]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/file.c
Merge branch 'stable-4.6' of git://git.infradead.org/users/pcmoore/audit
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 sb_start_pagefault(inode->i_sb);
44
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46
47 /* block allocation */
48 f2fs_lock_op(sbi);
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
51 if (err) {
52 f2fs_unlock_op(sbi);
53 goto out;
54 }
55 f2fs_put_dnode(&dn);
56 f2fs_unlock_op(sbi);
57
58 f2fs_balance_fs(sbi, dn.node_changed);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
78 i_size_read(inode)) {
79 unsigned offset;
80 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
81 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
82 }
83 set_page_dirty(page);
84 SetPageUptodate(page);
85
86 trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 /* fill the page */
89 f2fs_wait_on_page_writeback(page, DATA);
90
91 /* wait for GCed encrypted page writeback */
92 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94
95 /* if gced page is attached, don't write to cold segment */
96 clear_cold_data(page);
97 out:
98 sb_end_pagefault(inode->i_sb);
99 f2fs_update_time(sbi, REQ_TIME);
100 return block_page_mkwrite_return(err);
101 }
102
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 .fault = filemap_fault,
105 .map_pages = filemap_map_pages,
106 .page_mkwrite = f2fs_vm_page_mkwrite,
107 };
108
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 struct dentry *dentry;
112
113 inode = igrab(inode);
114 dentry = d_find_any_alias(inode);
115 iput(inode);
116 if (!dentry)
117 return 0;
118
119 if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 dput(dentry);
121 return 0;
122 }
123
124 *pino = parent_ino(dentry);
125 dput(dentry);
126 return 1;
127 }
128
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 bool need_cp = false;
133
134 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 need_cp = true;
136 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 need_cp = true;
138 else if (file_wrong_pino(inode))
139 need_cp = true;
140 else if (!space_for_roll_forward(sbi))
141 need_cp = true;
142 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 need_cp = true;
144 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 need_cp = true;
146 else if (test_opt(sbi, FASTBOOT))
147 need_cp = true;
148 else if (sbi->active_logs == 2)
149 need_cp = true;
150
151 return need_cp;
152 }
153
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 bool ret = false;
158 /* But we need to avoid that there are some inode updates */
159 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 ret = true;
161 f2fs_put_page(i, 0);
162 return ret;
163 }
164
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 struct f2fs_inode_info *fi = F2FS_I(inode);
168 nid_t pino;
169
170 down_write(&fi->i_sem);
171 fi->xattr_ver = 0;
172 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 get_parent_ino(inode, &pino)) {
174 fi->i_pino = pino;
175 file_got_pino(inode);
176 up_write(&fi->i_sem);
177
178 mark_inode_dirty_sync(inode);
179 f2fs_write_inode(inode, NULL);
180 } else {
181 up_write(&fi->i_sem);
182 }
183 }
184
185 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
186 {
187 struct inode *inode = file->f_mapping->host;
188 struct f2fs_inode_info *fi = F2FS_I(inode);
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 nid_t ino = inode->i_ino;
191 int ret = 0;
192 bool need_cp = false;
193 struct writeback_control wbc = {
194 .sync_mode = WB_SYNC_ALL,
195 .nr_to_write = LONG_MAX,
196 .for_reclaim = 0,
197 };
198
199 if (unlikely(f2fs_readonly(inode->i_sb)))
200 return 0;
201
202 trace_f2fs_sync_file_enter(inode);
203
204 /* if fdatasync is triggered, let's do in-place-update */
205 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
206 set_inode_flag(fi, FI_NEED_IPU);
207 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
208 clear_inode_flag(fi, FI_NEED_IPU);
209
210 if (ret) {
211 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 return ret;
213 }
214
215 /* if the inode is dirty, let's recover all the time */
216 if (!datasync) {
217 f2fs_write_inode(inode, NULL);
218 goto go_write;
219 }
220
221 /*
222 * if there is no written data, don't waste time to write recovery info.
223 */
224 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
225 !exist_written_data(sbi, ino, APPEND_INO)) {
226
227 /* it may call write_inode just prior to fsync */
228 if (need_inode_page_update(sbi, ino))
229 goto go_write;
230
231 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
232 exist_written_data(sbi, ino, UPDATE_INO))
233 goto flush_out;
234 goto out;
235 }
236 go_write:
237 /*
238 * Both of fdatasync() and fsync() are able to be recovered from
239 * sudden-power-off.
240 */
241 down_read(&fi->i_sem);
242 need_cp = need_do_checkpoint(inode);
243 up_read(&fi->i_sem);
244
245 if (need_cp) {
246 /* all the dirty node pages should be flushed for POR */
247 ret = f2fs_sync_fs(inode->i_sb, 1);
248
249 /*
250 * We've secured consistency through sync_fs. Following pino
251 * will be used only for fsynced inodes after checkpoint.
