1378
1379 /* write out all moved pages, if possible */
1380 down_write(&F2FS_I(inode)->i_mmap_sem);
1381 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1382 truncate_pagecache(inode, offset);
1383
1384 new_size = i_size_read(inode) - len;
1385 ret = f2fs_truncate_blocks(inode, new_size, true);
1386 up_write(&F2FS_I(inode)->i_mmap_sem);
1387 if (!ret)
1388 f2fs_i_size_write(inode, new_size);
1389 return ret;
1390 }
1391
1392 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1393 pgoff_t end)
1394 {
1395 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1396 pgoff_t index = start;
1397 unsigned int ofs_in_node = dn->ofs_in_node;
1398 blkcnt_t count = 0;
1399 int ret;
1400
1401 for (; index < end; index++, dn->ofs_in_node++) {
1402 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1403 count++;
1404 }
1405
1406 dn->ofs_in_node = ofs_in_node;
1407 ret = f2fs_reserve_new_blocks(dn, count);
1408 if (ret)
1409 return ret;
1410
1411 dn->ofs_in_node = ofs_in_node;
1412 for (index = start; index < end; index++, dn->ofs_in_node++) {
1413 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1414 /*
1415 * f2fs_reserve_new_blocks will not guarantee entire block
1416 * allocation.
1417 */
1418 if (dn->data_blkaddr == NULL_ADDR) {
1419 ret = -ENOSPC;
1420 break;
1421 }
1422 if (dn->data_blkaddr != NEW_ADDR) {
1423 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1424 dn->data_blkaddr = NEW_ADDR;
1425 f2fs_set_data_blkaddr(dn);
1426 }
1427 }
1428
1429 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1430
1431 return ret;
1432 }
1433
1434 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1435 int mode)
1436 {
1437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1438 struct address_space *mapping = inode->i_mapping;
1439 pgoff_t index, pg_start, pg_end;
1440 loff_t new_size = i_size_read(inode);
1441 loff_t off_start, off_end;
1442 int ret = 0;
1443
1444 ret = inode_newsize_ok(inode, (len + offset));
1445 if (ret)
1446 return ret;
1447
1448 ret = f2fs_convert_inline_inode(inode);
1449 if (ret)
1450 return ret;
1451
1452 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1453 if (ret)
1454 return ret;
1455
1456 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1457 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1458
1459 off_start = offset & (PAGE_SIZE - 1);
1460 off_end = (offset + len) & (PAGE_SIZE - 1);
1461
1462 if (pg_start == pg_end) {
1463 ret = fill_zero(inode, pg_start, off_start,
1464 off_end - off_start);
1465 if (ret)
1466 return ret;
1467
1468 new_size = max_t(loff_t, new_size, offset + len);
1469 } else {
1470 if (off_start) {
1471 ret = fill_zero(inode, pg_start++, off_start,
1472 PAGE_SIZE - off_start);
1473 if (ret)
1474 return ret;
1475
1476 new_size = max_t(loff_t, new_size,
1477 (loff_t)pg_start << PAGE_SHIFT);
1478 }
1479
1480 for (index = pg_start; index < pg_end;) {
1481 struct dnode_of_data dn;
1482 unsigned int end_offset;
1483 pgoff_t end;
1484
1485 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1486 down_write(&F2FS_I(inode)->i_mmap_sem);
1487
1488 truncate_pagecache_range(inode,
1489 (loff_t)index << PAGE_SHIFT,
1490 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1491
1492 f2fs_lock_op(sbi);
1493
1494 set_new_dnode(&dn, inode, NULL, NULL, 0);
1495 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1496 if (ret) {
1497 f2fs_unlock_op(sbi);
1498 up_write(&F2FS_I(inode)->i_mmap_sem);
1499 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1500 goto out;
1501 }
1502
1503 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1504 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1505
1506 ret = f2fs_do_zero_range(&dn, index, end);
1507 f2fs_put_dnode(&dn);
1508
1509 f2fs_unlock_op(sbi);
1510 up_write(&F2FS_I(inode)->i_mmap_sem);
1511 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1512
1513 f2fs_balance_fs(sbi, dn.node_changed);
1514
1515 if (ret)
1516 goto out;
1517
1518 index = end;
1519 new_size = max_t(loff_t, new_size,
1520 (loff_t)index << PAGE_SHIFT);
1521 }
1522
1523 if (off_end) {
1524 ret = fill_zero(inode, pg_end, 0, off_end);
1525 if (ret)
1526 goto out;
1527
1528 new_size = max_t(loff_t, new_size, offset + len);
1529 }
1530 }
1531
1532 out:
1533 if (new_size > i_size_read(inode)) {
1534 if (mode & FALLOC_FL_KEEP_SIZE)
1535 file_set_keep_isize(inode);
1536 else
1537 f2fs_i_size_write(inode, new_size);
1538 }
1539 return ret;
1540 }
1541
1542 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1543 {
1544 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1545 pgoff_t nr, pg_start, pg_end, delta, idx;
1546 loff_t new_size;
1547 int ret = 0;
1548
1549 new_size = i_size_read(inode) + len;
1550 ret = inode_newsize_ok(inode, new_size);
1551 if (ret)
1552 return ret;
1553
1554 if (offset >= i_size_read(inode))
1555 return -EINVAL;
1556
1557 /* insert range should be aligned to block size of f2fs. */
1558 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1559 return -EINVAL;
1560
1561 ret = f2fs_convert_inline_inode(inode);
1562 if (ret)
1563 return ret;
1564
1565 f2fs_balance_fs(sbi, true);
1566
1567 down_write(&F2FS_I(inode)->i_mmap_sem);
1568 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1569 up_write(&F2FS_I(inode)->i_mmap_sem);
1570 if (ret)
1571 return ret;
1572
1573 /* write out all dirty pages from offset */
1574 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1575 if (ret)
1576 return ret;
1577
1578 pg_start = offset >> PAGE_SHIFT;
1579 pg_end = (offset + len) >> PAGE_SHIFT;
1580 delta = pg_end - pg_start;
1581 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1582
1583 /* avoid gc operation during block exchange */
1584 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1585 down_write(&F2FS_I(inode)->i_mmap_sem);
1586 truncate_pagecache(inode, offset);
1587
1588 while (!ret && idx > pg_start) {
1589 nr = idx - pg_start;
1590 if (nr > delta)
1591 nr = delta;
1592 idx -= nr;
1593
1594 f2fs_lock_op(sbi);
1595 f2fs_drop_extent_tree(inode);
1596
1597 ret = __exchange_data_block(inode, inode, idx,
1598 idx + delta, nr, false);
1599 f2fs_unlock_op(sbi);
1600 }
1601 up_write(&F2FS_I(inode)->i_mmap_sem);
1602 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1603
1604 /* write out all moved pages, if possible */
1605 down_write(&F2FS_I(inode)->i_mmap_sem);
1606 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1607 truncate_pagecache(inode, offset);
1608 up_write(&F2FS_I(inode)->i_mmap_sem);
1609
1610 if (!ret)
1611 f2fs_i_size_write(inode, new_size);
1612 return ret;
1613 }
1614
1615 static int expand_inode_data(struct inode *inode, loff_t offset,
1616 loff_t len, int mode)
1617 {
1618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1619 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1620 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1621 .m_may_create = true };
1622 pgoff_t pg_start, pg_end;
1623 loff_t new_size = i_size_read(inode);
1624 loff_t off_end;
1625 block_t expanded = 0;
1626 int err;
1627
1628 err = inode_newsize_ok(inode, (len + offset));
1629 if (err)
1630 return err;
1631
1632 err = f2fs_convert_inline_inode(inode);
1633 if (err)
1634 return err;
1635
1636 f2fs_balance_fs(sbi, true);
1637
1638 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1639 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1640 off_end = (offset + len) & (PAGE_SIZE - 1);
1641
1642 map.m_lblk = pg_start;
1643 map.m_len = pg_end - pg_start;
1644 if (off_end)
1645 map.m_len++;
1646
1647 if (!map.m_len)
1648 return 0;
1649
1650 if (f2fs_is_pinned_file(inode)) {
1651 block_t sec_blks = BLKS_PER_SEC(sbi);
1652 block_t sec_len = roundup(map.m_len, sec_blks);
1653
1654 map.m_len = sec_blks;
1655 next_alloc:
1656 if (has_not_enough_free_secs(sbi, 0,
1657 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1658 down_write(&sbi->gc_lock);
1659 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
1660 if (err && err != -ENODATA && err != -EAGAIN)
1661 goto out_err;
1662 }
1663
1664 down_write(&sbi->pin_sem);
1665
1666 f2fs_lock_op(sbi);
1667 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED);
1668 f2fs_unlock_op(sbi);
1669
1670 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1671 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1672
1673 up_write(&sbi->pin_sem);
1674
1675 expanded += map.m_len;
1676 sec_len -= map.m_len;
1677 map.m_lblk += map.m_len;
1678 if (!err && sec_len)
1679 goto next_alloc;
1680
1681 map.m_len = expanded;
1682 } else {
1683 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1684 expanded = map.m_len;
1685 }
1686 out_err:
1687 if (err) {
1688 pgoff_t last_off;
1689
1690 if (!expanded)
1691 return err;
1692
1693 last_off = pg_start + expanded - 1;
1694
1695 /* update new size to the failed position */
1696 new_size = (last_off == pg_end) ? offset + len :
1697 (loff_t)(last_off + 1) << PAGE_SHIFT;
1698 } else {
1699 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1700 }
1701
1702 if (new_size > i_size_read(inode)) {
1703 if (mode & FALLOC_FL_KEEP_SIZE)
1704 file_set_keep_isize(inode);
1705 else
1706 f2fs_i_size_write(inode, new_size);
1707 }
1708
1709 return err;
1710 }
1711
1712 static long f2fs_fallocate(struct file *file, int mode,
1713 loff_t offset, loff_t len)
1714 {
1715 struct inode *inode = file_inode(file);
1716 long ret = 0;
1717
1718 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1719 return -EIO;
1720 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1721 return -ENOSPC;
1722 if (!f2fs_is_compress_backend_ready(inode))
1723 return -EOPNOTSUPP;
1724
1725 /* f2fs only support ->fallocate for regular file */
1726 if (!S_ISREG(inode->i_mode))
1727 return -EINVAL;
1728
1729 if (IS_ENCRYPTED(inode) &&
1730 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1731 return -EOPNOTSUPP;
1732
1733 if (f2fs_compressed_file(inode) &&
1734 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1735 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1736 return -EOPNOTSUPP;
1737
1738 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1739 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1740 FALLOC_FL_INSERT_RANGE))
1741 return -EOPNOTSUPP;
1742
1743 inode_lock(inode);
1744
1745 if (mode & FALLOC_FL_PUNCH_HOLE) {
1746 if (offset >= inode->i_size)
1747 goto out;
1748
1749 ret = punch_hole(inode, offset, len);
1750 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1751 ret = f2fs_collapse_range(inode, offset, len);
1752 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1753 ret = f2fs_zero_range(inode, offset, len, mode);
1754 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1755 ret = f2fs_insert_range(inode, offset, len);
1756 } else {
1757 ret = expand_inode_data(inode, offset, len, mode);
1758 }
1759
1760 if (!ret) {
1761 inode->i_mtime = inode->i_ctime = current_time(inode);
1762 f2fs_mark_inode_dirty_sync(inode, false);
1763 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1764 }
1765
1766 out:
1767 inode_unlock(inode);
1768
1769 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1770 return ret;
1771 }
1772
1773 static int f2fs_release_file(struct inode *inode, struct file *filp)
1774 {
1775 /*
1776 * f2fs_relase_file is called at every close calls. So we should
1777 * not drop any inmemory pages by close called by other process.
