]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/gc.c
UBUNTU: [Config] arm64: snapdragon: SND*=m
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / gc.c
1 /*
2 * fs/f2fs/gc.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28 struct f2fs_sb_info *sbi = data;
29 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 unsigned int wait_ms;
32
33 wait_ms = gc_th->min_sleep_time;
34
35 set_freezable();
36 do {
37 wait_event_interruptible_timeout(*wq,
38 kthread_should_stop() || freezing(current) ||
39 gc_th->gc_wake,
40 msecs_to_jiffies(wait_ms));
41
42 /* give it a try one time */
43 if (gc_th->gc_wake)
44 gc_th->gc_wake = 0;
45
46 if (try_to_freeze())
47 continue;
48 if (kthread_should_stop())
49 break;
50
51 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
52 increase_sleep_time(gc_th, &wait_ms);
53 continue;
54 }
55
56 #ifdef CONFIG_F2FS_FAULT_INJECTION
57 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
58 f2fs_show_injection_info(FAULT_CHECKPOINT);
59 f2fs_stop_checkpoint(sbi, false);
60 }
61 #endif
62
63 if (!sb_start_write_trylock(sbi->sb))
64 continue;
65
66 /*
67 * [GC triggering condition]
68 * 0. GC is not conducted currently.
69 * 1. There are enough dirty segments.
70 * 2. IO subsystem is idle by checking the # of writeback pages.
71 * 3. IO subsystem is idle by checking the # of requests in
72 * bdev's request list.
73 *
74 * Note) We have to avoid triggering GCs frequently.
75 * Because it is possible that some segments can be
76 * invalidated soon after by user update or deletion.
77 * So, I'd like to wait some time to collect dirty segments.
78 */
79 if (!mutex_trylock(&sbi->gc_mutex))
80 goto next;
81
82 if (gc_th->gc_urgent) {
83 wait_ms = gc_th->urgent_sleep_time;
84 goto do_gc;
85 }
86
87 if (!is_idle(sbi)) {
88 increase_sleep_time(gc_th, &wait_ms);
89 mutex_unlock(&sbi->gc_mutex);
90 goto next;
91 }
92
93 if (has_enough_invalid_blocks(sbi))
94 decrease_sleep_time(gc_th, &wait_ms);
95 else
96 increase_sleep_time(gc_th, &wait_ms);
97 do_gc:
98 stat_inc_bggc_count(sbi);
99
100 /* if return value is not zero, no victim was selected */
101 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO))
102 wait_ms = gc_th->no_gc_sleep_time;
103
104 trace_f2fs_background_gc(sbi->sb, wait_ms,
105 prefree_segments(sbi), free_segments(sbi));
106
107 /* balancing f2fs's metadata periodically */
108 f2fs_balance_fs_bg(sbi);
109 next:
110 sb_end_write(sbi->sb);
111
112 } while (!kthread_should_stop());
113 return 0;
114 }
115
116 int start_gc_thread(struct f2fs_sb_info *sbi)
117 {
118 struct f2fs_gc_kthread *gc_th;
119 dev_t dev = sbi->sb->s_bdev->bd_dev;
120 int err = 0;
121
122 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
123 if (!gc_th) {
124 err = -ENOMEM;
125 goto out;
126 }
127
128 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
129 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
130 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
131 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
132
133 gc_th->gc_idle = 0;
134 gc_th->gc_urgent = 0;
135 gc_th->gc_wake= 0;
136
137 sbi->gc_thread = gc_th;
138 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
139 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
140 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
141 if (IS_ERR(gc_th->f2fs_gc_task)) {
142 err = PTR_ERR(gc_th->f2fs_gc_task);
143 kfree(gc_th);
144 sbi->gc_thread = NULL;
145 }
146 out:
147 return err;
148 }
149
150 void stop_gc_thread(struct f2fs_sb_info *sbi)
151 {
152 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
153 if (!gc_th)
154 return;
155 kthread_stop(gc_th->f2fs_gc_task);
156 kfree(gc_th);
157 sbi->gc_thread = NULL;
158 }
159
160 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
161 {
162 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
163
164 if (gc_th && gc_th->gc_idle) {
165 if (gc_th->gc_idle == 1)
166 gc_mode = GC_CB;