252 */
253 try_to_fix_pino(inode);
254 clear_inode_flag(fi, FI_APPEND_WRITE);
255 clear_inode_flag(fi, FI_UPDATE_WRITE);
256 goto out;
257 }
258 sync_nodes:
259 sync_node_pages(sbi, ino, &wbc);
260
261 /* if cp_error was enabled, we should avoid infinite loop */
262 if (unlikely(f2fs_cp_error(sbi))) {
263 ret = -EIO;
264 goto out;
265 }
266
267 if (need_inode_block_update(sbi, ino)) {
268 mark_inode_dirty_sync(inode);
269 f2fs_write_inode(inode, NULL);
270 goto sync_nodes;
271 }
272
273 ret = wait_on_node_pages_writeback(sbi, ino);
274 if (ret)
275 goto out;
276
277 /* once recovery info is written, don't need to tack this */
278 remove_ino_entry(sbi, ino, APPEND_INO);
279 clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 remove_ino_entry(sbi, ino, UPDATE_INO);
282 clear_inode_flag(fi, FI_UPDATE_WRITE);
283 ret = f2fs_issue_flush(sbi);
284 f2fs_update_time(sbi, REQ_TIME);
285 out:
286 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
287 f2fs_trace_ios(NULL, 1);
288 return ret;
289 }
290
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 pgoff_t pgofs, int whence)
293 {
294 struct pagevec pvec;
295 int nr_pages;
296
297 if (whence != SEEK_DATA)
298 return 0;
299
300 /* find first dirty page index */
301 pagevec_init(&pvec, 0);
302 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 PAGECACHE_TAG_DIRTY, 1);
304 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
305 pagevec_release(&pvec);
306 return pgofs;
307 }
308
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 int whence)
311 {
312 switch (whence) {
313 case SEEK_DATA:
314 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 return true;
317 break;
318 case SEEK_HOLE:
319 if (blkaddr == NULL_ADDR)
320 return true;
321 break;
322 }
323 return false;
324 }
325
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 struct inode *inode = file->f_mapping->host;
329 loff_t maxbytes = inode->i_sb->s_maxbytes;
330 struct dnode_of_data dn;
331 pgoff_t pgofs, end_offset, dirty;
332 loff_t data_ofs = offset;
333 loff_t isize;
334 int err = 0;
335
336 inode_lock(inode);
337
338 isize = i_size_read(inode);
339 if (offset >= isize)
340 goto fail;
341
342 /* handle inline data case */
343 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 if (whence == SEEK_HOLE)
345 data_ofs = isize;
346 goto found;
347 }
348
349 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
350
351 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352
353 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
354 set_new_dnode(&dn, inode, NULL, NULL, 0);
355 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
356 if (err && err != -ENOENT) {
357 goto fail;
358 } else if (err == -ENOENT) {
359 /* direct node does not exists */
360 if (whence == SEEK_DATA) {
361 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
362 F2FS_I(inode));
363 continue;
364 } else {
365 goto found;
366 }
367 }
368
369 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
370
371 /* find data/hole in dnode block */
372 for (; dn.ofs_in_node < end_offset;
373 dn.ofs_in_node++, pgofs++,
374 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
375 block_t blkaddr;
376 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
377
378 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
379 f2fs_put_dnode(&dn);
380 goto found;
381 }
382 }
383 f2fs_put_dnode(&dn);
384 }
385
386 if (whence == SEEK_DATA)
387 goto fail;
388 found:
389 if (whence == SEEK_HOLE && data_ofs > isize)
390 data_ofs = isize;
391 inode_unlock(inode);
392 return vfs_setpos(file, data_ofs, maxbytes);
393 fail:
394 inode_unlock(inode);
395 return -ENXIO;
396 }
397
398 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
399 {
400 struct inode *inode = file->f_mapping->host;
401 loff_t maxbytes = inode->i_sb->s_maxbytes;
402
403 switch (whence) {
404 case SEEK_SET:
405 case SEEK_CUR:
406 case SEEK_END:
407 return generic_file_llseek_size(file, offset, whence,
408 maxbytes, i_size_read(inode));
409 case SEEK_DATA:
410 case SEEK_HOLE:
411 if (offset < 0)
412 return -ENXIO;
413 return f2fs_seek_block(file, offset, whence);
414 }
415
416 return -EINVAL;
417 }
418
419 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
420 {
421 struct inode *inode = file_inode(file);
422 int err;
423
424 if (f2fs_encrypted_inode(inode)) {
425 err = f2fs_get_encryption_info(inode);
426 if (err)
427 return 0;
428 }
429
430 /* we don't need to use inline_data strictly */
431 err = f2fs_convert_inline_inode(inode);
432 if (err)
433 return err;
434
435 file_accessed(file);
436 vma->vm_ops = &f2fs_file_vm_ops;
437 return 0;
438 }
439
440 static int f2fs_file_open(struct inode *inode, struct file *filp)
441 {
442 int ret = generic_file_open(inode, filp);
443
444 if (!ret && f2fs_encrypted_inode(inode)) {
445 ret = f2fs_get_encryption_info(inode);
446 if (ret)
447 ret = -EACCES;
448 }
449 return ret;
450 }
451
452 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
453 {
454 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
455 struct f2fs_node *raw_node;
456 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
457 __le32 *addr;
458
459 raw_node = F2FS_NODE(dn->node_page);
460 addr = blkaddr_in_node(raw_node) + ofs;
461
462 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
463 block_t blkaddr = le32_to_cpu(*addr);
464 if (blkaddr == NULL_ADDR)
465 continue;
466
467 dn->data_blkaddr = NULL_ADDR;
468 set_data_blkaddr(dn);
469 invalidate_blocks(sbi, blkaddr);
470 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
471 clear_inode_flag(F2FS_I(dn->inode),
472 FI_FIRST_BLOCK_WRITTEN);
473 nr_free++;
474 }
475
476 if (nr_free) {
477 pgoff_t fofs;
478 /*
479 * once we invalidate valid blkaddr in range [ofs, ofs + count],
480 * we will invalidate all blkaddr in the whole range.
481 */
482 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
483 F2FS_I(dn->inode)) + ofs;
484 f2fs_update_extent_cache_range(dn, fofs, 0, len);
485 dec_valid_block_count(sbi, dn->inode, nr_free);
486 sync_inode_page(dn);
487 }
488 dn->ofs_in_node = ofs;
489
490 f2fs_update_time(sbi, REQ_TIME);
491 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
492 dn->ofs_in_node, nr_free);
493 return nr_free;
494 }
495
496 void truncate_data_blocks(struct dnode_of_data *dn)