1778 */
1779 if (!(filp->f_mode & FMODE_WRITE) ||
1780 atomic_read(&inode->i_writecount) != 1)
1781 return 0;
1782
1783 /* some remained atomic pages should discarded */
1784 if (f2fs_is_atomic_file(inode))
1785 f2fs_drop_inmem_pages(inode);
1786 if (f2fs_is_volatile_file(inode)) {
1787 set_inode_flag(inode, FI_DROP_CACHE);
1788 filemap_fdatawrite(inode->i_mapping);
1789 clear_inode_flag(inode, FI_DROP_CACHE);
1790 clear_inode_flag(inode, FI_VOLATILE_FILE);
1791 stat_dec_volatile_write(inode);
1792 }
1793 return 0;
1794 }
1795
1796 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1797 {
1798 struct inode *inode = file_inode(file);
1799
1800 /*
1801 * If the process doing a transaction is crashed, we should do
1802 * roll-back. Otherwise, other reader/write can see corrupted database
1803 * until all the writers close its file. Since this should be done
1804 * before dropping file lock, it needs to do in ->flush.
1805 */
1806 if (f2fs_is_atomic_file(inode) &&
1807 F2FS_I(inode)->inmem_task == current)
1808 f2fs_drop_inmem_pages(inode);
1809 return 0;
1810 }
1811
1812 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1813 {
1814 struct f2fs_inode_info *fi = F2FS_I(inode);
1815 u32 masked_flags = fi->i_flags & mask;
1816
1817 f2fs_bug_on(F2FS_I_SB(inode), (iflags & ~mask));
1818
1819 /* Is it quota file? Do not allow user to mess with it */
1820 if (IS_NOQUOTA(inode))
1821 return -EPERM;
1822
1823 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1824 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1825 return -EOPNOTSUPP;
1826 if (!f2fs_empty_dir(inode))
1827 return -ENOTEMPTY;
1828 }
1829
1830 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1831 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1832 return -EOPNOTSUPP;
1833 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1834 return -EINVAL;
1835 }
1836
1837 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1838 if (masked_flags & F2FS_COMPR_FL) {
1839 if (!f2fs_disable_compressed_file(inode))
1840 return -EINVAL;
1841 }
1842 if (iflags & F2FS_NOCOMP_FL)
1843 return -EINVAL;
1844 if (iflags & F2FS_COMPR_FL) {
1845 if (!f2fs_may_compress(inode))
1846 return -EINVAL;
1847 if (S_ISREG(inode->i_mode) && inode->i_size)
1848 return -EINVAL;
1849
1850 set_compress_context(inode);
1851 }
1852 }
1853 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) {
1854 if (masked_flags & F2FS_COMPR_FL)
1855 return -EINVAL;
1856 }
1857
1858 fi->i_flags = iflags | (fi->i_flags & ~mask);
1859 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1860 (fi->i_flags & F2FS_NOCOMP_FL));
1861
1862 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1863 set_inode_flag(inode, FI_PROJ_INHERIT);
1864 else
1865 clear_inode_flag(inode, FI_PROJ_INHERIT);
1866
1867 inode->i_ctime = current_time(inode);
1868 f2fs_set_inode_flags(inode);
1869 f2fs_mark_inode_dirty_sync(inode, true);
1870 return 0;
1871 }
1872
1873 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1874
1875 /*
1876 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1877 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1878 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1879 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1880 */
1881
1882 static const struct {
1883 u32 iflag;
1884 u32 fsflag;
1885 } f2fs_fsflags_map[] = {
1886 { F2FS_COMPR_FL, FS_COMPR_FL },
1887 { F2FS_SYNC_FL, FS_SYNC_FL },
1888 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1889 { F2FS_APPEND_FL, FS_APPEND_FL },
1890 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1891 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1892 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1893 { F2FS_INDEX_FL, FS_INDEX_FL },
1894 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1895 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1896 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1897 };
1898
1899 #define F2FS_GETTABLE_FS_FL ( \
1900 FS_COMPR_FL | \
1901 FS_SYNC_FL | \
1902 FS_IMMUTABLE_FL | \
1903 FS_APPEND_FL | \
1904 FS_NODUMP_FL | \
1905 FS_NOATIME_FL | \
1906 FS_NOCOMP_FL | \
1907 FS_INDEX_FL | \
1908 FS_DIRSYNC_FL | \
1909 FS_PROJINHERIT_FL | \
1910 FS_ENCRYPT_FL | \
1911 FS_INLINE_DATA_FL | \
1912 FS_NOCOW_FL | \
1913 FS_VERITY_FL | \
1914 FS_CASEFOLD_FL)
1915
1916 #define F2FS_SETTABLE_FS_FL ( \
1917 FS_COMPR_FL | \
1918 FS_SYNC_FL | \
1919 FS_IMMUTABLE_FL | \
1920 FS_APPEND_FL | \
1921 FS_NODUMP_FL | \
1922 FS_NOATIME_FL | \
1923 FS_NOCOMP_FL | \
1924 FS_DIRSYNC_FL | \
1925 FS_PROJINHERIT_FL | \
1926 FS_CASEFOLD_FL)
1927
1928 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1929 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1930 {
1931 u32 fsflags = 0;
1932 int i;
1933
1934 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1935 if (iflags & f2fs_fsflags_map[i].iflag)
1936 fsflags |= f2fs_fsflags_map[i].fsflag;
1937
1938 return fsflags;
1939 }
1940
1941 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1942 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1943 {
1944 u32 iflags = 0;
1945 int i;
1946
1947 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1948 if (fsflags & f2fs_fsflags_map[i].fsflag)
1949 iflags |= f2fs_fsflags_map[i].iflag;
1950
1951 return iflags;
1952 }
1953
1954 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1955 {
1956 struct inode *inode = file_inode(filp);
1957 struct f2fs_inode_info *fi = F2FS_I(inode);
1958 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1959
1960 if (IS_ENCRYPTED(inode))
1961 fsflags |= FS_ENCRYPT_FL;
1962 if (IS_VERITY(inode))
1963 fsflags |= FS_VERITY_FL;
1964 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1965 fsflags |= FS_INLINE_DATA_FL;
1966 if (is_inode_flag_set(inode, FI_PIN_FILE))
1967 fsflags |= FS_NOCOW_FL;
1968
1969 fsflags &= F2FS_GETTABLE_FS_FL;
1970
1971 return put_user(fsflags, (int __user *)arg);
1972 }
1973
1974 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1975 {
1976 struct inode *inode = file_inode(filp);
1977 struct f2fs_inode_info *fi = F2FS_I(inode);
1978 u32 fsflags, old_fsflags;
1979 u32 iflags;
1980 int ret;
1981
1982 if (!inode_owner_or_capable(&init_user_ns, inode))
1983 return -EACCES;
1984
1985 if (get_user(fsflags, (int __user *)arg))
1986 return -EFAULT;
1987
1988 if (fsflags & ~F2FS_GETTABLE_FS_FL)
1989 return -EOPNOTSUPP;
1990 fsflags &= F2FS_SETTABLE_FS_FL;
1991
1992 iflags = f2fs_fsflags_to_iflags(fsflags);
1993 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1994 return -EOPNOTSUPP;
1995
1996 ret = mnt_want_write_file(filp);
1997 if (ret)
1998 return ret;
1999
2000 inode_lock(inode);
2001
2002 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
2003 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
2004 if (ret)
2005 goto out;
2006
2007 ret = f2fs_setflags_common(inode, iflags,
2008 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
2009 out:
2010 inode_unlock(inode);
2011 mnt_drop_write_file(filp);
2012 return ret;
2013 }
2014
2015 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2016 {
2017 struct inode *inode = file_inode(filp);
2018
2019 return put_user(inode->i_generation, (int __user *)arg);
2020 }
2021
2022 static int f2fs_ioc_start_atomic_write(struct file *filp)
2023 {
2024 struct inode *inode = file_inode(filp);
2025 struct f2fs_inode_info *fi = F2FS_I(inode);
2026 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2027 int ret;
2028
2029 if (!inode_owner_or_capable(&init_user_ns, inode))
2030 return -EACCES;
2031
2032 if (!S_ISREG(inode->i_mode))
2033 return -EINVAL;
2034
2035 if (filp->f_flags & O_DIRECT)
2036 return -EINVAL;
2037
2038 ret = mnt_want_write_file(filp);
2039 if (ret)
2040 return ret;
2041
2042 inode_lock(inode);
2043
2044 f2fs_disable_compressed_file(inode);
2045
2046 if (f2fs_is_atomic_file(inode)) {
2047 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
2048 ret = -EINVAL;
2049 goto out;
2050 }
2051
2052 ret = f2fs_convert_inline_inode(inode);
2053 if (ret)
2054 goto out;
2055
2056 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2057
2058 /*
2059 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2060 * f2fs_is_atomic_file.
