]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/inline.c
hwmon: (occ) Remove sequence numbering and checksum calculation
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / inline.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/inline.c
4 * Copyright (c) 2013, Intel Corporation
5 * Authors: Huajun Li <huajun.li@intel.com>
6 * Haicheng Li <haicheng.li@intel.com>
7 */
8
9 #include <linux/fs.h>
10 #include <linux/f2fs_fs.h>
11 #include <linux/fiemap.h>
12
13 #include "f2fs.h"
14 #include "node.h"
15 #include <trace/events/f2fs.h>
16
17 static bool support_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
22 return false;
23 if (i_size_read(inode) > MAX_INLINE_DATA(inode))
24 return false;
25 return true;
26 }
27
28 bool f2fs_may_inline_data(struct inode *inode)
29 {
30 if (!support_inline_data(inode))
31 return false;
32
33 return !f2fs_post_read_required(inode);
34 }
35
36 bool f2fs_sanity_check_inline_data(struct inode *inode)
37 {
38 if (!f2fs_has_inline_data(inode))
39 return false;
40
41 if (!support_inline_data(inode))
42 return true;
43
44 /*
45 * used by sanity_check_inode(), when disk layout fields has not
46 * been synchronized to inmem fields.
47 */
48 return (S_ISREG(inode->i_mode) &&
49 (file_is_encrypt(inode) || file_is_verity(inode) ||
50 (F2FS_I(inode)->i_flags & F2FS_COMPR_FL)));
51 }
52
53 bool f2fs_may_inline_dentry(struct inode *inode)
54 {
55 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
56 return false;
57
58 if (!S_ISDIR(inode->i_mode))
59 return false;
60
61 return true;
62 }
63
64 void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
65 {
66 struct inode *inode = page->mapping->host;
67 void *src_addr, *dst_addr;
68
69 if (PageUptodate(page))
70 return;
71
72 f2fs_bug_on(F2FS_P_SB(page), page->index);
73
74 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
75
76 /* Copy the whole inline data block */
77 src_addr = inline_data_addr(inode, ipage);
78 dst_addr = kmap_atomic(page);
79 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
80 flush_dcache_page(page);
81 kunmap_atomic(dst_addr);
82 if (!PageUptodate(page))
83 SetPageUptodate(page);
84 }
85
86 void f2fs_truncate_inline_inode(struct inode *inode,
87 struct page *ipage, u64 from)
88 {
89 void *addr;
90
91 if (from >= MAX_INLINE_DATA(inode))
92 return;
93
94 addr = inline_data_addr(inode, ipage);
95
96 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
97 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
98 set_page_dirty(ipage);
99
100 if (from == 0)
101 clear_inode_flag(inode, FI_DATA_EXIST);
102 }
103
104 int f2fs_read_inline_data(struct inode *inode, struct page *page)
105 {
106 struct page *ipage;
107
108 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
109 if (IS_ERR(ipage)) {
110 unlock_page(page);
111 return PTR_ERR(ipage);
112 }
113
114 if (!f2fs_has_inline_data(inode)) {
115 f2fs_put_page(ipage, 1);
116 return -EAGAIN;
117 }
118
119 if (page->index)
120 zero_user_segment(page, 0, PAGE_SIZE);
121 else
122 f2fs_do_read_inline_data(page, ipage);
123
124 if (!PageUptodate(page))
125 SetPageUptodate(page);
126 f2fs_put_page(ipage, 1);
127 unlock_page(page);
128 return 0;
129 }
130
131 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
132 {
133 struct f2fs_io_info fio = {
134 .sbi = F2FS_I_SB(dn->inode),
135 .ino = dn->inode->i_ino,
136 .type = DATA,
137 .op = REQ_OP_WRITE,
138 .op_flags = REQ_SYNC | REQ_PRIO,
139 .page = page,
140 .encrypted_page = NULL,
141 .io_type = FS_DATA_IO,
142 };
143 struct node_info ni;
144 int dirty, err;
145
146 if (!f2fs_exist_data(dn->inode))
147 goto clear_out;
148
149 err = f2fs_reserve_block(dn, 0);
150 if (err)
151 return err;
152
153 err = f2fs_get_node_info(fio.sbi, dn->nid, &ni);
