]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/file.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
59 }
60
61 sb_start_pagefault(inode->i_sb);
62
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
64
65 /* block allocation */
66 f2fs_lock_op(sbi);
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
69 if (err) {
70 f2fs_unlock_op(sbi);
71 goto out;
72 }
73 f2fs_put_dnode(&dn);
74 f2fs_unlock_op(sbi);
75
76 f2fs_balance_fs(sbi, dn.node_changed);
77
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
80 lock_page(page);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
84 unlock_page(page);
85 err = -EFAULT;
86 goto out_sem;
87 }
88
89 /*
90 * check to see if the page is mapped already (no holes)
91 */
92 if (PageMappedToDisk(page))
93 goto mapped;
94
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 i_size_read(inode)) {
98 unsigned offset;
99 offset = i_size_read(inode) & ~PAGE_MASK;
100 zero_user_segment(page, offset, PAGE_SIZE);
101 }
102 set_page_dirty(page);
103 if (!PageUptodate(page))
104 SetPageUptodate(page);
105
106 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
107
108 trace_f2fs_vm_page_mkwrite(page, DATA);
109 mapped:
110 /* fill the page */
111 f2fs_wait_on_page_writeback(page, DATA, false);
112
113 /* wait for GCed encrypted page writeback */
114 if (f2fs_encrypted_file(inode))
115 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
116
117 out_sem:
118 up_read(&F2FS_I(inode)->i_mmap_sem);
119 out:
120 sb_end_pagefault(inode->i_sb);
121 f2fs_update_time(sbi, REQ_TIME);
122 err:
123 return block_page_mkwrite_return(err);
124 }
125
126 static const struct vm_operations_struct f2fs_file_vm_ops = {
127 .fault = f2fs_filemap_fault,
128 .map_pages = filemap_map_pages,
129 .page_mkwrite = f2fs_vm_page_mkwrite,
130 };
131
132 static int get_parent_ino(struct inode *inode, nid_t *pino)
133 {
134 struct dentry *dentry;
135
136 inode = igrab(inode);
137 dentry = d_find_any_alias(inode);
138 iput(inode);
139 if (!dentry)
140 return 0;
141
142 *pino = parent_ino(dentry);
143 dput(dentry);
144 return 1;
145 }
146
147 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
148 {
149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
150 enum cp_reason_type cp_reason = CP_NO_NEEDED;
151
152 if (!S_ISREG(inode->i_mode))
153 cp_reason = CP_NON_REGULAR;
154 else if (inode->i_nlink != 1)
155 cp_reason = CP_HARDLINK;
156 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
157 cp_reason = CP_SB_NEED_CP;
158 else if (file_wrong_pino(inode))
159 cp_reason = CP_WRONG_PINO;
160 else if (!space_for_roll_forward(sbi))
161 cp_reason = CP_NO_SPC_ROLL;
162 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
163 cp_reason = CP_NODE_NEED_CP;
164 else if (test_opt(sbi, FASTBOOT))
165 cp_reason = CP_FASTBOOT_MODE;
166 else if (sbi->active_logs == 2)
167 cp_reason = CP_SPEC_LOG_NUM;
168
169 return cp_reason;
170 }
171
172 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
173 {
174 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
175 bool ret = false;
176 /* But we need to avoid that there are some inode updates */
177 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
178 ret = true;
179 f2fs_put_page(i, 0);
180 return ret;
181 }
182
183 static void try_to_fix_pino(struct inode *inode)
184 {
185 struct f2fs_inode_info *fi = F2FS_I(inode);
186 nid_t pino;
187
188 down_write(&fi->i_sem);
189 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
190 get_parent_ino(inode, &pino)) {
191 f2fs_i_pino_write(inode, pino);
192 file_got_pino(inode);
193 }
194 up_write(&fi->i_sem);
195 }
196
197 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
198 int datasync, bool atomic)
199 {
200 struct inode *inode = file->f_mapping->host;
201 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
202 nid_t ino = inode->i_ino;
203 int ret = 0;
204 enum cp_reason_type cp_reason = 0;
205 struct writeback_control wbc = {
206 .sync_mode = WB_SYNC_ALL,
207 .nr_to_write = LONG_MAX,
208 .for_reclaim = 0,
209 };
210
211 if (unlikely(f2fs_readonly(inode->i_sb)))
212 return 0;
213
214 trace_f2fs_sync_file_enter(inode);
215
216 /* if fdatasync is triggered, let's do in-place-update */
217 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
218 set_inode_flag(inode, FI_NEED_IPU);
219 ret = file_write_and_wait_range(file, start, end);
220 clear_inode_flag(inode, FI_NEED_IPU);
221
222 if (ret) {
223 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
224 return ret;
225 }
226
227 /* if the inode is dirty, let's recover all the time */
228 if (!f2fs_skip_inode_update(inode, datasync)) {
229 f2fs_write_inode(inode, NULL);
230 goto go_write;
231 }
232
233 /*
234 * if there is no written data, don't waste time to write recovery info.
235 */
236 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
237 !exist_written_data(sbi, ino, APPEND_INO)) {
238
239 /* it may call write_inode just prior to fsync */
240 if (need_inode_page_update(sbi, ino))
241 goto go_write;
242
243 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
244 exist_written_data(sbi, ino, UPDATE_INO))
245 goto flush_out;
246 goto out;
247 }
248 go_write:
249 /*
250 * Both of fdatasync() and fsync() are able to be recovered from
251 * sudden-power-off.
252 */
253 down_read(&F2FS_I(inode)->i_sem);
254 cp_reason = need_do_checkpoint(inode);
255 up_read(&F2FS_I(inode)->i_sem);
256
257 if (cp_reason) {
258 /* all the dirty node pages should be flushed for POR */
259 ret = f2fs_sync_fs(inode->i_sb, 1);
260
261 /*
262 * We've secured consistency through sync_fs. Following pino
263 * will be used only for fsynced inodes after checkpoint.
264 */
265 try_to_fix_pino(inode);
266 clear_inode_flag(inode, FI_APPEND_WRITE);
267 clear_inode_flag(inode, FI_UPDATE_WRITE);
268 goto out;
269 }
270 sync_nodes:
271 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
272 if (ret)
273 goto out;
274
275 /* if cp_error was enabled, we should avoid infinite loop */
276 if (unlikely(f2fs_cp_error(sbi))) {
277 ret = -EIO;
278 goto out;
279 }
280
281 if (need_inode_block_update(sbi, ino)) {
282 f2fs_mark_inode_dirty_sync(inode, true);
283 f2fs_write_inode(inode, NULL);
284 goto sync_nodes;
285 }
286
287 /*
288 * If it's atomic_write, it's just fine to keep write ordering. So
289 * here we don't need to wait for node write completion, since we use
290 * node chain which serializes node blocks. If one of node writes are
291 * reordered, we can see simply broken chain, resulting in stopping
292 * roll-forward recovery. It means we'll recover all or none node blocks
293 * given fsync mark.
294 */
295 if (!atomic) {
296 ret = wait_on_node_pages_writeback(sbi, ino);
297 if (ret)
298 goto out;
299 }
300
301 /* once recovery info is written, don't need to tack this */
302 remove_ino_entry(sbi, ino, APPEND_INO);
303 clear_inode_flag(inode, FI_APPEND_WRITE);
304 flush_out:
305 if (!atomic)
306 ret = f2fs_issue_flush(sbi, inode->i_ino);
307 if (!ret) {
308 remove_ino_entry(sbi, ino, UPDATE_INO);
309 clear_inode_flag(inode, FI_UPDATE_WRITE);
310 remove_ino_entry(sbi, ino, FLUSH_INO);
311 }
312 f2fs_update_time(sbi, REQ_TIME);
313 out:
314 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
315 f2fs_trace_ios(NULL, 1);
316 return ret;
317 }
318
319 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
320 {
321 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
322 return -EIO;
323 return f2fs_do_sync_file(file, start, end, datasync, false);
324 }
325
326 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
327 pgoff_t pgofs, int whence)
328 {
329 struct page *page;
330 int nr_pages;
331
332 if (whence != SEEK_DATA)
333 return 0;
334
335 /* find first dirty page index */
336 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
337 1, &page);
338 if (!nr_pages)
339 return ULONG_MAX;
340 pgofs = page->index;
341 put_page(page);
342 return pgofs;
343 }
344
345 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
346 int whence)
347 {
348 switch (whence) {
349 case SEEK_DATA:
350 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
351 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
352 return true;
353 break;
354 case SEEK_HOLE:
355 if (blkaddr == NULL_ADDR)
356 return true;
357 break;
358 }
359 return false;
360 }
361
362 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
363 {
364 struct inode *inode = file->f_mapping->host;
365 loff_t maxbytes = inode->i_sb->s_maxbytes;
366 struct dnode_of_data dn;
367 pgoff_t pgofs, end_offset, dirty;
368 loff_t data_ofs = offset;
369 loff_t isize;
370 int err = 0;
371
372 inode_lock(inode);
373
374 isize = i_size_read(inode);
375 if (offset >= isize)
376 goto fail;
377
378 /* handle inline data case */
379 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
380 if (whence == SEEK_HOLE)
381 data_ofs = isize;
382 goto found;
383 }
384
385 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
386
387 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
388
389 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
390 set_new_dnode(&dn, inode, NULL, NULL, 0);
391 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
392 if (err && err != -ENOENT) {
393 goto fail;
394 } else if (err == -ENOENT) {
395 /* direct node does not exists */
396 if (whence == SEEK_DATA) {
397 pgofs = get_next_page_offset(&dn, pgofs);
398 continue;
399 } else {
400 goto found;
401 }
402 }
403
404 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
405
406 /* find data/hole in dnode block */
407 for (; dn.ofs_in_node < end_offset;
408 dn.ofs_in_node++, pgofs++,
409 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
410 block_t blkaddr;
411 blkaddr = datablock_addr(dn.inode,
412 dn.node_page, dn.ofs_in_node);
413
414 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
415 f2fs_put_dnode(&dn);
416 goto found;
417 }
418 }
419 f2fs_put_dnode(&dn);
420 }
421
422 if (whence == SEEK_DATA)
423 goto fail;
424 found:
425 if (whence == SEEK_HOLE && data_ofs > isize)
426 data_ofs = isize;
427 inode_unlock(inode);
428 return vfs_setpos(file, data_ofs, maxbytes);
429 fail:
430 inode_unlock(inode);
431 return -ENXIO;
432 }
433
434 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
435 {
436 struct inode *inode = file->f_mapping->host;
437 loff_t maxbytes = inode->i_sb->s_maxbytes;
438
439 switch (whence) {
440 case SEEK_SET:
441 case SEEK_CUR:
442 case SEEK_END:
443 return generic_file_llseek_size(file, offset, whence,
444 maxbytes, i_size_read(inode));
445 case SEEK_DATA:
446 case SEEK_HOLE:
447 if (offset < 0)
448 return -ENXIO;
449 return f2fs_seek_block(file, offset, whence);
450 }
451
452 return -EINVAL;
453 }
454
455 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
456 {
457 struct inode *inode = file_inode(file);
458 int err;
459
460 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
461 return -EIO;
462
463 /* we don't need to use inline_data strictly */
464 err = f2fs_convert_inline_inode(inode);
465 if (err)
466 return err;
467
468 file_accessed(file);
469 vma->vm_ops = &f2fs_file_vm_ops;
470 return 0;
471 }
472
473 static int f2fs_file_open(struct inode *inode, struct file *filp)
474 {
475 struct dentry *dir;
476
477 if (f2fs_encrypted_inode(inode)) {
478 int ret = fscrypt_get_encryption_info(inode);
479 if (ret)
480 return -EACCES;
481 if (!fscrypt_has_encryption_key(inode))
482 return -ENOKEY;
483 }
484 dir = dget_parent(file_dentry(filp));
485 if (f2fs_encrypted_inode(d_inode(dir)) &&
486 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
487 dput(dir);
488 return -EPERM;
489 }
490 dput(dir);
491 return dquot_file_open(inode, filp);
492 }
493
494 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
495 {
496 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
497 struct f2fs_node *raw_node;
498 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
499 __le32 *addr;
500 int base = 0;
501
502 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
503 base = get_extra_isize(dn->inode);
504
505 raw_node = F2FS_NODE(dn->node_page);
506 addr = blkaddr_in_node(raw_node) + base + ofs;
507
508 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
509 block_t blkaddr = le32_to_cpu(*addr);
510 if (blkaddr == NULL_ADDR)
511 continue;
512
513 dn->data_blkaddr = NULL_ADDR;
514 set_data_blkaddr(dn);
515 invalidate_blocks(sbi, blkaddr);
516 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
517 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
518 nr_free++;
519 }
520
521 if (nr_free) {
522 pgoff_t fofs;
523 /*
524 * once we invalidate valid blkaddr in range [ofs, ofs + count],
525 * we will invalidate all blkaddr in the whole range.