2061 */
2062 if (get_dirty_pages(inode))
2063 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2064 inode->i_ino, get_dirty_pages(inode));
2065 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2066 if (ret) {
2067 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2068 goto out;
2069 }
2070
2071 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
2072 if (list_empty(&fi->inmem_ilist))
2073 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
2074 sbi->atomic_files++;
2075 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
2076
2077 /* add inode in inmem_list first and set atomic_file */
2078 set_inode_flag(inode, FI_ATOMIC_FILE);
2079 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2080 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2081
2082 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2083 F2FS_I(inode)->inmem_task = current;
2084 stat_update_max_atomic_write(inode);
2085 out:
2086 inode_unlock(inode);
2087 mnt_drop_write_file(filp);
2088 return ret;
2089 }
2090
2091 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2092 {
2093 struct inode *inode = file_inode(filp);
2094 int ret;
2095
2096 if (!inode_owner_or_capable(&init_user_ns, inode))
2097 return -EACCES;
2098
2099 ret = mnt_want_write_file(filp);
2100 if (ret)
2101 return ret;
2102
2103 f2fs_balance_fs(F2FS_I_SB(inode), true);
2104
2105 inode_lock(inode);
2106
2107 if (f2fs_is_volatile_file(inode)) {
2108 ret = -EINVAL;
2109 goto err_out;
2110 }
2111
2112 if (f2fs_is_atomic_file(inode)) {
2113 ret = f2fs_commit_inmem_pages(inode);
2114 if (ret)
2115 goto err_out;
2116
2117 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2118 if (!ret)
2119 f2fs_drop_inmem_pages(inode);
2120 } else {
2121 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2122 }
2123 err_out:
2124 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2125 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2126 ret = -EINVAL;
2127 }
2128 inode_unlock(inode);
2129 mnt_drop_write_file(filp);
2130 return ret;
2131 }
2132
2133 static int f2fs_ioc_start_volatile_write(struct file *filp)
2134 {
2135 struct inode *inode = file_inode(filp);
2136 int ret;
2137
2138 if (!inode_owner_or_capable(&init_user_ns, inode))
2139 return -EACCES;
2140
2141 if (!S_ISREG(inode->i_mode))
2142 return -EINVAL;
2143
2144 ret = mnt_want_write_file(filp);
2145 if (ret)
2146 return ret;
2147
2148 inode_lock(inode);
2149
2150 if (f2fs_is_volatile_file(inode))
2151 goto out;
2152
2153 ret = f2fs_convert_inline_inode(inode);
2154 if (ret)
2155 goto out;
2156
2157 stat_inc_volatile_write(inode);
2158 stat_update_max_volatile_write(inode);
2159
2160 set_inode_flag(inode, FI_VOLATILE_FILE);
2161 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2162 out:
2163 inode_unlock(inode);
2164 mnt_drop_write_file(filp);
2165 return ret;
2166 }
2167
2168 static int f2fs_ioc_release_volatile_write(struct file *filp)
2169 {
2170 struct inode *inode = file_inode(filp);
2171 int ret;
2172
2173 if (!inode_owner_or_capable(&init_user_ns, inode))
2174 return -EACCES;
2175
2176 ret = mnt_want_write_file(filp);
2177 if (ret)
2178 return ret;
2179
2180 inode_lock(inode);
2181
2182 if (!f2fs_is_volatile_file(inode))
2183 goto out;
2184
2185 if (!f2fs_is_first_block_written(inode)) {
2186 ret = truncate_partial_data_page(inode, 0, true);
2187 goto out;
2188 }
2189
2190 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2191 out:
2192 inode_unlock(inode);
2193 mnt_drop_write_file(filp);
2194 return ret;
2195 }
2196
2197 static int f2fs_ioc_abort_volatile_write(struct file *filp)
2198 {
2199 struct inode *inode = file_inode(filp);
2200 int ret;
2201
2202 if (!inode_owner_or_capable(&init_user_ns, inode))
2203 return -EACCES;
2204
2205 ret = mnt_want_write_file(filp);
2206 if (ret)
2207 return ret;
2208
2209 inode_lock(inode);
2210
2211 if (f2fs_is_atomic_file(inode))
2212 f2fs_drop_inmem_pages(inode);
2213 if (f2fs_is_volatile_file(inode)) {
2214 clear_inode_flag(inode, FI_VOLATILE_FILE);
2215 stat_dec_volatile_write(inode);
2216 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2217 }
2218
2219 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2220
2221 inode_unlock(inode);
2222
2223 mnt_drop_write_file(filp);
2224 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2225 return ret;
2226 }
2227
2228 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2229 {
2230 struct inode *inode = file_inode(filp);
2231 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2232 struct super_block *sb = sbi->sb;
2233 __u32 in;
2234 int ret = 0;
2235
2236 if (!capable(CAP_SYS_ADMIN))
2237 return -EPERM;
2238
2239 if (get_user(in, (__u32 __user *)arg))
2240 return -EFAULT;
2241
2242 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2243 ret = mnt_want_write_file(filp);
2244 if (ret) {
2245 if (ret == -EROFS) {
2246 ret = 0;
2247 f2fs_stop_checkpoint(sbi, false);
2248 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2249 trace_f2fs_shutdown(sbi, in, ret);
2250 }
2251 return ret;
2252 }
2253 }
2254
2255 switch (in) {
2256 case F2FS_GOING_DOWN_FULLSYNC:
2257 ret = freeze_bdev(sb->s_bdev);
2258 if (ret)
2259 goto out;
2260 f2fs_stop_checkpoint(sbi, false);
2261 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2262 thaw_bdev(sb->s_bdev);
2263 break;
2264 case F2FS_GOING_DOWN_METASYNC:
2265 /* do checkpoint only */
2266 ret = f2fs_sync_fs(sb, 1);
2267 if (ret)
2268 goto out;
2269 f2fs_stop_checkpoint(sbi, false);
2270 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2271 break;
2272 case F2FS_GOING_DOWN_NOSYNC:
2273 f2fs_stop_checkpoint(sbi, false);
2274 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2275 break;
2276 case F2FS_GOING_DOWN_METAFLUSH:
2277 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2278 f2fs_stop_checkpoint(sbi, false);
2279 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2280 break;
2281 case F2FS_GOING_DOWN_NEED_FSCK:
2282 set_sbi_flag(sbi, SBI_NEED_FSCK);
2283 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2284 set_sbi_flag(sbi, SBI_IS_DIRTY);
2285 /* do checkpoint only */
2286 ret = f2fs_sync_fs(sb, 1);
2287 goto out;
2288 default:
2289 ret = -EINVAL;
2290 goto out;
2291 }
2292
2293 f2fs_stop_gc_thread(sbi);
2294 f2fs_stop_discard_thread(sbi);
2295
2296 f2fs_drop_discard_cmd(sbi);
2297 clear_opt(sbi, DISCARD);
2298
2299 f2fs_update_time(sbi, REQ_TIME);
2300 out:
2301 if (in != F2FS_GOING_DOWN_FULLSYNC)
2302 mnt_drop_write_file(filp);
2303
2304 trace_f2fs_shutdown(sbi, in, ret);
2305
2306 return ret;
2307 }
2308
2309 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2310 {
2311 struct inode *inode = file_inode(filp);
2312 struct super_block *sb = inode->i_sb;
2313 struct request_queue *q = bdev_get_queue(sb->s_bdev);
2314 struct fstrim_range range;
2315 int ret;
2316
2317 if (!capable(CAP_SYS_ADMIN))
2318 return -EPERM;
2319
2320 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2321 return -EOPNOTSUPP;
2322
2323 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2324 sizeof(range)))
2325 return -EFAULT;
2326
2327 ret = mnt_want_write_file(filp);
2328 if (ret)
2329 return ret;
2330
2331 range.minlen = max((unsigned int)range.minlen,
2332 q->limits.discard_granularity);
2333 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2334 mnt_drop_write_file(filp);
2335 if (ret < 0)
2336 return ret;
2337
2338 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2339 sizeof(range)))
2340 return -EFAULT;
2341 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2342 return 0;
2343 }
2344
2345 static bool uuid_is_nonzero(__u8 u[16])
2346 {
2347 int i;
2348
2349 for (i = 0; i < 16; i++)
2350 if (u[i])
2351 return true;
2352 return false;
2353 }
2354
2355 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2356 {
2357 struct inode *inode = file_inode(filp);
2358
2359 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2360 return -EOPNOTSUPP;
2361
2362 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2363
2364 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2365 }
2366
2367 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2368 {
2369 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2370 return -EOPNOTSUPP;
2371 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2372 }
2373
2374 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2375 {
2376 struct inode *inode = file_inode(filp);
2377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2378 int err;
2379
2380 if (!f2fs_sb_has_encrypt(sbi))
2381 return -EOPNOTSUPP;
2382
2383 err = mnt_want_write_file(filp);
2384 if (err)
2385 return err;
2386
2387 down_write(&sbi->sb_lock);
2388
2389 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2390 goto got_it;
2391
2392 /* update superblock with uuid */
2393 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2394
2395 err = f2fs_commit_super(sbi, false);
2396 if (err) {
2397 /* undo new data */
2398 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2399 goto out_err;
2400 }
2401 got_it:
2402 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2403 16))
2404 err = -EFAULT;
2405 out_err:
2406 up_write(&sbi->sb_lock);
2407 mnt_drop_write_file(filp);
2408 return err;
2409 }
2410
2411 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2412 unsigned long arg)
2413 {
2414 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2415 return -EOPNOTSUPP;
2416
2417 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2418 }
2419
2420 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2421 {
2422 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2423 return -EOPNOTSUPP;
2424
2425 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2426 }
2427
2428 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2429 {
2430 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2431 return -EOPNOTSUPP;
2432
2433 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2434 }
2435
2436 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2437 unsigned long arg)
2438 {
2439 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 return -EOPNOTSUPP;
2441
2442 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2443 }
2444
2445 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2446 unsigned long arg)
2447 {
2448 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2449 return -EOPNOTSUPP;
2450
2451 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2452 }
2453
2454 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2455 {
2456 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2457 return -EOPNOTSUPP;
2458
2459 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2460 }
2461
2462 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2463 {
2464 struct inode *inode = file_inode(filp);
2465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2466 __u32 sync;
2467 int ret;
2468
2469 if (!capable(CAP_SYS_ADMIN))
2470 return -EPERM;
2471
2472 if (get_user(sync, (__u32 __user *)arg))
2473 return -EFAULT;
2474
2475 if (f2fs_readonly(sbi->sb))
2476 return -EROFS;
2477
2478 ret = mnt_want_write_file(filp);
2479 if (ret)
2480 return ret;
2481
2482 if (!sync) {
2483 if (!down_write_trylock(&sbi->gc_lock)) {
2484 ret = -EBUSY;
2485 goto out;
2486 }
2487 } else {
2488 down_write(&sbi->gc_lock);
2489 }
2490
2491 ret = f2fs_gc(sbi, sync, true, false, NULL_SEGNO);
2492 out:
2493 mnt_drop_write_file(filp);
2494 return ret;
2495 }
2496
2497 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2498 {
2499 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2500 u64 end;
2501 int ret;
2502
2503 if (!capable(CAP_SYS_ADMIN))
2504 return -EPERM;
2505 if (f2fs_readonly(sbi->sb))
2506 return -EROFS;
2507
2508 end = range->start + range->len;
2509 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2510 end >= MAX_BLKADDR(sbi))
2511 return -EINVAL;
2512
2513 ret = mnt_want_write_file(filp);
2514 if (ret)
2515 return ret;
2516
2517 do_more:
2518 if (!range->sync) {
2519 if (!down_write_trylock(&sbi->gc_lock)) {
2520 ret = -EBUSY;
2521 goto out;
2522 }
2523 } else {
2524 down_write(&sbi->gc_lock);
2525 }
2526
2527 ret = f2fs_gc(sbi, range->sync, true, false,
2528 GET_SEGNO(sbi, range->start));
2529 if (ret) {
2530 if (ret == -EBUSY)
2531 ret = -EAGAIN;
2532 goto out;
2533 }
2534 range->start += BLKS_PER_SEC(sbi);
2535 if (range->start <= end)
2536 goto do_more;
2537 out:
2538 mnt_drop_write_file(filp);
2539 return ret;
2540 }
2541
2542 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2543 {
2544 struct f2fs_gc_range range;
2545
2546 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2547 sizeof(range)))
2548 return -EFAULT;
2549 return __f2fs_ioc_gc_range(filp, &range);
2550 }
2551
2552 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2553 {
2554 struct inode *inode = file_inode(filp);
2555 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2556 int ret;
2557
2558 if (!capable(CAP_SYS_ADMIN))
2559 return -EPERM;
2560
2561 if (f2fs_readonly(sbi->sb))
2562 return -EROFS;
2563
2564 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2565 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2566 return -EINVAL;
2567 }
2568
2569 ret = mnt_want_write_file(filp);
2570 if (ret)
2571 return ret;
2572
2573 ret = f2fs_sync_fs(sbi->sb, 1);
2574
2575 mnt_drop_write_file(filp);
2576 return ret;
2577 }
2578
2579 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2580 struct file *filp,
2581 struct f2fs_defragment *range)
2582 {
2583 struct inode *inode = file_inode(filp);
2584 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2585 .m_seg_type = NO_CHECK_TYPE ,
2586 .m_may_create = false };
2587 struct extent_info ei = {0, 0, 0};
2588 pgoff_t pg_start, pg_end, next_pgofs;
2589 unsigned int blk_per_seg = sbi->blocks_per_seg;
2590 unsigned int total = 0, sec_num;
2591 block_t blk_end = 0;
2592 bool fragmented = false;
2593 int err;
2594
2595 /* if in-place-update policy is enabled, don't waste time here */
2596 if (f2fs_should_update_inplace(inode, NULL))
2597 return -EINVAL;
2598
2599 pg_start = range->start >> PAGE_SHIFT;
2600 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2601
2602 f2fs_balance_fs(sbi, true);
2603
2604 inode_lock(inode);
2605
2606 /* writeback all dirty pages in the range */
2607 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2608 range->start + range->len - 1);
2609 if (err)
2610 goto out;
2611
2612 /*
2613 * lookup mapping info in extent cache, skip defragmenting if physical
2614 * block addresses are continuous.