167 else if (gc_th->gc_idle == 2)
168 gc_mode = GC_GREEDY;
169 }
170 return gc_mode;
171 }
172
173 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
174 int type, struct victim_sel_policy *p)
175 {
176 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
177
178 if (p->alloc_mode == SSR) {
179 p->gc_mode = GC_GREEDY;
180 p->dirty_segmap = dirty_i->dirty_segmap[type];
181 p->max_search = dirty_i->nr_dirty[type];
182 p->ofs_unit = 1;
183 } else {
184 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
185 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
186 p->max_search = dirty_i->nr_dirty[DIRTY];
187 p->ofs_unit = sbi->segs_per_sec;
188 }
189
190 /* we need to check every dirty segments in the FG_GC case */
191 if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
192 p->max_search = sbi->max_victim_search;
193
194 /* let's select beginning hot/small space first in no_heap mode*/
195 if (test_opt(sbi, NOHEAP) &&
196 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
197 p->offset = 0;
198 else
199 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
200 }
201
202 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
203 struct victim_sel_policy *p)
204 {
205 /* SSR allocates in a segment unit */
206 if (p->alloc_mode == SSR)
207 return sbi->blocks_per_seg;
208 if (p->gc_mode == GC_GREEDY)
209 return 2 * sbi->blocks_per_seg * p->ofs_unit;
210 else if (p->gc_mode == GC_CB)
211 return UINT_MAX;
212 else /* No other gc_mode */
213 return 0;
214 }
215
216 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
217 {
218 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
219 unsigned int secno;
220
221 /*
222 * If the gc_type is FG_GC, we can select victim segments
223 * selected by background GC before.
224 * Those segments guarantee they have small valid blocks.
225 */
226 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
227 if (sec_usage_check(sbi, secno))
228 continue;
229
230 if (no_fggc_candidate(sbi, secno))
231 continue;
232
233 clear_bit(secno, dirty_i->victim_secmap);
234 return GET_SEG_FROM_SEC(sbi, secno);
235 }
236 return NULL_SEGNO;
237 }
238
239 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
240 {
241 struct sit_info *sit_i = SIT_I(sbi);
242 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
243 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
244 unsigned long long mtime = 0;
245 unsigned int vblocks;
246 unsigned char age = 0;
247 unsigned char u;
248 unsigned int i;
249
250 for (i = 0; i < sbi->segs_per_sec; i++)
251 mtime += get_seg_entry(sbi, start + i)->mtime;
252 vblocks = get_valid_blocks(sbi, segno, true);
253
254 mtime = div_u64(mtime, sbi->segs_per_sec);
255 vblocks = div_u64(vblocks, sbi->segs_per_sec);
256
257 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
258
259 /* Handle if the system time has changed by the user */
260 if (mtime < sit_i->min_mtime)
261 sit_i->min_mtime = mtime;
262 if (mtime > sit_i->max_mtime)
263 sit_i->max_mtime = mtime;
264 if (sit_i->max_mtime != sit_i->min_mtime)
265 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
266 sit_i->max_mtime - sit_i->min_mtime);
267
268 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
269 }
270
271 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
272 unsigned int segno, struct victim_sel_policy *p)
273 {
274 if (p->alloc_mode == SSR)
275 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
276
277 /* alloc_mode == LFS */
278 if (p->gc_mode == GC_GREEDY)
279 return get_valid_blocks(sbi, segno, true);
280 else
281 return get_cb_cost(sbi, segno);
282 }
283
284 static unsigned int count_bits(const unsigned long *addr,
285 unsigned int offset, unsigned int len)
286 {
287 unsigned int end = offset + len, sum = 0;
288
289 while (offset < end) {
290 if (test_bit(offset++, addr))
291 ++sum;
292 }
293 return sum;
294 }
295
296 /*
297 * This function is called from two paths.