497 {
498 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
499 }
500
501 static int truncate_partial_data_page(struct inode *inode, u64 from,
502 bool cache_only)
503 {
504 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
505 pgoff_t index = from >> PAGE_CACHE_SHIFT;
506 struct address_space *mapping = inode->i_mapping;
507 struct page *page;
508
509 if (!offset && !cache_only)
510 return 0;
511
512 if (cache_only) {
513 page = f2fs_grab_cache_page(mapping, index, false);
514 if (page && PageUptodate(page))
515 goto truncate_out;
516 f2fs_put_page(page, 1);
517 return 0;
518 }
519
520 page = get_lock_data_page(inode, index, true);
521 if (IS_ERR(page))
522 return 0;
523 truncate_out:
524 f2fs_wait_on_page_writeback(page, DATA);
525 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
526 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
527 set_page_dirty(page);
528 f2fs_put_page(page, 1);
529 return 0;
530 }
531
532 int truncate_blocks(struct inode *inode, u64 from, bool lock)
533 {
534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
535 unsigned int blocksize = inode->i_sb->s_blocksize;
536 struct dnode_of_data dn;
537 pgoff_t free_from;
538 int count = 0, err = 0;
539 struct page *ipage;
540 bool truncate_page = false;
541
542 trace_f2fs_truncate_blocks_enter(inode, from);
543
544 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
545
546 if (lock)
547 f2fs_lock_op(sbi);
548
549 ipage = get_node_page(sbi, inode->i_ino);
550 if (IS_ERR(ipage)) {
551 err = PTR_ERR(ipage);
552 goto out;
553 }
554
555 if (f2fs_has_inline_data(inode)) {
556 if (truncate_inline_inode(ipage, from))
557 set_page_dirty(ipage);
558 f2fs_put_page(ipage, 1);
559 truncate_page = true;
560 goto out;
561 }
562
563 set_new_dnode(&dn, inode, ipage, NULL, 0);
564 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
565 if (err) {
566 if (err == -ENOENT)
567 goto free_next;
568 goto out;
569 }
570
571 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
572
573 count -= dn.ofs_in_node;
574 f2fs_bug_on(sbi, count < 0);
575
576 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
577 truncate_data_blocks_range(&dn, count);
578 free_from += count;
579 }
580
581 f2fs_put_dnode(&dn);
582 free_next:
583 err = truncate_inode_blocks(inode, free_from);
584 out:
585 if (lock)
586 f2fs_unlock_op(sbi);
587
588 /* lastly zero out the first data page */
589 if (!err)
590 err = truncate_partial_data_page(inode, from, truncate_page);
591
592 trace_f2fs_truncate_blocks_exit(inode, err);
593 return err;
594 }
595
596 int f2fs_truncate(struct inode *inode, bool lock)
597 {
598 int err;
599
600 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
601 S_ISLNK(inode->i_mode)))
602 return 0;
603
604 trace_f2fs_truncate(inode);
605
606 /* we should check inline_data size */
607 if (!f2fs_may_inline_data(inode)) {
608 err = f2fs_convert_inline_inode(inode);
609 if (err)
610 return err;
611 }
612
613 err = truncate_blocks(inode, i_size_read(inode), lock);
614 if (err)
615 return err;
616
617 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
618 mark_inode_dirty(inode);
619 return 0;
620 }
621
622 int f2fs_getattr(struct vfsmount *mnt,
623 struct dentry *dentry, struct kstat *stat)
624 {
625 struct inode *inode = d_inode(dentry);
626 generic_fillattr(inode, stat);
627 stat->blocks <<= 3;
628 return 0;
629 }
630
631 #ifdef CONFIG_F2FS_FS_POSIX_ACL
632 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
633 {
634 struct f2fs_inode_info *fi = F2FS_I(inode);
635 unsigned int ia_valid = attr->ia_valid;
636
637 if (ia_valid & ATTR_UID)
638 inode->i_uid = attr->ia_uid;
639 if (ia_valid & ATTR_GID)
640 inode->i_gid = attr->ia_gid;
641 if (ia_valid & ATTR_ATIME)
642 inode->i_atime = timespec_trunc(attr->ia_atime,
643 inode->i_sb->s_time_gran);
644 if (ia_valid & ATTR_MTIME)
645 inode->i_mtime = timespec_trunc(attr->ia_mtime,
646 inode->i_sb->s_time_gran);
647 if (ia_valid & ATTR_CTIME)
648 inode->i_ctime = timespec_trunc(attr->ia_ctime,
649 inode->i_sb->s_time_gran);
650 if (ia_valid & ATTR_MODE) {
651 umode_t mode = attr->ia_mode;
652
653 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
654 mode &= ~S_ISGID;
655 set_acl_inode(fi, mode);
656 }
657 }
658 #else
659 #define __setattr_copy setattr_copy
660 #endif
661
662 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
663 {
664 struct inode *inode = d_inode(dentry);
665 struct f2fs_inode_info *fi = F2FS_I(inode);
666 int err;
667
668 err = inode_change_ok(inode, attr);
669 if (err)
670 return err;
671
672 if (attr->ia_valid & ATTR_SIZE) {
673 if (f2fs_encrypted_inode(inode) &&
674 f2fs_get_encryption_info(inode))
675 return -EACCES;
676
677 if (attr->ia_size <= i_size_read(inode)) {
678 truncate_setsize(inode, attr->ia_size);
679 err = f2fs_truncate(inode, true);
680 if (err)
681 return err;
682 f2fs_balance_fs(F2FS_I_SB(inode), true);
683 } else {
684 /*
685 * do not trim all blocks after i_size if target size is
686 * larger than i_size.
687 */
688 truncate_setsize(inode, attr->ia_size);
689
690 /* should convert inline inode here */
691 if (!f2fs_may_inline_data(inode)) {
692 err = f2fs_convert_inline_inode(inode);
693 if (err)
694 return err;
695 }
696 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
697 }
698 }
699
700 __setattr_copy(inode, attr);
701
702 if (attr->ia_valid & ATTR_MODE) {
703 err = posix_acl_chmod(inode, get_inode_mode(inode));
704 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
705 inode->i_mode = fi->i_acl_mode;
706 clear_inode_flag(fi, FI_ACL_MODE);
707 }
708 }
709
710 mark_inode_dirty(inode);
711 return err;
712 }
713
714 const struct inode_operations f2fs_file_inode_operations = {
715 .getattr = f2fs_getattr,
716 .setattr = f2fs_setattr,
717 .get_acl = f2fs_get_acl,
718 .set_acl = f2fs_set_acl,
719 #ifdef CONFIG_F2FS_FS_XATTR
720 .setxattr = generic_setxattr,
721 .getxattr = generic_getxattr,
722 .listxattr = f2fs_listxattr,
723 .removexattr = generic_removexattr,
724 #endif
725 .fiemap = f2fs_fiemap,
726 };
727
728 static int fill_zero(struct inode *inode, pgoff_t index,
729 loff_t start, loff_t len)
730 {
731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
732 struct page *page;
733
734 if (!len)
