]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/gc.c
Merge remote-tracking branch 'spi/topic/core' into spi-next
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / gc.c
1 /*
2 * fs/f2fs/gc.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28 struct f2fs_sb_info *sbi = data;
29 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 long wait_ms;
32
33 wait_ms = gc_th->min_sleep_time;
34
35 do {
36 if (try_to_freeze())
37 continue;
38 else
39 wait_event_interruptible_timeout(*wq,
40 kthread_should_stop(),
41 msecs_to_jiffies(wait_ms));
42 if (kthread_should_stop())
43 break;
44
45 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46 increase_sleep_time(gc_th, &wait_ms);
47 continue;
48 }
49
50 #ifdef CONFIG_F2FS_FAULT_INJECTION
51 if (time_to_inject(sbi, FAULT_CHECKPOINT))
52 f2fs_stop_checkpoint(sbi, false);
53 #endif
54
55 /*
56 * [GC triggering condition]
57 * 0. GC is not conducted currently.
58 * 1. There are enough dirty segments.
59 * 2. IO subsystem is idle by checking the # of writeback pages.
60 * 3. IO subsystem is idle by checking the # of requests in
61 * bdev's request list.
62 *
63 * Note) We have to avoid triggering GCs frequently.
64 * Because it is possible that some segments can be
65 * invalidated soon after by user update or deletion.
66 * So, I'd like to wait some time to collect dirty segments.
67 */
68 if (!mutex_trylock(&sbi->gc_mutex))
69 continue;
70
71 if (!is_idle(sbi)) {
72 increase_sleep_time(gc_th, &wait_ms);
73 mutex_unlock(&sbi->gc_mutex);
74 continue;
75 }
76
77 if (has_enough_invalid_blocks(sbi))
78 decrease_sleep_time(gc_th, &wait_ms);
79 else
80 increase_sleep_time(gc_th, &wait_ms);
81
82 stat_inc_bggc_count(sbi);
83
84 /* if return value is not zero, no victim was selected */
85 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC)))
86 wait_ms = gc_th->no_gc_sleep_time;
87
88 trace_f2fs_background_gc(sbi->sb, wait_ms,
89 prefree_segments(sbi), free_segments(sbi));
90
91 /* balancing f2fs's metadata periodically */
92 f2fs_balance_fs_bg(sbi);
93
94 } while (!kthread_should_stop());
95 return 0;
96 }
97
98 int start_gc_thread(struct f2fs_sb_info *sbi)
99 {
100 struct f2fs_gc_kthread *gc_th;
101 dev_t dev = sbi->sb->s_bdev->bd_dev;
102 int err = 0;
103
104 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
105 if (!gc_th) {
106 err = -ENOMEM;
107 goto out;
108 }
109
110 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
111 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
112 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
113
114 gc_th->gc_idle = 0;
115
116 sbi->gc_thread = gc_th;
117 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
118 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
119 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
120 if (IS_ERR(gc_th->f2fs_gc_task)) {
121 err = PTR_ERR(gc_th->f2fs_gc_task);
122 kfree(gc_th);
123 sbi->gc_thread = NULL;
124 }
125 out:
126 return err;
127 }
128
129 void stop_gc_thread(struct f2fs_sb_info *sbi)
130 {
131 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
132 if (!gc_th)
133 return;
134 kthread_stop(gc_th->f2fs_gc_task);
135 kfree(gc_th);
136 sbi->gc_thread = NULL;
137 }
138
139 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
140 {
141 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
142
143 if (gc_th && gc_th->gc_idle) {
144 if (gc_th->gc_idle == 1)
145 gc_mode = GC_CB;
146 else if (gc_th->gc_idle == 2)
147 gc_mode = GC_GREEDY;
148 }
149 return gc_mode;
150 }
151
152 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
153 int type, struct victim_sel_policy *p)
154 {
155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
156
157 if (p->alloc_mode == SSR) {
158 p->gc_mode = GC_GREEDY;
159 p->dirty_segmap = dirty_i->dirty_segmap[type];
160 p->max_search = dirty_i->nr_dirty[type];
161 p->ofs_unit = 1;
162 } else {
163 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
164 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
165 p->max_search = dirty_i->nr_dirty[DIRTY];
166 p->ofs_unit = sbi->segs_per_sec;
167 }
168
169 if (p->max_search > sbi->max_victim_search)
170 p->max_search = sbi->max_victim_search;
171
172 p->offset = sbi->last_victim[p->gc_mode];
173 }
174
175 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
176 struct victim_sel_policy *p)
177 {
178 /* SSR allocates in a segment unit */
179 if (p->alloc_mode == SSR)
180 return sbi->blocks_per_seg;
181 if (p->gc_mode == GC_GREEDY)
182 return sbi->blocks_per_seg * p->ofs_unit;
183 else if (p->gc_mode == GC_CB)
184 return UINT_MAX;
185 else /* No other gc_mode */
186 return 0;
187 }
188
189 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
190 {
191 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
192 unsigned int secno;
193
194 /*
195 * If the gc_type is FG_GC, we can select victim segments
196 * selected by background GC before.