298 * One is garbage collection and the other is SSR segment selection.
299 * When it is called during GC, it just gets a victim segment
300 * and it does not remove it from dirty seglist.
301 * When it is called from SSR segment selection, it finds a segment
302 * which has minimum valid blocks and removes it from dirty seglist.
303 */
304 static int get_victim_by_default(struct f2fs_sb_info *sbi,
305 unsigned int *result, int gc_type, int type, char alloc_mode)
306 {
307 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
308 struct sit_info *sm = SIT_I(sbi);
309 struct victim_sel_policy p;
310 unsigned int secno, last_victim;
311 unsigned int last_segment = MAIN_SEGS(sbi);
312 unsigned int nsearched = 0;
313
314 mutex_lock(&dirty_i->seglist_lock);
315
316 p.alloc_mode = alloc_mode;
317 select_policy(sbi, gc_type, type, &p);
318
319 p.min_segno = NULL_SEGNO;
320 p.min_cost = get_max_cost(sbi, &p);
321
322 if (*result != NULL_SEGNO) {
323 if (IS_DATASEG(get_seg_entry(sbi, *result)->type) &&
324 get_valid_blocks(sbi, *result, false) &&
325 !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
326 p.min_segno = *result;
327 goto out;
328 }
329
330 if (p.max_search == 0)
331 goto out;
332
333 last_victim = sm->last_victim[p.gc_mode];
334 if (p.alloc_mode == LFS && gc_type == FG_GC) {
335 p.min_segno = check_bg_victims(sbi);
336 if (p.min_segno != NULL_SEGNO)
337 goto got_it;
338 }
339
340 while (1) {
341 unsigned long cost;
342 unsigned int segno;
343
344 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
345 if (segno >= last_segment) {
346 if (sm->last_victim[p.gc_mode]) {
347 last_segment =
348 sm->last_victim[p.gc_mode];
349 sm->last_victim[p.gc_mode] = 0;
350 p.offset = 0;
351 continue;
352 }
353 break;
354 }
355
356 p.offset = segno + p.ofs_unit;
357 if (p.ofs_unit > 1) {
358 p.offset -= segno % p.ofs_unit;
359 nsearched += count_bits(p.dirty_segmap,
360 p.offset - p.ofs_unit,
361 p.ofs_unit);
362 } else {
363 nsearched++;
364 }
365
366 secno = GET_SEC_FROM_SEG(sbi, segno);
367
368 if (sec_usage_check(sbi, secno))
369 goto next;
370 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
371 goto next;
372 if (gc_type == FG_GC && p.alloc_mode == LFS &&
373 no_fggc_candidate(sbi, secno))
374 goto next;
375
376 cost = get_gc_cost(sbi, segno, &p);
377
378 if (p.min_cost > cost) {
379 p.min_segno = segno;
380 p.min_cost = cost;
381 }
382 next:
383 if (nsearched >= p.max_search) {
384 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
385 sm->last_victim[p.gc_mode] = last_victim + 1;
386 else
387 sm->last_victim[p.gc_mode] = segno + 1;
388 sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi);
389 break;
390 }
391 }
392 if (p.min_segno != NULL_SEGNO) {
393 got_it:
394 if (p.alloc_mode == LFS) {
395 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
396 if (gc_type == FG_GC)
397 sbi->cur_victim_sec = secno;
398 else
399 set_bit(secno, dirty_i->victim_secmap);
400 }
401 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
402
403 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
404 sbi->cur_victim_sec,
405 prefree_segments(sbi), free_segments(sbi));
406 }
407 out:
408 mutex_unlock(&dirty_i->seglist_lock);
409
410 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
411 }
412
413 static const struct victim_selection default_v_ops = {
414 .get_victim = get_victim_by_default,
415 };
416
417 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
418 {
419 struct inode_entry *ie;
420
421 ie = radix_tree_lookup(&gc_list->iroot, ino);
422 if (ie)
423 return ie->inode;
424 return NULL;
425 }
426
427 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
428 {
429 struct inode_entry *new_ie;
430
431 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
432 iput(inode);
433 return;
434 }
435 new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
436 new_ie->inode = inode;
437
438 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
439 list_add_tail(&new_ie->list, &gc_list->ilist);
440 }
441
442 static void put_gc_inode(struct gc_inode_list *gc_list)
443 {
