]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/file.c
Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 sb_start_pagefault(inode->i_sb);
44
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46
47 /* block allocation */
48 f2fs_lock_op(sbi);
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
51 if (err) {
52 f2fs_unlock_op(sbi);
53 goto out;
54 }
55 f2fs_put_dnode(&dn);
56 f2fs_unlock_op(sbi);
57
58 f2fs_balance_fs(sbi, dn.node_changed);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
78 i_size_read(inode)) {
79 unsigned offset;
80 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
81 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
82 }
83 set_page_dirty(page);
84 SetPageUptodate(page);
85
86 trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 /* fill the page */
89 f2fs_wait_on_page_writeback(page, DATA, false);
90
91 /* wait for GCed encrypted page writeback */
92 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94
95 /* if gced page is attached, don't write to cold segment */
96 clear_cold_data(page);
97 out:
98 sb_end_pagefault(inode->i_sb);
99 f2fs_update_time(sbi, REQ_TIME);
100 return block_page_mkwrite_return(err);
101 }
102
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 .fault = filemap_fault,
105 .map_pages = filemap_map_pages,
106 .page_mkwrite = f2fs_vm_page_mkwrite,
107 };
108
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 struct dentry *dentry;
112
113 inode = igrab(inode);
114 dentry = d_find_any_alias(inode);
115 iput(inode);
116 if (!dentry)
117 return 0;
118
119 if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 dput(dentry);
121 return 0;
122 }
123
124 *pino = parent_ino(dentry);
125 dput(dentry);
126 return 1;
127 }
128
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 bool need_cp = false;
133
134 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 need_cp = true;
136 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 need_cp = true;
138 else if (file_wrong_pino(inode))
139 need_cp = true;
140 else if (!space_for_roll_forward(sbi))
141 need_cp = true;
142 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 need_cp = true;
144 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 need_cp = true;
146 else if (test_opt(sbi, FASTBOOT))
147 need_cp = true;
148 else if (sbi->active_logs == 2)
149 need_cp = true;
150
151 return need_cp;
152 }
153
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 bool ret = false;
158 /* But we need to avoid that there are some inode updates */
159 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 ret = true;
161 f2fs_put_page(i, 0);
162 return ret;
163 }
164
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 struct f2fs_inode_info *fi = F2FS_I(inode);
168 nid_t pino;
169
170 down_write(&fi->i_sem);
171 fi->xattr_ver = 0;
172 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 get_parent_ino(inode, &pino)) {
174 fi->i_pino = pino;
175 file_got_pino(inode);
176 up_write(&fi->i_sem);
177
178 mark_inode_dirty_sync(inode);
179 f2fs_write_inode(inode, NULL);
180 } else {
181 up_write(&fi->i_sem);
182 }
183 }
184
185 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
186 {
187 struct inode *inode = file->f_mapping->host;
188 struct f2fs_inode_info *fi = F2FS_I(inode);
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 nid_t ino = inode->i_ino;
191 int ret = 0;
192 bool need_cp = false;
193 struct writeback_control wbc = {
194 .sync_mode = WB_SYNC_ALL,
195 .nr_to_write = LONG_MAX,
196 .for_reclaim = 0,
197 };
198
199 if (unlikely(f2fs_readonly(inode->i_sb)))
200 return 0;
201
202 trace_f2fs_sync_file_enter(inode);
203
204 /* if fdatasync is triggered, let's do in-place-update */
205 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
206 set_inode_flag(fi, FI_NEED_IPU);
207 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
208 clear_inode_flag(fi, FI_NEED_IPU);
209
210 if (ret) {
211 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 return ret;
213 }
214
215 /* if the inode is dirty, let's recover all the time */
216 if (!datasync) {
217 f2fs_write_inode(inode, NULL);
218 goto go_write;
219 }
220
221 /*
222 * if there is no written data, don't waste time to write recovery info.
223 */
224 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
225 !exist_written_data(sbi, ino, APPEND_INO)) {
226
227 /* it may call write_inode just prior to fsync */
228 if (need_inode_page_update(sbi, ino))
229 goto go_write;
230
231 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
232 exist_written_data(sbi, ino, UPDATE_INO))
233 goto flush_out;
234 goto out;
235 }
236 go_write:
237 /*
238 * Both of fdatasync() and fsync() are able to be recovered from
239 * sudden-power-off.
240 */
241 down_read(&fi->i_sem);
242 need_cp = need_do_checkpoint(inode);
243 up_read(&fi->i_sem);
244
245 if (need_cp) {
246 /* all the dirty node pages should be flushed for POR */
247 ret = f2fs_sync_fs(inode->i_sb, 1);
248
249 /*
250 * We've secured consistency through sync_fs. Following pino
251 * will be used only for fsynced inodes after checkpoint.