154 if (err) {
155 f2fs_truncate_data_blocks_range(dn, 1);
156 f2fs_put_dnode(dn);
157 return err;
158 }
159
160 fio.version = ni.version;
161
162 if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
163 f2fs_put_dnode(dn);
164 set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
165 f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
166 __func__, dn->inode->i_ino, dn->data_blkaddr);
167 return -EFSCORRUPTED;
168 }
169
170 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
171
172 f2fs_do_read_inline_data(page, dn->inode_page);
173 set_page_dirty(page);
174
175 /* clear dirty state */
176 dirty = clear_page_dirty_for_io(page);
177
178 /* write data page to try to make data consistent */
179 set_page_writeback(page);
180 ClearPageError(page);
181 fio.old_blkaddr = dn->data_blkaddr;
182 set_inode_flag(dn->inode, FI_HOT_DATA);
183 f2fs_outplace_write_data(dn, &fio);
184 f2fs_wait_on_page_writeback(page, DATA, true, true);
185 if (dirty) {
186 inode_dec_dirty_pages(dn->inode);
187 f2fs_remove_dirty_inode(dn->inode);
188 }
189
190 /* this converted inline_data should be recovered. */
191 set_inode_flag(dn->inode, FI_APPEND_WRITE);
192
193 /* clear inline data and flag after data writeback */
194 f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
195 clear_page_private_inline(dn->inode_page);
196 clear_out:
197 stat_dec_inline_inode(dn->inode);
198 clear_inode_flag(dn->inode, FI_INLINE_DATA);
199 f2fs_put_dnode(dn);
200 return 0;
201 }
202
203 int f2fs_convert_inline_inode(struct inode *inode)
204 {
205 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
206 struct dnode_of_data dn;
207 struct page *ipage, *page;
208 int err = 0;
209
210 if (!f2fs_has_inline_data(inode) ||
211 f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb))
212 return 0;
213
214 err = f2fs_dquot_initialize(inode);
215 if (err)
216 return err;
217
218 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
219 if (!page)
220 return -ENOMEM;
221
222 f2fs_lock_op(sbi);
223
224 ipage = f2fs_get_node_page(sbi, inode->i_ino);
225 if (IS_ERR(ipage)) {
226 err = PTR_ERR(ipage);
227 goto out;
228 }
229
230 set_new_dnode(&dn, inode, ipage, ipage, 0);
231
232 if (f2fs_has_inline_data(inode))
233 err = f2fs_convert_inline_page(&dn, page);
234
235 f2fs_put_dnode(&dn);
236 out:
237 f2fs_unlock_op(sbi);
238
239 f2fs_put_page(page, 1);
240
241 if (!err)
242 f2fs_balance_fs(sbi, dn.node_changed);
243
244 return err;
245 }
246
247 int f2fs_write_inline_data(struct inode *inode, struct page *page)
248 {
249 void *src_addr, *dst_addr;
250 struct dnode_of_data dn;
251 int err;
252
253 set_new_dnode(&dn, inode, NULL, NULL, 0);
254 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
255 if (err)
256 return err;
257
258 if (!f2fs_has_inline_data(inode)) {
259 f2fs_put_dnode(&dn);
260 return -EAGAIN;
261 }
262
263 f2fs_bug_on(F2FS_I_SB(inode), page->index);
264
265 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true);
266 src_addr = kmap_atomic(page);
267 dst_addr = inline_data_addr(inode, dn.inode_page);
268 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
269 kunmap_atomic(src_addr);
270 set_page_dirty(dn.inode_page);
271
272 f2fs_clear_page_cache_dirty_tag(page);
273
274 set_inode_flag(inode, FI_APPEND_WRITE);
275 set_inode_flag(inode, FI_DATA_EXIST);
276
277 clear_page_private_inline(dn.inode_page);
278 f2fs_put_dnode(&dn);
279 return 0;
280 }
281
282 int f2fs_recover_inline_data(struct inode *inode, struct page *npage)
283 {
284 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
285 struct f2fs_inode *ri = NULL;
286 void *src_addr, *dst_addr;
287 struct page *ipage;
288
289 /*
290 * The inline_data recovery policy is as follows.