444 struct inode_entry *ie, *next_ie;
445 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
446 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
447 iput(ie->inode);
448 list_del(&ie->list);
449 kmem_cache_free(inode_entry_slab, ie);
450 }
451 }
452
453 static int check_valid_map(struct f2fs_sb_info *sbi,
454 unsigned int segno, int offset)
455 {
456 struct sit_info *sit_i = SIT_I(sbi);
457 struct seg_entry *sentry;
458 int ret;
459
460 down_read(&sit_i->sentry_lock);
461 sentry = get_seg_entry(sbi, segno);
462 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
463 up_read(&sit_i->sentry_lock);
464 return ret;
465 }
466
467 /*
468 * This function compares node address got in summary with that in NAT.
469 * On validity, copy that node with cold status, otherwise (invalid node)
470 * ignore that.
471 */
472 static void gc_node_segment(struct f2fs_sb_info *sbi,
473 struct f2fs_summary *sum, unsigned int segno, int gc_type)
474 {
475 struct f2fs_summary *entry;
476 block_t start_addr;
477 int off;
478 int phase = 0;
479
480 start_addr = START_BLOCK(sbi, segno);
481
482 next_step:
483 entry = sum;
484
485 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
486 nid_t nid = le32_to_cpu(entry->nid);
487 struct page *node_page;
488 struct node_info ni;
489
490 /* stop BG_GC if there is not enough free sections. */
491 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
492 return;
493
494 if (check_valid_map(sbi, segno, off) == 0)
495 continue;
496
497 if (phase == 0) {
498 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
499 META_NAT, true);
500 continue;
501 }
502
503 if (phase == 1) {
504 ra_node_page(sbi, nid);
505 continue;
506 }
507
508 /* phase == 2 */
509 node_page = get_node_page(sbi, nid);
510 if (IS_ERR(node_page))
511 continue;
512
513 /* block may become invalid during get_node_page */
514 if (check_valid_map(sbi, segno, off) == 0) {
515 f2fs_put_page(node_page, 1);
516 continue;
517 }
518
519 get_node_info(sbi, nid, &ni);
520 if (ni.blk_addr != start_addr + off) {
521 f2fs_put_page(node_page, 1);
522 continue;
523 }
524
525 move_node_page(node_page, gc_type);
526 stat_inc_node_blk_count(sbi, 1, gc_type);
527 }
528
529 if (++phase < 3)
530 goto next_step;
531 }
532
533 /*
534 * Calculate start block index indicating the given node offset.
535 * Be careful, caller should give this node offset only indicating direct node
536 * blocks. If any node offsets, which point the other types of node blocks such
537 * as indirect or double indirect node blocks, are given, it must be a caller's
538 * bug.
539 */
540 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
541 {
542 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
543 unsigned int bidx;
544
545 if (node_ofs == 0)
546 return 0;
547
548 if (node_ofs <= 2) {
549 bidx = node_ofs - 1;
550 } else if (node_ofs <= indirect_blks) {
551 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
552 bidx = node_ofs - 2 - dec;
553 } else {
554 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
555 bidx = node_ofs - 5 - dec;
556 }
557 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
558 }
559
560 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
561 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
562 {
563 struct page *node_page;
564 nid_t nid;
565 unsigned int ofs_in_node;
566 block_t source_blkaddr;
567
568 nid = le32_to_cpu(sum->nid);
569 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
570
571 node_page = get_node_page(sbi, nid);
572 if (IS_ERR(node_page))
573 return false;
574
575 get_node_info(sbi, nid, dni);
576
577 if (sum->version != dni->version) {
578 f2fs_msg(sbi->sb, KERN_WARNING,
579 "%s: valid data with mismatched node version.",
580 __func__);
581 set_sbi_flag(sbi, SBI_NEED_FSCK);
582 }
583
584 *nofs = ofs_of_node(node_page);
585 source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node);
586 f2fs_put_page(node_page, 1);
587
588 if (source_blkaddr != blkaddr)
589 return false;
590 return true;
591 }
592
593 /*
594 * Move data block via META_MAPPING while keeping locked data page.