252 */
253 try_to_fix_pino(inode);
254 clear_inode_flag(fi, FI_APPEND_WRITE);
255 clear_inode_flag(fi, FI_UPDATE_WRITE);
256 goto out;
257 }
258 sync_nodes:
259 sync_node_pages(sbi, ino, &wbc);
260
261 /* if cp_error was enabled, we should avoid infinite loop */
262 if (unlikely(f2fs_cp_error(sbi))) {
263 ret = -EIO;
264 goto out;
265 }
266
267 if (need_inode_block_update(sbi, ino)) {
268 mark_inode_dirty_sync(inode);
269 f2fs_write_inode(inode, NULL);
270 goto sync_nodes;
271 }
272
273 ret = wait_on_node_pages_writeback(sbi, ino);
274 if (ret)
275 goto out;
276
277 /* once recovery info is written, don't need to tack this */
278 remove_ino_entry(sbi, ino, APPEND_INO);
279 clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 remove_ino_entry(sbi, ino, UPDATE_INO);
282 clear_inode_flag(fi, FI_UPDATE_WRITE);
283 ret = f2fs_issue_flush(sbi);
284 f2fs_update_time(sbi, REQ_TIME);
285 out:
286 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
287 f2fs_trace_ios(NULL, 1);
288 return ret;
289 }
290
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 pgoff_t pgofs, int whence)
293 {
294 struct pagevec pvec;
295 int nr_pages;
296
297 if (whence != SEEK_DATA)
298 return 0;
299
300 /* find first dirty page index */
301 pagevec_init(&pvec, 0);
302 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 PAGECACHE_TAG_DIRTY, 1);
304 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
305 pagevec_release(&pvec);
306 return pgofs;
307 }
308
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 int whence)
311 {
312 switch (whence) {
313 case SEEK_DATA:
314 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 return true;
317 break;
318 case SEEK_HOLE:
319 if (blkaddr == NULL_ADDR)
320 return true;
321 break;
322 }
323 return false;
324 }
325
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 struct inode *inode = file->f_mapping->host;
329 loff_t maxbytes = inode->i_sb->s_maxbytes;
330 struct dnode_of_data dn;
331 pgoff_t pgofs, end_offset, dirty;
332 loff_t data_ofs = offset;
333 loff_t isize;
334 int err = 0;
335
336 inode_lock(inode);
337
338 isize = i_size_read(inode);
339 if (offset >= isize)
340 goto fail;
341
342 /* handle inline data case */
343 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 if (whence == SEEK_HOLE)
345 data_ofs = isize;
346 goto found;
347 }
348
349 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
350
351 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352
353 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
354 set_new_dnode(&dn, inode, NULL, NULL, 0);
355 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
356 if (err && err != -ENOENT) {
357 goto fail;
358 } else if (err == -ENOENT) {
359 /* direct node does not exists */
360 if (whence == SEEK_DATA) {
361 pgofs = get_next_page_offset(&dn, pgofs);
362 continue;
363 } else {
364 goto found;
365 }
366 }
367
368 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
369
370 /* find data/hole in dnode block */
371 for (; dn.ofs_in_node < end_offset;
372 dn.ofs_in_node++, pgofs++,
373 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
374 block_t blkaddr;
375 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376
377 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 f2fs_put_dnode(&dn);
379 goto found;
380 }
381 }
382 f2fs_put_dnode(&dn);
383 }
384
385 if (whence == SEEK_DATA)
386 goto fail;
387 found:
388 if (whence == SEEK_HOLE && data_ofs > isize)
389 data_ofs = isize;
390 inode_unlock(inode);
391 return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 inode_unlock(inode);
394 return -ENXIO;
395 }
396
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 struct inode *inode = file->f_mapping->host;
400 loff_t maxbytes = inode->i_sb->s_maxbytes;
401
402 switch (whence) {
403 case SEEK_SET:
404 case SEEK_CUR:
405 case SEEK_END:
406 return generic_file_llseek_size(file, offset, whence,
407 maxbytes, i_size_read(inode));
408 case SEEK_DATA:
409 case SEEK_HOLE:
410 if (offset < 0)
411 return -ENXIO;
412 return f2fs_seek_block(file, offset, whence);
413 }
414
415 return -EINVAL;
416 }
417
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 struct inode *inode = file_inode(file);
421 int err;
422
423 if (f2fs_encrypted_inode(inode)) {
424 err = fscrypt_get_encryption_info(inode);
425 if (err)
426 return 0;
427 if (!f2fs_encrypted_inode(inode))
428 return -ENOKEY;
429 }
430
431 /* we don't need to use inline_data strictly */
432 err = f2fs_convert_inline_inode(inode);
433 if (err)
434 return err;
435
436 file_accessed(file);
437 vma->vm_ops = &f2fs_file_vm_ops;
438 return 0;
439 }
440
441 static int f2fs_file_open(struct inode *inode, struct file *filp)
442 {
443 int ret = generic_file_open(inode, filp);
444 struct inode *dir = filp->f_path.dentry->d_parent->d_inode;
445
446 if (!ret && f2fs_encrypted_inode(inode)) {
447 ret = fscrypt_get_encryption_info(inode);
448 if (ret)
449 return -EACCES;
450 if (!fscrypt_has_encryption_key(inode))
451 return -ENOKEY;
452 }
453 if (f2fs_encrypted_inode(dir) &&
454 !fscrypt_has_permitted_context(dir, inode))
455 return -EPERM;
456 return ret;
457 }
458
459 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
460 {
461 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
462 struct f2fs_node *raw_node;
463 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
464 __le32 *addr;
465
466 raw_node = F2FS_NODE(dn->node_page);
467 addr = blkaddr_in_node(raw_node) + ofs;
468
469 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
470 block_t blkaddr = le32_to_cpu(*addr);
471 if (blkaddr == NULL_ADDR)
472 continue;
473
474 dn->data_blkaddr = NULL_ADDR;
475 set_data_blkaddr(dn);
476 invalidate_blocks(sbi, blkaddr);
477 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
478 clear_inode_flag(F2FS_I(dn->inode),
479 FI_FIRST_BLOCK_WRITTEN);
480 nr_free++;
481 }
482
483 if (nr_free) {
484 pgoff_t fofs;
485 /*
486 * once we invalidate valid blkaddr in range [ofs, ofs + count],
487 * we will invalidate all blkaddr in the whole range.
488 */
489 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
490 dn->inode) + ofs;
491 f2fs_update_extent_cache_range(dn, fofs, 0, len);
492 dec_valid_block_count(sbi, dn->inode, nr_free);
