]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/f2fs/node.c
Merge branches 'ib-mfd-4.19', 'ib-mfd-gpio-pinctrl-4.19', 'ib-mfd-i915-media-platform...
[mirror_ubuntu-eoan-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
32 /*
33 * Check whether the given nid is within node id range.
34 */
35 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
36 {
37 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
38 set_sbi_flag(sbi, SBI_NEED_FSCK);
39 f2fs_msg(sbi->sb, KERN_WARNING,
40 "%s: out-of-range nid=%x, run fsck to fix.",
41 __func__, nid);
42 return -EINVAL;
43 }
44 return 0;
45 }
46
47 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
48 {
49 struct f2fs_nm_info *nm_i = NM_I(sbi);
50 struct sysinfo val;
51 unsigned long avail_ram;
52 unsigned long mem_size = 0;
53 bool res = false;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
69 PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == EXTENT_CACHE) {
87 mem_size = (atomic_read(&sbi->total_ext_tree) *
88 sizeof(struct extent_tree) +
89 atomic_read(&sbi->total_ext_node) *
90 sizeof(struct extent_node)) >> PAGE_SHIFT;
91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 } else if (type == INMEM_PAGES) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 res = mem_size < (val.totalram / 5);
96 } else {
97 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
98 return true;
99 }
100 return res;
101 }
102
103 static void clear_node_page_dirty(struct page *page)
104 {
105 if (PageDirty(page)) {
106 f2fs_clear_radix_tree_dirty_tag(page);
107 clear_page_dirty_for_io(page);
108 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
109 }
110 ClearPageUptodate(page);
111 }
112
113 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
114 {
115 pgoff_t index = current_nat_addr(sbi, nid);
116 return f2fs_get_meta_page(sbi, index);
117 }
118
119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
120 {
121 struct page *src_page;
122 struct page *dst_page;
123 pgoff_t src_off;
124 pgoff_t dst_off;
125 void *src_addr;
126 void *dst_addr;
127 struct f2fs_nm_info *nm_i = NM_I(sbi);
128
129 src_off = current_nat_addr(sbi, nid);
130 dst_off = next_nat_addr(sbi, src_off);
131
132 /* get current nat block page with lock */
133 src_page = f2fs_get_meta_page(sbi, src_off);
134 dst_page = f2fs_grab_meta_page(sbi, dst_off);
135 f2fs_bug_on(sbi, PageDirty(src_page));
136
137 src_addr = page_address(src_page);
138 dst_addr = page_address(dst_page);
139 memcpy(dst_addr, src_addr, PAGE_SIZE);
140 set_page_dirty(dst_page);
141 f2fs_put_page(src_page, 1);
142
143 set_to_next_nat(nm_i, nid);
144
145 return dst_page;
146 }
147
148 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
149 {
150 struct nat_entry *new;
151
152 if (no_fail)
153 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
154 else
155 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
156 if (new) {
157 nat_set_nid(new, nid);
158 nat_reset_flag(new);
159 }
160 return new;
161 }
162
163 static void __free_nat_entry(struct nat_entry *e)
164 {
165 kmem_cache_free(nat_entry_slab, e);
166 }
167
168 /* must be locked by nat_tree_lock */
169 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
170 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
171 {
172 if (no_fail)
173 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
174 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
175 return NULL;
176
177 if (raw_ne)
178 node_info_from_raw_nat(&ne->ni, raw_ne);
179 list_add_tail(&ne->list, &nm_i->nat_entries);
180 nm_i->nat_cnt++;
181 return ne;
182 }
183
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186 return radix_tree_lookup(&nm_i->nat_root, n);
187 }
188
189 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
190 nid_t start, unsigned int nr, struct nat_entry **ep)
191 {
192 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
193 }
194
195 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
196 {
197 list_del(&e->list);
198 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
199 nm_i->nat_cnt--;
200 __free_nat_entry(e);
201 }
202
203 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
204 struct nat_entry *ne)
205 {
206 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
207 struct nat_entry_set *head;