735 return 0;
736
737 f2fs_balance_fs(sbi, true);
738
739 f2fs_lock_op(sbi);
740 page = get_new_data_page(inode, NULL, index, false);
741 f2fs_unlock_op(sbi);
742
743 if (IS_ERR(page))
744 return PTR_ERR(page);
745
746 f2fs_wait_on_page_writeback(page, DATA);
747 zero_user(page, start, len);
748 set_page_dirty(page);
749 f2fs_put_page(page, 1);
750 return 0;
751 }
752
753 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
754 {
755 int err;
756
757 while (pg_start < pg_end) {
758 struct dnode_of_data dn;
759 pgoff_t end_offset, count;
760
761 set_new_dnode(&dn, inode, NULL, NULL, 0);
762 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
763 if (err) {
764 if (err == -ENOENT) {
765 pg_start++;
766 continue;
767 }
768 return err;
769 }
770
771 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
772 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
773
774 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
775
776 truncate_data_blocks_range(&dn, count);
777 f2fs_put_dnode(&dn);
778
779 pg_start += count;
780 }
781 return 0;
782 }
783
784 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
785 {
786 pgoff_t pg_start, pg_end;
787 loff_t off_start, off_end;
788 int ret;
789
790 ret = f2fs_convert_inline_inode(inode);
791 if (ret)
792 return ret;
793
794 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
795 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
796
797 off_start = offset & (PAGE_CACHE_SIZE - 1);
798 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
799
800 if (pg_start == pg_end) {
801 ret = fill_zero(inode, pg_start, off_start,
802 off_end - off_start);
803 if (ret)
804 return ret;
805 } else {
806 if (off_start) {
807 ret = fill_zero(inode, pg_start++, off_start,
808 PAGE_CACHE_SIZE - off_start);
809 if (ret)
810 return ret;
811 }
812 if (off_end) {
813 ret = fill_zero(inode, pg_end, 0, off_end);
814 if (ret)
815 return ret;
816 }
817
818 if (pg_start < pg_end) {
819 struct address_space *mapping = inode->i_mapping;
820 loff_t blk_start, blk_end;
821 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822
823 f2fs_balance_fs(sbi, true);
824
825 blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
826 blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
827 truncate_inode_pages_range(mapping, blk_start,
828 blk_end - 1);
829
830 f2fs_lock_op(sbi);
831 ret = truncate_hole(inode, pg_start, pg_end);
832 f2fs_unlock_op(sbi);
833 }
834 }
835
836 return ret;
837 }
838
839 static int __exchange_data_block(struct inode *inode, pgoff_t src,
840 pgoff_t dst, bool full)
841 {
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 struct dnode_of_data dn;
844 block_t new_addr;
845 bool do_replace = false;
846 int ret;
847
848 set_new_dnode(&dn, inode, NULL, NULL, 0);
849 ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
850 if (ret && ret != -ENOENT) {
851 return ret;
852 } else if (ret == -ENOENT) {
853 new_addr = NULL_ADDR;
854 } else {
855 new_addr = dn.data_blkaddr;
856 if (!is_checkpointed_data(sbi, new_addr)) {
857 dn.data_blkaddr = NULL_ADDR;
858 /* do not invalidate this block address */
859 set_data_blkaddr(&dn);
860 f2fs_update_extent_cache(&dn);
861 do_replace = true;
862 }
863 f2fs_put_dnode(&dn);
864 }
865
866 if (new_addr == NULL_ADDR)
867 return full ? truncate_hole(inode, dst, dst + 1) : 0;
868
869 if (do_replace) {
870 struct page *ipage = get_node_page(sbi, inode->i_ino);
871 struct node_info ni;
872
873 if (IS_ERR(ipage)) {
874 ret = PTR_ERR(ipage);
875 goto err_out;
876 }
877
878 set_new_dnode(&dn, inode, ipage, NULL, 0);
879 ret = f2fs_reserve_block(&dn, dst);
880 if (ret)
881 goto err_out;
882
883 truncate_data_blocks_range(&dn, 1);
884
885 get_node_info(sbi, dn.nid, &ni);
886 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
887 ni.version, true);
888 f2fs_put_dnode(&dn);
889 } else {
890 struct page *psrc, *pdst;
891
892 psrc = get_lock_data_page(inode, src, true);
893 if (IS_ERR(psrc))
894 return PTR_ERR(psrc);
895 pdst = get_new_data_page(inode, NULL, dst, false);
896 if (IS_ERR(pdst)) {
897 f2fs_put_page(psrc, 1);
898 return PTR_ERR(pdst);
899 }
900 f2fs_copy_page(psrc, pdst);
901 set_page_dirty(pdst);
902 f2fs_put_page(pdst, 1);
903 f2fs_put_page(psrc, 1);
904
905 return truncate_hole(inode, src, src + 1);
906 }
907 return 0;
908
909 err_out:
910 if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
911 dn.data_blkaddr = new_addr;
912 set_data_blkaddr(&dn);
913 f2fs_update_extent_cache(&dn);
914 f2fs_put_dnode(&dn);
915 }
916 return ret;
917 }
918
919 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
920 {
921 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
922 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
923 int ret = 0;
924
925 for (; end < nrpages; start++, end++) {
926 f2fs_balance_fs(sbi, true);
927 f2fs_lock_op(sbi);
928 ret = __exchange_data_block(inode, end, start, true);
929 f2fs_unlock_op(sbi);
930 if (ret)
931 break;
932 }
933 return ret;
934 }
935
936 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
937 {
938 pgoff_t pg_start, pg_end;
939 loff_t new_size;
940 int ret;
941
942 if (offset + len >= i_size_read(inode))
943 return -EINVAL;
944
945 /* collapse range should be aligned to block size of f2fs. */
946 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
947 return -EINVAL;
948
949 ret = f2fs_convert_inline_inode(inode);
950 if (ret)
951 return ret;
952
953 pg_start = offset >> PAGE_CACHE_SHIFT;
954 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
955
956 /* write out all dirty pages from offset */
957 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
958 if (ret)
959 return ret;
960
961 truncate_pagecache(inode, offset);
962
963 ret = f2fs_do_collapse(inode, pg_start, pg_end);
964 if (ret)
965 return ret;
966
967 /* write out all moved pages, if possible */
968 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
969 truncate_pagecache(inode, offset);
970
971 new_size = i_size_read(inode) - len;
972 truncate_pagecache(inode, new_size);
973
974 ret = truncate_blocks(inode, new_size, true);
975 if (!ret)
976 i_size_write(inode, new_size);
977
978 return ret;
979 }
980
981 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
982 int mode)
983 {
984 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