2615 */
2616 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2617 if (ei.fofs + ei.len >= pg_end)
2618 goto out;
2619 }
2620
2621 map.m_lblk = pg_start;
2622 map.m_next_pgofs = &next_pgofs;
2623
2624 /*
2625 * lookup mapping info in dnode page cache, skip defragmenting if all
2626 * physical block addresses are continuous even if there are hole(s)
2627 * in logical blocks.
2628 */
2629 while (map.m_lblk < pg_end) {
2630 map.m_len = pg_end - map.m_lblk;
2631 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2632 if (err)
2633 goto out;
2634
2635 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2636 map.m_lblk = next_pgofs;
2637 continue;
2638 }
2639
2640 if (blk_end && blk_end != map.m_pblk)
2641 fragmented = true;
2642
2643 /* record total count of block that we're going to move */
2644 total += map.m_len;
2645
2646 blk_end = map.m_pblk + map.m_len;
2647
2648 map.m_lblk += map.m_len;
2649 }
2650
2651 if (!fragmented) {
2652 total = 0;
2653 goto out;
2654 }
2655
2656 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2657
2658 /*
2659 * make sure there are enough free section for LFS allocation, this can
2660 * avoid defragment running in SSR mode when free section are allocated
2661 * intensively
2662 */
2663 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2664 err = -EAGAIN;
2665 goto out;
2666 }
2667
2668 map.m_lblk = pg_start;
2669 map.m_len = pg_end - pg_start;
2670 total = 0;
2671
2672 while (map.m_lblk < pg_end) {
2673 pgoff_t idx;
2674 int cnt = 0;
2675
2676 do_map:
2677 map.m_len = pg_end - map.m_lblk;
2678 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2679 if (err)
2680 goto clear_out;
2681
2682 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2683 map.m_lblk = next_pgofs;
2684 goto check;
2685 }
2686
2687 set_inode_flag(inode, FI_DO_DEFRAG);
2688
2689 idx = map.m_lblk;
2690 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2691 struct page *page;
2692
2693 page = f2fs_get_lock_data_page(inode, idx, true);
2694 if (IS_ERR(page)) {
2695 err = PTR_ERR(page);
2696 goto clear_out;
2697 }
2698
2699 set_page_dirty(page);
2700 f2fs_put_page(page, 1);
2701
2702 idx++;
2703 cnt++;
2704 total++;
2705 }
2706
2707 map.m_lblk = idx;
2708 check:
2709 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2710 goto do_map;
2711
2712 clear_inode_flag(inode, FI_DO_DEFRAG);
2713
2714 err = filemap_fdatawrite(inode->i_mapping);
2715 if (err)
2716 goto out;
2717 }
2718 clear_out:
2719 clear_inode_flag(inode, FI_DO_DEFRAG);
2720 out:
2721 inode_unlock(inode);
2722 if (!err)
2723 range->len = (u64)total << PAGE_SHIFT;
2724 return err;
2725 }
2726
2727 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2728 {
2729 struct inode *inode = file_inode(filp);
2730 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2731 struct f2fs_defragment range;
2732 int err;
2733
2734 if (!capable(CAP_SYS_ADMIN))
2735 return -EPERM;
2736
2737 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2738 return -EINVAL;
2739
2740 if (f2fs_readonly(sbi->sb))
2741 return -EROFS;
2742
2743 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2744 sizeof(range)))
2745 return -EFAULT;
2746
2747 /* verify alignment of offset & size */
2748 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2749 return -EINVAL;
2750
2751 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2752 max_file_blocks(inode)))
2753 return -EINVAL;
2754
2755 err = mnt_want_write_file(filp);
2756 if (err)
2757 return err;
2758
2759 err = f2fs_defragment_range(sbi, filp, &range);
2760 mnt_drop_write_file(filp);
2761
2762 f2fs_update_time(sbi, REQ_TIME);
2763 if (err < 0)
2764 return err;
2765
2766 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2767 sizeof(range)))
2768 return -EFAULT;
2769
2770 return 0;
2771 }
2772
2773 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2774 struct file *file_out, loff_t pos_out, size_t len)
2775 {
2776 struct inode *src = file_inode(file_in);
2777 struct inode *dst = file_inode(file_out);
2778 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2779 size_t olen = len, dst_max_i_size = 0;
2780 size_t dst_osize;
2781 int ret;
2782
2783 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2784 src->i_sb != dst->i_sb)
2785 return -EXDEV;
2786
2787 if (unlikely(f2fs_readonly(src->i_sb)))
2788 return -EROFS;
2789
2790 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2791 return -EINVAL;
2792
2793 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2794 return -EOPNOTSUPP;
2795
2796 if (pos_out < 0 || pos_in < 0)
2797 return -EINVAL;
2798
2799 if (src == dst) {
2800 if (pos_in == pos_out)
2801 return 0;
2802 if (pos_out > pos_in && pos_out < pos_in + len)
2803 return -EINVAL;
2804 }
2805
2806 inode_lock(src);
2807 if (src != dst) {
2808 ret = -EBUSY;
2809 if (!inode_trylock(dst))
2810 goto out;
2811 }
2812
2813 ret = -EINVAL;
2814 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2815 goto out_unlock;
2816 if (len == 0)
2817 olen = len = src->i_size - pos_in;
2818 if (pos_in + len == src->i_size)
2819 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2820 if (len == 0) {
2821 ret = 0;
2822 goto out_unlock;
2823 }
2824
2825 dst_osize = dst->i_size;
2826 if (pos_out + olen > dst->i_size)
2827 dst_max_i_size = pos_out + olen;
2828
2829 /* verify the end result is block aligned */
2830 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2831 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2832 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2833 goto out_unlock;
2834
2835 ret = f2fs_convert_inline_inode(src);
2836 if (ret)
2837 goto out_unlock;
2838
2839 ret = f2fs_convert_inline_inode(dst);
2840 if (ret)
2841 goto out_unlock;
2842
2843 /* write out all dirty pages from offset */
2844 ret = filemap_write_and_wait_range(src->i_mapping,
2845 pos_in, pos_in + len);
2846 if (ret)
2847 goto out_unlock;
2848
2849 ret = filemap_write_and_wait_range(dst->i_mapping,
2850 pos_out, pos_out + len);
2851 if (ret)
2852 goto out_unlock;
2853
2854 f2fs_balance_fs(sbi, true);
2855
2856 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2857 if (src != dst) {
2858 ret = -EBUSY;
2859 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2860 goto out_src;
2861 }
2862
2863 f2fs_lock_op(sbi);
2864 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2865 pos_out >> F2FS_BLKSIZE_BITS,
2866 len >> F2FS_BLKSIZE_BITS, false);
2867
2868 if (!ret) {
2869 if (dst_max_i_size)
2870 f2fs_i_size_write(dst, dst_max_i_size);
2871 else if (dst_osize != dst->i_size)
2872 f2fs_i_size_write(dst, dst_osize);
2873 }
2874 f2fs_unlock_op(sbi);
2875
2876 if (src != dst)
2877 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2878 out_src:
2879 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2880 out_unlock:
2881 if (src != dst)
2882 inode_unlock(dst);
2883 out:
2884 inode_unlock(src);
2885 return ret;
2886 }
2887
2888 static int __f2fs_ioc_move_range(struct file *filp,
2889 struct f2fs_move_range *range)
2890 {
2891 struct fd dst;
2892 int err;
2893
2894 if (!(filp->f_mode & FMODE_READ) ||
2895 !(filp->f_mode & FMODE_WRITE))
2896 return -EBADF;
2897
2898 dst = fdget(range->dst_fd);
2899 if (!dst.file)
2900 return -EBADF;
2901
2902 if (!(dst.file->f_mode & FMODE_WRITE)) {
2903 err = -EBADF;
2904 goto err_out;
2905 }
2906
2907 err = mnt_want_write_file(filp);
2908 if (err)
2909 goto err_out;
2910
2911 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2912 range->pos_out, range->len);
2913
2914 mnt_drop_write_file(filp);
2915 err_out:
2916 fdput(dst);
2917 return err;
2918 }
2919
2920 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2921 {
2922 struct f2fs_move_range range;
2923
2924 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2925 sizeof(range)))
2926 return -EFAULT;
2927 return __f2fs_ioc_move_range(filp, &range);
2928 }
2929
2930 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2931 {
2932 struct inode *inode = file_inode(filp);
2933 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2934 struct sit_info *sm = SIT_I(sbi);
2935 unsigned int start_segno = 0, end_segno = 0;
2936 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2937 struct f2fs_flush_device range;
2938 int ret;
2939
2940 if (!capable(CAP_SYS_ADMIN))
2941 return -EPERM;
2942
2943 if (f2fs_readonly(sbi->sb))
2944 return -EROFS;
2945
2946 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2947 return -EINVAL;
2948
2949 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2950 sizeof(range)))
2951 return -EFAULT;
2952
2953 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2954 __is_large_section(sbi)) {
2955 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2956 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2957 return -EINVAL;
2958 }
2959
2960 ret = mnt_want_write_file(filp);
2961 if (ret)
2962 return ret;
2963
2964 if (range.dev_num != 0)
2965 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2966 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2967
2968 start_segno = sm->last_victim[FLUSH_DEVICE];
2969 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2970 start_segno = dev_start_segno;
2971 end_segno = min(start_segno + range.segments, dev_end_segno);
2972
2973 while (start_segno < end_segno) {
2974 if (!down_write_trylock(&sbi->gc_lock)) {
2975 ret = -EBUSY;
2976 goto out;
2977 }
2978 sm->last_victim[GC_CB] = end_segno + 1;
2979 sm->last_victim[GC_GREEDY] = end_segno + 1;
2980 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2981 ret = f2fs_gc(sbi, true, true, true, start_segno);
2982 if (ret == -EAGAIN)
2983 ret = 0;
2984 else if (ret < 0)
2985 break;
2986 start_segno++;
2987 }
2988 out:
2989 mnt_drop_write_file(filp);
2990 return ret;
2991 }
2992
2993 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2994 {
2995 struct inode *inode = file_inode(filp);
2996 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2997
2998 /* Must validate to set it with SQLite behavior in Android. */
2999 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3000
3001 return put_user(sb_feature, (u32 __user *)arg);
3002 }
3003
3004 #ifdef CONFIG_QUOTA
3005 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3006 {
3007 struct dquot *transfer_to[MAXQUOTAS] = {};
3008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009 struct super_block *sb = sbi->sb;
3010 int err = 0;
3011
3012 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3013 if (!IS_ERR(transfer_to[PRJQUOTA])) {
3014 err = __dquot_transfer(inode, transfer_to);
3015 if (err)
3016 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3017 dqput(transfer_to[PRJQUOTA]);
3018 }
3019 return err;
3020 }
3021
3022 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3023 {
3024 struct inode *inode = file_inode(filp);
3025 struct f2fs_inode_info *fi = F2FS_I(inode);
3026 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3027 struct page *ipage;
3028 kprojid_t kprojid;
3029 int err;
3030