526 */
527 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
528 dn->inode) + ofs;
529 f2fs_update_extent_cache_range(dn, fofs, 0, len);
530 dec_valid_block_count(sbi, dn->inode, nr_free);
531 }
532 dn->ofs_in_node = ofs;
533
534 f2fs_update_time(sbi, REQ_TIME);
535 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
536 dn->ofs_in_node, nr_free);
537 return nr_free;
538 }
539
540 void truncate_data_blocks(struct dnode_of_data *dn)
541 {
542 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
543 }
544
545 static int truncate_partial_data_page(struct inode *inode, u64 from,
546 bool cache_only)
547 {
548 unsigned offset = from & (PAGE_SIZE - 1);
549 pgoff_t index = from >> PAGE_SHIFT;
550 struct address_space *mapping = inode->i_mapping;
551 struct page *page;
552
553 if (!offset && !cache_only)
554 return 0;
555
556 if (cache_only) {
557 page = find_lock_page(mapping, index);
558 if (page && PageUptodate(page))
559 goto truncate_out;
560 f2fs_put_page(page, 1);
561 return 0;
562 }
563
564 page = get_lock_data_page(inode, index, true);
565 if (IS_ERR(page))
566 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
567 truncate_out:
568 f2fs_wait_on_page_writeback(page, DATA, true);
569 zero_user(page, offset, PAGE_SIZE - offset);
570
571 /* An encrypted inode should have a key and truncate the last page. */
572 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
573 if (!cache_only)
574 set_page_dirty(page);
575 f2fs_put_page(page, 1);
576 return 0;
577 }
578
579 int truncate_blocks(struct inode *inode, u64 from, bool lock)
580 {
581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 unsigned int blocksize = inode->i_sb->s_blocksize;
583 struct dnode_of_data dn;
584 pgoff_t free_from;
585 int count = 0, err = 0;
586 struct page *ipage;
587 bool truncate_page = false;
588
589 trace_f2fs_truncate_blocks_enter(inode, from);
590
591 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
592
593 if (free_from >= sbi->max_file_blocks)
594 goto free_partial;
595
596 if (lock)
597 f2fs_lock_op(sbi);
598
599 ipage = get_node_page(sbi, inode->i_ino);
600 if (IS_ERR(ipage)) {
601 err = PTR_ERR(ipage);
602 goto out;
603 }
604
605 if (f2fs_has_inline_data(inode)) {
606 truncate_inline_inode(inode, ipage, from);
607 f2fs_put_page(ipage, 1);
608 truncate_page = true;
609 goto out;
610 }
611
612 set_new_dnode(&dn, inode, ipage, NULL, 0);
613 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
614 if (err) {
615 if (err == -ENOENT)
616 goto free_next;
617 goto out;
618 }
619
620 count = ADDRS_PER_PAGE(dn.node_page, inode);
621
622 count -= dn.ofs_in_node;
623 f2fs_bug_on(sbi, count < 0);
624
625 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
626 truncate_data_blocks_range(&dn, count);
627 free_from += count;
628 }
629
630 f2fs_put_dnode(&dn);
631 free_next:
632 err = truncate_inode_blocks(inode, free_from);
633 out:
634 if (lock)
635 f2fs_unlock_op(sbi);
636 free_partial:
637 /* lastly zero out the first data page */
638 if (!err)
639 err = truncate_partial_data_page(inode, from, truncate_page);
640
641 trace_f2fs_truncate_blocks_exit(inode, err);
642 return err;
643 }
644
645 int f2fs_truncate(struct inode *inode)
646 {
647 int err;
648
649 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
650 return -EIO;
651
652 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
653 S_ISLNK(inode->i_mode)))
654 return 0;
655
656 trace_f2fs_truncate(inode);
657
658 #ifdef CONFIG_F2FS_FAULT_INJECTION
659 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
660 f2fs_show_injection_info(FAULT_TRUNCATE);
661 return -EIO;
662 }
663 #endif
664 /* we should check inline_data size */
665 if (!f2fs_may_inline_data(inode)) {
666 err = f2fs_convert_inline_inode(inode);
667 if (err)
668 return err;
669 }
670
671 err = truncate_blocks(inode, i_size_read(inode), true);
672 if (err)
673 return err;
674
675 inode->i_mtime = inode->i_ctime = current_time(inode);
676 f2fs_mark_inode_dirty_sync(inode, false);
677 return 0;
678 }
679
680 int f2fs_getattr(const struct path *path, struct kstat *stat,
681 u32 request_mask, unsigned int query_flags)
682 {
683 struct inode *inode = d_inode(path->dentry);
684 struct f2fs_inode_info *fi = F2FS_I(inode);
685 unsigned int flags;
686
687 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
688 if (flags & FS_APPEND_FL)
689 stat->attributes |= STATX_ATTR_APPEND;
690 if (flags & FS_COMPR_FL)
691 stat->attributes |= STATX_ATTR_COMPRESSED;
692 if (f2fs_encrypted_inode(inode))
693 stat->attributes |= STATX_ATTR_ENCRYPTED;
694 if (flags & FS_IMMUTABLE_FL)
695 stat->attributes |= STATX_ATTR_IMMUTABLE;
696 if (flags & FS_NODUMP_FL)
697 stat->attributes |= STATX_ATTR_NODUMP;
698
699 stat->attributes_mask |= (STATX_ATTR_APPEND |
700 STATX_ATTR_COMPRESSED |
701 STATX_ATTR_ENCRYPTED |
702 STATX_ATTR_IMMUTABLE |
703 STATX_ATTR_NODUMP);
704
705 generic_fillattr(inode, stat);
706
707 /* we need to show initial sectors used for inline_data/dentries */
708 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
709 f2fs_has_inline_dentry(inode))
710 stat->blocks += (stat->size + 511) >> 9;
711
712 return 0;
713 }
714
715 #ifdef CONFIG_F2FS_FS_POSIX_ACL
716 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
717 {
718 unsigned int ia_valid = attr->ia_valid;
719
720 if (ia_valid & ATTR_UID)
721 inode->i_uid = attr->ia_uid;
722 if (ia_valid & ATTR_GID)
723 inode->i_gid = attr->ia_gid;
724 if (ia_valid & ATTR_ATIME)
725 inode->i_atime = timespec_trunc(attr->ia_atime,
726 inode->i_sb->s_time_gran);
727 if (ia_valid & ATTR_MTIME)
728 inode->i_mtime = timespec_trunc(attr->ia_mtime,
729 inode->i_sb->s_time_gran);
730 if (ia_valid & ATTR_CTIME)
731 inode->i_ctime = timespec_trunc(attr->ia_ctime,
732 inode->i_sb->s_time_gran);
733 if (ia_valid & ATTR_MODE) {
734 umode_t mode = attr->ia_mode;
735
736 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
737 mode &= ~S_ISGID;
738 set_acl_inode(inode, mode);
739 }
740 }
741 #else
742 #define __setattr_copy setattr_copy
743 #endif
744
745 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
746 {
747 struct inode *inode = d_inode(dentry);
748 int err;
749 bool size_changed = false;
750
751 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
752 return -EIO;
753
754 err = setattr_prepare(dentry, attr);
755 if (err)
756 return err;
757
758 if (is_quota_modification(inode, attr)) {
759 err = dquot_initialize(inode);
760 if (err)
761 return err;
762 }
763 if ((attr->ia_valid & ATTR_UID &&
764 !uid_eq(attr->ia_uid, inode->i_uid)) ||
765 (attr->ia_valid & ATTR_GID &&
766 !gid_eq(attr->ia_gid, inode->i_gid))) {
767 err = dquot_transfer(inode, attr);
768 if (err)
769 return err;
770 }
771
772 if (attr->ia_valid & ATTR_SIZE) {
773 if (f2fs_encrypted_inode(inode)) {
774 err = fscrypt_get_encryption_info(inode);
775 if (err)
776 return err;
777 if (!fscrypt_has_encryption_key(inode))
778 return -ENOKEY;
779 }
780
781 if (attr->ia_size <= i_size_read(inode)) {
782 down_write(&F2FS_I(inode)->i_mmap_sem);
783 truncate_setsize(inode, attr->ia_size);
784 err = f2fs_truncate(inode);
785 up_write(&F2FS_I(inode)->i_mmap_sem);
786 if (err)
787 return err;
788 } else {
789 /*
790 * do not trim all blocks after i_size if target size is
791 * larger than i_size.