595 * This can be used to move blocks, aka LBAs, directly on disk.
596 */
597 static void move_data_block(struct inode *inode, block_t bidx,
598 unsigned int segno, int off)
599 {
600 struct f2fs_io_info fio = {
601 .sbi = F2FS_I_SB(inode),
602 .ino = inode->i_ino,
603 .type = DATA,
604 .temp = COLD,
605 .op = REQ_OP_READ,
606 .op_flags = 0,
607 .encrypted_page = NULL,
608 .in_list = false,
609 };
610 struct dnode_of_data dn;
611 struct f2fs_summary sum;
612 struct node_info ni;
613 struct page *page;
614 block_t newaddr;
615 int err;
616
617 /* do not read out */
618 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
619 if (!page)
620 return;
621
622 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
623 goto out;
624
625 if (f2fs_is_atomic_file(inode))
626 goto out;
627
628 set_new_dnode(&dn, inode, NULL, NULL, 0);
629 err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
630 if (err)
631 goto out;
632
633 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
634 ClearPageUptodate(page);
635 goto put_out;
636 }
637
638 /*
639 * don't cache encrypted data into meta inode until previous dirty
640 * data were writebacked to avoid racing between GC and flush.
641 */
642 f2fs_wait_on_page_writeback(page, DATA, true);
643
644 get_node_info(fio.sbi, dn.nid, &ni);
645 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
646
647 /* read page */
648 fio.page = page;
649 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
650
651 allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
652 &sum, CURSEG_COLD_DATA, NULL, false);
653
654 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
655 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
656 if (!fio.encrypted_page) {
657 err = -ENOMEM;
658 goto recover_block;
659 }
660
661 err = f2fs_submit_page_bio(&fio);
662 if (err)
663 goto put_page_out;
664
665 /* write page */
666 lock_page(fio.encrypted_page);
667
668 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
669 err = -EIO;
670 goto put_page_out;
671 }
672 if (unlikely(!PageUptodate(fio.encrypted_page))) {
673 err = -EIO;
674 goto put_page_out;
675 }
676
677 set_page_dirty(fio.encrypted_page);
678 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
679 if (clear_page_dirty_for_io(fio.encrypted_page))
680 dec_page_count(fio.sbi, F2FS_DIRTY_META);
681
682 set_page_writeback(fio.encrypted_page);
683
684 /* allocate block address */
685 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
686
687 fio.op = REQ_OP_WRITE;
688 fio.op_flags = REQ_SYNC;
689 fio.new_blkaddr = newaddr;
690 err = f2fs_submit_page_write(&fio);
691 if (err) {
692 if (PageWriteback(fio.encrypted_page))
693 end_page_writeback(fio.encrypted_page);
694 goto put_page_out;
695 }
696
697 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
698
699 f2fs_update_data_blkaddr(&dn, newaddr);
700 set_inode_flag(inode, FI_APPEND_WRITE);
701 if (page->index == 0)
702 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
703 put_page_out:
704 f2fs_put_page(fio.encrypted_page, 1);
705 recover_block:
706 if (err)
707 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
708 true, true);
709 put_out:
710 f2fs_put_dnode(&dn);
711 out:
712 f2fs_put_page(page, 1);
713 }
714
715 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
716 unsigned int segno, int off)
717 {
718 struct page *page;
719
720 page = get_lock_data_page(inode, bidx, true);
721 if (IS_ERR(page))