208
209 head = radix_tree_lookup(&nm_i->nat_set_root, set);
210 if (!head) {
211 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
212
213 INIT_LIST_HEAD(&head->entry_list);
214 INIT_LIST_HEAD(&head->set_list);
215 head->set = set;
216 head->entry_cnt = 0;
217 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
218 }
219 return head;
220 }
221
222 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
223 struct nat_entry *ne)
224 {
225 struct nat_entry_set *head;
226 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
227
228 if (!new_ne)
229 head = __grab_nat_entry_set(nm_i, ne);
230
231 /*
232 * update entry_cnt in below condition:
233 * 1. update NEW_ADDR to valid block address;
234 * 2. update old block address to new one;
235 */
236 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
237 !get_nat_flag(ne, IS_DIRTY)))
238 head->entry_cnt++;
239
240 set_nat_flag(ne, IS_PREALLOC, new_ne);
241
242 if (get_nat_flag(ne, IS_DIRTY))
243 goto refresh_list;
244
245 nm_i->dirty_nat_cnt++;
246 set_nat_flag(ne, IS_DIRTY, true);
247 refresh_list:
248 if (new_ne)
249 list_del_init(&ne->list);
250 else
251 list_move_tail(&ne->list, &head->entry_list);
252 }
253
254 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
255 struct nat_entry_set *set, struct nat_entry *ne)
256 {
257 list_move_tail(&ne->list, &nm_i->nat_entries);
258 set_nat_flag(ne, IS_DIRTY, false);
259 set->entry_cnt--;
260 nm_i->dirty_nat_cnt--;
261 }
262
263 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
264 nid_t start, unsigned int nr, struct nat_entry_set **ep)
265 {
266 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
267 start, nr);
268 }
269
270 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
271 {
272 struct f2fs_nm_info *nm_i = NM_I(sbi);
273 struct nat_entry *e;
274 bool need = false;
275
276 down_read(&nm_i->nat_tree_lock);
277 e = __lookup_nat_cache(nm_i, nid);
278 if (e) {
279 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
280 !get_nat_flag(e, HAS_FSYNCED_INODE))
281 need = true;
282 }
283 up_read(&nm_i->nat_tree_lock);
284 return need;
285 }
286
287 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
288 {
289 struct f2fs_nm_info *nm_i = NM_I(sbi);
290 struct nat_entry *e;
291 bool is_cp = true;
292
293 down_read(&nm_i->nat_tree_lock);
294 e = __lookup_nat_cache(nm_i, nid);
295 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
296 is_cp = false;
297 up_read(&nm_i->nat_tree_lock);
298 return is_cp;
299 }
300
301 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
302 {
303 struct f2fs_nm_info *nm_i = NM_I(sbi);
304 struct nat_entry *e;
305 bool need_update = true;
306
307 down_read(&nm_i->nat_tree_lock);
308 e = __lookup_nat_cache(nm_i, ino);
309 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
310 (get_nat_flag(e, IS_CHECKPOINTED) ||
311 get_nat_flag(e, HAS_FSYNCED_INODE)))
312 need_update = false;
313 up_read(&nm_i->nat_tree_lock);
314 return need_update;
315 }
316
317 /* must be locked by nat_tree_lock */
318 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
319 struct f2fs_nat_entry *ne)
320 {
321 struct f2fs_nm_info *nm_i = NM_I(sbi);
322 struct nat_entry *new, *e;
323
324 new = __alloc_nat_entry(nid, false);
325 if (!new)
326 return;
327
328 down_write(&nm_i->nat_tree_lock);
329 e = __lookup_nat_cache(nm_i, nid);
330 if (!e)
331 e = __init_nat_entry(nm_i, new, ne, false);
332 else
333 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
334 nat_get_blkaddr(e) !=
335 le32_to_cpu(ne->block_addr) ||
336 nat_get_version(e) != ne->version);
337 up_write(&nm_i->nat_tree_lock);
338 if (e != new)
339 __free_nat_entry(new);
340 }
341
342 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
343 block_t new_blkaddr, bool fsync_done)
344 {
345 struct f2fs_nm_info *nm_i = NM_I(sbi);
346 struct nat_entry *e;
347 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
348
349 down_write(&nm_i->nat_tree_lock);
350 e = __lookup_nat_cache(nm_i, ni->nid);
351 if (!e) {
352 e = __init_nat_entry(nm_i, new, NULL, true);
353 copy_node_info(&e->ni, ni);
354 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
355 } else if (new_blkaddr == NEW_ADDR) {
356 /*
357 * when nid is reallocated,
358 * previous nat entry can be remained in nat cache.