291 * [prev.] [next] of inline_data flag
292 * o o -> recover inline_data
293 * o x -> remove inline_data, and then recover data blocks
294 * x o -> remove data blocks, and then recover inline_data
295 * x x -> recover data blocks
296 */
297 if (IS_INODE(npage))
298 ri = F2FS_INODE(npage);
299
300 if (f2fs_has_inline_data(inode) &&
301 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
302 process_inline:
303 ipage = f2fs_get_node_page(sbi, inode->i_ino);
304 if (IS_ERR(ipage))
305 return PTR_ERR(ipage);
306
307 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
308
309 src_addr = inline_data_addr(inode, npage);
310 dst_addr = inline_data_addr(inode, ipage);
311 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
312
313 set_inode_flag(inode, FI_INLINE_DATA);
314 set_inode_flag(inode, FI_DATA_EXIST);
315
316 set_page_dirty(ipage);
317 f2fs_put_page(ipage, 1);
318 return 1;
319 }
320
321 if (f2fs_has_inline_data(inode)) {
322 ipage = f2fs_get_node_page(sbi, inode->i_ino);
323 if (IS_ERR(ipage))
324 return PTR_ERR(ipage);
325 f2fs_truncate_inline_inode(inode, ipage, 0);
326 stat_dec_inline_inode(inode);
327 clear_inode_flag(inode, FI_INLINE_DATA);
328 f2fs_put_page(ipage, 1);
329 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
330 int ret;
331
332 ret = f2fs_truncate_blocks(inode, 0, false);
333 if (ret)
334 return ret;
335 stat_inc_inline_inode(inode);
336 goto process_inline;
337 }
338 return 0;
339 }
340
341 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
342 const struct f2fs_filename *fname,
343 struct page **res_page)
344 {
345 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
346 struct f2fs_dir_entry *de;
347 struct f2fs_dentry_ptr d;
348 struct page *ipage;
349 void *inline_dentry;
350
351 ipage = f2fs_get_node_page(sbi, dir->i_ino);
352 if (IS_ERR(ipage)) {
353 *res_page = ipage;
354 return NULL;
355 }
356
357 inline_dentry = inline_data_addr(dir, ipage);
358
359 make_dentry_ptr_inline(dir, &d, inline_dentry);
360 de = f2fs_find_target_dentry(&d, fname, NULL);
361 unlock_page(ipage);
362 if (IS_ERR(de)) {
363 *res_page = ERR_CAST(de);
364 de = NULL;
365 }
366 if (de)
367 *res_page = ipage;
368 else
369 f2fs_put_page(ipage, 0);
370
371 return de;
372 }
373
374 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
375 struct page *ipage)
376 {
377 struct f2fs_dentry_ptr d;
378 void *inline_dentry;
379
380 inline_dentry = inline_data_addr(inode, ipage);
381
382 make_dentry_ptr_inline(inode, &d, inline_dentry);
383 f2fs_do_make_empty_dir(inode, parent, &d);
384
385 set_page_dirty(ipage);
386
387 /* update i_size to MAX_INLINE_DATA */
388 if (i_size_read(inode) < MAX_INLINE_DATA(inode))
389 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
390 return 0;
391 }
392
393 /*
394 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
395 * release ipage in this function.