197 * Those segments guarantee they have small valid blocks.
198 */
199 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
200 if (sec_usage_check(sbi, secno))
201 continue;
202 clear_bit(secno, dirty_i->victim_secmap);
203 return secno * sbi->segs_per_sec;
204 }
205 return NULL_SEGNO;
206 }
207
208 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
209 {
210 struct sit_info *sit_i = SIT_I(sbi);
211 unsigned int secno = GET_SECNO(sbi, segno);
212 unsigned int start = secno * sbi->segs_per_sec;
213 unsigned long long mtime = 0;
214 unsigned int vblocks;
215 unsigned char age = 0;
216 unsigned char u;
217 unsigned int i;
218
219 for (i = 0; i < sbi->segs_per_sec; i++)
220 mtime += get_seg_entry(sbi, start + i)->mtime;
221 vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
222
223 mtime = div_u64(mtime, sbi->segs_per_sec);
224 vblocks = div_u64(vblocks, sbi->segs_per_sec);
225
226 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
227
228 /* Handle if the system time has changed by the user */
229 if (mtime < sit_i->min_mtime)
230 sit_i->min_mtime = mtime;
231 if (mtime > sit_i->max_mtime)
232 sit_i->max_mtime = mtime;
233 if (sit_i->max_mtime != sit_i->min_mtime)
234 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
235 sit_i->max_mtime - sit_i->min_mtime);
236
237 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
238 }
239
240 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
241 unsigned int segno, struct victim_sel_policy *p)
242 {
243 if (p->alloc_mode == SSR)
244 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
245
246 /* alloc_mode == LFS */
247 if (p->gc_mode == GC_GREEDY)
248 return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
249 else
250 return get_cb_cost(sbi, segno);
251 }
252
253 static unsigned int count_bits(const unsigned long *addr,
254 unsigned int offset, unsigned int len)
255 {
256 unsigned int end = offset + len, sum = 0;
257
258 while (offset < end) {
259 if (test_bit(offset++, addr))
260 ++sum;
261 }
262 return sum;
263 }
264
265 /*
266 * This function is called from two paths.
267 * One is garbage collection and the other is SSR segment selection.
268 * When it is called during GC, it just gets a victim segment
269 * and it does not remove it from dirty seglist.
270 * When it is called from SSR segment selection, it finds a segment
271 * which has minimum valid blocks and removes it from dirty seglist.