722 return;
723
724 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
725 goto out;
726
727 if (f2fs_is_atomic_file(inode))
728 goto out;
729
730 if (gc_type == BG_GC) {
731 if (PageWriteback(page))
732 goto out;
733 set_page_dirty(page);
734 set_cold_data(page);
735 } else {
736 struct f2fs_io_info fio = {
737 .sbi = F2FS_I_SB(inode),
738 .ino = inode->i_ino,
739 .type = DATA,
740 .temp = COLD,
741 .op = REQ_OP_WRITE,
742 .op_flags = REQ_SYNC,
743 .old_blkaddr = NULL_ADDR,
744 .page = page,
745 .encrypted_page = NULL,
746 .need_lock = LOCK_REQ,
747 .io_type = FS_GC_DATA_IO,
748 };
749 bool is_dirty = PageDirty(page);
750 int err;
751
752 retry:
753 set_page_dirty(page);
754 f2fs_wait_on_page_writeback(page, DATA, true);
755 if (clear_page_dirty_for_io(page)) {
756 inode_dec_dirty_pages(inode);
757 remove_dirty_inode(inode);
758 }
759
760 set_cold_data(page);
761
762 err = do_write_data_page(&fio);
763 if (err == -ENOMEM && is_dirty) {
764 congestion_wait(BLK_RW_ASYNC, HZ/50);
765 goto retry;
766 }
767 }
768 out:
769 f2fs_put_page(page, 1);
770 }
771
772 /*
773 * This function tries to get parent node of victim data block, and identifies
774 * data block validity. If the block is valid, copy that with cold status and
775 * modify parent node.
776 * If the parent node is not valid or the data block address is different,
777 * the victim data block is ignored.
778 */
779 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
780 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
781 {
782 struct super_block *sb = sbi->sb;
783 struct f2fs_summary *entry;
784 block_t start_addr;
785 int off;
786 int phase = 0;
787
788 start_addr = START_BLOCK(sbi, segno);
789
790 next_step:
791 entry = sum;
792
793 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
794 struct page *data_page;
795 struct inode *inode;
796 struct node_info dni; /* dnode info for the data */
797 unsigned int ofs_in_node, nofs;
798 block_t start_bidx;
799 nid_t nid = le32_to_cpu(entry->nid);
800
801 /* stop BG_GC if there is not enough free sections. */
802 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
803 return;
804
805 if (check_valid_map(sbi, segno, off) == 0)
806 continue;
807
808 if (phase == 0) {
809 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
810 META_NAT, true);
811 continue;
812 }
813
814 if (phase == 1) {
815 ra_node_page(sbi, nid);
816 continue;
817 }
818
819 /* Get an inode by ino with checking validity */
820 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
821 continue;
822
823 if (phase == 2) {
824 ra_node_page(sbi, dni.ino);
825 continue;
826 }
827
828 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
829
830 if (phase == 3) {
831 inode = f2fs_iget(sb, dni.ino);
832 if (IS_ERR(inode) || is_bad_inode(inode))
833 continue;
834
835 /* if encrypted inode, let's go phase 3 */
836 if (f2fs_encrypted_file(inode)) {
837 add_gc_inode(gc_list, inode);
838 continue;
839 }
840
841 if (!down_write_trylock(
842 &F2FS_I(inode)->dio_rwsem[WRITE])) {
843 iput(inode);
844 continue;
845 }
846
847 start_bidx = start_bidx_of_node(nofs, inode);
848 data_page = get_read_data_page(inode,
849 start_bidx + ofs_in_node, REQ_RAHEAD,
850 true);
851 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
852 if (IS_ERR(data_page)) {
853 iput(inode);
854 continue;
855 }
856
857 f2fs_put_page(data_page, 0);
858 add_gc_inode(gc_list, inode);
859 continue;