396 */
397 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
398 void *inline_dentry)
399 {
400 struct page *page;
401 struct dnode_of_data dn;
402 struct f2fs_dentry_block *dentry_blk;
403 struct f2fs_dentry_ptr src, dst;
404 int err;
405
406 page = f2fs_grab_cache_page(dir->i_mapping, 0, true);
407 if (!page) {
408 f2fs_put_page(ipage, 1);
409 return -ENOMEM;
410 }
411
412 set_new_dnode(&dn, dir, ipage, NULL, 0);
413 err = f2fs_reserve_block(&dn, 0);
414 if (err)
415 goto out;
416
417 if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
418 f2fs_put_dnode(&dn);
419 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
420 f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
421 __func__, dir->i_ino, dn.data_blkaddr);
422 err = -EFSCORRUPTED;
423 goto out;
424 }
425
426 f2fs_wait_on_page_writeback(page, DATA, true, true);
427
428 dentry_blk = page_address(page);
429
430 make_dentry_ptr_inline(dir, &src, inline_dentry);
431 make_dentry_ptr_block(dir, &dst, dentry_blk);
432
433 /* copy data from inline dentry block to new dentry block */
434 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
435 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
436 /*
437 * we do not need to zero out remainder part of dentry and filename
438 * field, since we have used bitmap for marking the usage status of
439 * them, besides, we can also ignore copying/zeroing reserved space
440 * of dentry block, because them haven't been used so far.
441 */
442 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
443 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
444
445 if (!PageUptodate(page))
446 SetPageUptodate(page);
447 set_page_dirty(page);
448
449 /* clear inline dir and flag after data writeback */
450 f2fs_truncate_inline_inode(dir, ipage, 0);
451
452 stat_dec_inline_dir(dir);
453 clear_inode_flag(dir, FI_INLINE_DENTRY);
454
455 /*
456 * should retrieve reserved space which was used to keep
457 * inline_dentry's structure for backward compatibility.
458 */
459 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
460 !f2fs_has_inline_xattr(dir))
461 F2FS_I(dir)->i_inline_xattr_size = 0;
462
463 f2fs_i_depth_write(dir, 1);
464 if (i_size_read(dir) < PAGE_SIZE)
465 f2fs_i_size_write(dir, PAGE_SIZE);
466 out:
467 f2fs_put_page(page, 1);
468 return err;
469 }
470
471 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
472 {
473 struct f2fs_dentry_ptr d;
474 unsigned long bit_pos = 0;
475 int err = 0;
476
477 make_dentry_ptr_inline(dir, &d, inline_dentry);
478
479 while (bit_pos < d.max) {
480 struct f2fs_dir_entry *de;
481 struct f2fs_filename fname;
482 nid_t ino;
483 umode_t fake_mode;
484
485 if (!test_bit_le(bit_pos, d.bitmap)) {
486 bit_pos++;
487 continue;
488 }
489
490 de = &d.dentry[bit_pos];
491
492 if (unlikely(!de->name_len)) {
493 bit_pos++;
494 continue;
495 }
496
497 /*
498 * We only need the disk_name and hash to move the dentry.
499 * We don't need the original or casefolded filenames.
500 */
501 memset(&fname, 0, sizeof(fname));
502 fname.disk_name.name = d.filename[bit_pos];
503 fname.disk_name.len = le16_to_cpu(de->name_len);
504 fname.hash = de->hash_code;
505
506 ino = le32_to_cpu(de->ino);
507 fake_mode = f2fs_get_de_type(de) << S_SHIFT;
508
509 err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode);
510 if (err)
511 goto punch_dentry_pages;
512
513 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
514 }
515 return 0;
516 punch_dentry_pages:
517 truncate_inode_pages(&dir->i_data, 0);
518 f2fs_truncate_blocks(dir, 0, false);
519 f2fs_remove_dirty_inode(dir);
520 return err;
521 }
522
523 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
524 void *inline_dentry)
525 {
526 void *backup_dentry;
527 int err;
528
529 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
530 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
531 if (!backup_dentry) {
532 f2fs_put_page(ipage, 1);
533 return -ENOMEM;
534 }
535
536 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
537 f2fs_truncate_inline_inode(dir, ipage, 0);
538
539 unlock_page(ipage);
540
541 err = f2fs_add_inline_entries(dir, backup_dentry);
542 if (err)
543 goto recover;
544
545 lock_page(ipage);
546
547 stat_dec_inline_dir(dir);
548 clear_inode_flag(dir, FI_INLINE_DENTRY);
549
550 /*
551 * should retrieve reserved space which was used to keep
552 * inline_dentry's structure for backward compatibility.