493 sync_inode_page(dn);
494 }
495 dn->ofs_in_node = ofs;
496
497 f2fs_update_time(sbi, REQ_TIME);
498 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
499 dn->ofs_in_node, nr_free);
500 return nr_free;
501 }
502
503 void truncate_data_blocks(struct dnode_of_data *dn)
504 {
505 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
506 }
507
508 static int truncate_partial_data_page(struct inode *inode, u64 from,
509 bool cache_only)
510 {
511 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
512 pgoff_t index = from >> PAGE_CACHE_SHIFT;
513 struct address_space *mapping = inode->i_mapping;
514 struct page *page;
515
516 if (!offset && !cache_only)
517 return 0;
518
519 if (cache_only) {
520 page = f2fs_grab_cache_page(mapping, index, false);
521 if (page && PageUptodate(page))
522 goto truncate_out;
523 f2fs_put_page(page, 1);
524 return 0;
525 }
526
527 page = get_lock_data_page(inode, index, true);
528 if (IS_ERR(page))
529 return 0;
530 truncate_out:
531 f2fs_wait_on_page_writeback(page, DATA, true);
532 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
533 if (!cache_only || !f2fs_encrypted_inode(inode) ||
534 !S_ISREG(inode->i_mode))
535 set_page_dirty(page);
536 f2fs_put_page(page, 1);
537 return 0;
538 }
539
540 int truncate_blocks(struct inode *inode, u64 from, bool lock)
541 {
542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
543 unsigned int blocksize = inode->i_sb->s_blocksize;
544 struct dnode_of_data dn;
545 pgoff_t free_from;
546 int count = 0, err = 0;
547 struct page *ipage;
548 bool truncate_page = false;
549
550 trace_f2fs_truncate_blocks_enter(inode, from);
551
552 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
553
554 if (lock)
555 f2fs_lock_op(sbi);
556
557 ipage = get_node_page(sbi, inode->i_ino);
558 if (IS_ERR(ipage)) {
559 err = PTR_ERR(ipage);
560 goto out;
561 }
562
563 if (f2fs_has_inline_data(inode)) {
564 if (truncate_inline_inode(ipage, from))
565 set_page_dirty(ipage);
566 f2fs_put_page(ipage, 1);
567 truncate_page = true;
568 goto out;
569 }
570
571 set_new_dnode(&dn, inode, ipage, NULL, 0);
572 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
573 if (err) {
574 if (err == -ENOENT)
575 goto free_next;
576 goto out;
577 }
578
579 count = ADDRS_PER_PAGE(dn.node_page, inode);
580
581 count -= dn.ofs_in_node;
582 f2fs_bug_on(sbi, count < 0);
583
584 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
585 truncate_data_blocks_range(&dn, count);
586 free_from += count;
587 }
588
589 f2fs_put_dnode(&dn);
590 free_next:
591 err = truncate_inode_blocks(inode, free_from);
592 out:
593 if (lock)
594 f2fs_unlock_op(sbi);
595
596 /* lastly zero out the first data page */
597 if (!err)
598 err = truncate_partial_data_page(inode, from, truncate_page);
599
600 trace_f2fs_truncate_blocks_exit(inode, err);
601 return err;
602 }
603
604 int f2fs_truncate(struct inode *inode, bool lock)
605 {
606 int err;
607
608 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
609 S_ISLNK(inode->i_mode)))
610 return 0;
611
612 trace_f2fs_truncate(inode);
613
614 /* we should check inline_data size */
615 if (!f2fs_may_inline_data(inode)) {
616 err = f2fs_convert_inline_inode(inode);
617 if (err)
618 return err;
619 }
620
621 err = truncate_blocks(inode, i_size_read(inode), lock);
622 if (err)
623 return err;
624
625 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
626 mark_inode_dirty(inode);
627 return 0;
628 }
629
630 int f2fs_getattr(struct vfsmount *mnt,
631 struct dentry *dentry, struct kstat *stat)
632 {
633 struct inode *inode = d_inode(dentry);
634 generic_fillattr(inode, stat);
635 stat->blocks <<= 3;
636 return 0;
637 }
638
639 #ifdef CONFIG_F2FS_FS_POSIX_ACL
640 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
641 {
642 struct f2fs_inode_info *fi = F2FS_I(inode);
643 unsigned int ia_valid = attr->ia_valid;
644
645 if (ia_valid & ATTR_UID)
646 inode->i_uid = attr->ia_uid;
647 if (ia_valid & ATTR_GID)
648 inode->i_gid = attr->ia_gid;
649 if (ia_valid & ATTR_ATIME)
650 inode->i_atime = timespec_trunc(attr->ia_atime,
651 inode->i_sb->s_time_gran);
652 if (ia_valid & ATTR_MTIME)
653 inode->i_mtime = timespec_trunc(attr->ia_mtime,
654 inode->i_sb->s_time_gran);
655 if (ia_valid & ATTR_CTIME)
656 inode->i_ctime = timespec_trunc(attr->ia_ctime,
657 inode->i_sb->s_time_gran);
658 if (ia_valid & ATTR_MODE) {
659 umode_t mode = attr->ia_mode;
660
661 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
662 mode &= ~S_ISGID;
663 set_acl_inode(fi, mode);
664 }
665 }
666 #else
667 #define __setattr_copy setattr_copy
668 #endif
669
670 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
671 {
672 struct inode *inode = d_inode(dentry);
673 struct f2fs_inode_info *fi = F2FS_I(inode);
674 int err;
675
676 err = inode_change_ok(inode, attr);
677 if (err)
678 return err;
679
680 if (attr->ia_valid & ATTR_SIZE) {
681 if (f2fs_encrypted_inode(inode) &&
682 fscrypt_get_encryption_info(inode))
683 return -EACCES;
684
685 if (attr->ia_size <= i_size_read(inode)) {
686 truncate_setsize(inode, attr->ia_size);
687 err = f2fs_truncate(inode, true);
688 if (err)
689 return err;
690 f2fs_balance_fs(F2FS_I_SB(inode), true);
691 } else {
692 /*
693 * do not trim all blocks after i_size if target size is
694 * larger than i_size.
695 */
696 truncate_setsize(inode, attr->ia_size);
697
698 /* should convert inline inode here */
699 if (!f2fs_may_inline_data(inode)) {
700 err = f2fs_convert_inline_inode(inode);
701 if (err)
702 return err;
703 }
704 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
705 }
706 }
707
708 __setattr_copy(inode, attr);
709
710 if (attr->ia_valid & ATTR_MODE) {
711 err = posix_acl_chmod(inode, get_inode_mode(inode));
712 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
713 inode->i_mode = fi->i_acl_mode;
714 clear_inode_flag(fi, FI_ACL_MODE);
715 }
716 }
717
718 mark_inode_dirty(inode);
719 return err;
720 }
721
722 const struct inode_operations f2fs_file_inode_operations = {
723 .getattr = f2fs_getattr,
724 .setattr = f2fs_setattr,
725 .get_acl = f2fs_get_acl,
726 .set_acl = f2fs_set_acl,
727 #ifdef CONFIG_F2FS_FS_XATTR
728 .setxattr = generic_setxattr,
729 .getxattr = generic_getxattr,
730 .listxattr = f2fs_listxattr,