359 * So, reinitialize it with new information.
360 */
361 copy_node_info(&e->ni, ni);
362 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
363 }
364 /* let's free early to reduce memory consumption */
365 if (e != new)
366 __free_nat_entry(new);
367
368 /* sanity check */
369 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
370 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
371 new_blkaddr == NULL_ADDR);
372 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
373 new_blkaddr == NEW_ADDR);
374 f2fs_bug_on(sbi, is_valid_blkaddr(nat_get_blkaddr(e)) &&
375 new_blkaddr == NEW_ADDR);
376
377 /* increment version no as node is removed */
378 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
379 unsigned char version = nat_get_version(e);
380 nat_set_version(e, inc_node_version(version));
381 }
382
383 /* change address */
384 nat_set_blkaddr(e, new_blkaddr);
385 if (!is_valid_blkaddr(new_blkaddr))
386 set_nat_flag(e, IS_CHECKPOINTED, false);
387 __set_nat_cache_dirty(nm_i, e);
388
389 /* update fsync_mark if its inode nat entry is still alive */
390 if (ni->nid != ni->ino)
391 e = __lookup_nat_cache(nm_i, ni->ino);
392 if (e) {
393 if (fsync_done && ni->nid == ni->ino)
394 set_nat_flag(e, HAS_FSYNCED_INODE, true);
395 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
396 }
397 up_write(&nm_i->nat_tree_lock);
398 }
399
400 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
401 {
402 struct f2fs_nm_info *nm_i = NM_I(sbi);
403 int nr = nr_shrink;
404
405 if (!down_write_trylock(&nm_i->nat_tree_lock))
406 return 0;
407
408 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
409 struct nat_entry *ne;
410 ne = list_first_entry(&nm_i->nat_entries,
411 struct nat_entry, list);
412 __del_from_nat_cache(nm_i, ne);
413 nr_shrink--;
414 }
415 up_write(&nm_i->nat_tree_lock);
416 return nr - nr_shrink;
417 }
418
419 /*
420 * This function always returns success
421 */
422 void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
423 struct node_info *ni)
424 {
425 struct f2fs_nm_info *nm_i = NM_I(sbi);
426 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
427 struct f2fs_journal *journal = curseg->journal;
428 nid_t start_nid = START_NID(nid);
429 struct f2fs_nat_block *nat_blk;
430 struct page *page = NULL;
431 struct f2fs_nat_entry ne;
432 struct nat_entry *e;
433 pgoff_t index;
434 int i;
435
436 ni->nid = nid;
437
438 /* Check nat cache */
439 down_read(&nm_i->nat_tree_lock);
440 e = __lookup_nat_cache(nm_i, nid);
441 if (e) {
442 ni->ino = nat_get_ino(e);
443 ni->blk_addr = nat_get_blkaddr(e);
444 ni->version = nat_get_version(e);
445 up_read(&nm_i->nat_tree_lock);
446 return;
447 }
448
449 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
450
451 /* Check current segment summary */
452 down_read(&curseg->journal_rwsem);
453 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
454 if (i >= 0) {
455 ne = nat_in_journal(journal, i);
456 node_info_from_raw_nat(ni, &ne);
457 }
458 up_read(&curseg->journal_rwsem);
459 if (i >= 0) {
460 up_read(&nm_i->nat_tree_lock);
461 goto cache;
462 }
463
464 /* Fill node_info from nat page */
465 index = current_nat_addr(sbi, nid);
466 up_read(&nm_i->nat_tree_lock);
467
468 page = f2fs_get_meta_page(sbi, index);
469 nat_blk = (struct f2fs_nat_block *)page_address(page);
470 ne = nat_blk->entries[nid - start_nid];
471 node_info_from_raw_nat(ni, &ne);
472 f2fs_put_page(page, 1);
473 cache:
474 /* cache nat entry */
475 cache_nat_entry(sbi, nid, &ne);
476 }
477
478 /*
479 * readahead MAX_RA_NODE number of node pages.