985 struct address_space *mapping = inode->i_mapping;
986 pgoff_t index, pg_start, pg_end;
987 loff_t new_size = i_size_read(inode);
988 loff_t off_start, off_end;
989 int ret = 0;
990
991 ret = inode_newsize_ok(inode, (len + offset));
992 if (ret)
993 return ret;
994
995 ret = f2fs_convert_inline_inode(inode);
996 if (ret)
997 return ret;
998
999 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1000 if (ret)
1001 return ret;
1002
1003 truncate_pagecache_range(inode, offset, offset + len - 1);
1004
1005 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1006 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1007
1008 off_start = offset & (PAGE_CACHE_SIZE - 1);
1009 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1010
1011 if (pg_start == pg_end) {
1012 ret = fill_zero(inode, pg_start, off_start,
1013 off_end - off_start);
1014 if (ret)
1015 return ret;
1016
1017 if (offset + len > new_size)
1018 new_size = offset + len;
1019 new_size = max_t(loff_t, new_size, offset + len);
1020 } else {
1021 if (off_start) {
1022 ret = fill_zero(inode, pg_start++, off_start,
1023 PAGE_CACHE_SIZE - off_start);
1024 if (ret)
1025 return ret;
1026
1027 new_size = max_t(loff_t, new_size,
1028 (loff_t)pg_start << PAGE_CACHE_SHIFT);
1029 }
1030
1031 for (index = pg_start; index < pg_end; index++) {
1032 struct dnode_of_data dn;
1033 struct page *ipage;
1034
1035 f2fs_lock_op(sbi);
1036
1037 ipage = get_node_page(sbi, inode->i_ino);
1038 if (IS_ERR(ipage)) {
1039 ret = PTR_ERR(ipage);
1040 f2fs_unlock_op(sbi);
1041 goto out;
1042 }
1043
1044 set_new_dnode(&dn, inode, ipage, NULL, 0);
1045 ret = f2fs_reserve_block(&dn, index);
1046 if (ret) {
1047 f2fs_unlock_op(sbi);
1048 goto out;
1049 }
1050
1051 if (dn.data_blkaddr != NEW_ADDR) {
1052 invalidate_blocks(sbi, dn.data_blkaddr);
1053
1054 dn.data_blkaddr = NEW_ADDR;
1055 set_data_blkaddr(&dn);
1056
1057 dn.data_blkaddr = NULL_ADDR;
1058 f2fs_update_extent_cache(&dn);
1059 }
1060 f2fs_put_dnode(&dn);
1061 f2fs_unlock_op(sbi);
1062
1063 new_size = max_t(loff_t, new_size,
1064 (loff_t)(index + 1) << PAGE_CACHE_SHIFT);
1065 }
1066
1067 if (off_end) {
1068 ret = fill_zero(inode, pg_end, 0, off_end);
1069 if (ret)
1070 goto out;
1071
1072 new_size = max_t(loff_t, new_size, offset + len);
1073 }
1074 }
1075
1076 out:
1077 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1078 i_size_write(inode, new_size);
1079 mark_inode_dirty(inode);
1080 update_inode_page(inode);
1081 }
1082
1083 return ret;
1084 }
1085
1086 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1087 {
1088 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1090 loff_t new_size;
1091 int ret = 0;
1092
1093 new_size = i_size_read(inode) + len;
1094 if (new_size > inode->i_sb->s_maxbytes)
1095 return -EFBIG;
1096
1097 if (offset >= i_size_read(inode))
1098 return -EINVAL;
1099
1100 /* insert range should be aligned to block size of f2fs. */
1101 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1102 return -EINVAL;
1103
1104 ret = f2fs_convert_inline_inode(inode);
1105 if (ret)
1106 return ret;
1107
1108 f2fs_balance_fs(sbi, true);
1109
1110 ret = truncate_blocks(inode, i_size_read(inode), true);
1111 if (ret)
1112 return ret;
1113
1114 /* write out all dirty pages from offset */
1115 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1116 if (ret)
1117 return ret;
1118
1119 truncate_pagecache(inode, offset);
1120
1121 pg_start = offset >> PAGE_CACHE_SHIFT;
1122 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1123 delta = pg_end - pg_start;
1124 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1125
1126 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1127 f2fs_lock_op(sbi);
1128 ret = __exchange_data_block(inode, idx, idx + delta, false);
1129 f2fs_unlock_op(sbi);
1130 if (ret)
1131 break;
1132 }
1133
1134 /* write out all moved pages, if possible */
1135 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1136 truncate_pagecache(inode, offset);
1137
1138 if (!ret)
1139 i_size_write(inode, new_size);
1140 return ret;
1141 }
1142
1143 static int expand_inode_data(struct inode *inode, loff_t offset,
1144 loff_t len, int mode)
1145 {
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 pgoff_t index, pg_start, pg_end;
1148 loff_t new_size = i_size_read(inode);
1149 loff_t off_start, off_end;
1150 int ret = 0;
1151
1152 ret = inode_newsize_ok(inode, (len + offset));
1153 if (ret)
1154 return ret;
1155
1156 ret = f2fs_convert_inline_inode(inode);
1157 if (ret)
1158 return ret;
1159
1160 f2fs_balance_fs(sbi, true);
1161
1162 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1163 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1164
1165 off_start = offset & (PAGE_CACHE_SIZE - 1);
1166 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1167
1168 f2fs_lock_op(sbi);
1169
1170 for (index = pg_start; index <= pg_end; index++) {
1171 struct dnode_of_data dn;
1172
1173 if (index == pg_end && !off_end)
1174 goto noalloc;
1175
1176 set_new_dnode(&dn, inode, NULL, NULL, 0);
1177 ret = f2fs_reserve_block(&dn, index);
1178 if (ret)
1179 break;
1180 noalloc:
1181 if (pg_start == pg_end)
1182 new_size = offset + len;
1183 else if (index == pg_start && off_start)
1184 new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
1185 else if (index == pg_end)
1186 new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
1187 off_end;
1188 else
1189 new_size += PAGE_CACHE_SIZE;
1190 }
1191
1192 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1193 i_size_read(inode) < new_size) {
1194 i_size_write(inode, new_size);
1195 mark_inode_dirty(inode);
1196 update_inode_page(inode);
1197 }
1198 f2fs_unlock_op(sbi);
1199
1200 return ret;
1201 }
1202
1203 static long f2fs_fallocate(struct file *file, int mode,
1204 loff_t offset, loff_t len)
1205 {
1206 struct inode *inode = file_inode(file);
1207 long ret = 0;
1208
1209 /* f2fs only support ->fallocate for regular file */
1210 if (!S_ISREG(inode->i_mode))
1211 return -EINVAL;
1212
1213 if (f2fs_encrypted_inode(inode) &&
1214 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1215 return -EOPNOTSUPP;
1216
1217 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1218 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1219 FALLOC_FL_INSERT_RANGE))