731 .removexattr = generic_removexattr,
732 #endif
733 .fiemap = f2fs_fiemap,
734 };
735
736 static int fill_zero(struct inode *inode, pgoff_t index,
737 loff_t start, loff_t len)
738 {
739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 struct page *page;
741
742 if (!len)
743 return 0;
744
745 f2fs_balance_fs(sbi, true);
746
747 f2fs_lock_op(sbi);
748 page = get_new_data_page(inode, NULL, index, false);
749 f2fs_unlock_op(sbi);
750
751 if (IS_ERR(page))
752 return PTR_ERR(page);
753
754 f2fs_wait_on_page_writeback(page, DATA, true);
755 zero_user(page, start, len);
756 set_page_dirty(page);
757 f2fs_put_page(page, 1);
758 return 0;
759 }
760
761 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
762 {
763 int err;
764
765 while (pg_start < pg_end) {
766 struct dnode_of_data dn;
767 pgoff_t end_offset, count;
768
769 set_new_dnode(&dn, inode, NULL, NULL, 0);
770 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
771 if (err) {
772 if (err == -ENOENT) {
773 pg_start++;
774 continue;
775 }
776 return err;
777 }
778
779 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
780 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
781
782 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
783
784 truncate_data_blocks_range(&dn, count);
785 f2fs_put_dnode(&dn);
786
787 pg_start += count;
788 }
789 return 0;
790 }
791
792 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
793 {
794 pgoff_t pg_start, pg_end;
795 loff_t off_start, off_end;
796 int ret;
797
798 ret = f2fs_convert_inline_inode(inode);
799 if (ret)
800 return ret;
801
802 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
803 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
804
805 off_start = offset & (PAGE_CACHE_SIZE - 1);
806 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
807
808 if (pg_start == pg_end) {
809 ret = fill_zero(inode, pg_start, off_start,
810 off_end - off_start);
811 if (ret)
812 return ret;
813 } else {
814 if (off_start) {
815 ret = fill_zero(inode, pg_start++, off_start,
816 PAGE_CACHE_SIZE - off_start);
817 if (ret)
818 return ret;
819 }
820 if (off_end) {
821 ret = fill_zero(inode, pg_end, 0, off_end);
822 if (ret)
823 return ret;
824 }
825
826 if (pg_start < pg_end) {
827 struct address_space *mapping = inode->i_mapping;
828 loff_t blk_start, blk_end;
829 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
830
831 f2fs_balance_fs(sbi, true);
832
833 blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
834 blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
835 truncate_inode_pages_range(mapping, blk_start,
836 blk_end - 1);
837
838 f2fs_lock_op(sbi);
839 ret = truncate_hole(inode, pg_start, pg_end);
840 f2fs_unlock_op(sbi);
841 }
842 }
843
844 return ret;
845 }
846
847 static int __exchange_data_block(struct inode *inode, pgoff_t src,
848 pgoff_t dst, bool full)
849 {
850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 struct dnode_of_data dn;
852 block_t new_addr;
853 bool do_replace = false;
854 int ret;
855
856 set_new_dnode(&dn, inode, NULL, NULL, 0);
857 ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
858 if (ret && ret != -ENOENT) {
859 return ret;
860 } else if (ret == -ENOENT) {
861 new_addr = NULL_ADDR;
862 } else {
863 new_addr = dn.data_blkaddr;
864 if (!is_checkpointed_data(sbi, new_addr)) {
865 /* do not invalidate this block address */
866 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
867 do_replace = true;
868 }
869 f2fs_put_dnode(&dn);
870 }
871
872 if (new_addr == NULL_ADDR)
873 return full ? truncate_hole(inode, dst, dst + 1) : 0;
874
875 if (do_replace) {
876 struct page *ipage = get_node_page(sbi, inode->i_ino);
877 struct node_info ni;
878
879 if (IS_ERR(ipage)) {
880 ret = PTR_ERR(ipage);
881 goto err_out;
882 }
883
884 set_new_dnode(&dn, inode, ipage, NULL, 0);
885 ret = f2fs_reserve_block(&dn, dst);
886 if (ret)
887 goto err_out;
888
889 truncate_data_blocks_range(&dn, 1);
890
891 get_node_info(sbi, dn.nid, &ni);
892 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
893 ni.version, true, false);
894 f2fs_put_dnode(&dn);
895 } else {
896 struct page *psrc, *pdst;
897
898 psrc = get_lock_data_page(inode, src, true);
899 if (IS_ERR(psrc))
900 return PTR_ERR(psrc);
901 pdst = get_new_data_page(inode, NULL, dst, true);
902 if (IS_ERR(pdst)) {
903 f2fs_put_page(psrc, 1);
904 return PTR_ERR(pdst);
905 }
906 f2fs_copy_page(psrc, pdst);
907 set_page_dirty(pdst);
908 f2fs_put_page(pdst, 1);
909 f2fs_put_page(psrc, 1);
910
911 return truncate_hole(inode, src, src + 1);
912 }
913 return 0;
914
915 err_out:
916 if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
917 f2fs_update_data_blkaddr(&dn, new_addr);
918 f2fs_put_dnode(&dn);
919 }
920 return ret;
921 }
922
923 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
924 {
925 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
926 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
927 int ret = 0;
928
929 for (; end < nrpages; start++, end++) {
930 f2fs_balance_fs(sbi, true);
931 f2fs_lock_op(sbi);
932 ret = __exchange_data_block(inode, end, start, true);
933 f2fs_unlock_op(sbi);
934 if (ret)
935 break;
936 }
937 return ret;
938 }
939
940 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
941 {
942 pgoff_t pg_start, pg_end;
943 loff_t new_size;
944 int ret;
945
946 if (offset + len >= i_size_read(inode))
947 return -EINVAL;
948
949 /* collapse range should be aligned to block size of f2fs. */
950 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
951 return -EINVAL;
952
953 ret = f2fs_convert_inline_inode(inode);
954 if (ret)
955 return ret;
956
957 pg_start = offset >> PAGE_CACHE_SHIFT;
958 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
959
960 /* write out all dirty pages from offset */
961 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
962 if (ret)
963 return ret;
964
965 truncate_pagecache(inode, offset);
966
967 ret = f2fs_do_collapse(inode, pg_start, pg_end);
968 if (ret)
969 return ret;
970
971 /* write out all moved pages, if possible */
972 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
973 truncate_pagecache(inode, offset);
974
975 new_size = i_size_read(inode) - len;
976 truncate_pagecache(inode, new_size);
