]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/inline.c
Merge tag 'for-linus-4.15-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15 #include "node.h"
16
17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA(inode))
26 return false;
27
28 if (f2fs_encrypted_file(inode))
29 return false;
30
31 return true;
32 }
33
34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
45 void read_inline_data(struct page *page, struct page *ipage)
46 {
47 struct inode *inode = page->mapping->host;
48 void *src_addr, *dst_addr;
49
50 if (PageUptodate(page))
51 return;
52
53 f2fs_bug_on(F2FS_P_SB(page), page->index);
54
55 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
56
57 /* Copy the whole inline data block */
58 src_addr = inline_data_addr(inode, ipage);
59 dst_addr = kmap_atomic(page);
60 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
61 flush_dcache_page(page);
62 kunmap_atomic(dst_addr);
63 if (!PageUptodate(page))
64 SetPageUptodate(page);
65 }
66
67 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from)
68 {
69 void *addr;
70
71 if (from >= MAX_INLINE_DATA(inode))
72 return;
73
74 addr = inline_data_addr(inode, ipage);
75
76 f2fs_wait_on_page_writeback(ipage, NODE, true);
77 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
78 set_page_dirty(ipage);
79
80 if (from == 0)
81 clear_inode_flag(inode, FI_DATA_EXIST);
82 }
83
84 int f2fs_read_inline_data(struct inode *inode, struct page *page)
85 {
86 struct page *ipage;
87
88 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
89 if (IS_ERR(ipage)) {
90 unlock_page(page);
91 return PTR_ERR(ipage);
92 }
93
94 if (!f2fs_has_inline_data(inode)) {
95 f2fs_put_page(ipage, 1);
96 return -EAGAIN;
97 }
98
99 if (page->index)
100 zero_user_segment(page, 0, PAGE_SIZE);
101 else
102 read_inline_data(page, ipage);
103
104 if (!PageUptodate(page))
105 SetPageUptodate(page);
106 f2fs_put_page(ipage, 1);
107 unlock_page(page);
108 return 0;
109 }
110
111 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
112 {
113 struct f2fs_io_info fio = {
114 .sbi = F2FS_I_SB(dn->inode),
115 .ino = dn->inode->i_ino,
116 .type = DATA,
117 .op = REQ_OP_WRITE,
118 .op_flags = REQ_SYNC | REQ_PRIO,
119 .page = page,
120 .encrypted_page = NULL,
121 .io_type = FS_DATA_IO,
122 };
123 int dirty, err;
124
125 if (!f2fs_exist_data(dn->inode))
126 goto clear_out;
127
128 err = f2fs_reserve_block(dn, 0);
129 if (err)
130 return err;
131
132 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
133
134 read_inline_data(page, dn->inode_page);
135 set_page_dirty(page);
136
137 /* clear dirty state */
138 dirty = clear_page_dirty_for_io(page);
139
140 /* write data page to try to make data consistent */
141 set_page_writeback(page);
142 fio.old_blkaddr = dn->data_blkaddr;
143 set_inode_flag(dn->inode, FI_HOT_DATA);
144 write_data_page(dn, &fio);
145 f2fs_wait_on_page_writeback(page, DATA, true);
146 if (dirty) {
147 inode_dec_dirty_pages(dn->inode);
148 remove_dirty_inode(dn->inode);
149 }
150
151 /* this converted inline_data should be recovered. */
152 set_inode_flag(dn->inode, FI_APPEND_WRITE);
153
154 /* clear inline data and flag after data writeback */
155 truncate_inline_inode(dn->inode, dn->inode_page, 0);
