]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/inode.c
perf tools: Call clang to compile C source to object code
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / inode.c
1 /*
2 * fs/f2fs/inode.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/writeback.h>
15 #include <linux/bitops.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19
20 #include <trace/events/f2fs.h>
21
22 void f2fs_set_inode_flags(struct inode *inode)
23 {
24 unsigned int flags = F2FS_I(inode)->i_flags;
25 unsigned int new_fl = 0;
26
27 if (flags & FS_SYNC_FL)
28 new_fl |= S_SYNC;
29 if (flags & FS_APPEND_FL)
30 new_fl |= S_APPEND;
31 if (flags & FS_IMMUTABLE_FL)
32 new_fl |= S_IMMUTABLE;
33 if (flags & FS_NOATIME_FL)
34 new_fl |= S_NOATIME;
35 if (flags & FS_DIRSYNC_FL)
36 new_fl |= S_DIRSYNC;
37 set_mask_bits(&inode->i_flags,
38 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
39 }
40
41 static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
42 {
43 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
44 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
45 if (ri->i_addr[0])
46 inode->i_rdev =
47 old_decode_dev(le32_to_cpu(ri->i_addr[0]));
48 else
49 inode->i_rdev =
50 new_decode_dev(le32_to_cpu(ri->i_addr[1]));
51 }
52 }
53
54 static bool __written_first_block(struct f2fs_inode *ri)
55 {
56 block_t addr = le32_to_cpu(ri->i_addr[0]);
57
58 if (addr != NEW_ADDR && addr != NULL_ADDR)
59 return true;
60 return false;
61 }
62
63 static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
64 {
65 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
66 if (old_valid_dev(inode->i_rdev)) {
67 ri->i_addr[0] =
68 cpu_to_le32(old_encode_dev(inode->i_rdev));
69 ri->i_addr[1] = 0;
70 } else {
71 ri->i_addr[0] = 0;
72 ri->i_addr[1] =
73 cpu_to_le32(new_encode_dev(inode->i_rdev));
74 ri->i_addr[2] = 0;
75 }
76 }
77 }
78
79 static void __recover_inline_status(struct inode *inode, struct page *ipage)
80 {
81 void *inline_data = inline_data_addr(ipage);
82 __le32 *start = inline_data;
83 __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32);
84
85 while (start < end) {
86 if (*start++) {
87 f2fs_wait_on_page_writeback(ipage, NODE);
88
89 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
90 set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage));
91 set_page_dirty(ipage);
92 return;
93 }
94 }
95 return;
96 }
97
98 static int do_read_inode(struct inode *inode)
99 {
100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
101 struct f2fs_inode_info *fi = F2FS_I(inode);
102 struct page *node_page;
103 struct f2fs_inode *ri;
104
105 /* Check if ino is within scope */
106 if (check_nid_range(sbi, inode->i_ino)) {
107 f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu",
108 (unsigned long) inode->i_ino);
109 WARN_ON(1);
110 return -EINVAL;
111 }
112
113 node_page = get_node_page(sbi, inode->i_ino);
114 if (IS_ERR(node_page))
115 return PTR_ERR(node_page);
116
117 ri = F2FS_INODE(node_page);
118
119 inode->i_mode = le16_to_cpu(ri->i_mode);
120 i_uid_write(inode, le32_to_cpu(ri->i_uid));
121 i_gid_write(inode, le32_to_cpu(ri->i_gid));
122 set_nlink(inode, le32_to_cpu(ri->i_links));
123 inode->i_size = le64_to_cpu(ri->i_size);
124 inode->i_blocks = le64_to_cpu(ri->i_blocks);
125
126 inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
127 inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime);
128 inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
129 inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
130 inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
131 inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
132 inode->i_generation = le32_to_cpu(ri->i_generation);
133
134 fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
135 fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
136 fi->i_flags = le32_to_cpu(ri->i_flags);
137 fi->flags = 0;
138 fi->i_advise = ri->i_advise;
139 fi->i_pino = le32_to_cpu(ri->i_pino);
140 fi->i_dir_level = ri->i_dir_level;
141
142 f2fs_init_extent_cache(inode, &ri->i_ext);
143
144 get_inline_info(fi, ri);
145
146 /* check data exist */
147 if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
148 __recover_inline_status(inode, node_page);
149
150 /* get rdev by using inline_info */
151 __get_inode_rdev(inode, ri);
152
153 if (__written_first_block(ri))
154 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
155
156 f2fs_put_page(node_page, 1);
157
158 stat_inc_inline_inode(inode);
159 stat_inc_inline_dir(inode);