977
978 ret = truncate_blocks(inode, new_size, true);
979 if (!ret)
980 i_size_write(inode, new_size);
981
982 return ret;
983 }
984
985 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
986 int mode)
987 {
988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 struct address_space *mapping = inode->i_mapping;
990 pgoff_t index, pg_start, pg_end;
991 loff_t new_size = i_size_read(inode);
992 loff_t off_start, off_end;
993 int ret = 0;
994
995 ret = inode_newsize_ok(inode, (len + offset));
996 if (ret)
997 return ret;
998
999 ret = f2fs_convert_inline_inode(inode);
1000 if (ret)
1001 return ret;
1002
1003 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1004 if (ret)
1005 return ret;
1006
1007 truncate_pagecache_range(inode, offset, offset + len - 1);
1008
1009 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1010 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1011
1012 off_start = offset & (PAGE_CACHE_SIZE - 1);
1013 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1014
1015 if (pg_start == pg_end) {
1016 ret = fill_zero(inode, pg_start, off_start,
1017 off_end - off_start);
1018 if (ret)
1019 return ret;
1020
1021 if (offset + len > new_size)
1022 new_size = offset + len;
1023 new_size = max_t(loff_t, new_size, offset + len);
1024 } else {
1025 if (off_start) {
1026 ret = fill_zero(inode, pg_start++, off_start,
1027 PAGE_CACHE_SIZE - off_start);
1028 if (ret)
1029 return ret;
1030
1031 new_size = max_t(loff_t, new_size,
1032 (loff_t)pg_start << PAGE_CACHE_SHIFT);
1033 }
1034
1035 for (index = pg_start; index < pg_end; index++) {
1036 struct dnode_of_data dn;
1037 struct page *ipage;
1038
1039 f2fs_lock_op(sbi);
1040
1041 ipage = get_node_page(sbi, inode->i_ino);
1042 if (IS_ERR(ipage)) {
1043 ret = PTR_ERR(ipage);
1044 f2fs_unlock_op(sbi);
1045 goto out;
1046 }
1047
1048 set_new_dnode(&dn, inode, ipage, NULL, 0);
1049 ret = f2fs_reserve_block(&dn, index);
1050 if (ret) {
1051 f2fs_unlock_op(sbi);
1052 goto out;
1053 }
1054
1055 if (dn.data_blkaddr != NEW_ADDR) {
1056 invalidate_blocks(sbi, dn.data_blkaddr);
1057 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1058 }
1059 f2fs_put_dnode(&dn);
1060 f2fs_unlock_op(sbi);
1061
1062 new_size = max_t(loff_t, new_size,
1063 (loff_t)(index + 1) << PAGE_CACHE_SHIFT);
1064 }
1065
1066 if (off_end) {
1067 ret = fill_zero(inode, pg_end, 0, off_end);
1068 if (ret)
1069 goto out;
1070
1071 new_size = max_t(loff_t, new_size, offset + len);
1072 }
1073 }
1074
1075 out:
1076 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1077 i_size_write(inode, new_size);
1078 mark_inode_dirty(inode);
1079 update_inode_page(inode);
1080 }
1081
1082 return ret;
1083 }
1084
1085 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1086 {
1087 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1089 loff_t new_size;
1090 int ret = 0;
1091
1092 new_size = i_size_read(inode) + len;
1093 if (new_size > inode->i_sb->s_maxbytes)
1094 return -EFBIG;
1095
1096 if (offset >= i_size_read(inode))
1097 return -EINVAL;
1098
1099 /* insert range should be aligned to block size of f2fs. */
1100 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1101 return -EINVAL;
1102
1103 ret = f2fs_convert_inline_inode(inode);
1104 if (ret)
1105 return ret;
1106
1107 f2fs_balance_fs(sbi, true);
1108
1109 ret = truncate_blocks(inode, i_size_read(inode), true);
1110 if (ret)
1111 return ret;
1112
1113 /* write out all dirty pages from offset */
1114 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1115 if (ret)
1116 return ret;
1117
1118 truncate_pagecache(inode, offset);
1119
1120 pg_start = offset >> PAGE_CACHE_SHIFT;
1121 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1122 delta = pg_end - pg_start;
1123 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1124
1125 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1126 f2fs_lock_op(sbi);
1127 ret = __exchange_data_block(inode, idx, idx + delta, false);
1128 f2fs_unlock_op(sbi);
1129 if (ret)
1130 break;
1131 }
1132
1133 /* write out all moved pages, if possible */
1134 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1135 truncate_pagecache(inode, offset);
1136
1137 if (!ret)
1138 i_size_write(inode, new_size);
1139 return ret;
1140 }
1141
1142 static int expand_inode_data(struct inode *inode, loff_t offset,
1143 loff_t len, int mode)
1144 {
1145 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146 pgoff_t index, pg_start, pg_end;
1147 loff_t new_size = i_size_read(inode);
1148 loff_t off_start, off_end;
1149 int ret = 0;
1150
1151 ret = inode_newsize_ok(inode, (len + offset));
1152 if (ret)
1153 return ret;
1154
1155 ret = f2fs_convert_inline_inode(inode);
1156 if (ret)
1157 return ret;
1158
1159 f2fs_balance_fs(sbi, true);
1160
1161 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1162 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1163
1164 off_start = offset & (PAGE_CACHE_SIZE - 1);
1165 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1166
1167 f2fs_lock_op(sbi);
1168
1169 for (index = pg_start; index <= pg_end; index++) {
1170 struct dnode_of_data dn;
1171
1172 if (index == pg_end && !off_end)
1173 goto noalloc;
1174
1175 set_new_dnode(&dn, inode, NULL, NULL, 0);
1176 ret = f2fs_reserve_block(&dn, index);
1177 if (ret)
1178 break;
1179 noalloc:
1180 if (pg_start == pg_end)
1181 new_size = offset + len;
1182 else if (index == pg_start && off_start)
1183 new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
1184 else if (index == pg_end)
1185 new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
1186 off_end;
1187 else
1188 new_size += PAGE_CACHE_SIZE;
1189 }
1190
1191 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1192 i_size_read(inode) < new_size) {
1193 i_size_write(inode, new_size);
1194 mark_inode_dirty(inode);
1195 update_inode_page(inode);
1196 }
1197 f2fs_unlock_op(sbi);
1198
1199 return ret;
1200 }
1201
1202 static long f2fs_fallocate(struct file *file, int mode,
1203 loff_t offset, loff_t len)
1204 {
1205 struct inode *inode = file_inode(file);
1206 long ret = 0;
1207
1208 /* f2fs only support ->fallocate for regular file */
1209 if (!S_ISREG(inode->i_mode))
1210 return -EINVAL;
1211
1212 if (f2fs_encrypted_inode(inode) &&