156 clear_inline_node(dn->inode_page);
157 clear_out:
158 stat_dec_inline_inode(dn->inode);
159 clear_inode_flag(dn->inode, FI_INLINE_DATA);
160 f2fs_put_dnode(dn);
161 return 0;
162 }
163
164 int f2fs_convert_inline_inode(struct inode *inode)
165 {
166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
167 struct dnode_of_data dn;
168 struct page *ipage, *page;
169 int err = 0;
170
171 if (!f2fs_has_inline_data(inode))
172 return 0;
173
174 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
175 if (!page)
176 return -ENOMEM;
177
178 f2fs_lock_op(sbi);
179
180 ipage = get_node_page(sbi, inode->i_ino);
181 if (IS_ERR(ipage)) {
182 err = PTR_ERR(ipage);
183 goto out;
184 }
185
186 set_new_dnode(&dn, inode, ipage, ipage, 0);
187
188 if (f2fs_has_inline_data(inode))
189 err = f2fs_convert_inline_page(&dn, page);
190
191 f2fs_put_dnode(&dn);
192 out:
193 f2fs_unlock_op(sbi);
194
195 f2fs_put_page(page, 1);
196
197 f2fs_balance_fs(sbi, dn.node_changed);
198
199 return err;
200 }
201
202 int f2fs_write_inline_data(struct inode *inode, struct page *page)
203 {
204 void *src_addr, *dst_addr;
205 struct dnode_of_data dn;
206 struct address_space *mapping = page_mapping(page);
207 unsigned long flags;
208 int err;
209
210 set_new_dnode(&dn, inode, NULL, NULL, 0);
211 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
212 if (err)
213 return err;
214
215 if (!f2fs_has_inline_data(inode)) {
216 f2fs_put_dnode(&dn);
217 return -EAGAIN;
218 }
219
220 f2fs_bug_on(F2FS_I_SB(inode), page->index);
221
222 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true);
223 src_addr = kmap_atomic(page);
224 dst_addr = inline_data_addr(inode, dn.inode_page);
225 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
226 kunmap_atomic(src_addr);
227 set_page_dirty(dn.inode_page);
228
229 spin_lock_irqsave(&mapping->tree_lock, flags);
230 radix_tree_tag_clear(&mapping->page_tree, page_index(page),
231 PAGECACHE_TAG_DIRTY);
232 spin_unlock_irqrestore(&mapping->tree_lock, flags);
233
234 set_inode_flag(inode, FI_APPEND_WRITE);
235 set_inode_flag(inode, FI_DATA_EXIST);
236
237 clear_inline_node(dn.inode_page);
238 f2fs_put_dnode(&dn);
239 return 0;
240 }
241
242 bool recover_inline_data(struct inode *inode, struct page *npage)
243 {
244 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
245 struct f2fs_inode *ri = NULL;
246 void *src_addr, *dst_addr;
247 struct page *ipage;
248
249 /*
250 * The inline_data recovery policy is as follows.
251 * [prev.] [next] of inline_data flag
252 * o o -> recover inline_data
253 * o x -> remove inline_data, and then recover data blocks
254 * x o -> remove inline_data, and then recover inline_data
255 * x x -> recover data blocks
256 */
257 if (IS_INODE(npage))
258 ri = F2FS_INODE(npage);
259
260 if (f2fs_has_inline_data(inode) &&
261 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
262 process_inline:
263 ipage = get_node_page(sbi, inode->i_ino);
264 f2fs_bug_on(sbi, IS_ERR(ipage));
265
266 f2fs_wait_on_page_writeback(ipage, NODE, true);
267
268 src_addr = inline_data_addr(inode, npage);
269 dst_addr = inline_data_addr(inode, ipage);
270 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
271
272 set_inode_flag(inode, FI_INLINE_DATA);