792 */
793 down_write(&F2FS_I(inode)->i_mmap_sem);
794 truncate_setsize(inode, attr->ia_size);
795 up_write(&F2FS_I(inode)->i_mmap_sem);
796
797 /* should convert inline inode here */
798 if (!f2fs_may_inline_data(inode)) {
799 err = f2fs_convert_inline_inode(inode);
800 if (err)
801 return err;
802 }
803 inode->i_mtime = inode->i_ctime = current_time(inode);
804 }
805
806 down_write(&F2FS_I(inode)->i_sem);
807 F2FS_I(inode)->last_disk_size = i_size_read(inode);
808 up_write(&F2FS_I(inode)->i_sem);
809
810 size_changed = true;
811 }
812
813 __setattr_copy(inode, attr);
814
815 if (attr->ia_valid & ATTR_MODE) {
816 err = posix_acl_chmod(inode, get_inode_mode(inode));
817 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
818 inode->i_mode = F2FS_I(inode)->i_acl_mode;
819 clear_inode_flag(inode, FI_ACL_MODE);
820 }
821 }
822
823 /* file size may changed here */
824 f2fs_mark_inode_dirty_sync(inode, size_changed);
825
826 /* inode change will produce dirty node pages flushed by checkpoint */
827 f2fs_balance_fs(F2FS_I_SB(inode), true);
828
829 return err;
830 }
831
832 const struct inode_operations f2fs_file_inode_operations = {
833 .getattr = f2fs_getattr,
834 .setattr = f2fs_setattr,
835 .get_acl = f2fs_get_acl,
836 .set_acl = f2fs_set_acl,
837 #ifdef CONFIG_F2FS_FS_XATTR
838 .listxattr = f2fs_listxattr,
839 #endif
840 .fiemap = f2fs_fiemap,
841 };
842
843 static int fill_zero(struct inode *inode, pgoff_t index,
844 loff_t start, loff_t len)
845 {
846 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
847 struct page *page;
848
849 if (!len)
850 return 0;
851
852 f2fs_balance_fs(sbi, true);
853
854 f2fs_lock_op(sbi);
855 page = get_new_data_page(inode, NULL, index, false);
856 f2fs_unlock_op(sbi);
857
858 if (IS_ERR(page))
859 return PTR_ERR(page);
860
861 f2fs_wait_on_page_writeback(page, DATA, true);
862 zero_user(page, start, len);
863 set_page_dirty(page);
864 f2fs_put_page(page, 1);
865 return 0;
866 }
867
868 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
869 {
870 int err;
871
872 while (pg_start < pg_end) {
873 struct dnode_of_data dn;
874 pgoff_t end_offset, count;
875
876 set_new_dnode(&dn, inode, NULL, NULL, 0);
877 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
878 if (err) {
879 if (err == -ENOENT) {
880 pg_start = get_next_page_offset(&dn, pg_start);
881 continue;
882 }
883 return err;
884 }
885
886 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
887 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
888
889 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
890
891 truncate_data_blocks_range(&dn, count);
892 f2fs_put_dnode(&dn);
893
894 pg_start += count;
895 }
896 return 0;
897 }
898
899 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
900 {
901 pgoff_t pg_start, pg_end;
902 loff_t off_start, off_end;
903 int ret;
904
905 ret = f2fs_convert_inline_inode(inode);
906 if (ret)
907 return ret;
908
909 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
910 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
911
912 off_start = offset & (PAGE_SIZE - 1);
913 off_end = (offset + len) & (PAGE_SIZE - 1);
914
915 if (pg_start == pg_end) {
916 ret = fill_zero(inode, pg_start, off_start,
917 off_end - off_start);
918 if (ret)
919 return ret;
920 } else {
921 if (off_start) {
922 ret = fill_zero(inode, pg_start++, off_start,
923 PAGE_SIZE - off_start);
924 if (ret)
925 return ret;
926 }
927 if (off_end) {
928 ret = fill_zero(inode, pg_end, 0, off_end);
929 if (ret)
930 return ret;
931 }
932
933 if (pg_start < pg_end) {
934 struct address_space *mapping = inode->i_mapping;
935 loff_t blk_start, blk_end;
936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937
938 f2fs_balance_fs(sbi, true);
939
940 blk_start = (loff_t)pg_start << PAGE_SHIFT;
941 blk_end = (loff_t)pg_end << PAGE_SHIFT;
942 down_write(&F2FS_I(inode)->i_mmap_sem);
943 truncate_inode_pages_range(mapping, blk_start,
944 blk_end - 1);
945
946 f2fs_lock_op(sbi);
947 ret = truncate_hole(inode, pg_start, pg_end);
948 f2fs_unlock_op(sbi);
949 up_write(&F2FS_I(inode)->i_mmap_sem);
950 }
951 }
952
953 return ret;
954 }
955
956 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
957 int *do_replace, pgoff_t off, pgoff_t len)
958 {
959 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
960 struct dnode_of_data dn;
961 int ret, done, i;
962
963 next_dnode:
964 set_new_dnode(&dn, inode, NULL, NULL, 0);
965 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
966 if (ret && ret != -ENOENT) {
967 return ret;
968 } else if (ret == -ENOENT) {
969 if (dn.max_level == 0)
970 return -ENOENT;
971 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
972 blkaddr += done;
973 do_replace += done;
974 goto next;
975 }
976
977 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
978 dn.ofs_in_node, len);
979 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
980 *blkaddr = datablock_addr(dn.inode,
981 dn.node_page, dn.ofs_in_node);
982 if (!is_checkpointed_data(sbi, *blkaddr)) {
983
984 if (test_opt(sbi, LFS)) {
985 f2fs_put_dnode(&dn);
986 return -ENOTSUPP;
987 }
988
989 /* do not invalidate this block address */
990 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
991 *do_replace = 1;
992 }
993 }
994 f2fs_put_dnode(&dn);
995 next:
996 len -= done;
997 off += done;
998 if (len)
999 goto next_dnode;
1000 return 0;
1001 }
1002
1003 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1004 int *do_replace, pgoff_t off, int len)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 struct dnode_of_data dn;
1008 int ret, i;
1009
1010 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1011 if (*do_replace == 0)
1012 continue;
1013
1014 set_new_dnode(&dn, inode, NULL, NULL, 0);
1015 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1016 if (ret) {
1017 dec_valid_block_count(sbi, inode, 1);
1018 invalidate_blocks(sbi, *blkaddr);
1019 } else {
1020 f2fs_update_data_blkaddr(&dn, *blkaddr);
1021 }
1022 f2fs_put_dnode(&dn);
1023 }
1024 return 0;
1025 }
1026
1027 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1028 block_t *blkaddr, int *do_replace,
1029 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1030 {
1031 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1032 pgoff_t i = 0;
1033 int ret;
1034
1035 while (i < len) {
1036 if (blkaddr[i] == NULL_ADDR && !full) {
1037 i++;
1038 continue;
1039 }
1040
1041 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1042 struct dnode_of_data dn;
1043 struct node_info ni;
1044 size_t new_size;
1045 pgoff_t ilen;
1046
1047 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1048 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1049 if (ret)
1050 return ret;
1051
1052 get_node_info(sbi, dn.nid, &ni);
1053 ilen = min((pgoff_t)
1054 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1055 dn.ofs_in_node, len - i);
1056 do {
1057 dn.data_blkaddr = datablock_addr(dn.inode,
1058 dn.node_page, dn.ofs_in_node);
1059 truncate_data_blocks_range(&dn, 1);
1060
1061 if (do_replace[i]) {
1062 f2fs_i_blocks_write(src_inode,
1063 1, false, false);
1064 f2fs_i_blocks_write(dst_inode,
1065 1, true, false);
1066 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1067 blkaddr[i], ni.version, true, false);
1068
1069 do_replace[i] = 0;
1070 }
1071 dn.ofs_in_node++;
1072 i++;
1073 new_size = (dst + i) << PAGE_SHIFT;
1074 if (dst_inode->i_size < new_size)
1075 f2fs_i_size_write(dst_inode, new_size);
1076 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1077
1078 f2fs_put_dnode(&dn);
1079 } else {
1080 struct page *psrc, *pdst;
1081
1082 psrc = get_lock_data_page(src_inode, src + i, true);
1083 if (IS_ERR(psrc))
1084 return PTR_ERR(psrc);
1085 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1086 true);
1087 if (IS_ERR(pdst)) {
1088 f2fs_put_page(psrc, 1);
1089 return PTR_ERR(pdst);
1090 }
1091 f2fs_copy_page(psrc, pdst);
1092 set_page_dirty(pdst);
1093 f2fs_put_page(pdst, 1);
1094 f2fs_put_page(psrc, 1);
1095
1096 ret = truncate_hole(src_inode, src + i, src + i + 1);
1097 if (ret)
1098 return ret;
1099 i++;
1100 }
1101 }
1102 return 0;
1103 }
1104
1105 static int __exchange_data_block(struct inode *src_inode,
1106 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1107 pgoff_t len, bool full)
1108 {
1109 block_t *src_blkaddr;
1110 int *do_replace;
1111 pgoff_t olen;
1112 int ret;
1113
1114 while (len) {
1115 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1116
1117 src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1118 if (!src_blkaddr)
1119 return -ENOMEM;
1120
1121 do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1122 if (!do_replace) {
1123 kvfree(src_blkaddr);
1124 return -ENOMEM;
1125 }
1126
1127 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1128 do_replace, src, olen);
1129 if (ret)
1130 goto roll_back;
1131
1132 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1133 do_replace, src, dst, olen, full);
1134 if (ret)
1135 goto roll_back;
1136
1137 src += olen;
1138 dst += olen;
1139 len -= olen;
1140
1141 kvfree(src_blkaddr);
1142 kvfree(do_replace);
1143 }
1144 return 0;
1145
1146 roll_back:
1147 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1148 kvfree(src_blkaddr);
1149 kvfree(do_replace);
1150 return ret;
1151 }
1152
1153 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1154 {
1155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1156 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1157 int ret;
1158
1159 f2fs_balance_fs(sbi, true);
1160 f2fs_lock_op(sbi);
1161
1162 f2fs_drop_extent_tree(inode);
1163
1164 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1165 f2fs_unlock_op(sbi);
1166 return ret;
1167 }
1168
1169 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1170 {
1171 pgoff_t pg_start, pg_end;
1172 loff_t new_size;
1173 int ret;
1174
1175 if (offset + len >= i_size_read(inode))
1176 return -EINVAL;
1177
1178 /* collapse range should be aligned to block size of f2fs. */
1179 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1180 return -EINVAL;