860 }
861
862 /* phase 4 */
863 inode = find_gc_inode(gc_list, dni.ino);
864 if (inode) {
865 struct f2fs_inode_info *fi = F2FS_I(inode);
866 bool locked = false;
867
868 if (S_ISREG(inode->i_mode)) {
869 if (!down_write_trylock(&fi->dio_rwsem[READ]))
870 continue;
871 if (!down_write_trylock(
872 &fi->dio_rwsem[WRITE])) {
873 up_write(&fi->dio_rwsem[READ]);
874 continue;
875 }
876 locked = true;
877
878 /* wait for all inflight aio data */
879 inode_dio_wait(inode);
880 }
881
882 start_bidx = start_bidx_of_node(nofs, inode)
883 + ofs_in_node;
884 if (f2fs_encrypted_file(inode))
885 move_data_block(inode, start_bidx, segno, off);
886 else
887 move_data_page(inode, start_bidx, gc_type,
888 segno, off);
889
890 if (locked) {
891 up_write(&fi->dio_rwsem[WRITE]);
892 up_write(&fi->dio_rwsem[READ]);
893 }
894
895 stat_inc_data_blk_count(sbi, 1, gc_type);
896 }
897 }
898
899 if (++phase < 5)
900 goto next_step;
901 }
902
903 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
904 int gc_type)
905 {
906 struct sit_info *sit_i = SIT_I(sbi);
907 int ret;
908
909 down_write(&sit_i->sentry_lock);
910 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
911 NO_CHECK_TYPE, LFS);
912 up_write(&sit_i->sentry_lock);
913 return ret;
914 }
915
916 static int do_garbage_collect(struct f2fs_sb_info *sbi,
917 unsigned int start_segno,
918 struct gc_inode_list *gc_list, int gc_type)
919 {
920 struct page *sum_page;
921 struct f2fs_summary_block *sum;
922 struct blk_plug plug;
923 unsigned int segno = start_segno;
924 unsigned int end_segno = start_segno + sbi->segs_per_sec;
925 int seg_freed = 0;
926 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
927 SUM_TYPE_DATA : SUM_TYPE_NODE;
928
929 /* readahead multi ssa blocks those have contiguous address */
930 if (sbi->segs_per_sec > 1)
931 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
932 sbi->segs_per_sec, META_SSA, true);
933
934 /* reference all summary page */
935 while (segno < end_segno) {
936 sum_page = get_sum_page(sbi, segno++);
937 unlock_page(sum_page);
938 }
939
940 blk_start_plug(&plug);
941
942 for (segno = start_segno; segno < end_segno; segno++) {
943
944 /* find segment summary of victim */
945 sum_page = find_get_page(META_MAPPING(sbi),
946 GET_SUM_BLOCK(sbi, segno));
947 f2fs_put_page(sum_page, 0);
948
949 if (get_valid_blocks(sbi, segno, false) == 0 ||
950 !PageUptodate(sum_page) ||
951 unlikely(f2fs_cp_error(sbi)))
952 goto next;
953
954 sum = page_address(sum_page);
955 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
956
957 /*
958 * this is to avoid deadlock:
959 * - lock_page(sum_page) - f2fs_replace_block
960 * - check_valid_map() - down_write(sentry_lock)
961 * - down_read(sentry_lock) - change_curseg()
962 * - lock_page(sum_page)
963 */
964 if (type == SUM_TYPE_NODE)
965 gc_node_segment(sbi, sum->entries, segno, gc_type);
966 else
967 gc_data_segment(sbi, sum->entries, gc_list, segno,
968 gc_type);
969
970 stat_inc_seg_count(sbi, type, gc_type);
971
972 if (gc_type == FG_GC &&
973 get_valid_blocks(sbi, segno, false) == 0)
974 seg_freed++;
975 next:
976 f2fs_put_page(sum_page, 0);
977 }
978
979 if (gc_type == FG_GC)
980 f2fs_submit_merged_write(sbi,
981 (type == SUM_TYPE_NODE) ? NODE : DATA);
982
983 blk_finish_plug(&plug);
984
985 stat_inc_call_count(sbi->stat_info);
986
987 return seg_freed;
988 }
989
990 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