1213 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1214 return -EOPNOTSUPP;
1215
1216 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1217 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1218 FALLOC_FL_INSERT_RANGE))
1219 return -EOPNOTSUPP;
1220
1221 inode_lock(inode);
1222
1223 if (mode & FALLOC_FL_PUNCH_HOLE) {
1224 if (offset >= inode->i_size)
1225 goto out;
1226
1227 ret = punch_hole(inode, offset, len);
1228 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1229 ret = f2fs_collapse_range(inode, offset, len);
1230 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1231 ret = f2fs_zero_range(inode, offset, len, mode);
1232 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1233 ret = f2fs_insert_range(inode, offset, len);
1234 } else {
1235 ret = expand_inode_data(inode, offset, len, mode);
1236 }
1237
1238 if (!ret) {
1239 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1240 mark_inode_dirty(inode);
1241 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1242 }
1243
1244 out:
1245 inode_unlock(inode);
1246
1247 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1248 return ret;
1249 }
1250
1251 static int f2fs_release_file(struct inode *inode, struct file *filp)
1252 {
1253 /* some remained atomic pages should discarded */
1254 if (f2fs_is_atomic_file(inode))
1255 drop_inmem_pages(inode);
1256 if (f2fs_is_volatile_file(inode)) {
1257 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1258 filemap_fdatawrite(inode->i_mapping);
1259 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1260 }
1261 return 0;
1262 }
1263
1264 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1265 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1266
1267 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1268 {
1269 if (S_ISDIR(mode))
1270 return flags;
1271 else if (S_ISREG(mode))
1272 return flags & F2FS_REG_FLMASK;
1273 else
1274 return flags & F2FS_OTHER_FLMASK;
1275 }
1276
1277 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1278 {
1279 struct inode *inode = file_inode(filp);
1280 struct f2fs_inode_info *fi = F2FS_I(inode);
1281 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1282 return put_user(flags, (int __user *)arg);
1283 }
1284
1285 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1286 {
1287 struct inode *inode = file_inode(filp);
1288 struct f2fs_inode_info *fi = F2FS_I(inode);
1289 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1290 unsigned int oldflags;
1291 int ret;
1292
1293 ret = mnt_want_write_file(filp);
1294 if (ret)
1295 return ret;
1296
1297 if (!inode_owner_or_capable(inode)) {
1298 ret = -EACCES;
1299 goto out;
1300 }
1301
1302 if (get_user(flags, (int __user *)arg)) {
1303 ret = -EFAULT;
1304 goto out;
1305 }
1306
1307 flags = f2fs_mask_flags(inode->i_mode, flags);
1308
1309 inode_lock(inode);
1310
1311 oldflags = fi->i_flags;
1312
1313 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1314 if (!capable(CAP_LINUX_IMMUTABLE)) {
1315 inode_unlock(inode);
1316 ret = -EPERM;
1317 goto out;
1318 }
1319 }
1320
1321 flags = flags & FS_FL_USER_MODIFIABLE;
1322 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1323 fi->i_flags = flags;
1324 inode_unlock(inode);
1325
1326 f2fs_set_inode_flags(inode);
1327 inode->i_ctime = CURRENT_TIME;
1328 mark_inode_dirty(inode);
1329 out:
1330 mnt_drop_write_file(filp);
1331 return ret;
1332 }
1333
1334 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1335 {
1336 struct inode *inode = file_inode(filp);
1337
1338 return put_user(inode->i_generation, (int __user *)arg);
1339 }
1340
1341 static int f2fs_ioc_start_atomic_write(struct file *filp)
1342 {
1343 struct inode *inode = file_inode(filp);
1344 int ret;
1345
1346 if (!inode_owner_or_capable(inode))
1347 return -EACCES;
1348
1349 if (f2fs_is_atomic_file(inode))
1350 return 0;
1351
1352 ret = f2fs_convert_inline_inode(inode);
1353 if (ret)
1354 return ret;
1355
1356 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1357 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1358
1359 return 0;
1360 }
1361
1362 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1363 {
1364 struct inode *inode = file_inode(filp);
1365 int ret;
1366
1367 if (!inode_owner_or_capable(inode))
1368 return -EACCES;
1369
1370 if (f2fs_is_volatile_file(inode))
1371 return 0;
1372
1373 ret = mnt_want_write_file(filp);
1374 if (ret)
1375 return ret;
1376
1377 if (f2fs_is_atomic_file(inode)) {
1378 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1379 ret = commit_inmem_pages(inode);
1380 if (ret) {
1381 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1382 goto err_out;
1383 }
1384 }
1385
1386 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1387 err_out:
1388 mnt_drop_write_file(filp);
1389 return ret;
1390 }
1391
1392 static int f2fs_ioc_start_volatile_write(struct file *filp)
1393 {
1394 struct inode *inode = file_inode(filp);
1395 int ret;
1396
1397 if (!inode_owner_or_capable(inode))
1398 return -EACCES;
1399
1400 if (f2fs_is_volatile_file(inode))
1401 return 0;
1402
1403 ret = f2fs_convert_inline_inode(inode);
1404 if (ret)
1405 return ret;
1406
1407 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1408 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1409 return 0;
1410 }
1411
1412 static int f2fs_ioc_release_volatile_write(struct file *filp)
1413 {
1414 struct inode *inode = file_inode(filp);
1415
1416 if (!inode_owner_or_capable(inode))
1417 return -EACCES;
1418
1419 if (!f2fs_is_volatile_file(inode))
1420 return 0;
1421
1422 if (!f2fs_is_first_block_written(inode))
1423 return truncate_partial_data_page(inode, 0, true);
1424
1425 return punch_hole(inode, 0, F2FS_BLKSIZE);
1426 }
1427
1428 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1429 {
1430 struct inode *inode = file_inode(filp);
1431 int ret;
1432
1433 if (!inode_owner_or_capable(inode))
1434 return -EACCES;
1435
1436 ret = mnt_want_write_file(filp);
1437 if (ret)
1438 return ret;
1439
1440 if (f2fs_is_atomic_file(inode)) {
1441 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1442 drop_inmem_pages(inode);
1443 }
1444 if (f2fs_is_volatile_file(inode)) {
1445 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1446 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1447 }