273 set_inode_flag(inode, FI_DATA_EXIST);
274
275 set_page_dirty(ipage);
276 f2fs_put_page(ipage, 1);
277 return true;
278 }
279
280 if (f2fs_has_inline_data(inode)) {
281 ipage = get_node_page(sbi, inode->i_ino);
282 f2fs_bug_on(sbi, IS_ERR(ipage));
283 truncate_inline_inode(inode, ipage, 0);
284 clear_inode_flag(inode, FI_INLINE_DATA);
285 f2fs_put_page(ipage, 1);
286 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
287 if (truncate_blocks(inode, 0, false))
288 return false;
289 goto process_inline;
290 }
291 return false;
292 }
293
294 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
295 struct fscrypt_name *fname, struct page **res_page)
296 {
297 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
298 struct qstr name = FSTR_TO_QSTR(&fname->disk_name);
299 struct f2fs_dir_entry *de;
300 struct f2fs_dentry_ptr d;
301 struct page *ipage;
302 void *inline_dentry;
303 f2fs_hash_t namehash;
304
305 ipage = get_node_page(sbi, dir->i_ino);
306 if (IS_ERR(ipage)) {
307 *res_page = ipage;
308 return NULL;
309 }
310
311 namehash = f2fs_dentry_hash(&name, fname);
312
313 inline_dentry = inline_data_addr(dir, ipage);
314
315 make_dentry_ptr_inline(dir, &d, inline_dentry);
316 de = find_target_dentry(fname, namehash, NULL, &d);
317 unlock_page(ipage);
318 if (de)
319 *res_page = ipage;
320 else
321 f2fs_put_page(ipage, 0);
322
323 return de;
324 }
325
326 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
327 struct page *ipage)
328 {
329 struct f2fs_dentry_ptr d;
330 void *inline_dentry;
331
332 inline_dentry = inline_data_addr(inode, ipage);
333
334 make_dentry_ptr_inline(inode, &d, inline_dentry);
335 do_make_empty_dir(inode, parent, &d);
336
337 set_page_dirty(ipage);
338
339 /* update i_size to MAX_INLINE_DATA */
340 if (i_size_read(inode) < MAX_INLINE_DATA(inode))
341 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
342 return 0;
343 }
344
345 /*
346 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
347 * release ipage in this function.
348 */
349 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
350 void *inline_dentry)
351 {
352 struct page *page;
353 struct dnode_of_data dn;
354 struct f2fs_dentry_block *dentry_blk;
355 struct f2fs_dentry_ptr src, dst;
356 int err;
357
358 page = f2fs_grab_cache_page(dir->i_mapping, 0, false);
359 if (!page) {
360 f2fs_put_page(ipage, 1);
361 return -ENOMEM;
362 }
363
364 set_new_dnode(&dn, dir, ipage, NULL, 0);
365 err = f2fs_reserve_block(&dn, 0);
366 if (err)
367 goto out;
368
369 f2fs_wait_on_page_writeback(page, DATA, true);
370 zero_user_segment(page, MAX_INLINE_DATA(dir), PAGE_SIZE);
371
372 dentry_blk = kmap_atomic(page);
373
374 make_dentry_ptr_inline(dir, &src, inline_dentry);
375 make_dentry_ptr_block(dir, &dst, dentry_blk);
376
377 /* copy data from inline dentry block to new dentry block */
378 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
379 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
380 /*
381 * we do not need to zero out remainder part of dentry and filename
382 * field, since we have used bitmap for marking the usage status of
383 * them, besides, we can also ignore copying/zeroing reserved space
384 * of dentry block, because them haven't been used so far.