991 bool background, unsigned int segno)
992 {
993 int gc_type = sync ? FG_GC : BG_GC;
994 int sec_freed = 0, seg_freed = 0, total_freed = 0;
995 int ret = 0;
996 struct cp_control cpc;
997 unsigned int init_segno = segno;
998 struct gc_inode_list gc_list = {
999 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1000 .iroot = RADIX_TREE_INIT(GFP_NOFS),
1001 };
1002
1003 trace_f2fs_gc_begin(sbi->sb, sync, background,
1004 get_pages(sbi, F2FS_DIRTY_NODES),
1005 get_pages(sbi, F2FS_DIRTY_DENTS),
1006 get_pages(sbi, F2FS_DIRTY_IMETA),
1007 free_sections(sbi),
1008 free_segments(sbi),
1009 reserved_segments(sbi),
1010 prefree_segments(sbi));
1011
1012 cpc.reason = __get_cp_reason(sbi);
1013 gc_more:
1014 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1015 ret = -EINVAL;
1016 goto stop;
1017 }
1018 if (unlikely(f2fs_cp_error(sbi))) {
1019 ret = -EIO;
1020 goto stop;
1021 }
1022
1023 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1024 /*
1025 * For example, if there are many prefree_segments below given
1026 * threshold, we can make them free by checkpoint. Then, we
1027 * secure free segments which doesn't need fggc any more.
1028 */
1029 if (prefree_segments(sbi)) {
1030 ret = write_checkpoint(sbi, &cpc);
1031 if (ret)
1032 goto stop;
1033 }
1034 if (has_not_enough_free_secs(sbi, 0, 0))
1035 gc_type = FG_GC;
1036 }
1037
1038 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1039 if (gc_type == BG_GC && !background) {
1040 ret = -EINVAL;
1041 goto stop;
1042 }
1043 if (!__get_victim(sbi, &segno, gc_type)) {
1044 ret = -ENODATA;
1045 goto stop;
1046 }
1047
1048 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
1049 if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
1050 sec_freed++;
1051 total_freed += seg_freed;
1052
1053 if (gc_type == FG_GC)
1054 sbi->cur_victim_sec = NULL_SEGNO;
1055
1056 if (!sync) {
1057 if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1058 segno = NULL_SEGNO;
1059 goto gc_more;
1060 }
1061
1062 if (gc_type == FG_GC)
1063 ret = write_checkpoint(sbi, &cpc);
1064 }
1065 stop:
1066 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1067 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1068
1069 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1070 get_pages(sbi, F2FS_DIRTY_NODES),
1071 get_pages(sbi, F2FS_DIRTY_DENTS),
1072 get_pages(sbi, F2FS_DIRTY_IMETA),
1073 free_sections(sbi),
1074 free_segments(sbi),
1075 reserved_segments(sbi),
1076 prefree_segments(sbi));
1077
1078 mutex_unlock(&sbi->gc_mutex);
1079
1080 put_gc_inode(&gc_list);
1081
1082 if (sync)
1083 ret = sec_freed ? 0 : -EAGAIN;
1084 return ret;
1085 }
1086
1087 void build_gc_manager(struct f2fs_sb_info *sbi)
1088 {
1089 u64 main_count, resv_count, ovp_count;
1090
1091 DIRTY_I(sbi)->v_ops = &default_v_ops;
1092
1093 /* threshold of # of valid blocks in a section for victims of FG_GC */
1094 main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1095 resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1096 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1097
1098 sbi->fggc_threshold = div64_u64((main_count - ovp_count) *
1099 BLKS_PER_SEC(sbi), (main_count - resv_count));
1100
1101 /* give warm/cold data area from slower device */
1102 if (sbi->s_ndevs && sbi->segs_per_sec == 1)
1103 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1104 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1105 }