3031 if (!f2fs_sb_has_project_quota(sbi)) {
3032 if (projid != F2FS_DEF_PROJID)
3033 return -EOPNOTSUPP;
3034 else
3035 return 0;
3036 }
3037
3038 if (!f2fs_has_extra_attr(inode))
3039 return -EOPNOTSUPP;
3040
3041 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3042
3043 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
3044 return 0;
3045
3046 err = -EPERM;
3047 /* Is it quota file? Do not allow user to mess with it */
3048 if (IS_NOQUOTA(inode))
3049 return err;
3050
3051 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3052 if (IS_ERR(ipage))
3053 return PTR_ERR(ipage);
3054
3055 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
3056 i_projid)) {
3057 err = -EOVERFLOW;
3058 f2fs_put_page(ipage, 1);
3059 return err;
3060 }
3061 f2fs_put_page(ipage, 1);
3062
3063 err = dquot_initialize(inode);
3064 if (err)
3065 return err;
3066
3067 f2fs_lock_op(sbi);
3068 err = f2fs_transfer_project_quota(inode, kprojid);
3069 if (err)
3070 goto out_unlock;
3071
3072 F2FS_I(inode)->i_projid = kprojid;
3073 inode->i_ctime = current_time(inode);
3074 f2fs_mark_inode_dirty_sync(inode, true);
3075 out_unlock:
3076 f2fs_unlock_op(sbi);
3077 return err;
3078 }
3079 #else
3080 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3081 {
3082 return 0;
3083 }
3084
3085 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
3086 {
3087 if (projid != F2FS_DEF_PROJID)
3088 return -EOPNOTSUPP;
3089 return 0;
3090 }
3091 #endif
3092
3093 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
3094
3095 /*
3096 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
3097 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
3098 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
3099 */
3100
3101 static const struct {
3102 u32 iflag;
3103 u32 xflag;
3104 } f2fs_xflags_map[] = {
3105 { F2FS_SYNC_FL, FS_XFLAG_SYNC },
3106 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE },
3107 { F2FS_APPEND_FL, FS_XFLAG_APPEND },
3108 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP },
3109 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME },
3110 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT },
3111 };
3112
3113 #define F2FS_SUPPORTED_XFLAGS ( \
3114 FS_XFLAG_SYNC | \
3115 FS_XFLAG_IMMUTABLE | \
3116 FS_XFLAG_APPEND | \
3117 FS_XFLAG_NODUMP | \
3118 FS_XFLAG_NOATIME | \
3119 FS_XFLAG_PROJINHERIT)
3120
3121 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
3122 static inline u32 f2fs_iflags_to_xflags(u32 iflags)
3123 {
3124 u32 xflags = 0;
3125 int i;
3126
3127 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3128 if (iflags & f2fs_xflags_map[i].iflag)
3129 xflags |= f2fs_xflags_map[i].xflag;
3130
3131 return xflags;
3132 }
3133
3134 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
3135 static inline u32 f2fs_xflags_to_iflags(u32 xflags)
3136 {
3137 u32 iflags = 0;
3138 int i;
3139
3140 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
3141 if (xflags & f2fs_xflags_map[i].xflag)
3142 iflags |= f2fs_xflags_map[i].iflag;
3143
3144 return iflags;
3145 }
3146
3147 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
3148 {
3149 struct f2fs_inode_info *fi = F2FS_I(inode);
3150
3151 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
3152
3153 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3154 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3155 }
3156
3157 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
3158 {
3159 struct inode *inode = file_inode(filp);
3160 struct fsxattr fa;
3161
3162 f2fs_fill_fsxattr(inode, &fa);
3163
3164 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
3165 return -EFAULT;
3166 return 0;
3167 }
3168
3169 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
3170 {
3171 struct inode *inode = file_inode(filp);
3172 struct fsxattr fa, old_fa;
3173 u32 iflags;
3174 int err;
3175
3176 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
3177 return -EFAULT;
3178
3179 /* Make sure caller has proper permission */
3180 if (!inode_owner_or_capable(&init_user_ns, inode))
3181 return -EACCES;
3182
3183 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
3184 return -EOPNOTSUPP;
3185
3186 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
3187 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3188 return -EOPNOTSUPP;
3189
3190 err = mnt_want_write_file(filp);
3191 if (err)
3192 return err;
3193
3194 inode_lock(inode);
3195
3196 f2fs_fill_fsxattr(inode, &old_fa);
3197 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
3198 if (err)
3199 goto out;
3200
3201 err = f2fs_setflags_common(inode, iflags,
3202 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
3203 if (err)
3204 goto out;
3205
3206 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3207 out:
3208 inode_unlock(inode);
3209 mnt_drop_write_file(filp);
3210 return err;
3211 }
3212
3213 int f2fs_pin_file_control(struct inode *inode, bool inc)
3214 {
3215 struct f2fs_inode_info *fi = F2FS_I(inode);
3216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3217
3218 /* Use i_gc_failures for normal file as a risk signal. */
3219 if (inc)
3220 f2fs_i_gc_failures_write(inode,
3221 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3222
3223 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3224 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3225 __func__, inode->i_ino,
3226 fi->i_gc_failures[GC_FAILURE_PIN]);
3227 clear_inode_flag(inode, FI_PIN_FILE);
3228 return -EAGAIN;
3229 }
3230 return 0;
3231 }
3232
3233 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3234 {
3235 struct inode *inode = file_inode(filp);
3236 __u32 pin;
3237 int ret = 0;
3238
3239 if (get_user(pin, (__u32 __user *)arg))
3240 return -EFAULT;
3241
3242 if (!S_ISREG(inode->i_mode))
3243 return -EINVAL;
3244
3245 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3246 return -EROFS;
3247
3248 ret = mnt_want_write_file(filp);
3249 if (ret)
3250 return ret;
3251
3252 inode_lock(inode);
3253
3254 if (f2fs_should_update_outplace(inode, NULL)) {
3255 ret = -EINVAL;
3256 goto out;
3257 }
3258
3259 if (!pin) {
3260 clear_inode_flag(inode, FI_PIN_FILE);
3261 f2fs_i_gc_failures_write(inode, 0);
3262 goto done;
3263 }
3264
3265 if (f2fs_pin_file_control(inode, false)) {
3266 ret = -EAGAIN;
3267 goto out;
3268 }
3269
3270 ret = f2fs_convert_inline_inode(inode);
3271 if (ret)
3272 goto out;
3273
3274 if (!f2fs_disable_compressed_file(inode)) {
3275 ret = -EOPNOTSUPP;
3276 goto out;
3277 }
3278
3279 set_inode_flag(inode, FI_PIN_FILE);
3280 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3281 done:
3282 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3283 out:
3284 inode_unlock(inode);
3285 mnt_drop_write_file(filp);
3286 return ret;
3287 }
3288
3289 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3290 {
3291 struct inode *inode = file_inode(filp);
3292 __u32 pin = 0;
3293
3294 if (is_inode_flag_set(inode, FI_PIN_FILE))
3295 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3296 return put_user(pin, (u32 __user *)arg);
3297 }
3298
3299 int f2fs_precache_extents(struct inode *inode)
3300 {
3301 struct f2fs_inode_info *fi = F2FS_I(inode);
3302 struct f2fs_map_blocks map;
3303 pgoff_t m_next_extent;
3304 loff_t end;
3305 int err;
3306
3307 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3308 return -EOPNOTSUPP;
3309
3310 map.m_lblk = 0;
3311 map.m_next_pgofs = NULL;
3312 map.m_next_extent = &m_next_extent;
3313 map.m_seg_type = NO_CHECK_TYPE;
3314 map.m_may_create = false;
3315 end = max_file_blocks(inode);
3316
3317 while (map.m_lblk < end) {
3318 map.m_len = end - map.m_lblk;
3319
3320 down_write(&fi->i_gc_rwsem[WRITE]);
3321 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3322 up_write(&fi->i_gc_rwsem[WRITE]);
3323 if (err)
3324 return err;
3325
3326 map.m_lblk = m_next_extent;
3327 }
3328
3329 return err;
3330 }
3331
3332 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3333 {
3334 return f2fs_precache_extents(file_inode(filp));
3335 }
3336
3337 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3338 {
3339 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3340 __u64 block_count;
3341
3342 if (!capable(CAP_SYS_ADMIN))
3343 return -EPERM;
3344
3345 if (f2fs_readonly(sbi->sb))
3346 return -EROFS;
3347
3348 if (copy_from_user(&block_count, (void __user *)arg,
3349 sizeof(block_count)))
3350 return -EFAULT;
3351
3352 return f2fs_resize_fs(sbi, block_count);
3353 }
3354
3355 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3356 {
3357 struct inode *inode = file_inode(filp);
3358
3359 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3360
3361 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3362 f2fs_warn(F2FS_I_SB(inode),
3363 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3364 inode->i_ino);
3365 return -EOPNOTSUPP;
3366 }
3367
3368 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3369 }
3370
3371 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3372 {
3373 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3374 return -EOPNOTSUPP;
3375
3376 return fsverity_ioctl_measure(filp, (void __user *)arg);
3377 }
3378
3379 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3380 {
3381 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3382 return -EOPNOTSUPP;
3383
3384 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3385 }
3386
3387 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3388 {
3389 struct inode *inode = file_inode(filp);
3390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3391 char *vbuf;
3392 int count;
3393 int err = 0;
3394
3395 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3396 if (!vbuf)
3397 return -ENOMEM;
3398
3399 down_read(&sbi->sb_lock);
3400 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3401 ARRAY_SIZE(sbi->raw_super->volume_name),
3402 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3403 up_read(&sbi->sb_lock);
3404
3405 if (copy_to_user((char __user *)arg, vbuf,
3406 min(FSLABEL_MAX, count)))
3407 err = -EFAULT;
3408
3409 kfree(vbuf);
3410 return err;
3411 }
3412
3413 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3414 {
3415 struct inode *inode = file_inode(filp);
3416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3417 char *vbuf;
3418 int err = 0;
3419
3420 if (!capable(CAP_SYS_ADMIN))
3421 return -EPERM;
3422
3423 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3424 if (IS_ERR(vbuf))
3425 return PTR_ERR(vbuf);
3426
3427 err = mnt_want_write_file(filp);
3428 if (err)
3429 goto out;
3430
3431 down_write(&sbi->sb_lock);
3432
3433 memset(sbi->raw_super->volume_name, 0,
3434 sizeof(sbi->raw_super->volume_name));
3435 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3436 sbi->raw_super->volume_name,
3437 ARRAY_SIZE(sbi->raw_super->volume_name));
3438
3439 err = f2fs_commit_super(sbi, false);
3440
3441 up_write(&sbi->sb_lock);
3442
3443 mnt_drop_write_file(filp);
3444 out:
3445 kfree(vbuf);
3446 return err;
3447 }
3448
3449 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3450 {