1181
1182 ret = f2fs_convert_inline_inode(inode);
1183 if (ret)
1184 return ret;
1185
1186 pg_start = offset >> PAGE_SHIFT;
1187 pg_end = (offset + len) >> PAGE_SHIFT;
1188
1189 down_write(&F2FS_I(inode)->i_mmap_sem);
1190 /* write out all dirty pages from offset */
1191 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1192 if (ret)
1193 goto out;
1194
1195 /* avoid gc operation during block exchange */
1196 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1197
1198 truncate_pagecache(inode, offset);
1199
1200 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1201 if (ret)
1202 goto out_unlock;
1203
1204 /* write out all moved pages, if possible */
1205 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206 truncate_pagecache(inode, offset);
1207
1208 new_size = i_size_read(inode) - len;
1209 truncate_pagecache(inode, new_size);
1210
1211 ret = truncate_blocks(inode, new_size, true);
1212 if (!ret)
1213 f2fs_i_size_write(inode, new_size);
1214 out_unlock:
1215 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1216 out:
1217 up_write(&F2FS_I(inode)->i_mmap_sem);
1218 return ret;
1219 }
1220
1221 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1222 pgoff_t end)
1223 {
1224 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1225 pgoff_t index = start;
1226 unsigned int ofs_in_node = dn->ofs_in_node;
1227 blkcnt_t count = 0;
1228 int ret;
1229
1230 for (; index < end; index++, dn->ofs_in_node++) {
1231 if (datablock_addr(dn->inode, dn->node_page,
1232 dn->ofs_in_node) == NULL_ADDR)
1233 count++;
1234 }
1235
1236 dn->ofs_in_node = ofs_in_node;
1237 ret = reserve_new_blocks(dn, count);
1238 if (ret)
1239 return ret;
1240
1241 dn->ofs_in_node = ofs_in_node;
1242 for (index = start; index < end; index++, dn->ofs_in_node++) {
1243 dn->data_blkaddr = datablock_addr(dn->inode,
1244 dn->node_page, dn->ofs_in_node);
1245 /*
1246 * reserve_new_blocks will not guarantee entire block
1247 * allocation.
1248 */
1249 if (dn->data_blkaddr == NULL_ADDR) {
1250 ret = -ENOSPC;
1251 break;
1252 }
1253 if (dn->data_blkaddr != NEW_ADDR) {
1254 invalidate_blocks(sbi, dn->data_blkaddr);
1255 dn->data_blkaddr = NEW_ADDR;
1256 set_data_blkaddr(dn);
1257 }
1258 }
1259
1260 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1261
1262 return ret;
1263 }
1264
1265 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1266 int mode)
1267 {
1268 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1269 struct address_space *mapping = inode->i_mapping;
1270 pgoff_t index, pg_start, pg_end;
1271 loff_t new_size = i_size_read(inode);
1272 loff_t off_start, off_end;
1273 int ret = 0;
1274
1275 ret = inode_newsize_ok(inode, (len + offset));
1276 if (ret)
1277 return ret;
1278
1279 ret = f2fs_convert_inline_inode(inode);
1280 if (ret)
1281 return ret;
1282
1283 down_write(&F2FS_I(inode)->i_mmap_sem);
1284 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1285 if (ret)
1286 goto out_sem;
1287
1288 truncate_pagecache_range(inode, offset, offset + len - 1);
1289
1290 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1291 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1292
1293 off_start = offset & (PAGE_SIZE - 1);
1294 off_end = (offset + len) & (PAGE_SIZE - 1);
1295
1296 if (pg_start == pg_end) {
1297 ret = fill_zero(inode, pg_start, off_start,
1298 off_end - off_start);
1299 if (ret)
1300 goto out_sem;
1301
1302 new_size = max_t(loff_t, new_size, offset + len);
1303 } else {
1304 if (off_start) {
1305 ret = fill_zero(inode, pg_start++, off_start,
1306 PAGE_SIZE - off_start);
1307 if (ret)
1308 goto out_sem;
1309
1310 new_size = max_t(loff_t, new_size,
1311 (loff_t)pg_start << PAGE_SHIFT);
1312 }
1313
1314 for (index = pg_start; index < pg_end;) {
1315 struct dnode_of_data dn;
1316 unsigned int end_offset;
1317 pgoff_t end;
1318
1319 f2fs_lock_op(sbi);
1320
1321 set_new_dnode(&dn, inode, NULL, NULL, 0);
1322 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1323 if (ret) {
1324 f2fs_unlock_op(sbi);
1325 goto out;
1326 }
1327
1328 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1329 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1330
1331 ret = f2fs_do_zero_range(&dn, index, end);
1332 f2fs_put_dnode(&dn);
1333 f2fs_unlock_op(sbi);
1334
1335 f2fs_balance_fs(sbi, dn.node_changed);
1336
1337 if (ret)
1338 goto out;
1339
1340 index = end;
1341 new_size = max_t(loff_t, new_size,
1342 (loff_t)index << PAGE_SHIFT);
1343 }
1344
1345 if (off_end) {
1346 ret = fill_zero(inode, pg_end, 0, off_end);
1347 if (ret)
1348 goto out;
1349
1350 new_size = max_t(loff_t, new_size, offset + len);
1351 }
1352 }
1353
1354 out:
1355 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1356 f2fs_i_size_write(inode, new_size);
1357 out_sem:
1358 up_write(&F2FS_I(inode)->i_mmap_sem);
1359
1360 return ret;
1361 }
1362
1363 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1364 {
1365 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1366 pgoff_t nr, pg_start, pg_end, delta, idx;
1367 loff_t new_size;
1368 int ret = 0;
1369
1370 new_size = i_size_read(inode) + len;
1371 ret = inode_newsize_ok(inode, new_size);
1372 if (ret)
1373 return ret;
1374
1375 if (offset >= i_size_read(inode))
1376 return -EINVAL;
1377
1378 /* insert range should be aligned to block size of f2fs. */
1379 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1380 return -EINVAL;
1381
1382 ret = f2fs_convert_inline_inode(inode);
1383 if (ret)
1384 return ret;
1385
1386 f2fs_balance_fs(sbi, true);
1387
1388 down_write(&F2FS_I(inode)->i_mmap_sem);
1389 ret = truncate_blocks(inode, i_size_read(inode), true);
1390 if (ret)
1391 goto out;
1392
1393 /* write out all dirty pages from offset */
1394 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1395 if (ret)
1396 goto out;
1397
1398 /* avoid gc operation during block exchange */
1399 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1400
1401 truncate_pagecache(inode, offset);
1402
1403 pg_start = offset >> PAGE_SHIFT;
1404 pg_end = (offset + len) >> PAGE_SHIFT;
1405 delta = pg_end - pg_start;
1406 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1407
1408 while (!ret && idx > pg_start) {
1409 nr = idx - pg_start;
1410 if (nr > delta)
1411 nr = delta;
1412 idx -= nr;
1413
1414 f2fs_lock_op(sbi);
1415 f2fs_drop_extent_tree(inode);
1416
1417 ret = __exchange_data_block(inode, inode, idx,
1418 idx + delta, nr, false);
1419 f2fs_unlock_op(sbi);
1420 }
1421
1422 /* write out all moved pages, if possible */
1423 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1424 truncate_pagecache(inode, offset);
1425
1426 if (!ret)
1427 f2fs_i_size_write(inode, new_size);
1428
1429 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1430 out:
1431 up_write(&F2FS_I(inode)->i_mmap_sem);
1432 return ret;
1433 }
1434
1435 static int expand_inode_data(struct inode *inode, loff_t offset,
1436 loff_t len, int mode)
1437 {
1438 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1439 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1440 pgoff_t pg_end;
1441 loff_t new_size = i_size_read(inode);
1442 loff_t off_end;
1443 int err;
1444
1445 err = inode_newsize_ok(inode, (len + offset));
1446 if (err)
1447 return err;
1448
1449 err = f2fs_convert_inline_inode(inode);
1450 if (err)
1451 return err;
1452
1453 f2fs_balance_fs(sbi, true);
1454
1455 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1456 off_end = (offset + len) & (PAGE_SIZE - 1);
1457
1458 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1459 map.m_len = pg_end - map.m_lblk;
1460 if (off_end)
1461 map.m_len++;
1462
1463 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1464 if (err) {
1465 pgoff_t last_off;
1466
1467 if (!map.m_len)
1468 return err;
1469
1470 last_off = map.m_lblk + map.m_len - 1;
1471
1472 /* update new size to the failed position */
1473 new_size = (last_off == pg_end) ? offset + len:
1474 (loff_t)(last_off + 1) << PAGE_SHIFT;
1475 } else {
1476 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1477 }
1478
1479 if (new_size > i_size_read(inode)) {
1480 if (mode & FALLOC_FL_KEEP_SIZE)
1481 file_set_keep_isize(inode);
1482 else
1483 f2fs_i_size_write(inode, new_size);
1484 }
1485
1486 return err;
1487 }
1488
1489 static long f2fs_fallocate(struct file *file, int mode,
1490 loff_t offset, loff_t len)
1491 {
1492 struct inode *inode = file_inode(file);
1493 long ret = 0;
1494
1495 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1496 return -EIO;
1497
1498 /* f2fs only support ->fallocate for regular file */
1499 if (!S_ISREG(inode->i_mode))
1500 return -EINVAL;
1501
1502 if (f2fs_encrypted_inode(inode) &&
1503 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1504 return -EOPNOTSUPP;
1505
1506 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1507 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1508 FALLOC_FL_INSERT_RANGE))
1509 return -EOPNOTSUPP;
1510
1511 inode_lock(inode);
1512
1513 if (mode & FALLOC_FL_PUNCH_HOLE) {
1514 if (offset >= inode->i_size)
1515 goto out;
1516
1517 ret = punch_hole(inode, offset, len);
1518 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1519 ret = f2fs_collapse_range(inode, offset, len);
1520 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1521 ret = f2fs_zero_range(inode, offset, len, mode);
1522 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1523 ret = f2fs_insert_range(inode, offset, len);
1524 } else {
1525 ret = expand_inode_data(inode, offset, len, mode);
1526 }
1527
1528 if (!ret) {
1529 inode->i_mtime = inode->i_ctime = current_time(inode);
1530 f2fs_mark_inode_dirty_sync(inode, false);
1531 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1532 }
1533
1534 out:
1535 inode_unlock(inode);
1536
1537 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1538 return ret;
1539 }
1540
1541 static int f2fs_release_file(struct inode *inode, struct file *filp)
1542 {
1543 /*
1544 * f2fs_relase_file is called at every close calls. So we should
1545 * not drop any inmemory pages by close called by other process.