385 */
386 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
387 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
388
389 kunmap_atomic(dentry_blk);
390 if (!PageUptodate(page))
391 SetPageUptodate(page);
392 set_page_dirty(page);
393
394 /* clear inline dir and flag after data writeback */
395 truncate_inline_inode(dir, ipage, 0);
396
397 stat_dec_inline_dir(dir);
398 clear_inode_flag(dir, FI_INLINE_DENTRY);
399
400 f2fs_i_depth_write(dir, 1);
401 if (i_size_read(dir) < PAGE_SIZE)
402 f2fs_i_size_write(dir, PAGE_SIZE);
403 out:
404 f2fs_put_page(page, 1);
405 return err;
406 }
407
408 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
409 {
410 struct f2fs_dentry_ptr d;
411 unsigned long bit_pos = 0;
412 int err = 0;
413
414 make_dentry_ptr_inline(dir, &d, inline_dentry);
415
416 while (bit_pos < d.max) {
417 struct f2fs_dir_entry *de;
418 struct qstr new_name;
419 nid_t ino;
420 umode_t fake_mode;
421
422 if (!test_bit_le(bit_pos, d.bitmap)) {
423 bit_pos++;
424 continue;
425 }
426
427 de = &d.dentry[bit_pos];
428
429 if (unlikely(!de->name_len)) {
430 bit_pos++;
431 continue;
432 }
433
434 new_name.name = d.filename[bit_pos];
435 new_name.len = le16_to_cpu(de->name_len);
436
437 ino = le32_to_cpu(de->ino);
438 fake_mode = get_de_type(de) << S_SHIFT;
439
440 err = f2fs_add_regular_entry(dir, &new_name, NULL, NULL,
441 ino, fake_mode);
442 if (err)
443 goto punch_dentry_pages;
444
445 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
446 }
447 return 0;
448 punch_dentry_pages:
449 truncate_inode_pages(&dir->i_data, 0);
450 truncate_blocks(dir, 0, false);
451 remove_dirty_inode(dir);
452 return err;
453 }
454
455 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
456 void *inline_dentry)
457 {
458 void *backup_dentry;
459 int err;
460
461 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
462 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
463 if (!backup_dentry) {
464 f2fs_put_page(ipage, 1);
465 return -ENOMEM;
466 }
467
468 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
469 truncate_inline_inode(dir, ipage, 0);
470
471 unlock_page(ipage);
472
473 err = f2fs_add_inline_entries(dir, backup_dentry);
474 if (err)
475 goto recover;
476
477 lock_page(ipage);
478
479 stat_dec_inline_dir(dir);
480 clear_inode_flag(dir, FI_INLINE_DENTRY);
481 kfree(backup_dentry);
482 return 0;
483 recover:
484 lock_page(ipage);
485 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
486 f2fs_i_depth_write(dir, 0);
487 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
488 set_page_dirty(ipage);
489 f2fs_put_page(ipage, 1);
490
491 kfree(backup_dentry);
492 return err;
493 }
494
495 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
496 void *inline_dentry)
497 {
498 if (!F2FS_I(dir)->i_dir_level)
499 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
500 else
501 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
502 }
503
504 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
505 const struct qstr *orig_name,
506 struct inode *inode, nid_t ino, umode_t mode)
507 {
508 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
509 struct page *ipage;
510 unsigned int bit_pos;
511 f2fs_hash_t name_hash;
512 void *inline_dentry = NULL;
513 struct f2fs_dentry_ptr d;
514 int slots = GET_DENTRY_SLOTS(new_name->len);
515 struct page *page = NULL;
516 int err = 0;
517
518 ipage = get_node_page(sbi, dir->i_ino);
519 if (IS_ERR(ipage))
520 return PTR_ERR(ipage);
521
522 inline_dentry = inline_data_addr(dir, ipage);
523 make_dentry_ptr_inline(dir, &d, inline_dentry);
524
525 bit_pos = room_for_filename(d.bitmap, slots, d.max);
526 if (bit_pos >= d.max) {
527 err = f2fs_convert_inline_dir(dir, ipage, inline_dentry);
528 if (err)
529 return err;
530 err = -EAGAIN;
531 goto out;
532 }
533
534 if (inode) {