1220 return -EOPNOTSUPP;
1221
1222 inode_lock(inode);
1223
1224 if (mode & FALLOC_FL_PUNCH_HOLE) {
1225 if (offset >= inode->i_size)
1226 goto out;
1227
1228 ret = punch_hole(inode, offset, len);
1229 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1230 ret = f2fs_collapse_range(inode, offset, len);
1231 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1232 ret = f2fs_zero_range(inode, offset, len, mode);
1233 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1234 ret = f2fs_insert_range(inode, offset, len);
1235 } else {
1236 ret = expand_inode_data(inode, offset, len, mode);
1237 }
1238
1239 if (!ret) {
1240 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1241 mark_inode_dirty(inode);
1242 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1243 }
1244
1245 out:
1246 inode_unlock(inode);
1247
1248 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1249 return ret;
1250 }
1251
1252 static int f2fs_release_file(struct inode *inode, struct file *filp)
1253 {
1254 /* some remained atomic pages should discarded */
1255 if (f2fs_is_atomic_file(inode))
1256 commit_inmem_pages(inode, true);
1257 if (f2fs_is_volatile_file(inode)) {
1258 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1259 filemap_fdatawrite(inode->i_mapping);
1260 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1261 }
1262 return 0;
1263 }
1264
1265 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1266 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1267
1268 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1269 {
1270 if (S_ISDIR(mode))
1271 return flags;
1272 else if (S_ISREG(mode))
1273 return flags & F2FS_REG_FLMASK;
1274 else
1275 return flags & F2FS_OTHER_FLMASK;
1276 }
1277
1278 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1279 {
1280 struct inode *inode = file_inode(filp);
1281 struct f2fs_inode_info *fi = F2FS_I(inode);
1282 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1283 return put_user(flags, (int __user *)arg);
1284 }
1285
1286 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1287 {
1288 struct inode *inode = file_inode(filp);
1289 struct f2fs_inode_info *fi = F2FS_I(inode);
1290 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1291 unsigned int oldflags;
1292 int ret;
1293
1294 ret = mnt_want_write_file(filp);
1295 if (ret)
1296 return ret;
1297
1298 if (!inode_owner_or_capable(inode)) {
1299 ret = -EACCES;
1300 goto out;
1301 }
1302
1303 if (get_user(flags, (int __user *)arg)) {
1304 ret = -EFAULT;
1305 goto out;
1306 }
1307
1308 flags = f2fs_mask_flags(inode->i_mode, flags);
1309
1310 inode_lock(inode);
1311
1312 oldflags = fi->i_flags;
1313
1314 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1315 if (!capable(CAP_LINUX_IMMUTABLE)) {
1316 inode_unlock(inode);
1317 ret = -EPERM;
1318 goto out;
1319 }
1320 }
1321
1322 flags = flags & FS_FL_USER_MODIFIABLE;
1323 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1324 fi->i_flags = flags;
1325 inode_unlock(inode);
1326
1327 f2fs_set_inode_flags(inode);
1328 inode->i_ctime = CURRENT_TIME;
1329 mark_inode_dirty(inode);
1330 out:
1331 mnt_drop_write_file(filp);
1332 return ret;
1333 }
1334
1335 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1336 {
1337 struct inode *inode = file_inode(filp);
1338
1339 return put_user(inode->i_generation, (int __user *)arg);
1340 }
1341
1342 static int f2fs_ioc_start_atomic_write(struct file *filp)
1343 {
1344 struct inode *inode = file_inode(filp);
1345 int ret;
1346
1347 if (!inode_owner_or_capable(inode))
1348 return -EACCES;
1349
1350 if (f2fs_is_atomic_file(inode))
1351 return 0;
1352
1353 ret = f2fs_convert_inline_inode(inode);
1354 if (ret)
1355 return ret;
1356
1357 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1358 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1359
1360 return 0;
1361 }
1362
1363 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1364 {
1365 struct inode *inode = file_inode(filp);
1366 int ret;
1367
1368 if (!inode_owner_or_capable(inode))
1369 return -EACCES;
1370
1371 if (f2fs_is_volatile_file(inode))
1372 return 0;
1373
1374 ret = mnt_want_write_file(filp);
1375 if (ret)
1376 return ret;
1377
1378 if (f2fs_is_atomic_file(inode)) {
1379 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1380 ret = commit_inmem_pages(inode, false);
1381 if (ret) {
1382 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1383 goto err_out;
1384 }
1385 }
1386
1387 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1388 err_out:
1389 mnt_drop_write_file(filp);
1390 return ret;
1391 }
1392
1393 static int f2fs_ioc_start_volatile_write(struct file *filp)
1394 {
1395 struct inode *inode = file_inode(filp);
1396 int ret;
1397
1398 if (!inode_owner_or_capable(inode))
1399 return -EACCES;
1400
1401 if (f2fs_is_volatile_file(inode))
1402 return 0;
1403
1404 ret = f2fs_convert_inline_inode(inode);
1405 if (ret)
1406 return ret;
1407
1408 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1409 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1410 return 0;
1411 }
1412
1413 static int f2fs_ioc_release_volatile_write(struct file *filp)
1414 {
1415 struct inode *inode = file_inode(filp);
1416
1417 if (!inode_owner_or_capable(inode))
1418 return -EACCES;
1419
1420 if (!f2fs_is_volatile_file(inode))
1421 return 0;
1422
1423 if (!f2fs_is_first_block_written(inode))
1424 return truncate_partial_data_page(inode, 0, true);
1425
1426 return punch_hole(inode, 0, F2FS_BLKSIZE);
1427 }
1428
1429 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1430 {
1431 struct inode *inode = file_inode(filp);
1432 int ret;
1433
1434 if (!inode_owner_or_capable(inode))
1435 return -EACCES;
1436
1437 ret = mnt_want_write_file(filp);
1438 if (ret)
1439 return ret;
1440
1441 if (f2fs_is_atomic_file(inode)) {
1442 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1443 commit_inmem_pages(inode, true);
1444 }
1445 if (f2fs_is_volatile_file(inode)) {
1446 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1447 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1448 }
1449
1450 mnt_drop_write_file(filp);
1451 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1452 return ret;
1453 }
1454