1546 */
1547 if (!(filp->f_mode & FMODE_WRITE) ||
1548 atomic_read(&inode->i_writecount) != 1)
1549 return 0;
1550
1551 /* some remained atomic pages should discarded */
1552 if (f2fs_is_atomic_file(inode))
1553 drop_inmem_pages(inode);
1554 if (f2fs_is_volatile_file(inode)) {
1555 clear_inode_flag(inode, FI_VOLATILE_FILE);
1556 stat_dec_volatile_write(inode);
1557 set_inode_flag(inode, FI_DROP_CACHE);
1558 filemap_fdatawrite(inode->i_mapping);
1559 clear_inode_flag(inode, FI_DROP_CACHE);
1560 }
1561 return 0;
1562 }
1563
1564 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1565 {
1566 struct inode *inode = file_inode(file);
1567
1568 /*
1569 * If the process doing a transaction is crashed, we should do
1570 * roll-back. Otherwise, other reader/write can see corrupted database
1571 * until all the writers close its file. Since this should be done
1572 * before dropping file lock, it needs to do in ->flush.
1573 */
1574 if (f2fs_is_atomic_file(inode) &&
1575 F2FS_I(inode)->inmem_task == current)
1576 drop_inmem_pages(inode);
1577 return 0;
1578 }
1579
1580 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1581 {
1582 struct inode *inode = file_inode(filp);
1583 struct f2fs_inode_info *fi = F2FS_I(inode);
1584 unsigned int flags = fi->i_flags &
1585 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1586 return put_user(flags, (int __user *)arg);
1587 }
1588
1589 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1590 {
1591 struct f2fs_inode_info *fi = F2FS_I(inode);
1592 unsigned int oldflags;
1593
1594 /* Is it quota file? Do not allow user to mess with it */
1595 if (IS_NOQUOTA(inode))
1596 return -EPERM;
1597
1598 flags = f2fs_mask_flags(inode->i_mode, flags);
1599
1600 oldflags = fi->i_flags;
1601
1602 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1603 if (!capable(CAP_LINUX_IMMUTABLE))
1604 return -EPERM;
1605
1606 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1607 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1608 fi->i_flags = flags;
1609
1610 if (fi->i_flags & FS_PROJINHERIT_FL)
1611 set_inode_flag(inode, FI_PROJ_INHERIT);
1612 else
1613 clear_inode_flag(inode, FI_PROJ_INHERIT);
1614
1615 inode->i_ctime = current_time(inode);
1616 f2fs_set_inode_flags(inode);
1617 f2fs_mark_inode_dirty_sync(inode, false);
1618 return 0;
1619 }
1620
1621 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1622 {
1623 struct inode *inode = file_inode(filp);
1624 unsigned int flags;
1625 int ret;
1626
1627 if (!inode_owner_or_capable(inode))
1628 return -EACCES;
1629
1630 if (get_user(flags, (int __user *)arg))
1631 return -EFAULT;
1632
1633 ret = mnt_want_write_file(filp);
1634 if (ret)
1635 return ret;
1636
1637 inode_lock(inode);
1638
1639 ret = __f2fs_ioc_setflags(inode, flags);
1640
1641 inode_unlock(inode);
1642 mnt_drop_write_file(filp);
1643 return ret;
1644 }
1645
1646 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1647 {
1648 struct inode *inode = file_inode(filp);
1649
1650 return put_user(inode->i_generation, (int __user *)arg);
1651 }
1652
1653 static int f2fs_ioc_start_atomic_write(struct file *filp)
1654 {
1655 struct inode *inode = file_inode(filp);
1656 int ret;
1657
1658 if (!inode_owner_or_capable(inode))
1659 return -EACCES;
1660
1661 if (!S_ISREG(inode->i_mode))
1662 return -EINVAL;
1663
1664 ret = mnt_want_write_file(filp);
1665 if (ret)
1666 return ret;
1667
1668 inode_lock(inode);
1669
1670 if (f2fs_is_atomic_file(inode))
1671 goto out;
1672
1673 ret = f2fs_convert_inline_inode(inode);
1674 if (ret)
1675 goto out;
1676
1677 set_inode_flag(inode, FI_ATOMIC_FILE);
1678 set_inode_flag(inode, FI_HOT_DATA);
1679 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1680
1681 if (!get_dirty_pages(inode))
1682 goto inc_stat;
1683
1684 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1685 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1686 inode->i_ino, get_dirty_pages(inode));
1687 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1688 if (ret) {
1689 clear_inode_flag(inode, FI_ATOMIC_FILE);
1690 clear_inode_flag(inode, FI_HOT_DATA);
1691 goto out;
1692 }
1693
1694 inc_stat:
1695 F2FS_I(inode)->inmem_task = current;
1696 stat_inc_atomic_write(inode);
1697 stat_update_max_atomic_write(inode);
1698 out:
1699 inode_unlock(inode);
1700 mnt_drop_write_file(filp);
1701 return ret;
1702 }
1703
1704 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1705 {
1706 struct inode *inode = file_inode(filp);
1707 int ret;
1708
1709 if (!inode_owner_or_capable(inode))
1710 return -EACCES;
1711
1712 ret = mnt_want_write_file(filp);
1713 if (ret)
1714 return ret;
1715
1716 inode_lock(inode);
1717
1718 if (f2fs_is_volatile_file(inode))
1719 goto err_out;
1720
1721 if (f2fs_is_atomic_file(inode)) {
1722 ret = commit_inmem_pages(inode);
1723 if (ret)
1724 goto err_out;
1725
1726 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1727 if (!ret) {
1728 clear_inode_flag(inode, FI_ATOMIC_FILE);
1729 clear_inode_flag(inode, FI_HOT_DATA);
1730 stat_dec_atomic_write(inode);
1731 }
1732 } else {
1733 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1734 }
1735 err_out:
1736 inode_unlock(inode);
1737 mnt_drop_write_file(filp);
1738 return ret;
1739 }
1740
1741 static int f2fs_ioc_start_volatile_write(struct file *filp)
1742 {
1743 struct inode *inode = file_inode(filp);
1744 int ret;
1745
1746 if (!inode_owner_or_capable(inode))
1747 return -EACCES;
1748
1749 if (!S_ISREG(inode->i_mode))
1750 return -EINVAL;
1751
1752 ret = mnt_want_write_file(filp);
1753 if (ret)
1754 return ret;
1755
1756 inode_lock(inode);
1757
1758 if (f2fs_is_volatile_file(inode))
1759 goto out;
1760
1761 ret = f2fs_convert_inline_inode(inode);
1762 if (ret)
1763 goto out;
1764
1765 stat_inc_volatile_write(inode);
1766 stat_update_max_volatile_write(inode);
1767
1768 set_inode_flag(inode, FI_VOLATILE_FILE);
1769 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 out:
1771 inode_unlock(inode);
1772 mnt_drop_write_file(filp);
1773 return ret;
1774 }
1775
1776 static int f2fs_ioc_release_volatile_write(struct file *filp)
1777 {
1778 struct inode *inode = file_inode(filp);
1779 int ret;
1780
1781 if (!inode_owner_or_capable(inode))
1782 return -EACCES;
1783
1784 ret = mnt_want_write_file(filp);
1785 if (ret)
1786 return ret;
1787
1788 inode_lock(inode);
1789
1790 if (!f2fs_is_volatile_file(inode))
1791 goto out;
1792
1793 if (!f2fs_is_first_block_written(inode)) {
1794 ret = truncate_partial_data_page(inode, 0, true);
1795 goto out;
1796 }
1797
1798 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1799 out:
1800 inode_unlock(inode);
1801 mnt_drop_write_file(filp);
1802 return ret;
1803 }
1804
1805 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1806 {
1807 struct inode *inode = file_inode(filp);
1808 int ret;
1809
1810 if (!inode_owner_or_capable(inode))
1811 return -EACCES;
1812
1813 ret = mnt_want_write_file(filp);
1814 if (ret)
1815 return ret;
1816
1817 inode_lock(inode);
1818
1819 if (f2fs_is_atomic_file(inode))
1820 drop_inmem_pages(inode);
1821 if (f2fs_is_volatile_file(inode)) {
1822 clear_inode_flag(inode, FI_VOLATILE_FILE);
1823 stat_dec_volatile_write(inode);
1824 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1825 }
1826
1827 inode_unlock(inode);
1828
1829 mnt_drop_write_file(filp);
1830 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1831 return ret;
1832 }
1833
1834 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1835 {