272 */
273 static int get_victim_by_default(struct f2fs_sb_info *sbi,
274 unsigned int *result, int gc_type, int type, char alloc_mode)
275 {
276 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
277 struct victim_sel_policy p;
278 unsigned int secno, last_victim;
279 unsigned int last_segment = MAIN_SEGS(sbi);
280 unsigned int nsearched = 0;
281
282 mutex_lock(&dirty_i->seglist_lock);
283
284 p.alloc_mode = alloc_mode;
285 select_policy(sbi, gc_type, type, &p);
286
287 p.min_segno = NULL_SEGNO;
288 p.min_cost = get_max_cost(sbi, &p);
289
290 if (p.max_search == 0)
291 goto out;
292
293 last_victim = sbi->last_victim[p.gc_mode];
294 if (p.alloc_mode == LFS && gc_type == FG_GC) {
295 p.min_segno = check_bg_victims(sbi);
296 if (p.min_segno != NULL_SEGNO)
297 goto got_it;
298 }
299
300 while (1) {
301 unsigned long cost;
302 unsigned int segno;
303
304 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
305 if (segno >= last_segment) {
306 if (sbi->last_victim[p.gc_mode]) {
307 last_segment = sbi->last_victim[p.gc_mode];
308 sbi->last_victim[p.gc_mode] = 0;
309 p.offset = 0;
310 continue;
311 }
312 break;
313 }
314
315 p.offset = segno + p.ofs_unit;
316 if (p.ofs_unit > 1) {
317 p.offset -= segno % p.ofs_unit;
318 nsearched += count_bits(p.dirty_segmap,
319 p.offset - p.ofs_unit,
320 p.ofs_unit);
321 } else {
322 nsearched++;
323 }
324
325
326 secno = GET_SECNO(sbi, segno);
327
328 if (sec_usage_check(sbi, secno))
329 goto next;
330 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
331 goto next;
332
333 cost = get_gc_cost(sbi, segno, &p);
334
335 if (p.min_cost > cost) {
336 p.min_segno = segno;
337 p.min_cost = cost;
338 }
339 next:
340 if (nsearched >= p.max_search) {
341 if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
342 sbi->last_victim[p.gc_mode] = last_victim + 1;
343 else
344 sbi->last_victim[p.gc_mode] = segno + 1;
345 break;
346 }
347 }
348 if (p.min_segno != NULL_SEGNO) {
349 got_it:
350 if (p.alloc_mode == LFS) {
351 secno = GET_SECNO(sbi, p.min_segno);
352 if (gc_type == FG_GC)
353 sbi->cur_victim_sec = secno;
354 else
355 set_bit(secno, dirty_i->victim_secmap);
356 }
357 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
358
359 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
360 sbi->cur_victim_sec,
361 prefree_segments(sbi), free_segments(sbi));
362 }
363 out:
364 mutex_unlock(&dirty_i->seglist_lock);
365
366 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
367 }
368
369 static const struct victim_selection default_v_ops = {
370 .get_victim = get_victim_by_default,
371 };
372
373 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
374 {
375 struct inode_entry *ie;
376
377 ie = radix_tree_lookup(&gc_list->iroot, ino);
378 if (ie)
379 return ie->inode;
380 return NULL;
381 }
382
383 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
384 {
385 struct inode_entry *new_ie;
386
387 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
388 iput(inode);
389 return;
390 }
391 new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
392 new_ie->inode = inode;
393
394 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
395 list_add_tail(&new_ie->list, &gc_list->ilist);
396 }
397
398 static void put_gc_inode(struct gc_inode_list *gc_list)
399 {
400 struct inode_entry *ie, *next_ie;
401 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
402 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
403 iput(ie->inode);
404 list_del(&ie->list);
405 kmem_cache_free(inode_entry_slab, ie);
406 }
407 }
408
409 static int check_valid_map(struct f2fs_sb_info *sbi,
410 unsigned int segno, int offset)
411 {
412 struct sit_info *sit_i = SIT_I(sbi);
413 struct seg_entry *sentry;
414 int ret;
415
416 mutex_lock(&sit_i->sentry_lock);
417 sentry = get_seg_entry(sbi, segno);
418 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
419 mutex_unlock(&sit_i->sentry_lock);
420 return ret;
421 }
422
423 /*
424 * This function compares node address got in summary with that in NAT.
425 * On validity, copy that node with cold status, otherwise (invalid node)
426 * ignore that.