1455 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1456 {
1457 struct inode *inode = file_inode(filp);
1458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1459 struct super_block *sb = sbi->sb;
1460 __u32 in;
1461
1462 if (!capable(CAP_SYS_ADMIN))
1463 return -EPERM;
1464
1465 if (get_user(in, (__u32 __user *)arg))
1466 return -EFAULT;
1467
1468 switch (in) {
1469 case F2FS_GOING_DOWN_FULLSYNC:
1470 sb = freeze_bdev(sb->s_bdev);
1471 if (sb && !IS_ERR(sb)) {
1472 f2fs_stop_checkpoint(sbi);
1473 thaw_bdev(sb->s_bdev, sb);
1474 }
1475 break;
1476 case F2FS_GOING_DOWN_METASYNC:
1477 /* do checkpoint only */
1478 f2fs_sync_fs(sb, 1);
1479 f2fs_stop_checkpoint(sbi);
1480 break;
1481 case F2FS_GOING_DOWN_NOSYNC:
1482 f2fs_stop_checkpoint(sbi);
1483 break;
1484 case F2FS_GOING_DOWN_METAFLUSH:
1485 sync_meta_pages(sbi, META, LONG_MAX);
1486 f2fs_stop_checkpoint(sbi);
1487 break;
1488 default:
1489 return -EINVAL;
1490 }
1491 f2fs_update_time(sbi, REQ_TIME);
1492 return 0;
1493 }
1494
1495 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1496 {
1497 struct inode *inode = file_inode(filp);
1498 struct super_block *sb = inode->i_sb;
1499 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1500 struct fstrim_range range;
1501 int ret;
1502
1503 if (!capable(CAP_SYS_ADMIN))
1504 return -EPERM;
1505
1506 if (!blk_queue_discard(q))
1507 return -EOPNOTSUPP;
1508
1509 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1510 sizeof(range)))
1511 return -EFAULT;
1512
1513 range.minlen = max((unsigned int)range.minlen,
1514 q->limits.discard_granularity);
1515 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1516 if (ret < 0)
1517 return ret;
1518
1519 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1520 sizeof(range)))
1521 return -EFAULT;
1522 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1523 return 0;
1524 }
1525
1526 static bool uuid_is_nonzero(__u8 u[16])
1527 {
1528 int i;
1529
1530 for (i = 0; i < 16; i++)
1531 if (u[i])
1532 return true;
1533 return false;
1534 }
1535
1536 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1537 {
1538 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1539 struct f2fs_encryption_policy policy;
1540 struct inode *inode = file_inode(filp);
1541
1542 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1543 sizeof(policy)))
1544 return -EFAULT;
1545
1546 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1547 return f2fs_process_policy(&policy, inode);
1548 #else
1549 return -EOPNOTSUPP;
1550 #endif
1551 }
1552
1553 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1554 {
1555 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1556 struct f2fs_encryption_policy policy;
1557 struct inode *inode = file_inode(filp);
1558 int err;
1559
1560 err = f2fs_get_policy(inode, &policy);
1561 if (err)
1562 return err;
1563
1564 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1565 sizeof(policy)))
1566 return -EFAULT;
1567 return 0;
1568 #else
1569 return -EOPNOTSUPP;
1570 #endif
1571 }
1572
1573 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1574 {
1575 struct inode *inode = file_inode(filp);
1576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1577 int err;
1578
1579 if (!f2fs_sb_has_crypto(inode->i_sb))
1580 return -EOPNOTSUPP;
1581
1582 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1583 goto got_it;
1584
1585 err = mnt_want_write_file(filp);
1586 if (err)
1587 return err;
1588
1589 /* update superblock with uuid */
1590 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1591
1592 err = f2fs_commit_super(sbi, false);
1593 if (err) {
1594 /* undo new data */
1595 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1596 mnt_drop_write_file(filp);
1597 return err;
1598 }
1599 mnt_drop_write_file(filp);
1600 got_it:
1601 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1602 16))
1603 return -EFAULT;
1604 return 0;
1605 }
1606
1607 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1608 {
1609 struct inode *inode = file_inode(filp);
1610 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1611 __u32 sync;
1612
1613 if (!capable(CAP_SYS_ADMIN))
1614 return -EPERM;
1615
1616 if (get_user(sync, (__u32 __user *)arg))
1617 return -EFAULT;
1618
1619 if (f2fs_readonly(sbi->sb))
1620 return -EROFS;
1621
1622 if (!sync) {
1623 if (!mutex_trylock(&sbi->gc_mutex))
1624 return -EBUSY;
1625 } else {
1626 mutex_lock(&sbi->gc_mutex);
1627 }
1628
1629 return f2fs_gc(sbi, sync);
1630 }
1631
1632 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1633 {
1634 struct inode *inode = file_inode(filp);
1635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1636
1637 if (!capable(CAP_SYS_ADMIN))
1638 return -EPERM;
1639
1640 if (f2fs_readonly(sbi->sb))
1641 return -EROFS;
1642
1643 return f2fs_sync_fs(sbi->sb, 1);
1644 }
1645
1646 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1647 struct file *filp,
1648 struct f2fs_defragment *range)
1649 {
1650 struct inode *inode = file_inode(filp);
1651 struct f2fs_map_blocks map;
1652 struct extent_info ei;
1653 pgoff_t pg_start, pg_end;
1654 unsigned int blk_per_seg = sbi->blocks_per_seg;
1655 unsigned int total = 0, sec_num;
1656 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1657 block_t blk_end = 0;
1658 bool fragmented = false;
1659 int err;
1660
1661 /* if in-place-update policy is enabled, don't waste time here */
1662 if (need_inplace_update(inode))
1663 return -EINVAL;
1664
1665 pg_start = range->start >> PAGE_CACHE_SHIFT;
1666 pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT;
1667
1668 f2fs_balance_fs(sbi, true);
1669
1670 inode_lock(inode);
1671
1672 /* writeback all dirty pages in the range */
1673 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1674 range->start + range->len - 1);
1675 if (err)
1676 goto out;
1677
1678 /*
1679 * lookup mapping info in extent cache, skip defragmenting if physical
1680 * block addresses are continuous.
1681 */
1682 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1683 if (ei.fofs + ei.len >= pg_end)
1684 goto out;
1685 }
1686
1687 map.m_lblk = pg_start;
1688
1689 /*
1690 * lookup mapping info in dnode page cache, skip defragmenting if all
1691 * physical block addresses are continuous even if there are hole(s)
1692 * in logical blocks.