3451 struct inode *inode = file_inode(filp);
3452 __u64 blocks;
3453
3454 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3455 return -EOPNOTSUPP;
3456
3457 if (!f2fs_compressed_file(inode))
3458 return -EINVAL;
3459
3460 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3461 return put_user(blocks, (u64 __user *)arg);
3462 }
3463
3464 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3465 {
3466 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3467 unsigned int released_blocks = 0;
3468 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3469 block_t blkaddr;
3470 int i;
3471
3472 for (i = 0; i < count; i++) {
3473 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3474 dn->ofs_in_node + i);
3475
3476 if (!__is_valid_data_blkaddr(blkaddr))
3477 continue;
3478 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3479 DATA_GENERIC_ENHANCE)))
3480 return -EFSCORRUPTED;
3481 }
3482
3483 while (count) {
3484 int compr_blocks = 0;
3485
3486 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3487 blkaddr = f2fs_data_blkaddr(dn);
3488
3489 if (i == 0) {
3490 if (blkaddr == COMPRESS_ADDR)
3491 continue;
3492 dn->ofs_in_node += cluster_size;
3493 goto next;
3494 }
3495
3496 if (__is_valid_data_blkaddr(blkaddr))
3497 compr_blocks++;
3498
3499 if (blkaddr != NEW_ADDR)
3500 continue;
3501
3502 dn->data_blkaddr = NULL_ADDR;
3503 f2fs_set_data_blkaddr(dn);
3504 }
3505
3506 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3507 dec_valid_block_count(sbi, dn->inode,
3508 cluster_size - compr_blocks);
3509
3510 released_blocks += cluster_size - compr_blocks;
3511 next:
3512 count -= cluster_size;
3513 }
3514
3515 return released_blocks;
3516 }
3517
3518 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3519 {
3520 struct inode *inode = file_inode(filp);
3521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3522 pgoff_t page_idx = 0, last_idx;
3523 unsigned int released_blocks = 0;
3524 int ret;
3525 int writecount;
3526
3527 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3528 return -EOPNOTSUPP;
3529
3530 if (!f2fs_compressed_file(inode))
3531 return -EINVAL;
3532
3533 if (f2fs_readonly(sbi->sb))
3534 return -EROFS;
3535
3536 ret = mnt_want_write_file(filp);
3537 if (ret)
3538 return ret;
3539
3540 f2fs_balance_fs(F2FS_I_SB(inode), true);
3541
3542 inode_lock(inode);
3543
3544 writecount = atomic_read(&inode->i_writecount);
3545 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3546 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3547 ret = -EBUSY;
3548 goto out;
3549 }
3550
3551 if (IS_IMMUTABLE(inode)) {
3552 ret = -EINVAL;
3553 goto out;
3554 }
3555
3556 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3557 if (ret)
3558 goto out;
3559
3560 F2FS_I(inode)->i_flags |= F2FS_IMMUTABLE_FL;
3561 f2fs_set_inode_flags(inode);
3562 inode->i_ctime = current_time(inode);
3563 f2fs_mark_inode_dirty_sync(inode, true);
3564
3565 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3566 goto out;
3567
3568 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3569 down_write(&F2FS_I(inode)->i_mmap_sem);
3570
3571 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3572
3573 while (page_idx < last_idx) {
3574 struct dnode_of_data dn;
3575 pgoff_t end_offset, count;
3576
3577 set_new_dnode(&dn, inode, NULL, NULL, 0);
3578 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3579 if (ret) {
3580 if (ret == -ENOENT) {
3581 page_idx = f2fs_get_next_page_offset(&dn,
3582 page_idx);
3583 ret = 0;
3584 continue;
3585 }
3586 break;
3587 }
3588
3589 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3590 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3591 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3592
3593 ret = release_compress_blocks(&dn, count);
3594
3595 f2fs_put_dnode(&dn);
3596
3597 if (ret < 0)
3598 break;
3599
3600 page_idx += count;
3601 released_blocks += ret;
3602 }
3603
3604 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3605 up_write(&F2FS_I(inode)->i_mmap_sem);
3606 out:
3607 inode_unlock(inode);
3608
3609 mnt_drop_write_file(filp);
3610
3611 if (ret >= 0) {
3612 ret = put_user(released_blocks, (u64 __user *)arg);
3613 } else if (released_blocks &&
3614 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3615 set_sbi_flag(sbi, SBI_NEED_FSCK);
3616 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3617 "iblocks=%llu, released=%u, compr_blocks=%u, "
3618 "run fsck to fix.",
3619 __func__, inode->i_ino, inode->i_blocks,
3620 released_blocks,
3621 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3622 }
3623
3624 return ret;
3625 }
3626
3627 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3628 {
3629 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3630 unsigned int reserved_blocks = 0;
3631 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3632 block_t blkaddr;
3633 int i;
3634
3635 for (i = 0; i < count; i++) {
3636 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3637 dn->ofs_in_node + i);
3638
3639 if (!__is_valid_data_blkaddr(blkaddr))
3640 continue;
3641 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3642 DATA_GENERIC_ENHANCE)))
3643 return -EFSCORRUPTED;
3644 }
3645
3646 while (count) {
3647 int compr_blocks = 0;
3648 blkcnt_t reserved;
3649 int ret;
3650
3651 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3652 blkaddr = f2fs_data_blkaddr(dn);
3653
3654 if (i == 0) {
3655 if (blkaddr == COMPRESS_ADDR)
3656 continue;
3657 dn->ofs_in_node += cluster_size;
3658 goto next;
3659 }
3660
3661 if (__is_valid_data_blkaddr(blkaddr)) {
3662 compr_blocks++;
3663 continue;
3664 }
3665
3666 dn->data_blkaddr = NEW_ADDR;
3667 f2fs_set_data_blkaddr(dn);
3668 }
3669
3670 reserved = cluster_size - compr_blocks;
3671 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3672 if (ret)
3673 return ret;
3674
3675 if (reserved != cluster_size - compr_blocks)
3676 return -ENOSPC;
3677
3678 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3679
3680 reserved_blocks += reserved;
3681 next:
3682 count -= cluster_size;
3683 }
3684
3685 return reserved_blocks;
3686 }
3687
3688 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3689 {
3690 struct inode *inode = file_inode(filp);
3691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3692 pgoff_t page_idx = 0, last_idx;
3693 unsigned int reserved_blocks = 0;
3694 int ret;
3695
3696 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3697 return -EOPNOTSUPP;
3698
3699 if (!f2fs_compressed_file(inode))
3700 return -EINVAL;
3701
3702 if (f2fs_readonly(sbi->sb))
3703 return -EROFS;
3704
3705 ret = mnt_want_write_file(filp);
3706 if (ret)
3707 return ret;
3708
3709 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3710 goto out;
3711
3712 f2fs_balance_fs(F2FS_I_SB(inode), true);
3713
3714 inode_lock(inode);
3715
3716 if (!IS_IMMUTABLE(inode)) {
3717 ret = -EINVAL;
3718 goto unlock_inode;
3719 }
3720
3721 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3722 down_write(&F2FS_I(inode)->i_mmap_sem);
3723
3724 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3725
3726 while (page_idx < last_idx) {
3727 struct dnode_of_data dn;
3728 pgoff_t end_offset, count;
3729
3730 set_new_dnode(&dn, inode, NULL, NULL, 0);
3731 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3732 if (ret) {
3733 if (ret == -ENOENT) {
3734 page_idx = f2fs_get_next_page_offset(&dn,
3735 page_idx);
3736 ret = 0;
3737 continue;
3738 }
3739 break;
3740 }
3741
3742 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3743 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3744 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3745
3746 ret = reserve_compress_blocks(&dn, count);
3747
3748 f2fs_put_dnode(&dn);
3749
3750 if (ret < 0)
3751 break;
3752
3753 page_idx += count;
3754 reserved_blocks += ret;
3755 }
3756
3757 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3758 up_write(&F2FS_I(inode)->i_mmap_sem);
3759
3760 if (ret >= 0) {
3761 F2FS_I(inode)->i_flags &= ~F2FS_IMMUTABLE_FL;
3762 f2fs_set_inode_flags(inode);
3763 inode->i_ctime = current_time(inode);
3764 f2fs_mark_inode_dirty_sync(inode, true);
3765 }
3766 unlock_inode:
3767 inode_unlock(inode);
3768 out:
3769 mnt_drop_write_file(filp);
3770
3771 if (ret >= 0) {
3772 ret = put_user(reserved_blocks, (u64 __user *)arg);
3773 } else if (reserved_blocks &&
3774 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3775 set_sbi_flag(sbi, SBI_NEED_FSCK);
3776 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3777 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3778 "run fsck to fix.",
3779 __func__, inode->i_ino, inode->i_blocks,
3780 reserved_blocks,
3781 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3782 }
3783
3784 return ret;
3785 }
3786
3787 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3788 pgoff_t off, block_t block, block_t len, u32 flags)
3789 {
3790 struct request_queue *q = bdev_get_queue(bdev);
3791 sector_t sector = SECTOR_FROM_BLOCK(block);
3792 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3793 int ret = 0;
3794
3795 if (!q)
3796 return -ENXIO;
3797
3798 if (flags & F2FS_TRIM_FILE_DISCARD)
3799 ret = blkdev_issue_discard(bdev, sector, nr_sects, GFP_NOFS,
3800 blk_queue_secure_erase(q) ?
3801 BLKDEV_DISCARD_SECURE : 0);
3802
3803 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3804 if (IS_ENCRYPTED(inode))
3805 ret = fscrypt_zeroout_range(inode, off, block, len);
3806 else
3807 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3808 GFP_NOFS, 0);
3809 }
3810
3811 return ret;
3812 }
3813
3814 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3815 {
3816 struct inode *inode = file_inode(filp);
3817 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3818 struct address_space *mapping = inode->i_mapping;
3819 struct block_device *prev_bdev = NULL;
3820 struct f2fs_sectrim_range range;
3821 pgoff_t index, pg_end, prev_index = 0;
3822 block_t prev_block = 0, len = 0;
3823 loff_t end_addr;
3824 bool to_end = false;
3825 int ret = 0;
3826
3827 if (!(filp->f_mode & FMODE_WRITE))
3828 return -EBADF;
3829
3830 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3831 sizeof(range)))
3832 return -EFAULT;
3833
3834 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3835 !S_ISREG(inode->i_mode))
3836 return -EINVAL;
3837
3838 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3839 !f2fs_hw_support_discard(sbi)) ||
3840 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3841 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3842 return -EOPNOTSUPP;
3843
3844 file_start_write(filp);
3845 inode_lock(inode);
3846
3847 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3848 range.start >= inode->i_size) {
3849 ret = -EINVAL;
3850 goto err;
3851 }
3852
3853 if (range.len == 0)
3854 goto err;
3855
3856 if (inode->i_size - range.start > range.len) {
3857 end_addr = range.start + range.len;
3858 } else {
3859 end_addr = range.len == (u64)-1 ?