1836 struct inode *inode = file_inode(filp);
1837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 struct super_block *sb = sbi->sb;
1839 __u32 in;
1840 int ret;
1841
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1844
1845 if (get_user(in, (__u32 __user *)arg))
1846 return -EFAULT;
1847
1848 ret = mnt_want_write_file(filp);
1849 if (ret)
1850 return ret;
1851
1852 switch (in) {
1853 case F2FS_GOING_DOWN_FULLSYNC:
1854 sb = freeze_bdev(sb->s_bdev);
1855 if (sb && !IS_ERR(sb)) {
1856 f2fs_stop_checkpoint(sbi, false);
1857 thaw_bdev(sb->s_bdev, sb);
1858 }
1859 break;
1860 case F2FS_GOING_DOWN_METASYNC:
1861 /* do checkpoint only */
1862 f2fs_sync_fs(sb, 1);
1863 f2fs_stop_checkpoint(sbi, false);
1864 break;
1865 case F2FS_GOING_DOWN_NOSYNC:
1866 f2fs_stop_checkpoint(sbi, false);
1867 break;
1868 case F2FS_GOING_DOWN_METAFLUSH:
1869 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1870 f2fs_stop_checkpoint(sbi, false);
1871 break;
1872 default:
1873 ret = -EINVAL;
1874 goto out;
1875 }
1876 f2fs_update_time(sbi, REQ_TIME);
1877 out:
1878 mnt_drop_write_file(filp);
1879 return ret;
1880 }
1881
1882 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1883 {
1884 struct inode *inode = file_inode(filp);
1885 struct super_block *sb = inode->i_sb;
1886 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1887 struct fstrim_range range;
1888 int ret;
1889
1890 if (!capable(CAP_SYS_ADMIN))
1891 return -EPERM;
1892
1893 if (!blk_queue_discard(q))
1894 return -EOPNOTSUPP;
1895
1896 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1897 sizeof(range)))
1898 return -EFAULT;
1899
1900 ret = mnt_want_write_file(filp);
1901 if (ret)
1902 return ret;
1903
1904 range.minlen = max((unsigned int)range.minlen,
1905 q->limits.discard_granularity);
1906 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1907 mnt_drop_write_file(filp);
1908 if (ret < 0)
1909 return ret;
1910
1911 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1912 sizeof(range)))
1913 return -EFAULT;
1914 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1915 return 0;
1916 }
1917
1918 static bool uuid_is_nonzero(__u8 u[16])
1919 {
1920 int i;
1921
1922 for (i = 0; i < 16; i++)
1923 if (u[i])
1924 return true;
1925 return false;
1926 }
1927
1928 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1929 {
1930 struct inode *inode = file_inode(filp);
1931
1932 if (!f2fs_sb_has_crypto(inode->i_sb))
1933 return -EOPNOTSUPP;
1934
1935 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1936
1937 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1938 }
1939
1940 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1941 {
1942 if (!f2fs_sb_has_crypto(file_inode(filp)->i_sb))
1943 return -EOPNOTSUPP;
1944 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1945 }
1946
1947 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1948 {
1949 struct inode *inode = file_inode(filp);
1950 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1951 int err;
1952
1953 if (!f2fs_sb_has_crypto(inode->i_sb))
1954 return -EOPNOTSUPP;
1955
1956 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1957 goto got_it;
1958
1959 err = mnt_want_write_file(filp);
1960 if (err)
1961 return err;
1962
1963 /* update superblock with uuid */
1964 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1965
1966 err = f2fs_commit_super(sbi, false);
1967 if (err) {
1968 /* undo new data */
1969 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1970 mnt_drop_write_file(filp);
1971 return err;
1972 }
1973 mnt_drop_write_file(filp);
1974 got_it:
1975 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1976 16))
1977 return -EFAULT;
1978 return 0;
1979 }
1980
1981 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1982 {
1983 struct inode *inode = file_inode(filp);
1984 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1985 __u32 sync;
1986 int ret;
1987
1988 if (!capable(CAP_SYS_ADMIN))
1989 return -EPERM;
1990
1991 if (get_user(sync, (__u32 __user *)arg))
1992 return -EFAULT;
1993
1994 if (f2fs_readonly(sbi->sb))
1995 return -EROFS;
1996
1997 ret = mnt_want_write_file(filp);
1998 if (ret)
1999 return ret;
2000
2001 if (!sync) {
2002 if (!mutex_trylock(&sbi->gc_mutex)) {
2003 ret = -EBUSY;
2004 goto out;
2005 }
2006 } else {
2007 mutex_lock(&sbi->gc_mutex);
2008 }
2009
2010 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2011 out:
2012 mnt_drop_write_file(filp);
2013 return ret;
2014 }
2015
2016 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2017 {
2018 struct inode *inode = file_inode(filp);
2019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2020 struct f2fs_gc_range range;
2021 u64 end;
2022 int ret;
2023
2024 if (!capable(CAP_SYS_ADMIN))
2025 return -EPERM;
2026
2027 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2028 sizeof(range)))
2029 return -EFAULT;
2030
2031 if (f2fs_readonly(sbi->sb))
2032 return -EROFS;
2033
2034 ret = mnt_want_write_file(filp);
2035 if (ret)
2036 return ret;
2037
2038 end = range.start + range.len;
2039 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
2040 return -EINVAL;
2041 do_more:
2042 if (!range.sync) {
2043 if (!mutex_trylock(&sbi->gc_mutex)) {
2044 ret = -EBUSY;
2045 goto out;
2046 }
2047 } else {
2048 mutex_lock(&sbi->gc_mutex);
2049 }
2050
2051 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2052 range.start += sbi->blocks_per_seg;
2053 if (range.start <= end)
2054 goto do_more;
2055 out:
2056 mnt_drop_write_file(filp);
2057 return ret;
2058 }
2059
2060 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2061 {
2062 struct inode *inode = file_inode(filp);
2063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2064 int ret;
2065
2066 if (!capable(CAP_SYS_ADMIN))
2067 return -EPERM;
2068
2069 if (f2fs_readonly(sbi->sb))
2070 return -EROFS;
2071
2072 ret = mnt_want_write_file(filp);
2073 if (ret)
2074 return ret;
2075
2076 ret = f2fs_sync_fs(sbi->sb, 1);
2077
2078 mnt_drop_write_file(filp);
2079 return ret;
2080 }
2081
2082 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2083 struct file *filp,
2084 struct f2fs_defragment *range)
2085 {
2086 struct inode *inode = file_inode(filp);
2087 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2088 struct extent_info ei = {0,0,0};
2089 pgoff_t pg_start, pg_end;
2090 unsigned int blk_per_seg = sbi->blocks_per_seg;
2091 unsigned int total = 0, sec_num;
2092 block_t blk_end = 0;
2093 bool fragmented = false;
2094 int err;
2095
2096 /* if in-place-update policy is enabled, don't waste time here */
2097 if (need_inplace_update_policy(inode, NULL))
2098 return -EINVAL;
2099
2100 pg_start = range->start >> PAGE_SHIFT;
2101 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2102
2103 f2fs_balance_fs(sbi, true);
2104
2105 inode_lock(inode);
2106
2107 /* writeback all dirty pages in the range */
2108 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2109 range->start + range->len - 1);
2110 if (err)
2111 goto out;
2112
2113 /*
2114 * lookup mapping info in extent cache, skip defragmenting if physical
2115 * block addresses are continuous.
2116 */
2117 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2118 if (ei.fofs + ei.len >= pg_end)
2119 goto out;
2120 }
2121
2122 map.m_lblk = pg_start;
2123
2124 /*
2125 * lookup mapping info in dnode page cache, skip defragmenting if all
2126 * physical block addresses are continuous even if there are hole(s)
2127 * in logical blocks.