553 */
554 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
555 !f2fs_has_inline_xattr(dir))
556 F2FS_I(dir)->i_inline_xattr_size = 0;
557
558 kfree(backup_dentry);
559 return 0;
560 recover:
561 lock_page(ipage);
562 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
563 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
564 f2fs_i_depth_write(dir, 0);
565 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
566 set_page_dirty(ipage);
567 f2fs_put_page(ipage, 1);
568
569 kfree(backup_dentry);
570 return err;
571 }
572
573 static int do_convert_inline_dir(struct inode *dir, struct page *ipage,
574 void *inline_dentry)
575 {
576 if (!F2FS_I(dir)->i_dir_level)
577 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
578 else
579 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
580 }
581
582 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry)
583 {
584 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
585 struct page *ipage;
586 struct f2fs_filename fname;
587 void *inline_dentry = NULL;
588 int err = 0;
589
590 if (!f2fs_has_inline_dentry(dir))
591 return 0;
592
593 f2fs_lock_op(sbi);
594
595 err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname);
596 if (err)
597 goto out;
598
599 ipage = f2fs_get_node_page(sbi, dir->i_ino);
600 if (IS_ERR(ipage)) {
601 err = PTR_ERR(ipage);
602 goto out_fname;
603 }
604
605 if (f2fs_has_enough_room(dir, ipage, &fname)) {
606 f2fs_put_page(ipage, 1);
607 goto out_fname;
608 }
609
610 inline_dentry = inline_data_addr(dir, ipage);
611
612 err = do_convert_inline_dir(dir, ipage, inline_dentry);
613 if (!err)
614 f2fs_put_page(ipage, 1);
615 out_fname:
616 f2fs_free_filename(&fname);
617 out:
618 f2fs_unlock_op(sbi);
619 return err;
620 }
621
622 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
623 struct inode *inode, nid_t ino, umode_t mode)
624 {
625 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
626 struct page *ipage;
627 unsigned int bit_pos;
628 void *inline_dentry = NULL;
629 struct f2fs_dentry_ptr d;
630 int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
631 struct page *page = NULL;
632 int err = 0;
633
634 ipage = f2fs_get_node_page(sbi, dir->i_ino);
635 if (IS_ERR(ipage))
636 return PTR_ERR(ipage);
637
638 inline_dentry = inline_data_addr(dir, ipage);
639 make_dentry_ptr_inline(dir, &d, inline_dentry);
640
641 bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
642 if (bit_pos >= d.max) {
643 err = do_convert_inline_dir(dir, ipage, inline_dentry);
644 if (err)
645 return err;
646 err = -EAGAIN;
647 goto out;
648 }
649
650 if (inode) {
651 down_write(&F2FS_I(inode)->i_sem);
652 page = f2fs_init_inode_metadata(inode, dir, fname, ipage);
653 if (IS_ERR(page)) {
654 err = PTR_ERR(page);
655 goto fail;
656 }
657 }
658
659 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
660
661 f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
662 bit_pos);
663
664 set_page_dirty(ipage);
665
666 /* we don't need to mark_inode_dirty now */
667 if (inode) {
668 f2fs_i_pino_write(inode, dir->i_ino);
669
670 /* synchronize inode page's data from inode cache */
671 if (is_inode_flag_set(inode, FI_NEW_INODE))
672 f2fs_update_inode(inode, page);
673
674 f2fs_put_page(page, 1);
675 }
676
677 f2fs_update_parent_metadata(dir, inode, 0);
678 fail:
679 if (inode)
680 up_write(&F2FS_I(inode)->i_sem);
681 out:
682 f2fs_put_page(ipage, 1);
683 return err;
684 }
685
686 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