3860 sbi->sb->s_maxbytes : inode->i_size;
3861 to_end = true;
3862 }
3863
3864 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3865 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3866 ret = -EINVAL;
3867 goto err;
3868 }
3869
3870 index = F2FS_BYTES_TO_BLK(range.start);
3871 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3872
3873 ret = f2fs_convert_inline_inode(inode);
3874 if (ret)
3875 goto err;
3876
3877 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3878 down_write(&F2FS_I(inode)->i_mmap_sem);
3879
3880 ret = filemap_write_and_wait_range(mapping, range.start,
3881 to_end ? LLONG_MAX : end_addr - 1);
3882 if (ret)
3883 goto out;
3884
3885 truncate_inode_pages_range(mapping, range.start,
3886 to_end ? -1 : end_addr - 1);
3887
3888 while (index < pg_end) {
3889 struct dnode_of_data dn;
3890 pgoff_t end_offset, count;
3891 int i;
3892
3893 set_new_dnode(&dn, inode, NULL, NULL, 0);
3894 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3895 if (ret) {
3896 if (ret == -ENOENT) {
3897 index = f2fs_get_next_page_offset(&dn, index);
3898 continue;
3899 }
3900 goto out;
3901 }
3902
3903 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3904 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3905 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3906 struct block_device *cur_bdev;
3907 block_t blkaddr = f2fs_data_blkaddr(&dn);
3908
3909 if (!__is_valid_data_blkaddr(blkaddr))
3910 continue;
3911
3912 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3913 DATA_GENERIC_ENHANCE)) {
3914 ret = -EFSCORRUPTED;
3915 f2fs_put_dnode(&dn);
3916 goto out;
3917 }
3918
3919 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3920 if (f2fs_is_multi_device(sbi)) {
3921 int di = f2fs_target_device_index(sbi, blkaddr);
3922
3923 blkaddr -= FDEV(di).start_blk;
3924 }
3925
3926 if (len) {
3927 if (prev_bdev == cur_bdev &&
3928 index == prev_index + len &&
3929 blkaddr == prev_block + len) {
3930 len++;
3931 } else {
3932 ret = f2fs_secure_erase(prev_bdev,
3933 inode, prev_index, prev_block,
3934 len, range.flags);
3935 if (ret) {
3936 f2fs_put_dnode(&dn);
3937 goto out;
3938 }
3939
3940 len = 0;
3941 }
3942 }
3943
3944 if (!len) {
3945 prev_bdev = cur_bdev;
3946 prev_index = index;
3947 prev_block = blkaddr;
3948 len = 1;
3949 }
3950 }
3951
3952 f2fs_put_dnode(&dn);
3953
3954 if (fatal_signal_pending(current)) {
3955 ret = -EINTR;
3956 goto out;
3957 }
3958 cond_resched();
3959 }
3960
3961 if (len)
3962 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3963 prev_block, len, range.flags);
3964 out:
3965 up_write(&F2FS_I(inode)->i_mmap_sem);
3966 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3967 err:
3968 inode_unlock(inode);
3969 file_end_write(filp);
3970
3971 return ret;
3972 }
3973
3974 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3975 {
3976 struct inode *inode = file_inode(filp);
3977 struct f2fs_comp_option option;
3978
3979 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3980 return -EOPNOTSUPP;
3981
3982 inode_lock_shared(inode);
3983
3984 if (!f2fs_compressed_file(inode)) {
3985 inode_unlock_shared(inode);
3986 return -ENODATA;
3987 }
3988
3989 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3990 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3991
3992 inode_unlock_shared(inode);
3993
3994 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3995 sizeof(option)))
3996 return -EFAULT;
3997
3998 return 0;
3999 }
4000
4001 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4002 {
4003 struct inode *inode = file_inode(filp);
4004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4005 struct f2fs_comp_option option;
4006 int ret = 0;
4007
4008 if (!f2fs_sb_has_compression(sbi))
4009 return -EOPNOTSUPP;
4010
4011 if (!(filp->f_mode & FMODE_WRITE))
4012 return -EBADF;
4013
4014 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4015 sizeof(option)))
4016 return -EFAULT;
4017
4018 if (!f2fs_compressed_file(inode) ||
4019 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4020 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4021 option.algorithm >= COMPRESS_MAX)
4022 return -EINVAL;
4023
4024 file_start_write(filp);
4025 inode_lock(inode);
4026
4027 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4028 ret = -EBUSY;
4029 goto out;
4030 }
4031
4032 if (inode->i_size != 0) {
4033 ret = -EFBIG;
4034 goto out;
4035 }
4036
4037 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4038 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4039 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
4040 f2fs_mark_inode_dirty_sync(inode, true);
4041
4042 if (!f2fs_is_compress_backend_ready(inode))
4043 f2fs_warn(sbi, "compression algorithm is successfully set, "
4044 "but current kernel doesn't support this algorithm.");
4045 out:
4046 inode_unlock(inode);
4047 file_end_write(filp);
4048
4049 return ret;
4050 }
4051
4052 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4053 {
4054 DEFINE_READAHEAD(ractl, NULL, inode->i_mapping, page_idx);
4055 struct address_space *mapping = inode->i_mapping;
4056 struct page *page;
4057 pgoff_t redirty_idx = page_idx;
4058 int i, page_len = 0, ret = 0;
4059
4060 page_cache_ra_unbounded(&ractl, len, 0);
4061
4062 for (i = 0; i < len; i++, page_idx++) {
4063 page = read_cache_page(mapping, page_idx, NULL, NULL);
4064 if (IS_ERR(page)) {
4065 ret = PTR_ERR(page);
4066 break;
4067 }
4068 page_len++;
4069 }
4070
4071 for (i = 0; i < page_len; i++, redirty_idx++) {
4072 page = find_lock_page(mapping, redirty_idx);
4073 if (!page) {
4074 ret = -ENOMEM;
4075 break;
4076 }
4077 set_page_dirty(page);
4078 f2fs_put_page(page, 1);
4079 f2fs_put_page(page, 0);
4080 }
4081
4082 return ret;
4083 }
4084
4085 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
4086 {
4087 struct inode *inode = file_inode(filp);
4088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4089 struct f2fs_inode_info *fi = F2FS_I(inode);
4090 pgoff_t page_idx = 0, last_idx;
4091 unsigned int blk_per_seg = sbi->blocks_per_seg;
4092 int cluster_size = F2FS_I(inode)->i_cluster_size;
4093 int count, ret;
4094
4095 if (!f2fs_sb_has_compression(sbi) ||
4096 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4097 return -EOPNOTSUPP;
4098
4099 if (!(filp->f_mode & FMODE_WRITE))
4100 return -EBADF;
4101
4102 if (!f2fs_compressed_file(inode))
4103 return -EINVAL;
4104
4105 f2fs_balance_fs(F2FS_I_SB(inode), true);
4106
4107 file_start_write(filp);
4108 inode_lock(inode);
4109
4110 if (!f2fs_is_compress_backend_ready(inode)) {
4111 ret = -EOPNOTSUPP;
4112 goto out;
4113 }
4114
4115 if (f2fs_is_mmap_file(inode)) {
4116 ret = -EBUSY;
4117 goto out;
4118 }
4119
4120 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4121 if (ret)
4122 goto out;
4123
4124 if (!atomic_read(&fi->i_compr_blocks))
4125 goto out;
4126
4127 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4128
4129 count = last_idx - page_idx;
4130 while (count) {
4131 int len = min(cluster_size, count);
4132
4133 ret = redirty_blocks(inode, page_idx, len);
4134 if (ret < 0)
4135 break;
4136
4137 if (get_dirty_pages(inode) >= blk_per_seg)
4138 filemap_fdatawrite(inode->i_mapping);
4139
4140 count -= len;
4141 page_idx += len;
4142 }
4143
4144 if (!ret)
4145 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4146 LLONG_MAX);
4147
4148 if (ret)
4149 f2fs_warn(sbi, "%s: The file might be partially decompressed "
4150 "(errno=%d). Please delete the file.\n",
4151 __func__, ret);
4152 out:
4153 inode_unlock(inode);
4154 file_end_write(filp);
4155
4156 return ret;
4157 }
4158
4159 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4160 {
4161 struct inode *inode = file_inode(filp);
4162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4163 pgoff_t page_idx = 0, last_idx;
4164 unsigned int blk_per_seg = sbi->blocks_per_seg;
4165 int cluster_size = F2FS_I(inode)->i_cluster_size;
4166 int count, ret;
4167
4168 if (!f2fs_sb_has_compression(sbi) ||
4169 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4170 return -EOPNOTSUPP;
4171
4172 if (!(filp->f_mode & FMODE_WRITE))
4173 return -EBADF;
4174
4175 if (!f2fs_compressed_file(inode))
4176 return -EINVAL;
4177
4178 f2fs_balance_fs(F2FS_I_SB(inode), true);
4179
4180 file_start_write(filp);
4181 inode_lock(inode);
4182
4183 if (!f2fs_is_compress_backend_ready(inode)) {
4184 ret = -EOPNOTSUPP;
4185 goto out;
4186 }
4187
4188 if (f2fs_is_mmap_file(inode)) {
4189 ret = -EBUSY;
4190 goto out;
4191 }
4192
4193 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4194 if (ret)
4195 goto out;
4196
4197 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4198
4199 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4200
4201 count = last_idx - page_idx;
4202 while (count) {
4203 int len = min(cluster_size, count);
4204
4205 ret = redirty_blocks(inode, page_idx, len);
4206 if (ret < 0)
4207 break;
4208
4209 if (get_dirty_pages(inode) >= blk_per_seg)
4210 filemap_fdatawrite(inode->i_mapping);
4211
4212 count -= len;
4213 page_idx += len;
4214 }
4215
4216 if (!ret)
4217 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4218 LLONG_MAX);
4219
4220 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4221
4222 if (ret)
4223 f2fs_warn(sbi, "%s: The file might be partially compressed "
4224 "(errno=%d). Please delete the file.\n",
4225 __func__, ret);
4226 out:
4227 inode_unlock(inode);
4228 file_end_write(filp);
4229
4230 return ret;
4231 }
4232
4233 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4234 {
4235 switch (cmd) {
4236 case FS_IOC_GETFLAGS:
4237 return f2fs_ioc_getflags(filp, arg);
4238 case FS_IOC_SETFLAGS:
4239 return f2fs_ioc_setflags(filp, arg);
4240 case FS_IOC_GETVERSION:
4241 return f2fs_ioc_getversion(filp, arg);
4242 case F2FS_IOC_START_ATOMIC_WRITE:
4243 return f2fs_ioc_start_atomic_write(filp);
4244 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4245 return f2fs_ioc_commit_atomic_write(filp);
4246 case F2FS_IOC_START_VOLATILE_WRITE:
4247 return f2fs_ioc_start_volatile_write(filp);
4248 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4249 return f2fs_ioc_release_volatile_write(filp);
4250 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4251 return f2fs_ioc_abort_volatile_write(filp);
4252 case F2FS_IOC_SHUTDOWN:
4253 return f2fs_ioc_shutdown(filp, arg);
4254 case FITRIM:
4255 return f2fs_ioc_fitrim(filp, arg);
4256 case FS_IOC_SET_ENCRYPTION_POLICY:
4257 return f2fs_ioc_set_encryption_policy(filp, arg);
4258 case FS_IOC_GET_ENCRYPTION_POLICY:
4259 return f2fs_ioc_get_encryption_policy(filp, arg);
4260 case FS_IOC_GET_ENCRYPTION_PWSALT:
4261 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4262 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4263 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4264 case FS_IOC_ADD_ENCRYPTION_KEY:
4265 return f2fs_ioc_add_encryption_key(filp, arg);
4266 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4267 return f2fs_ioc_remove_encryption_key(filp, arg);
4268 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4269 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4270 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4271 return f2fs_ioc_get_encryption_key_status(filp, arg);
4272 case FS_IOC_GET_ENCRYPTION_NONCE:
4273 return f2fs_ioc_get_encryption_nonce(filp, arg);
4274 case F2FS_IOC_GARBAGE_COLLECT:
4275 return f2fs_ioc_gc(filp, arg);
4276 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4277 return f2fs_ioc_gc_range(filp, arg);
4278 case F2FS_IOC_WRITE_CHECKPOINT:
4279 return f2fs_ioc_write_checkpoint(filp, arg);
4280 case F2FS_IOC_DEFRAGMENT:
4281 return f2fs_ioc_defragment(filp, arg);
4282 case F2FS_IOC_MOVE_RANGE:
4283 return f2fs_ioc_move_range(filp, arg);
4284 case F2FS_IOC_FLUSH_DEVICE:
4285 return f2fs_ioc_flush_device(filp, arg);
4286 case F2FS_IOC_GET_FEATURES:
4287 return f2fs_ioc_get_features(filp, arg);
4288 case FS_IOC_FSGETXATTR:
4289 return f2fs_ioc_fsgetxattr(filp, arg);
4290 case FS_IOC_FSSETXATTR:
4291 return f2fs_ioc_fssetxattr(filp, arg);
4292 case F2FS_IOC_GET_PIN_FILE:
4293 return f2fs_ioc_get_pin_file(filp, arg);
4294 case F2FS_IOC_SET_PIN_FILE:
4295 return f2fs_ioc_set_pin_file(filp, arg);
4296 case F2FS_IOC_PRECACHE_EXTENTS:
4297 return f2fs_ioc_precache_extents(filp, arg);
4298 case F2FS_IOC_RESIZE_FS:
4299 return f2fs_ioc_resize_fs(filp, arg);
4300 case FS_IOC_ENABLE_VERITY:
4301 return f2fs_ioc_enable_verity(filp, arg);
4302 case FS_IOC_MEASURE_VERITY:
4303 return f2fs_ioc_measure_verity(filp, arg);
4304 case FS_IOC_READ_VERITY_METADATA:
4305 return f2fs_ioc_read_verity_metadata(filp, arg);
4306 case FS_IOC_GETFSLABEL:
4307 return f2fs_ioc_getfslabel(filp, arg);
4308 case FS_IOC_SETFSLABEL:
4309 return f2fs_ioc_setfslabel(filp, arg);
4310 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4311 return f2fs_get_compress_blocks(filp, arg);
4312 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4313 return f2fs_release_compress_blocks(filp, arg);
4314 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4315 return f2fs_reserve_compress_blocks(filp, arg);
4316 case F2FS_IOC_SEC_TRIM_FILE:
4317 return f2fs_sec_trim_file(filp, arg);
4318 case F2FS_IOC_GET_COMPRESS_OPTION:
4319 return f2fs_ioc_get_compress_option(filp, arg);
4320 case F2FS_IOC_SET_COMPRESS_OPTION:
4321 return f2fs_ioc_set_compress_option(filp, arg);
4322 case F2FS_IOC_DECOMPRESS_FILE:
4323 return f2fs_ioc_decompress_file(filp, arg);
4324 case F2FS_IOC_COMPRESS_FILE:
4325 return f2fs_ioc_compress_file(filp, arg);
4326 default:
4327 return -ENOTTY;
4328 }
4329 }
4330
4331 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4332 {
4333 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4334 return -EIO;
4335 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4336 return -ENOSPC;
4337
4338 return __f2fs_ioctl(filp, cmd, arg);
4339 }
4340
4341 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
4342 {
4343 struct file *file = iocb->ki_filp;
4344 struct inode *inode = file_inode(file);
4345 int ret;
4346
4347 if (!f2fs_is_compress_backend_ready(inode))
4348 return -EOPNOTSUPP;
4349
4350 ret = generic_file_read_iter(iocb, iter);
4351
4352 if (ret > 0)
4353 f2fs_update_iostat(F2FS_I_SB(inode), APP_READ_IO, ret);
4354
4355 return ret;
4356 }
4357
4358 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4359 {
4360 struct file *file = iocb->ki_filp;
4361 struct inode *inode = file_inode(file);
4362 ssize_t ret;
4363
4364 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4365 ret = -EIO;
4366 goto out;
4367 }
4368
4369 if (!f2fs_is_compress_backend_ready(inode)) {
4370 ret = -EOPNOTSUPP;
4371 goto out;
4372 }
4373
4374 if (iocb->ki_flags & IOCB_NOWAIT) {
4375 if (!inode_trylock(inode)) {
4376 ret = -EAGAIN;
4377 goto out;
4378 }
4379 } else {
4380 inode_lock(inode);
4381 }
4382
4383 if (unlikely(IS_IMMUTABLE(inode))) {
4384 ret = -EPERM;
4385 goto unlock;
4386 }
4387
4388 ret = generic_write_checks(iocb, from);
4389 if (ret > 0) {
4390 bool preallocated = false;
4391 size_t target_size = 0;
4392 int err;
4393
4394 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
4395 set_inode_flag(inode, FI_NO_PREALLOC);
4396
4397 if ((iocb->ki_flags & IOCB_NOWAIT)) {
4398 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
4399 iov_iter_count(from)) ||
4400 f2fs_has_inline_data(inode) ||
4401 f2fs_force_buffered_io(inode, iocb, from)) {
4402 clear_inode_flag(inode, FI_NO_PREALLOC);
4403 inode_unlock(inode);
4404 ret = -EAGAIN;
4405 goto out;
4406 }
4407 goto write;
4408 }
4409
4410 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
4411 goto write;
4412
4413 if (iocb->ki_flags & IOCB_DIRECT) {
4414 /*
4415 * Convert inline data for Direct I/O before entering
4416 * f2fs_direct_IO().
4417 */
4418 err = f2fs_convert_inline_inode(inode);
4419 if (err)
4420 goto out_err;
4421 /*
4422 * If force_buffere_io() is true, we have to allocate
4423 * blocks all the time, since f2fs_direct_IO will fall
4424 * back to buffered IO.
4425 */
4426 if (!f2fs_force_buffered_io(inode, iocb, from) &&
4427 allow_outplace_dio(inode, iocb, from))
4428 goto write;
4429 }
4430 preallocated = true;
4431 target_size = iocb->ki_pos + iov_iter_count(from);
4432
4433 err = f2fs_preallocate_blocks(iocb, from);
4434 if (err) {
4435 out_err:
4436 clear_inode_flag(inode, FI_NO_PREALLOC);
4437 inode_unlock(inode);
4438 ret = err;
4439 goto out;
4440 }
4441 write:
4442 ret = __generic_file_write_iter(iocb, from);
4443 clear_inode_flag(inode, FI_NO_PREALLOC);
4444
4445 /* if we couldn't write data, we should deallocate blocks. */
4446 if (preallocated && i_size_read(inode) < target_size)
4447 f2fs_truncate(inode);
4448
4449 if (ret > 0)
4450 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
4451 }
4452 unlock:
4453 inode_unlock(inode);
4454 out:
4455 trace_f2fs_file_write_iter(inode, iocb->ki_pos,
4456 iov_iter_count(from), ret);
4457 if (ret > 0)
4458 ret = generic_write_sync(iocb, ret);
4459 return ret;
4460 }
4461
4462 #ifdef CONFIG_COMPAT
4463 struct compat_f2fs_gc_range {
4464 u32 sync;
4465 compat_u64 start;
4466 compat_u64 len;
4467 };
4468 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4469 struct compat_f2fs_gc_range)
4470
4471 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4472 {
4473 struct compat_f2fs_gc_range __user *urange;
4474 struct f2fs_gc_range range;
4475 int err;
4476
4477 urange = compat_ptr(arg);
4478 err = get_user(range.sync, &urange->sync);
4479 err |= get_user(range.start, &urange->start);
4480 err |= get_user(range.len, &urange->len);
4481 if (err)
4482 return -EFAULT;
4483
4484 return __f2fs_ioc_gc_range(file, &range);
4485 }
4486
4487 struct compat_f2fs_move_range {
4488 u32 dst_fd;
4489 compat_u64 pos_in;
4490 compat_u64 pos_out;
4491 compat_u64 len;
4492 };
4493 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4494 struct compat_f2fs_move_range)
4495
4496 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4497 {
4498 struct compat_f2fs_move_range __user *urange;
4499 struct f2fs_move_range range;
4500 int err;
4501
4502 urange = compat_ptr(arg);
4503 err = get_user(range.dst_fd, &urange->dst_fd);
4504 err |= get_user(range.pos_in, &urange->pos_in);
4505 err |= get_user(range.pos_out, &urange->pos_out);
4506 err |= get_user(range.len, &urange->len);
4507 if (err)
4508 return -EFAULT;
4509
4510 return __f2fs_ioc_move_range(file, &range);
4511 }
4512
4513 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4514 {
4515 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4516 return -EIO;
4517 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4518 return -ENOSPC;
4519
4520 switch (cmd) {
4521 case FS_IOC32_GETFLAGS:
4522 cmd = FS_IOC_GETFLAGS;
4523 break;
4524 case FS_IOC32_SETFLAGS:
4525 cmd = FS_IOC_SETFLAGS;
4526 break;
4527 case FS_IOC32_GETVERSION:
4528 cmd = FS_IOC_GETVERSION;
4529 break;
4530 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4531 return f2fs_compat_ioc_gc_range(file, arg);
4532 case F2FS_IOC32_MOVE_RANGE:
4533 return f2fs_compat_ioc_move_range(file, arg);
4534 case F2FS_IOC_START_ATOMIC_WRITE:
4535 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4536 case F2FS_IOC_START_VOLATILE_WRITE:
4537 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4538 case F2FS_IOC_ABORT_VOLATILE_WRITE:
4539 case F2FS_IOC_SHUTDOWN:
4540 case FITRIM:
4541 case FS_IOC_SET_ENCRYPTION_POLICY:
4542 case FS_IOC_GET_ENCRYPTION_PWSALT:
4543 case FS_IOC_GET_ENCRYPTION_POLICY:
4544 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4545 case FS_IOC_ADD_ENCRYPTION_KEY:
4546 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4547 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4548 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4549 case FS_IOC_GET_ENCRYPTION_NONCE:
4550 case F2FS_IOC_GARBAGE_COLLECT:
4551 case F2FS_IOC_WRITE_CHECKPOINT:
4552 case F2FS_IOC_DEFRAGMENT:
4553 case F2FS_IOC_FLUSH_DEVICE:
4554 case F2FS_IOC_GET_FEATURES:
4555 case FS_IOC_FSGETXATTR:
4556 case FS_IOC_FSSETXATTR:
4557 case F2FS_IOC_GET_PIN_FILE:
4558 case F2FS_IOC_SET_PIN_FILE:
4559 case F2FS_IOC_PRECACHE_EXTENTS:
4560 case F2FS_IOC_RESIZE_FS:
4561 case FS_IOC_ENABLE_VERITY:
4562 case FS_IOC_MEASURE_VERITY:
4563 case FS_IOC_READ_VERITY_METADATA:
4564 case FS_IOC_GETFSLABEL:
4565 case FS_IOC_SETFSLABEL:
4566 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4567 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4568 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4569 case F2FS_IOC_SEC_TRIM_FILE:
4570 case F2FS_IOC_GET_COMPRESS_OPTION:
4571 case F2FS_IOC_SET_COMPRESS_OPTION:
4572 case F2FS_IOC_DECOMPRESS_FILE:
4573 case F2FS_IOC_COMPRESS_FILE:
4574 break;
4575 default:
4576 return -ENOIOCTLCMD;
4577 }
4578 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4579 }
4580 #endif
4581
4582 const struct file_operations f2fs_file_operations = {
4583 .llseek = f2fs_llseek,
4584 .read_iter = f2fs_file_read_iter,
4585 .write_iter = f2fs_file_write_iter,
4586 .open = f2fs_file_open,
4587 .release = f2fs_release_file,
4588 .mmap = f2fs_file_mmap,
4589 .flush = f2fs_file_flush,
4590 .fsync = f2fs_sync_file,
4591 .fallocate = f2fs_fallocate,
4592 .unlocked_ioctl = f2fs_ioctl,
4593 #ifdef CONFIG_COMPAT
4594 .compat_ioctl = f2fs_compat_ioctl,
4595 #endif
4596 .splice_read = generic_file_splice_read,
4597 .splice_write = iter_file_splice_write,
4598 };