427 */
428 static void gc_node_segment(struct f2fs_sb_info *sbi,
429 struct f2fs_summary *sum, unsigned int segno, int gc_type)
430 {
431 struct f2fs_summary *entry;
432 block_t start_addr;
433 int off;
434 int phase = 0;
435
436 start_addr = START_BLOCK(sbi, segno);
437
438 next_step:
439 entry = sum;
440
441 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
442 nid_t nid = le32_to_cpu(entry->nid);
443 struct page *node_page;
444 struct node_info ni;
445
446 /* stop BG_GC if there is not enough free sections. */
447 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
448 return;
449
450 if (check_valid_map(sbi, segno, off) == 0)
451 continue;
452
453 if (phase == 0) {
454 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
455 META_NAT, true);
456 continue;
457 }
458
459 if (phase == 1) {
460 ra_node_page(sbi, nid);
461 continue;
462 }
463
464 /* phase == 2 */
465 node_page = get_node_page(sbi, nid);
466 if (IS_ERR(node_page))
467 continue;
468
469 /* block may become invalid during get_node_page */
470 if (check_valid_map(sbi, segno, off) == 0) {
471 f2fs_put_page(node_page, 1);
472 continue;
473 }
474
475 get_node_info(sbi, nid, &ni);
476 if (ni.blk_addr != start_addr + off) {
477 f2fs_put_page(node_page, 1);
478 continue;
479 }
480
481 move_node_page(node_page, gc_type);
482 stat_inc_node_blk_count(sbi, 1, gc_type);
483 }
484
485 if (++phase < 3)
486 goto next_step;
487 }
488
489 /*
490 * Calculate start block index indicating the given node offset.
491 * Be careful, caller should give this node offset only indicating direct node
492 * blocks. If any node offsets, which point the other types of node blocks such
493 * as indirect or double indirect node blocks, are given, it must be a caller's
494 * bug.
495 */
496 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
497 {
498 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
499 unsigned int bidx;
500
501 if (node_ofs == 0)
502 return 0;
503
504 if (node_ofs <= 2) {
505 bidx = node_ofs - 1;
506 } else if (node_ofs <= indirect_blks) {
507 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
508 bidx = node_ofs - 2 - dec;
509 } else {
510 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
511 bidx = node_ofs - 5 - dec;
512 }
513 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
514 }
515
516 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
517 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
518 {
519 struct page *node_page;
520 nid_t nid;
521 unsigned int ofs_in_node;
522 block_t source_blkaddr;
523
524 nid = le32_to_cpu(sum->nid);
525 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
526
527 node_page = get_node_page(sbi, nid);
528 if (IS_ERR(node_page))
529 return false;
530
531 get_node_info(sbi, nid, dni);
532
533 if (sum->version != dni->version) {
534 f2fs_put_page(node_page, 1);
535 return false;
536 }
537
538 *nofs = ofs_of_node(node_page);
539 source_blkaddr = datablock_addr(node_page, ofs_in_node);
540 f2fs_put_page(node_page, 1);
541
542 if (source_blkaddr != blkaddr)
543 return false;
544 return true;
545 }
546
547 static void move_encrypted_block(struct inode *inode, block_t bidx)
548 {
549 struct f2fs_io_info fio = {
550 .sbi = F2FS_I_SB(inode),
551 .type = DATA,
552 .op = REQ_OP_READ,
553 .op_flags = READ_SYNC,
554 .encrypted_page = NULL,
555 };
556 struct dnode_of_data dn;
557 struct f2fs_summary sum;
558 struct node_info ni;
559 struct page *page;
560 block_t newaddr;
561 int err;
562
563 /* do not read out */
564 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
565 if (!page)
566 return;
567
568 set_new_dnode(&dn, inode, NULL, NULL, 0);
569 err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
570 if (err)
571 goto out;
572
573 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
574 ClearPageUptodate(page);
575 goto put_out;
576 }
577
578 /*
579 * don't cache encrypted data into meta inode until previous dirty
580 * data were writebacked to avoid racing between GC and flush.