160
161 return 0;
162 }
163
164 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
165 {
166 struct f2fs_sb_info *sbi = F2FS_SB(sb);
167 struct inode *inode;
168 int ret = 0;
169
170 inode = iget_locked(sb, ino);
171 if (!inode)
172 return ERR_PTR(-ENOMEM);
173
174 if (!(inode->i_state & I_NEW)) {
175 trace_f2fs_iget(inode);
176 return inode;
177 }
178 if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi))
179 goto make_now;
180
181 ret = do_read_inode(inode);
182 if (ret)
183 goto bad_inode;
184 make_now:
185 if (ino == F2FS_NODE_INO(sbi)) {
186 inode->i_mapping->a_ops = &f2fs_node_aops;
187 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
188 } else if (ino == F2FS_META_INO(sbi)) {
189 inode->i_mapping->a_ops = &f2fs_meta_aops;
190 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
191 } else if (S_ISREG(inode->i_mode)) {
192 inode->i_op = &f2fs_file_inode_operations;
193 inode->i_fop = &f2fs_file_operations;
194 inode->i_mapping->a_ops = &f2fs_dblock_aops;
195 } else if (S_ISDIR(inode->i_mode)) {
196 inode->i_op = &f2fs_dir_inode_operations;
197 inode->i_fop = &f2fs_dir_operations;
198 inode->i_mapping->a_ops = &f2fs_dblock_aops;
199 mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);
200 } else if (S_ISLNK(inode->i_mode)) {
201 if (f2fs_encrypted_inode(inode))
202 inode->i_op = &f2fs_encrypted_symlink_inode_operations;
203 else
204 inode->i_op = &f2fs_symlink_inode_operations;
205 inode->i_mapping->a_ops = &f2fs_dblock_aops;
206 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
207 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
208 inode->i_op = &f2fs_special_inode_operations;
209 init_special_inode(inode, inode->i_mode, inode->i_rdev);
210 } else {
211 ret = -EIO;
212 goto bad_inode;
213 }
214 unlock_new_inode(inode);
215 trace_f2fs_iget(inode);
216 return inode;
217
218 bad_inode:
219 iget_failed(inode);
220 trace_f2fs_iget_exit(inode, ret);
221 return ERR_PTR(ret);
222 }
223
224 void update_inode(struct inode *inode, struct page *node_page)
225 {
226 struct f2fs_inode *ri;
227
228 f2fs_wait_on_page_writeback(node_page, NODE);
229
230 ri = F2FS_INODE(node_page);
231
232 ri->i_mode = cpu_to_le16(inode->i_mode);
233 ri->i_advise = F2FS_I(inode)->i_advise;
234 ri->i_uid = cpu_to_le32(i_uid_read(inode));
235 ri->i_gid = cpu_to_le32(i_gid_read(inode));
236 ri->i_links = cpu_to_le32(inode->i_nlink);
237 ri->i_size = cpu_to_le64(i_size_read(inode));
238 ri->i_blocks = cpu_to_le64(inode->i_blocks);
239
240 read_lock(&F2FS_I(inode)->ext_lock);
241 set_raw_extent(&F2FS_I(inode)->ext, &ri->i_ext);
242 read_unlock(&F2FS_I(inode)->ext_lock);
243
244 set_raw_inline(F2FS_I(inode), ri);
245
246 ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
247 ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
248 ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
249 ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
250 ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
251 ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
252 ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth);
253 ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
254 ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
255 ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
256 ri->i_generation = cpu_to_le32(inode->i_generation);
257 ri->i_dir_level = F2FS_I(inode)->i_dir_level;
258
259 __set_inode_rdev(inode, ri);
260 set_cold_node(inode, node_page);
261 set_page_dirty(node_page);
262
263 clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
264 }
265
266 void update_inode_page(struct inode *inode)
267 {
268 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
269 struct page *node_page;
270 retry:
271 node_page = get_node_page(sbi, inode->i_ino);
272 if (IS_ERR(node_page)) {
273 int err = PTR_ERR(node_page);
274 if (err == -ENOMEM) {
275 cond_resched();
276 goto retry;
277 } else if (err != -ENOENT) {
278 f2fs_stop_checkpoint(sbi);
279 }
280 return;
281 }
282 update_inode(inode, node_page);
283 f2fs_put_page(node_page, 1);
284 }
285
286 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
289
290 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
291 inode->i_ino == F2FS_META_INO(sbi))
292 return 0;
293
294 if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE))
295 return 0;
296
297 /*
298 * We need to lock here to prevent from producing dirty node pages
299 * during the urgent cleaning time when runing out of free sections.