535 down_write(&F2FS_I(inode)->i_sem);
536 page = init_inode_metadata(inode, dir, new_name,
537 orig_name, ipage);
538 if (IS_ERR(page)) {
539 err = PTR_ERR(page);
540 goto fail;
541 }
542 }
543
544 f2fs_wait_on_page_writeback(ipage, NODE, true);
545
546 name_hash = f2fs_dentry_hash(new_name, NULL);
547 f2fs_update_dentry(ino, mode, &d, new_name, name_hash, bit_pos);
548
549 set_page_dirty(ipage);
550
551 /* we don't need to mark_inode_dirty now */
552 if (inode) {
553 f2fs_i_pino_write(inode, dir->i_ino);
554 f2fs_put_page(page, 1);
555 }
556
557 update_parent_metadata(dir, inode, 0);
558 fail:
559 if (inode)
560 up_write(&F2FS_I(inode)->i_sem);
561 out:
562 f2fs_put_page(ipage, 1);
563 return err;
564 }
565
566 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
567 struct inode *dir, struct inode *inode)
568 {
569 struct f2fs_dentry_ptr d;
570 void *inline_dentry;
571 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
572 unsigned int bit_pos;
573 int i;
574
575 lock_page(page);
576 f2fs_wait_on_page_writeback(page, NODE, true);
577
578 inline_dentry = inline_data_addr(dir, page);
579 make_dentry_ptr_inline(dir, &d, inline_dentry);
580
581 bit_pos = dentry - d.dentry;
582 for (i = 0; i < slots; i++)
583 __clear_bit_le(bit_pos + i, d.bitmap);
584
585 set_page_dirty(page);
586 f2fs_put_page(page, 1);
587
588 dir->i_ctime = dir->i_mtime = current_time(dir);
589 f2fs_mark_inode_dirty_sync(dir, false);
590
591 if (inode)
592 f2fs_drop_nlink(dir, inode);
593 }
594
595 bool f2fs_empty_inline_dir(struct inode *dir)
596 {
597 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
598 struct page *ipage;
599 unsigned int bit_pos = 2;
600 void *inline_dentry;
601 struct f2fs_dentry_ptr d;
602
603 ipage = get_node_page(sbi, dir->i_ino);
604 if (IS_ERR(ipage))
605 return false;
606
607 inline_dentry = inline_data_addr(dir, ipage);
608 make_dentry_ptr_inline(dir, &d, inline_dentry);
609
610 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
611
612 f2fs_put_page(ipage, 1);
613
614 if (bit_pos < d.max)
615 return false;
616
617 return true;
618 }
619
620 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
621 struct fscrypt_str *fstr)
622 {
623 struct inode *inode = file_inode(file);
624 struct page *ipage = NULL;
625 struct f2fs_dentry_ptr d;
626 void *inline_dentry = NULL;
627 int err;
628
629 make_dentry_ptr_inline(inode, &d, inline_dentry);
630
631 if (ctx->pos == d.max)
632 return 0;
633
634 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
635 if (IS_ERR(ipage))
636 return PTR_ERR(ipage);
637
638 inline_dentry = inline_data_addr(inode, ipage);
639
640 make_dentry_ptr_inline(inode, &d, inline_dentry);
641
642 err = f2fs_fill_dentries(ctx, &d, 0, fstr);
643 if (!err)
644 ctx->pos = d.max;
645
646 f2fs_put_page(ipage, 1);
647 return err < 0 ? err : 0;
648 }
649
650 int f2fs_inline_data_fiemap(struct inode *inode,
651 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
652 {
653 __u64 byteaddr, ilen;
654 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
655 FIEMAP_EXTENT_LAST;
656 struct node_info ni;
657 struct page *ipage;
658 int err = 0;
659
660 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
661 if (IS_ERR(ipage))
662 return PTR_ERR(ipage);
663
664 if (!f2fs_has_inline_data(inode)) {
665 err = -EAGAIN;
666 goto out;
667 }
668
669 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
670 if (start >= ilen)
671 goto out;
672 if (start + len < ilen)
673 ilen = start + len;
674 ilen -= start;
675
676 get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
677 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
678 byteaddr += (char *)inline_data_addr(inode, ipage) -
679 (char *)F2FS_INODE(ipage);
680 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
681 out:
682 f2fs_put_page(ipage, 1);
683 return err;
684 }