581 */
582 f2fs_wait_on_page_writeback(page, DATA, true);
583
584 get_node_info(fio.sbi, dn.nid, &ni);
585 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
586
587 /* read page */
588 fio.page = page;
589 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
590
591 allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
592 &sum, CURSEG_COLD_DATA);
593
594 fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
595 FGP_LOCK | FGP_CREAT, GFP_NOFS);
596 if (!fio.encrypted_page) {
597 err = -ENOMEM;
598 goto recover_block;
599 }
600
601 err = f2fs_submit_page_bio(&fio);
602 if (err)
603 goto put_page_out;
604
605 /* write page */
606 lock_page(fio.encrypted_page);
607
608 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
609 err = -EIO;
610 goto put_page_out;
611 }
612 if (unlikely(!PageUptodate(fio.encrypted_page))) {
613 err = -EIO;
614 goto put_page_out;
615 }
616
617 set_page_dirty(fio.encrypted_page);
618 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
619 if (clear_page_dirty_for_io(fio.encrypted_page))
620 dec_page_count(fio.sbi, F2FS_DIRTY_META);
621
622 set_page_writeback(fio.encrypted_page);
623
624 /* allocate block address */
625 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
626
627 fio.op = REQ_OP_WRITE;
628 fio.op_flags = WRITE_SYNC;
629 fio.new_blkaddr = newaddr;
630 f2fs_submit_page_mbio(&fio);
631
632 f2fs_update_data_blkaddr(&dn, newaddr);
633 set_inode_flag(inode, FI_APPEND_WRITE);
634 if (page->index == 0)
635 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
636 put_page_out:
637 f2fs_put_page(fio.encrypted_page, 1);
638 recover_block:
639 if (err)
640 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
641 true, true);
642 put_out:
643 f2fs_put_dnode(&dn);
644 out:
645 f2fs_put_page(page, 1);
646 }
647
648 static void move_data_page(struct inode *inode, block_t bidx, int gc_type)
649 {
650 struct page *page;
651
652 page = get_lock_data_page(inode, bidx, true);
653 if (IS_ERR(page))
654 return;
655
656 if (gc_type == BG_GC) {
657 if (PageWriteback(page))
658 goto out;
659 set_page_dirty(page);
660 set_cold_data(page);
661 } else {
662 struct f2fs_io_info fio = {
663 .sbi = F2FS_I_SB(inode),
664 .type = DATA,
665 .op = REQ_OP_WRITE,
666 .op_flags = WRITE_SYNC,
667 .page = page,
668 .encrypted_page = NULL,
669 };
670 bool is_dirty = PageDirty(page);
671 int err;
672
673 retry:
674 set_page_dirty(page);
675 f2fs_wait_on_page_writeback(page, DATA, true);
676 if (clear_page_dirty_for_io(page))
677 inode_dec_dirty_pages(inode);
678
679 set_cold_data(page);
680
681 err = do_write_data_page(&fio);
682 if (err == -ENOMEM && is_dirty) {
683 congestion_wait(BLK_RW_ASYNC, HZ/50);
684 goto retry;
685 }
686
687 clear_cold_data(page);
688 }
689 out:
690 f2fs_put_page(page, 1);
691 }
692
693 /*
694 * This function tries to get parent node of victim data block, and identifies
695 * data block validity. If the block is valid, copy that with cold status and
696 * modify parent node.
697 * If the parent node is not valid or the data block address is different,
698 * the victim data block is ignored.