2128 */
2129 while (map.m_lblk < pg_end) {
2130 map.m_len = pg_end - map.m_lblk;
2131 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2132 if (err)
2133 goto out;
2134
2135 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2136 map.m_lblk++;
2137 continue;
2138 }
2139
2140 if (blk_end && blk_end != map.m_pblk) {
2141 fragmented = true;
2142 break;
2143 }
2144 blk_end = map.m_pblk + map.m_len;
2145
2146 map.m_lblk += map.m_len;
2147 }
2148
2149 if (!fragmented)
2150 goto out;
2151
2152 map.m_lblk = pg_start;
2153 map.m_len = pg_end - pg_start;
2154
2155 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2156
2157 /*
2158 * make sure there are enough free section for LFS allocation, this can
2159 * avoid defragment running in SSR mode when free section are allocated
2160 * intensively
2161 */
2162 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2163 err = -EAGAIN;
2164 goto out;
2165 }
2166
2167 while (map.m_lblk < pg_end) {
2168 pgoff_t idx;
2169 int cnt = 0;
2170
2171 do_map:
2172 map.m_len = pg_end - map.m_lblk;
2173 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2174 if (err)
2175 goto clear_out;
2176
2177 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2178 map.m_lblk++;
2179 continue;
2180 }
2181
2182 set_inode_flag(inode, FI_DO_DEFRAG);
2183
2184 idx = map.m_lblk;
2185 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2186 struct page *page;
2187
2188 page = get_lock_data_page(inode, idx, true);
2189 if (IS_ERR(page)) {
2190 err = PTR_ERR(page);
2191 goto clear_out;
2192 }
2193
2194 set_page_dirty(page);
2195 f2fs_put_page(page, 1);
2196
2197 idx++;
2198 cnt++;
2199 total++;
2200 }
2201
2202 map.m_lblk = idx;
2203
2204 if (idx < pg_end && cnt < blk_per_seg)
2205 goto do_map;
2206
2207 clear_inode_flag(inode, FI_DO_DEFRAG);
2208
2209 err = filemap_fdatawrite(inode->i_mapping);
2210 if (err)
2211 goto out;
2212 }
2213 clear_out:
2214 clear_inode_flag(inode, FI_DO_DEFRAG);
2215 out:
2216 inode_unlock(inode);
2217 if (!err)
2218 range->len = (u64)total << PAGE_SHIFT;
2219 return err;
2220 }
2221
2222 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2223 {
2224 struct inode *inode = file_inode(filp);
2225 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2226 struct f2fs_defragment range;
2227 int err;
2228
2229 if (!capable(CAP_SYS_ADMIN))
2230 return -EPERM;
2231
2232 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2233 return -EINVAL;
2234
2235 if (f2fs_readonly(sbi->sb))
2236 return -EROFS;
2237
2238 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2239 sizeof(range)))
2240 return -EFAULT;
2241
2242 /* verify alignment of offset & size */
2243 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2244 return -EINVAL;
2245
2246 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2247 sbi->max_file_blocks))
2248 return -EINVAL;
2249
2250 err = mnt_want_write_file(filp);
2251 if (err)
2252 return err;
2253
2254 err = f2fs_defragment_range(sbi, filp, &range);
2255 mnt_drop_write_file(filp);
2256
2257 f2fs_update_time(sbi, REQ_TIME);
2258 if (err < 0)
2259 return err;
2260
2261 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2262 sizeof(range)))
2263 return -EFAULT;
2264
2265 return 0;
2266 }
2267
2268 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2269 struct file *file_out, loff_t pos_out, size_t len)
2270 {
2271 struct inode *src = file_inode(file_in);
2272 struct inode *dst = file_inode(file_out);
2273 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2274 size_t olen = len, dst_max_i_size = 0;
2275 size_t dst_osize;
2276 int ret;
2277
2278 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2279 src->i_sb != dst->i_sb)
2280 return -EXDEV;
2281
2282 if (unlikely(f2fs_readonly(src->i_sb)))
2283 return -EROFS;
2284
2285 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2286 return -EINVAL;
2287
2288 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2289 return -EOPNOTSUPP;
2290
2291 if (src == dst) {
2292 if (pos_in == pos_out)
2293 return 0;
2294 if (pos_out > pos_in && pos_out < pos_in + len)
2295 return -EINVAL;
2296 }
2297
2298 inode_lock(src);
2299 down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2300 if (src != dst) {
2301 ret = -EBUSY;
2302 if (!inode_trylock(dst))
2303 goto out;
2304 if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2305 inode_unlock(dst);
2306 goto out;
2307 }
2308 }
2309
2310 ret = -EINVAL;
2311 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2312 goto out_unlock;
2313 if (len == 0)
2314 olen = len = src->i_size - pos_in;
2315 if (pos_in + len == src->i_size)
2316 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2317 if (len == 0) {
2318 ret = 0;
2319 goto out_unlock;
2320 }
2321
2322 dst_osize = dst->i_size;
2323 if (pos_out + olen > dst->i_size)
2324 dst_max_i_size = pos_out + olen;
2325
2326 /* verify the end result is block aligned */
2327 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2328 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2329 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2330 goto out_unlock;
2331
2332 ret = f2fs_convert_inline_inode(src);
2333 if (ret)
2334 goto out_unlock;
2335
2336 ret = f2fs_convert_inline_inode(dst);
2337 if (ret)
2338 goto out_unlock;
2339
2340 /* write out all dirty pages from offset */
2341 ret = filemap_write_and_wait_range(src->i_mapping,
2342 pos_in, pos_in + len);
2343 if (ret)
2344 goto out_unlock;
2345
2346 ret = filemap_write_and_wait_range(dst->i_mapping,
2347 pos_out, pos_out + len);
2348 if (ret)
2349 goto out_unlock;
2350
2351 f2fs_balance_fs(sbi, true);
2352 f2fs_lock_op(sbi);
2353 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2354 pos_out >> F2FS_BLKSIZE_BITS,
2355 len >> F2FS_BLKSIZE_BITS, false);
2356
2357 if (!ret) {
2358 if (dst_max_i_size)
2359 f2fs_i_size_write(dst, dst_max_i_size);
2360 else if (dst_osize != dst->i_size)
2361 f2fs_i_size_write(dst, dst_osize);
2362 }
2363 f2fs_unlock_op(sbi);
2364 out_unlock:
2365 if (src != dst) {
2366 up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2367 inode_unlock(dst);
2368 }
2369 out:
2370 up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2371 inode_unlock(src);
2372 return ret;
2373 }
2374
2375 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2376 {
2377 struct f2fs_move_range range;
2378 struct fd dst;
2379 int err;
2380
2381 if (!(filp->f_mode & FMODE_READ) ||
2382 !(filp->f_mode & FMODE_WRITE))
2383 return -EBADF;
2384
2385 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2386 sizeof(range)))
2387 return -EFAULT;
2388
2389 dst = fdget(range.dst_fd);
2390 if (!dst.file)
2391 return -EBADF;
2392
2393 if (!(dst.file->f_mode & FMODE_WRITE)) {
2394 err = -EBADF;
2395 goto err_out;
2396 }
2397
2398 err = mnt_want_write_file(filp);
2399 if (err)
2400 goto err_out;
2401
2402 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2403 range.pos_out, range.len);
2404
2405 mnt_drop_write_file(filp);
2406 if (err)
2407 goto err_out;
2408
2409 if (copy_to_user((struct f2fs_move_range __user *)arg,
2410 &range, sizeof(range)))
2411 err = -EFAULT;
2412 err_out:
2413 fdput(dst);
2414 return err;
2415 }
2416
2417 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2418 {
2419 struct inode *inode = file_inode(filp);
2420 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2421 struct sit_info *sm = SIT_I(sbi);
2422 unsigned int start_segno = 0, end_segno = 0;
2423 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2424 struct f2fs_flush_device range;
2425 int ret;
2426
2427 if (!capable(CAP_SYS_ADMIN))
2428 return -EPERM;
2429
2430 if (f2fs_readonly(sbi->sb))
2431 return -EROFS;
2432
2433 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2434 sizeof(range)))
2435 return -EFAULT;
2436
2437 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2438 sbi->segs_per_sec != 1) {
2439 f2fs_msg(sbi->sb, KERN_WARNING,
2440 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2441 range.dev_num, sbi->s_ndevs,
2442 sbi->segs_per_sec);
2443 return -EINVAL;
2444 }
2445
2446 ret = mnt_want_write_file(filp);
2447 if (ret)
2448 return ret;
2449
2450 if (range.dev_num != 0)
2451 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2452 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2453
2454 start_segno = sm->last_victim[FLUSH_DEVICE];
2455 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2456 start_segno = dev_start_segno;
2457 end_segno = min(start_segno + range.segments, dev_end_segno);
2458
2459 while (start_segno < end_segno) {
2460 if (!mutex_trylock(&sbi->gc_mutex)) {
2461 ret = -EBUSY;
2462 goto out;
2463 }
2464 sm->last_victim[GC_CB] = end_segno + 1;
2465 sm->last_victim[GC_GREEDY] = end_segno + 1;
2466 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2467 ret = f2fs_gc(sbi, true, true, start_segno);
2468 if (ret == -EAGAIN)
2469 ret = 0;
2470 else if (ret < 0)
2471 break;
2472 start_segno++;
2473 }
2474 out:
2475 mnt_drop_write_file(filp);
2476 return ret;
2477 }
2478
2479 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2480 {
2481 struct inode *inode = file_inode(filp);
2482 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2483
2484 /* Must validate to set it with SQLite behavior in Android. */
2485 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2486
2487 return put_user(sb_feature, (u32 __user *)arg);
2488 }
2489
2490 #ifdef CONFIG_QUOTA
2491 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2492 {
2493 struct inode *inode = file_inode(filp);
2494 struct f2fs_inode_info *fi = F2FS_I(inode);
2495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2496 struct super_block *sb = sbi->sb;
2497 struct dquot *transfer_to[MAXQUOTAS] = {};
2498 struct page *ipage;
2499 kprojid_t kprojid;
2500 int err;
2501
2502 if (!f2fs_sb_has_project_quota(sb)) {
2503 if (projid != F2FS_DEF_PROJID)
2504 return -EOPNOTSUPP;