1448
1449 mnt_drop_write_file(filp);
1450 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1451 return ret;
1452 }
1453
1454 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1455 {
1456 struct inode *inode = file_inode(filp);
1457 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458 struct super_block *sb = sbi->sb;
1459 __u32 in;
1460
1461 if (!capable(CAP_SYS_ADMIN))
1462 return -EPERM;
1463
1464 if (get_user(in, (__u32 __user *)arg))
1465 return -EFAULT;
1466
1467 switch (in) {
1468 case F2FS_GOING_DOWN_FULLSYNC:
1469 sb = freeze_bdev(sb->s_bdev);
1470 if (sb && !IS_ERR(sb)) {
1471 f2fs_stop_checkpoint(sbi);
1472 thaw_bdev(sb->s_bdev, sb);
1473 }
1474 break;
1475 case F2FS_GOING_DOWN_METASYNC:
1476 /* do checkpoint only */
1477 f2fs_sync_fs(sb, 1);
1478 f2fs_stop_checkpoint(sbi);
1479 break;
1480 case F2FS_GOING_DOWN_NOSYNC:
1481 f2fs_stop_checkpoint(sbi);
1482 break;
1483 case F2FS_GOING_DOWN_METAFLUSH:
1484 sync_meta_pages(sbi, META, LONG_MAX);
1485 f2fs_stop_checkpoint(sbi);
1486 break;
1487 default:
1488 return -EINVAL;
1489 }
1490 f2fs_update_time(sbi, REQ_TIME);
1491 return 0;
1492 }
1493
1494 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1495 {
1496 struct inode *inode = file_inode(filp);
1497 struct super_block *sb = inode->i_sb;
1498 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1499 struct fstrim_range range;
1500 int ret;
1501
1502 if (!capable(CAP_SYS_ADMIN))
1503 return -EPERM;
1504
1505 if (!blk_queue_discard(q))
1506 return -EOPNOTSUPP;
1507
1508 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1509 sizeof(range)))
1510 return -EFAULT;
1511
1512 range.minlen = max((unsigned int)range.minlen,
1513 q->limits.discard_granularity);
1514 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1515 if (ret < 0)
1516 return ret;
1517
1518 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1519 sizeof(range)))
1520 return -EFAULT;
1521 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1522 return 0;
1523 }
1524
1525 static bool uuid_is_nonzero(__u8 u[16])
1526 {
1527 int i;
1528
1529 for (i = 0; i < 16; i++)
1530 if (u[i])
1531 return true;
1532 return false;
1533 }
1534
1535 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1536 {
1537 struct fscrypt_policy policy;
1538 struct inode *inode = file_inode(filp);
1539
1540 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1541 sizeof(policy)))
1542 return -EFAULT;
1543
1544 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1545 return fscrypt_process_policy(inode, &policy);
1546 }
1547
1548 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1549 {
1550 struct fscrypt_policy policy;
1551 struct inode *inode = file_inode(filp);
1552 int err;
1553
1554 err = fscrypt_get_policy(inode, &policy);
1555 if (err)
1556 return err;
1557
1558 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1559 return -EFAULT;
1560 return 0;
1561 }
1562
1563 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1564 {
1565 struct inode *inode = file_inode(filp);
1566 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1567 int err;
1568
1569 if (!f2fs_sb_has_crypto(inode->i_sb))
1570 return -EOPNOTSUPP;
1571
1572 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1573 goto got_it;
1574
1575 err = mnt_want_write_file(filp);
1576 if (err)
1577 return err;
1578
1579 /* update superblock with uuid */
1580 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1581
1582 err = f2fs_commit_super(sbi, false);
1583 if (err) {
1584 /* undo new data */
1585 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1586 mnt_drop_write_file(filp);
1587 return err;
1588 }
1589 mnt_drop_write_file(filp);
1590 got_it:
1591 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1592 16))
1593 return -EFAULT;
1594 return 0;
1595 }
1596
1597 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1598 {
1599 struct inode *inode = file_inode(filp);
1600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601 __u32 sync;
1602
1603 if (!capable(CAP_SYS_ADMIN))
1604 return -EPERM;
1605
1606 if (get_user(sync, (__u32 __user *)arg))
1607 return -EFAULT;
1608
1609 if (f2fs_readonly(sbi->sb))
1610 return -EROFS;
1611
1612 if (!sync) {
1613 if (!mutex_trylock(&sbi->gc_mutex))
1614 return -EBUSY;
1615 } else {
1616 mutex_lock(&sbi->gc_mutex);
1617 }
1618
1619 return f2fs_gc(sbi, sync);
1620 }
1621
1622 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1623 {
1624 struct inode *inode = file_inode(filp);
1625 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1626
1627 if (!capable(CAP_SYS_ADMIN))
1628 return -EPERM;
1629
1630 if (f2fs_readonly(sbi->sb))
1631 return -EROFS;
1632
1633 return f2fs_sync_fs(sbi->sb, 1);
1634 }
1635
1636 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1637 struct file *filp,
1638 struct f2fs_defragment *range)
1639 {
1640 struct inode *inode = file_inode(filp);
1641 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1642 struct extent_info ei;
1643 pgoff_t pg_start, pg_end;
1644 unsigned int blk_per_seg = sbi->blocks_per_seg;
1645 unsigned int total = 0, sec_num;
1646 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1647 block_t blk_end = 0;
1648 bool fragmented = false;
1649 int err;
1650
1651 /* if in-place-update policy is enabled, don't waste time here */
1652 if (need_inplace_update(inode))
1653 return -EINVAL;
1654
1655 pg_start = range->start >> PAGE_CACHE_SHIFT;
1656 pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT;
1657
1658 f2fs_balance_fs(sbi, true);
1659
1660 inode_lock(inode);
1661
1662 /* writeback all dirty pages in the range */
1663 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1664 range->start + range->len - 1);
1665 if (err)
1666 goto out;
1667
1668 /*
1669 * lookup mapping info in extent cache, skip defragmenting if physical
1670 * block addresses are continuous.
1671 */
1672 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1673 if (ei.fofs + ei.len >= pg_end)
1674 goto out;
1675 }
1676
1677 map.m_lblk = pg_start;
1678
1679 /*
1680 * lookup mapping info in dnode page cache, skip defragmenting if all
1681 * physical block addresses are continuous even if there are hole(s)
1682 * in logical blocks.