699 */
700 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
701 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
702 {
703 struct super_block *sb = sbi->sb;
704 struct f2fs_summary *entry;
705 block_t start_addr;
706 int off;
707 int phase = 0;
708
709 start_addr = START_BLOCK(sbi, segno);
710
711 next_step:
712 entry = sum;
713
714 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
715 struct page *data_page;
716 struct inode *inode;
717 struct node_info dni; /* dnode info for the data */
718 unsigned int ofs_in_node, nofs;
719 block_t start_bidx;
720 nid_t nid = le32_to_cpu(entry->nid);
721
722 /* stop BG_GC if there is not enough free sections. */
723 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
724 return;
725
726 if (check_valid_map(sbi, segno, off) == 0)
727 continue;
728
729 if (phase == 0) {
730 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
731 META_NAT, true);
732 continue;
733 }
734
735 if (phase == 1) {
736 ra_node_page(sbi, nid);
737 continue;
738 }
739
740 /* Get an inode by ino with checking validity */
741 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
742 continue;
743
744 if (phase == 2) {
745 ra_node_page(sbi, dni.ino);
746 continue;
747 }
748
749 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
750
751 if (phase == 3) {
752 inode = f2fs_iget(sb, dni.ino);
753 if (IS_ERR(inode) || is_bad_inode(inode))
754 continue;
755
756 /* if encrypted inode, let's go phase 3 */
757 if (f2fs_encrypted_inode(inode) &&
758 S_ISREG(inode->i_mode)) {
759 add_gc_inode(gc_list, inode);
760 continue;
761 }
762
763 start_bidx = start_bidx_of_node(nofs, inode);
764 data_page = get_read_data_page(inode,
765 start_bidx + ofs_in_node, REQ_RAHEAD,
766 true);
767 if (IS_ERR(data_page)) {
768 iput(inode);
769 continue;
770 }
771
772 f2fs_put_page(data_page, 0);
773 add_gc_inode(gc_list, inode);
774 continue;
775 }
776
777 /* phase 4 */
778 inode = find_gc_inode(gc_list, dni.ino);
779 if (inode) {
780 struct f2fs_inode_info *fi = F2FS_I(inode);
781 bool locked = false;
782
783 if (S_ISREG(inode->i_mode)) {
784 if (!down_write_trylock(&fi->dio_rwsem[READ]))
785 continue;
786 if (!down_write_trylock(
787 &fi->dio_rwsem[WRITE])) {
788 up_write(&fi->dio_rwsem[READ]);
789 continue;
790 }
791 locked = true;
792 }
793
794 start_bidx = start_bidx_of_node(nofs, inode)
795 + ofs_in_node;
796 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
797 move_encrypted_block(inode, start_bidx);
798 else
799 move_data_page(inode, start_bidx, gc_type);
800
801 if (locked) {
802 up_write(&fi->dio_rwsem[WRITE]);
803 up_write(&fi->dio_rwsem[READ]);
804 }
805
806 stat_inc_data_blk_count(sbi, 1, gc_type);
807 }
808 }
809
810 if (++phase < 5)
811 goto next_step;
812 }
813
814 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
815 int gc_type)
816 {
817 struct sit_info *sit_i = SIT_I(sbi);
818 int ret;
819
820 mutex_lock(&sit_i->sentry_lock);
821 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
822 NO_CHECK_TYPE, LFS);
823 mutex_unlock(&sit_i->sentry_lock);
824 return ret;
825 }
826
827 static int do_garbage_collect(struct f2fs_sb_info *sbi,
828 unsigned int start_segno,
829 struct gc_inode_list *gc_list, int gc_type)
830 {
831 struct page *sum_page;
832 struct f2fs_summary_block *sum;
833 struct blk_plug plug;
834 unsigned int segno = start_segno;
835 unsigned int end_segno = start_segno + sbi->segs_per_sec;
836 int sec_freed = 0;
837 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
838 SUM_TYPE_DATA : SUM_TYPE_NODE;
839