687 struct inode *dir, struct inode *inode)
688 {
689 struct f2fs_dentry_ptr d;
690 void *inline_dentry;
691 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
692 unsigned int bit_pos;
693 int i;
694
695 lock_page(page);
696 f2fs_wait_on_page_writeback(page, NODE, true, true);
697
698 inline_dentry = inline_data_addr(dir, page);
699 make_dentry_ptr_inline(dir, &d, inline_dentry);
700
701 bit_pos = dentry - d.dentry;
702 for (i = 0; i < slots; i++)
703 __clear_bit_le(bit_pos + i, d.bitmap);
704
705 set_page_dirty(page);
706 f2fs_put_page(page, 1);
707
708 dir->i_ctime = dir->i_mtime = current_time(dir);
709 f2fs_mark_inode_dirty_sync(dir, false);
710
711 if (inode)
712 f2fs_drop_nlink(dir, inode);
713 }
714
715 bool f2fs_empty_inline_dir(struct inode *dir)
716 {
717 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
718 struct page *ipage;
719 unsigned int bit_pos = 2;
720 void *inline_dentry;
721 struct f2fs_dentry_ptr d;
722
723 ipage = f2fs_get_node_page(sbi, dir->i_ino);
724 if (IS_ERR(ipage))
725 return false;
726
727 inline_dentry = inline_data_addr(dir, ipage);
728 make_dentry_ptr_inline(dir, &d, inline_dentry);
729
730 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
731
732 f2fs_put_page(ipage, 1);
733
734 if (bit_pos < d.max)
735 return false;
736
737 return true;
738 }
739
740 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
741 struct fscrypt_str *fstr)
742 {
743 struct inode *inode = file_inode(file);
744 struct page *ipage = NULL;
745 struct f2fs_dentry_ptr d;
746 void *inline_dentry = NULL;
747 int err;
748
749 make_dentry_ptr_inline(inode, &d, inline_dentry);
750
751 if (ctx->pos == d.max)
752 return 0;
753
754 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
755 if (IS_ERR(ipage))
756 return PTR_ERR(ipage);
757
758 /*
759 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
760 * ipage without page's lock held.
761 */
762 unlock_page(ipage);
763
764 inline_dentry = inline_data_addr(inode, ipage);
765
766 make_dentry_ptr_inline(inode, &d, inline_dentry);
767
768 err = f2fs_fill_dentries(ctx, &d, 0, fstr);
769 if (!err)
770 ctx->pos = d.max;
771
772 f2fs_put_page(ipage, 0);
773 return err < 0 ? err : 0;
774 }
775
776 int f2fs_inline_data_fiemap(struct inode *inode,
777 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
778 {
779 __u64 byteaddr, ilen;
780 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
781 FIEMAP_EXTENT_LAST;
782 struct node_info ni;
783 struct page *ipage;
784 int err = 0;
785
786 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
787 if (IS_ERR(ipage))
788 return PTR_ERR(ipage);
789
790 if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
791 !f2fs_has_inline_data(inode)) {
792 err = -EAGAIN;
793 goto out;
794 }
795
796 if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) {
797 err = -EAGAIN;
798 goto out;
799 }
800
801 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
802 if (start >= ilen)
803 goto out;
804 if (start + len < ilen)
805 ilen = start + len;
806 ilen -= start;
807
808 err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
809 if (err)
810 goto out;
811
812 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
813 byteaddr += (char *)inline_data_addr(inode, ipage) -
814 (char *)F2FS_INODE(ipage);
815 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
816 trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err);
817 out:
818 f2fs_put_page(ipage, 1);
819 return err;
820 }