1683 */
1684 while (map.m_lblk < pg_end) {
1685 map.m_len = pg_end - map.m_lblk;
1686 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1687 if (err)
1688 goto out;
1689
1690 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1691 map.m_lblk++;
1692 continue;
1693 }
1694
1695 if (blk_end && blk_end != map.m_pblk) {
1696 fragmented = true;
1697 break;
1698 }
1699 blk_end = map.m_pblk + map.m_len;
1700
1701 map.m_lblk += map.m_len;
1702 }
1703
1704 if (!fragmented)
1705 goto out;
1706
1707 map.m_lblk = pg_start;
1708 map.m_len = pg_end - pg_start;
1709
1710 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1711
1712 /*
1713 * make sure there are enough free section for LFS allocation, this can
1714 * avoid defragment running in SSR mode when free section are allocated
1715 * intensively
1716 */
1717 if (has_not_enough_free_secs(sbi, sec_num)) {
1718 err = -EAGAIN;
1719 goto out;
1720 }
1721
1722 while (map.m_lblk < pg_end) {
1723 pgoff_t idx;
1724 int cnt = 0;
1725
1726 do_map:
1727 map.m_len = pg_end - map.m_lblk;
1728 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1729 if (err)
1730 goto clear_out;
1731
1732 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1733 map.m_lblk++;
1734 continue;
1735 }
1736
1737 set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1738
1739 idx = map.m_lblk;
1740 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1741 struct page *page;
1742
1743 page = get_lock_data_page(inode, idx, true);
1744 if (IS_ERR(page)) {
1745 err = PTR_ERR(page);
1746 goto clear_out;
1747 }
1748
1749 set_page_dirty(page);
1750 f2fs_put_page(page, 1);
1751
1752 idx++;
1753 cnt++;
1754 total++;
1755 }
1756
1757 map.m_lblk = idx;
1758
1759 if (idx < pg_end && cnt < blk_per_seg)
1760 goto do_map;
1761
1762 clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1763
1764 err = filemap_fdatawrite(inode->i_mapping);
1765 if (err)
1766 goto out;
1767 }
1768 clear_out:
1769 clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1770 out:
1771 inode_unlock(inode);
1772 if (!err)
1773 range->len = (u64)total << PAGE_CACHE_SHIFT;
1774 return err;
1775 }
1776
1777 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1778 {
1779 struct inode *inode = file_inode(filp);
1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 struct f2fs_defragment range;
1782 int err;
1783
1784 if (!capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 if (!S_ISREG(inode->i_mode))
1788 return -EINVAL;
1789
1790 err = mnt_want_write_file(filp);
1791 if (err)
1792 return err;
1793
1794 if (f2fs_readonly(sbi->sb)) {
1795 err = -EROFS;
1796 goto out;
1797 }
1798
1799 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1800 sizeof(range))) {
1801 err = -EFAULT;
1802 goto out;
1803 }
1804
1805 /* verify alignment of offset & size */
1806 if (range.start & (F2FS_BLKSIZE - 1) ||
1807 range.len & (F2FS_BLKSIZE - 1)) {
1808 err = -EINVAL;
1809 goto out;
1810 }
1811
1812 err = f2fs_defragment_range(sbi, filp, &range);
1813 f2fs_update_time(sbi, REQ_TIME);
1814 if (err < 0)
1815 goto out;
1816
1817 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1818 sizeof(range)))
1819 err = -EFAULT;
1820 out:
1821 mnt_drop_write_file(filp);
1822 return err;
1823 }
1824
1825 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1826 {
1827 switch (cmd) {
1828 case F2FS_IOC_GETFLAGS:
1829 return f2fs_ioc_getflags(filp, arg);
1830 case F2FS_IOC_SETFLAGS:
1831 return f2fs_ioc_setflags(filp, arg);
1832 case F2FS_IOC_GETVERSION:
1833 return f2fs_ioc_getversion(filp, arg);
1834 case F2FS_IOC_START_ATOMIC_WRITE:
1835 return f2fs_ioc_start_atomic_write(filp);
1836 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1837 return f2fs_ioc_commit_atomic_write(filp);
1838 case F2FS_IOC_START_VOLATILE_WRITE:
1839 return f2fs_ioc_start_volatile_write(filp);
1840 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1841 return f2fs_ioc_release_volatile_write(filp);
1842 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1843 return f2fs_ioc_abort_volatile_write(filp);
1844 case F2FS_IOC_SHUTDOWN:
1845 return f2fs_ioc_shutdown(filp, arg);
1846 case FITRIM:
1847 return f2fs_ioc_fitrim(filp, arg);
1848 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1849 return f2fs_ioc_set_encryption_policy(filp, arg);
1850 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1851 return f2fs_ioc_get_encryption_policy(filp, arg);
1852 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1853 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1854 case F2FS_IOC_GARBAGE_COLLECT:
1855 return f2fs_ioc_gc(filp, arg);
1856 case F2FS_IOC_WRITE_CHECKPOINT:
1857 return f2fs_ioc_write_checkpoint(filp, arg);
1858 case F2FS_IOC_DEFRAGMENT:
1859 return f2fs_ioc_defragment(filp, arg);
1860 default:
1861 return -ENOTTY;
1862 }
1863 }
1864
1865 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1866 {
1867 struct file *file = iocb->ki_filp;
1868 struct inode *inode = file_inode(file);
1869 ssize_t ret;
1870
1871 if (f2fs_encrypted_inode(inode) &&
1872 !fscrypt_has_encryption_key(inode) &&
1873 fscrypt_get_encryption_info(inode))
1874 return -EACCES;
1875
1876 inode_lock(inode);
1877 ret = generic_write_checks(iocb, from);
1878 if (ret > 0) {
1879 ret = f2fs_preallocate_blocks(iocb, from);
1880 if (!ret)
1881 ret = __generic_file_write_iter(iocb, from);
1882 }
1883 inode_unlock(inode);
1884
1885 if (ret > 0) {
1886 ssize_t err;
1887
1888 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1889 if (err < 0)
1890 ret = err;
1891 }
1892 return ret;
1893 }
1894
1895 #ifdef CONFIG_COMPAT
1896 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1897 {
1898 switch (cmd) {
1899 case F2FS_IOC32_GETFLAGS:
1900 cmd = F2FS_IOC_GETFLAGS;
1901 break;
1902 case F2FS_IOC32_SETFLAGS:
1903 cmd = F2FS_IOC_SETFLAGS;
1904 break;
1905 case F2FS_IOC32_GETVERSION:
1906 cmd = F2FS_IOC_GETVERSION;
1907 break;
1908 case F2FS_IOC_START_ATOMIC_WRITE:
1909 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1910 case F2FS_IOC_START_VOLATILE_WRITE:
1911 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1912 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1913 case F2FS_IOC_SHUTDOWN:
1914 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1915 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1916 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1917 case F2FS_IOC_GARBAGE_COLLECT:
1918 case F2FS_IOC_WRITE_CHECKPOINT:
1919 case F2FS_IOC_DEFRAGMENT:
1920 break;
1921 default:
1922 return -ENOIOCTLCMD;
1923 }
1924 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1925 }
1926 #endif
1927
1928 const struct file_operations f2fs_file_operations = {
1929 .llseek = f2fs_llseek,
1930 .read_iter = generic_file_read_iter,
1931 .write_iter = f2fs_file_write_iter,
1932 .open = f2fs_file_open,
1933 .release = f2fs_release_file,
1934 .mmap = f2fs_file_mmap,
1935 .fsync = f2fs_sync_file,
1936 .fallocate = f2fs_fallocate,
1937 .unlocked_ioctl = f2fs_ioctl,
1938 #ifdef CONFIG_COMPAT
1939 .compat_ioctl = f2fs_compat_ioctl,
1940 #endif
1941 .splice_read = generic_file_splice_read,
1942 .splice_write = iter_file_splice_write,
1943 };