2505 else
2506 return 0;
2507 }
2508
2509 if (!f2fs_has_extra_attr(inode))
2510 return -EOPNOTSUPP;
2511
2512 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2513
2514 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2515 return 0;
2516
2517 err = mnt_want_write_file(filp);
2518 if (err)
2519 return err;
2520
2521 err = -EPERM;
2522 inode_lock(inode);
2523
2524 /* Is it quota file? Do not allow user to mess with it */
2525 if (IS_NOQUOTA(inode))
2526 goto out_unlock;
2527
2528 ipage = get_node_page(sbi, inode->i_ino);
2529 if (IS_ERR(ipage)) {
2530 err = PTR_ERR(ipage);
2531 goto out_unlock;
2532 }
2533
2534 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2535 i_projid)) {
2536 err = -EOVERFLOW;
2537 f2fs_put_page(ipage, 1);
2538 goto out_unlock;
2539 }
2540 f2fs_put_page(ipage, 1);
2541
2542 dquot_initialize(inode);
2543
2544 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2545 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2546 err = __dquot_transfer(inode, transfer_to);
2547 dqput(transfer_to[PRJQUOTA]);
2548 if (err)
2549 goto out_dirty;
2550 }
2551
2552 F2FS_I(inode)->i_projid = kprojid;
2553 inode->i_ctime = current_time(inode);
2554 out_dirty:
2555 f2fs_mark_inode_dirty_sync(inode, true);
2556 out_unlock:
2557 inode_unlock(inode);
2558 mnt_drop_write_file(filp);
2559 return err;
2560 }
2561 #else
2562 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2563 {
2564 if (projid != F2FS_DEF_PROJID)
2565 return -EOPNOTSUPP;
2566 return 0;
2567 }
2568 #endif
2569
2570 /* Transfer internal flags to xflags */
2571 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2572 {
2573 __u32 xflags = 0;
2574
2575 if (iflags & FS_SYNC_FL)
2576 xflags |= FS_XFLAG_SYNC;
2577 if (iflags & FS_IMMUTABLE_FL)
2578 xflags |= FS_XFLAG_IMMUTABLE;
2579 if (iflags & FS_APPEND_FL)
2580 xflags |= FS_XFLAG_APPEND;
2581 if (iflags & FS_NODUMP_FL)
2582 xflags |= FS_XFLAG_NODUMP;
2583 if (iflags & FS_NOATIME_FL)
2584 xflags |= FS_XFLAG_NOATIME;
2585 if (iflags & FS_PROJINHERIT_FL)
2586 xflags |= FS_XFLAG_PROJINHERIT;
2587 return xflags;
2588 }
2589
2590 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2591 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2592 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2593
2594 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2595 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2596 FS_IMMUTABLE_FL | \
2597 FS_APPEND_FL | \
2598 FS_NODUMP_FL | \
2599 FS_NOATIME_FL | \
2600 FS_PROJINHERIT_FL)
2601
2602 /* Transfer xflags flags to internal */
2603 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2604 {
2605 unsigned long iflags = 0;
2606
2607 if (xflags & FS_XFLAG_SYNC)
2608 iflags |= FS_SYNC_FL;
2609 if (xflags & FS_XFLAG_IMMUTABLE)
2610 iflags |= FS_IMMUTABLE_FL;
2611 if (xflags & FS_XFLAG_APPEND)
2612 iflags |= FS_APPEND_FL;
2613 if (xflags & FS_XFLAG_NODUMP)
2614 iflags |= FS_NODUMP_FL;
2615 if (xflags & FS_XFLAG_NOATIME)
2616 iflags |= FS_NOATIME_FL;
2617 if (xflags & FS_XFLAG_PROJINHERIT)
2618 iflags |= FS_PROJINHERIT_FL;
2619
2620 return iflags;
2621 }
2622
2623 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2624 {
2625 struct inode *inode = file_inode(filp);
2626 struct f2fs_inode_info *fi = F2FS_I(inode);
2627 struct fsxattr fa;
2628
2629 memset(&fa, 0, sizeof(struct fsxattr));
2630 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2631 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2632
2633 if (f2fs_sb_has_project_quota(inode->i_sb))
2634 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2635 fi->i_projid);
2636
2637 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2638 return -EFAULT;
2639 return 0;
2640 }
2641
2642 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2643 {
2644 struct inode *inode = file_inode(filp);
2645 struct f2fs_inode_info *fi = F2FS_I(inode);
2646 struct fsxattr fa;
2647 unsigned int flags;
2648 int err;
2649
2650 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2651 return -EFAULT;
2652
2653 /* Make sure caller has proper permission */
2654 if (!inode_owner_or_capable(inode))
2655 return -EACCES;
2656
2657 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2658 return -EOPNOTSUPP;
2659
2660 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2661 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2662 return -EOPNOTSUPP;
2663
2664 err = mnt_want_write_file(filp);
2665 if (err)
2666 return err;
2667
2668 inode_lock(inode);
2669 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2670 (flags & F2FS_FL_XFLAG_VISIBLE);
2671 err = __f2fs_ioc_setflags(inode, flags);
2672 inode_unlock(inode);
2673 mnt_drop_write_file(filp);
2674 if (err)
2675 return err;
2676
2677 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2678 if (err)
2679 return err;
2680
2681 return 0;
2682 }
2683
2684 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2685 {
2686 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2687 return -EIO;
2688
2689 switch (cmd) {
2690 case F2FS_IOC_GETFLAGS:
2691 return f2fs_ioc_getflags(filp, arg);
2692 case F2FS_IOC_SETFLAGS:
2693 return f2fs_ioc_setflags(filp, arg);
2694 case F2FS_IOC_GETVERSION:
2695 return f2fs_ioc_getversion(filp, arg);
2696 case F2FS_IOC_START_ATOMIC_WRITE:
2697 return f2fs_ioc_start_atomic_write(filp);
2698 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2699 return f2fs_ioc_commit_atomic_write(filp);
2700 case F2FS_IOC_START_VOLATILE_WRITE:
2701 return f2fs_ioc_start_volatile_write(filp);
2702 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2703 return f2fs_ioc_release_volatile_write(filp);
2704 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2705 return f2fs_ioc_abort_volatile_write(filp);
2706 case F2FS_IOC_SHUTDOWN:
2707 return f2fs_ioc_shutdown(filp, arg);
2708 case FITRIM:
2709 return f2fs_ioc_fitrim(filp, arg);
2710 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2711 return f2fs_ioc_set_encryption_policy(filp, arg);
2712 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2713 return f2fs_ioc_get_encryption_policy(filp, arg);
2714 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2715 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2716 case F2FS_IOC_GARBAGE_COLLECT:
2717 return f2fs_ioc_gc(filp, arg);
2718 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2719 return f2fs_ioc_gc_range(filp, arg);
2720 case F2FS_IOC_WRITE_CHECKPOINT:
2721 return f2fs_ioc_write_checkpoint(filp, arg);
2722 case F2FS_IOC_DEFRAGMENT:
2723 return f2fs_ioc_defragment(filp, arg);
2724 case F2FS_IOC_MOVE_RANGE:
2725 return f2fs_ioc_move_range(filp, arg);
2726 case F2FS_IOC_FLUSH_DEVICE:
2727 return f2fs_ioc_flush_device(filp, arg);
2728 case F2FS_IOC_GET_FEATURES:
2729 return f2fs_ioc_get_features(filp, arg);
2730 case F2FS_IOC_FSGETXATTR:
2731 return f2fs_ioc_fsgetxattr(filp, arg);
2732 case F2FS_IOC_FSSETXATTR:
2733 return f2fs_ioc_fssetxattr(filp, arg);
2734 default:
2735 return -ENOTTY;
2736 }
2737 }
2738
2739 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2740 {
2741 struct file *file = iocb->ki_filp;
2742 struct inode *inode = file_inode(file);
2743 struct blk_plug plug;
2744 ssize_t ret;
2745
2746 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2747 return -EIO;
2748
2749 inode_lock(inode);
2750 ret = generic_write_checks(iocb, from);
2751 if (ret > 0) {
2752 int err;
2753
2754 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2755 set_inode_flag(inode, FI_NO_PREALLOC);
2756
2757 err = f2fs_preallocate_blocks(iocb, from);
2758 if (err) {
2759 clear_inode_flag(inode, FI_NO_PREALLOC);
2760 inode_unlock(inode);
2761 return err;
2762 }
2763 blk_start_plug(&plug);
2764 ret = __generic_file_write_iter(iocb, from);
2765 blk_finish_plug(&plug);
2766 clear_inode_flag(inode, FI_NO_PREALLOC);
2767
2768 if (ret > 0)
2769 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2770 }
2771 inode_unlock(inode);
2772
2773 if (ret > 0)
2774 ret = generic_write_sync(iocb, ret);
2775 return ret;
2776 }
2777
2778 #ifdef CONFIG_COMPAT
2779 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2780 {
2781 switch (cmd) {
2782 case F2FS_IOC32_GETFLAGS:
2783 cmd = F2FS_IOC_GETFLAGS;
2784 break;
2785 case F2FS_IOC32_SETFLAGS:
2786 cmd = F2FS_IOC_SETFLAGS;
2787 break;
2788 case F2FS_IOC32_GETVERSION:
2789 cmd = F2FS_IOC_GETVERSION;
2790 break;
2791 case F2FS_IOC_START_ATOMIC_WRITE:
2792 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2793 case F2FS_IOC_START_VOLATILE_WRITE:
2794 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2795 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2796 case F2FS_IOC_SHUTDOWN:
2797 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2798 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2799 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2800 case F2FS_IOC_GARBAGE_COLLECT:
2801 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2802 case F2FS_IOC_WRITE_CHECKPOINT:
2803 case F2FS_IOC_DEFRAGMENT:
2804 case F2FS_IOC_MOVE_RANGE:
2805 case F2FS_IOC_FLUSH_DEVICE:
2806 case F2FS_IOC_GET_FEATURES:
2807 case F2FS_IOC_FSGETXATTR:
2808 case F2FS_IOC_FSSETXATTR:
2809 break;
2810 default:
2811 return -ENOIOCTLCMD;
2812 }
2813 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2814 }
2815 #endif
2816
2817 const struct file_operations f2fs_file_operations = {
2818 .llseek = f2fs_llseek,
2819 .read_iter = generic_file_read_iter,
2820 .write_iter = f2fs_file_write_iter,
2821 .open = f2fs_file_open,
2822 .release = f2fs_release_file,
2823 .mmap = f2fs_file_mmap,
2824 .flush = f2fs_file_flush,
2825 .fsync = f2fs_sync_file,
2826 .fallocate = f2fs_fallocate,
2827 .unlocked_ioctl = f2fs_ioctl,
2828 #ifdef CONFIG_COMPAT
2829 .compat_ioctl = f2fs_compat_ioctl,
2830 #endif
2831 .splice_read = generic_file_splice_read,
2832 .splice_write = iter_file_splice_write,
2833 };