1693 */
1694 while (map.m_lblk < pg_end) {
1695 map.m_len = pg_end - map.m_lblk;
1696 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1697 if (err)
1698 goto out;
1699
1700 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1701 map.m_lblk++;
1702 continue;
1703 }
1704
1705 if (blk_end && blk_end != map.m_pblk) {
1706 fragmented = true;
1707 break;
1708 }
1709 blk_end = map.m_pblk + map.m_len;
1710
1711 map.m_lblk += map.m_len;
1712 }
1713
1714 if (!fragmented)
1715 goto out;
1716
1717 map.m_lblk = pg_start;
1718 map.m_len = pg_end - pg_start;
1719
1720 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1721
1722 /*
1723 * make sure there are enough free section for LFS allocation, this can
1724 * avoid defragment running in SSR mode when free section are allocated
1725 * intensively
1726 */
1727 if (has_not_enough_free_secs(sbi, sec_num)) {
1728 err = -EAGAIN;
1729 goto out;
1730 }
1731
1732 while (map.m_lblk < pg_end) {
1733 pgoff_t idx;
1734 int cnt = 0;
1735
1736 do_map:
1737 map.m_len = pg_end - map.m_lblk;
1738 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1739 if (err)
1740 goto clear_out;
1741
1742 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1743 map.m_lblk++;
1744 continue;
1745 }
1746
1747 set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1748
1749 idx = map.m_lblk;
1750 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1751 struct page *page;
1752
1753 page = get_lock_data_page(inode, idx, true);
1754 if (IS_ERR(page)) {
1755 err = PTR_ERR(page);
1756 goto clear_out;
1757 }
1758
1759 set_page_dirty(page);
1760 f2fs_put_page(page, 1);
1761
1762 idx++;
1763 cnt++;
1764 total++;
1765 }
1766
1767 map.m_lblk = idx;
1768
1769 if (idx < pg_end && cnt < blk_per_seg)
1770 goto do_map;
1771
1772 clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1773
1774 err = filemap_fdatawrite(inode->i_mapping);
1775 if (err)
1776 goto out;
1777 }
1778 clear_out:
1779 clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1780 out:
1781 inode_unlock(inode);
1782 if (!err)
1783 range->len = (u64)total << PAGE_CACHE_SHIFT;
1784 return err;
1785 }
1786
1787 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1788 {
1789 struct inode *inode = file_inode(filp);
1790 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1791 struct f2fs_defragment range;
1792 int err;
1793
1794 if (!capable(CAP_SYS_ADMIN))
1795 return -EPERM;
1796
1797 if (!S_ISREG(inode->i_mode))
1798 return -EINVAL;
1799
1800 err = mnt_want_write_file(filp);
1801 if (err)
1802 return err;
1803
1804 if (f2fs_readonly(sbi->sb)) {
1805 err = -EROFS;
1806 goto out;
1807 }
1808
1809 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1810 sizeof(range))) {
1811 err = -EFAULT;
1812 goto out;
1813 }
1814
1815 /* verify alignment of offset & size */
1816 if (range.start & (F2FS_BLKSIZE - 1) ||
1817 range.len & (F2FS_BLKSIZE - 1)) {
1818 err = -EINVAL;
1819 goto out;
1820 }
1821
1822 err = f2fs_defragment_range(sbi, filp, &range);
1823 f2fs_update_time(sbi, REQ_TIME);
1824 if (err < 0)
1825 goto out;
1826
1827 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1828 sizeof(range)))
1829 err = -EFAULT;
1830 out:
1831 mnt_drop_write_file(filp);
1832 return err;
1833 }
1834
1835 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1836 {
1837 switch (cmd) {
1838 case F2FS_IOC_GETFLAGS:
1839 return f2fs_ioc_getflags(filp, arg);
1840 case F2FS_IOC_SETFLAGS:
1841 return f2fs_ioc_setflags(filp, arg);
1842 case F2FS_IOC_GETVERSION:
1843 return f2fs_ioc_getversion(filp, arg);
1844 case F2FS_IOC_START_ATOMIC_WRITE:
1845 return f2fs_ioc_start_atomic_write(filp);
1846 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1847 return f2fs_ioc_commit_atomic_write(filp);
1848 case F2FS_IOC_START_VOLATILE_WRITE:
1849 return f2fs_ioc_start_volatile_write(filp);
1850 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1851 return f2fs_ioc_release_volatile_write(filp);
1852 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1853 return f2fs_ioc_abort_volatile_write(filp);
1854 case F2FS_IOC_SHUTDOWN:
1855 return f2fs_ioc_shutdown(filp, arg);
1856 case FITRIM:
1857 return f2fs_ioc_fitrim(filp, arg);
1858 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1859 return f2fs_ioc_set_encryption_policy(filp, arg);
1860 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1861 return f2fs_ioc_get_encryption_policy(filp, arg);
1862 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1863 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1864 case F2FS_IOC_GARBAGE_COLLECT:
1865 return f2fs_ioc_gc(filp, arg);
1866 case F2FS_IOC_WRITE_CHECKPOINT:
1867 return f2fs_ioc_write_checkpoint(filp, arg);
1868 case F2FS_IOC_DEFRAGMENT:
1869 return f2fs_ioc_defragment(filp, arg);
1870 default:
1871 return -ENOTTY;
1872 }
1873 }
1874
1875 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1876 {
1877 struct inode *inode = file_inode(iocb->ki_filp);
1878
1879 if (f2fs_encrypted_inode(inode) &&
1880 !f2fs_has_encryption_key(inode) &&
1881 f2fs_get_encryption_info(inode))
1882 return -EACCES;
1883
1884 return generic_file_write_iter(iocb, from);
1885 }
1886
1887 #ifdef CONFIG_COMPAT
1888 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1889 {
1890 switch (cmd) {
1891 case F2FS_IOC32_GETFLAGS:
1892 cmd = F2FS_IOC_GETFLAGS;
1893 break;
1894 case F2FS_IOC32_SETFLAGS:
1895 cmd = F2FS_IOC_SETFLAGS;
1896 break;
1897 case F2FS_IOC32_GETVERSION:
1898 cmd = F2FS_IOC_GETVERSION;
1899 break;
1900 case F2FS_IOC_START_ATOMIC_WRITE:
1901 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1902 case F2FS_IOC_START_VOLATILE_WRITE:
1903 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1904 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1905 case F2FS_IOC_SHUTDOWN:
1906 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1907 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1908 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1909 case F2FS_IOC_GARBAGE_COLLECT:
1910 case F2FS_IOC_WRITE_CHECKPOINT:
1911 case F2FS_IOC_DEFRAGMENT:
1912 break;
1913 default:
1914 return -ENOIOCTLCMD;
1915 }
1916 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1917 }
1918 #endif
1919
1920 const struct file_operations f2fs_file_operations = {
1921 .llseek = f2fs_llseek,
1922 .read_iter = generic_file_read_iter,
1923 .write_iter = f2fs_file_write_iter,
1924 .open = f2fs_file_open,
1925 .release = f2fs_release_file,
1926 .mmap = f2fs_file_mmap,
1927 .fsync = f2fs_sync_file,
1928 .fallocate = f2fs_fallocate,
1929 .unlocked_ioctl = f2fs_ioctl,
1930 #ifdef CONFIG_COMPAT
1931 .compat_ioctl = f2fs_compat_ioctl,
1932 #endif
1933 .splice_read = generic_file_splice_read,
1934 .splice_write = iter_file_splice_write,
1935 };