840 /* readahead multi ssa blocks those have contiguous address */
841 if (sbi->segs_per_sec > 1)
842 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
843 sbi->segs_per_sec, META_SSA, true);
844
845 /* reference all summary page */
846 while (segno < end_segno) {
847 sum_page = get_sum_page(sbi, segno++);
848 unlock_page(sum_page);
849 }
850
851 blk_start_plug(&plug);
852
853 for (segno = start_segno; segno < end_segno; segno++) {
854
855 /* find segment summary of victim */
856 sum_page = find_get_page(META_MAPPING(sbi),
857 GET_SUM_BLOCK(sbi, segno));
858 f2fs_put_page(sum_page, 0);
859
860 if (get_valid_blocks(sbi, segno, 1) == 0 ||
861 !PageUptodate(sum_page) ||
862 unlikely(f2fs_cp_error(sbi)))
863 goto next;
864
865 sum = page_address(sum_page);
866 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
867
868 /*
869 * this is to avoid deadlock:
870 * - lock_page(sum_page) - f2fs_replace_block
871 * - check_valid_map() - mutex_lock(sentry_lock)
872 * - mutex_lock(sentry_lock) - change_curseg()
873 * - lock_page(sum_page)
874 */
875
876 if (type == SUM_TYPE_NODE)
877 gc_node_segment(sbi, sum->entries, segno, gc_type);
878 else
879 gc_data_segment(sbi, sum->entries, gc_list, segno,
880 gc_type);
881
882 stat_inc_seg_count(sbi, type, gc_type);
883 next:
884 f2fs_put_page(sum_page, 0);
885 }
886
887 if (gc_type == FG_GC)
888 f2fs_submit_merged_bio(sbi,
889 (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
890
891 blk_finish_plug(&plug);
892
893 if (gc_type == FG_GC &&
894 get_valid_blocks(sbi, start_segno, sbi->segs_per_sec) == 0)
895 sec_freed = 1;
896
897 stat_inc_call_count(sbi->stat_info);
898
899 return sec_freed;
900 }
901
902 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync)
903 {
904 unsigned int segno;
905 int gc_type = sync ? FG_GC : BG_GC;
906 int sec_freed = 0;
907 int ret = -EINVAL;
908 struct cp_control cpc;
909 struct gc_inode_list gc_list = {
910 .ilist = LIST_HEAD_INIT(gc_list.ilist),
911 .iroot = RADIX_TREE_INIT(GFP_NOFS),
912 };
913
914 cpc.reason = __get_cp_reason(sbi);
915 gc_more:
916 segno = NULL_SEGNO;
917
918 if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
919 goto stop;
920 if (unlikely(f2fs_cp_error(sbi))) {
921 ret = -EIO;
922 goto stop;
923 }
924
925 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, sec_freed, 0)) {
926 gc_type = FG_GC;
927 /*
928 * If there is no victim and no prefree segment but still not
929 * enough free sections, we should flush dent/node blocks and do
930 * garbage collections.
931 */
932 if (__get_victim(sbi, &segno, gc_type) ||
933 prefree_segments(sbi)) {
934 ret = write_checkpoint(sbi, &cpc);
935 if (ret)
936 goto stop;
937 segno = NULL_SEGNO;
938 } else if (has_not_enough_free_secs(sbi, 0, 0)) {
939 ret = write_checkpoint(sbi, &cpc);
940 if (ret)
941 goto stop;
942 }
943 }
944
945 if (segno == NULL_SEGNO && !__get_victim(sbi, &segno, gc_type))
946 goto stop;
947 ret = 0;
948
949 if (do_garbage_collect(sbi, segno, &gc_list, gc_type) &&
950 gc_type == FG_GC)
951 sec_freed++;
952
953 if (gc_type == FG_GC)
954 sbi->cur_victim_sec = NULL_SEGNO;
955
956 if (!sync) {
957 if (has_not_enough_free_secs(sbi, sec_freed, 0))
958 goto gc_more;
959
960 if (gc_type == FG_GC)
961 ret = write_checkpoint(sbi, &cpc);
962 }
963 stop:
964 mutex_unlock(&sbi->gc_mutex);
965
966 put_gc_inode(&gc_list);
967
968 if (sync)
969 ret = sec_freed ? 0 : -EAGAIN;
970 return ret;
971 }
972
973 void build_gc_manager(struct f2fs_sb_info *sbi)
974 {
975 DIRTY_I(sbi)->v_ops = &default_v_ops;
976 }