300 */
301 f2fs_lock_op(sbi);
302 update_inode_page(inode);
303 f2fs_unlock_op(sbi);
304
305 if (wbc)
306 f2fs_balance_fs(sbi);
307
308 return 0;
309 }
310
311 /*
312 * Called at the last iput() if i_nlink is zero
313 */
314 void f2fs_evict_inode(struct inode *inode)
315 {
316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
317 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
318
319 /* some remained atomic pages should discarded */
320 if (f2fs_is_atomic_file(inode))
321 commit_inmem_pages(inode, true);
322
323 trace_f2fs_evict_inode(inode);
324 truncate_inode_pages_final(&inode->i_data);
325
326 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
327 inode->i_ino == F2FS_META_INO(sbi))
328 goto out_clear;
329
330 f2fs_bug_on(sbi, get_dirty_pages(inode));
331 remove_dirty_dir_inode(inode);
332
333 if (inode->i_nlink || is_bad_inode(inode))
334 goto no_delete;
335
336 sb_start_intwrite(inode->i_sb);
337 set_inode_flag(F2FS_I(inode), FI_NO_ALLOC);
338 i_size_write(inode, 0);
339
340 if (F2FS_HAS_BLOCKS(inode))
341 f2fs_truncate(inode);
342
343 f2fs_lock_op(sbi);
344 remove_inode_page(inode);
345 f2fs_unlock_op(sbi);
346
347 sb_end_intwrite(inode->i_sb);
348 no_delete:
349 stat_dec_inline_dir(inode);
350 stat_dec_inline_inode(inode);
351
352 /* update extent info in inode */
353 if (inode->i_nlink)
354 f2fs_preserve_extent_tree(inode);
355 f2fs_destroy_extent_tree(inode);
356
357 invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino);
358 if (xnid)
359 invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
360 if (is_inode_flag_set(F2FS_I(inode), FI_APPEND_WRITE))
361 add_dirty_inode(sbi, inode->i_ino, APPEND_INO);
362 if (is_inode_flag_set(F2FS_I(inode), FI_UPDATE_WRITE))
363 add_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
364 out_clear:
365 #ifdef CONFIG_F2FS_FS_ENCRYPTION
366 if (F2FS_I(inode)->i_crypt_info)
367 f2fs_free_encryption_info(inode, F2FS_I(inode)->i_crypt_info);
368 #endif
369 clear_inode(inode);
370 }
371
372 /* caller should call f2fs_lock_op() */
373 void handle_failed_inode(struct inode *inode)
374 {
375 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
376
377 clear_nlink(inode);
378 make_bad_inode(inode);
379 unlock_new_inode(inode);
380
381 i_size_write(inode, 0);
382 if (F2FS_HAS_BLOCKS(inode))
383 f2fs_truncate(inode);
384
385 remove_inode_page(inode);
386
387 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
388 clear_inode_flag(F2FS_I(inode), FI_INLINE_DENTRY);
389 alloc_nid_failed(sbi, inode->i_ino);
390 f2fs_unlock_op(sbi);
391
392 /* iput will drop the inode object */
393 iput(inode);
394 }