480 */
481 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
482 {
483 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
484 struct blk_plug plug;
485 int i, end;
486 nid_t nid;
487
488 blk_start_plug(&plug);
489
490 /* Then, try readahead for siblings of the desired node */
491 end = start + n;
492 end = min(end, NIDS_PER_BLOCK);
493 for (i = start; i < end; i++) {
494 nid = get_nid(parent, i, false);
495 f2fs_ra_node_page(sbi, nid);
496 }
497
498 blk_finish_plug(&plug);
499 }
500
501 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
502 {
503 const long direct_index = ADDRS_PER_INODE(dn->inode);
504 const long direct_blks = ADDRS_PER_BLOCK;
505 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
506 unsigned int skipped_unit = ADDRS_PER_BLOCK;
507 int cur_level = dn->cur_level;
508 int max_level = dn->max_level;
509 pgoff_t base = 0;
510
511 if (!dn->max_level)
512 return pgofs + 1;
513
514 while (max_level-- > cur_level)
515 skipped_unit *= NIDS_PER_BLOCK;
516
517 switch (dn->max_level) {
518 case 3:
519 base += 2 * indirect_blks;
520 case 2:
521 base += 2 * direct_blks;
522 case 1:
523 base += direct_index;
524 break;
525 default:
526 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
527 }
528
529 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
530 }
531
532 /*
533 * The maximum depth is four.
534 * Offset[0] will have raw inode offset.
535 */
536 static int get_node_path(struct inode *inode, long block,
537 int offset[4], unsigned int noffset[4])
538 {
539 const long direct_index = ADDRS_PER_INODE(inode);
540 const long direct_blks = ADDRS_PER_BLOCK;
541 const long dptrs_per_blk = NIDS_PER_BLOCK;
542 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
543 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
544 int n = 0;
545 int level = 0;
546
547 noffset[0] = 0;
548
549 if (block < direct_index) {
550 offset[n] = block;
551 goto got;
552 }
553 block -= direct_index;
554 if (block < direct_blks) {
555 offset[n++] = NODE_DIR1_BLOCK;
556 noffset[n] = 1;
557 offset[n] = block;
558 level = 1;
559 goto got;
560 }
561 block -= direct_blks;
562 if (block < direct_blks) {
563 offset[n++] = NODE_DIR2_BLOCK;
564 noffset[n] = 2;
565 offset[n] = block;
566 level = 1;
567 goto got;
568 }
569 block -= direct_blks;
570 if (block < indirect_blks) {
571 offset[n++] = NODE_IND1_BLOCK;
572 noffset[n] = 3;
573 offset[n++] = block / direct_blks;
574 noffset[n] = 4 + offset[n - 1];
575 offset[n] = block % direct_blks;
576 level = 2;
577 goto got;
578 }
579 block -= indirect_blks;
580 if (block < indirect_blks) {
581 offset[n++] = NODE_IND2_BLOCK;
582 noffset[n] = 4 + dptrs_per_blk;
583 offset[n++] = block / direct_blks;
584 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
585 offset[n] = block % direct_blks;
586 level = 2;
587 goto got;
588 }
589 block -= indirect_blks;
590 if (block < dindirect_blks) {
591 offset[n++] = NODE_DIND_BLOCK;
592 noffset[n] = 5 + (dptrs_per_blk * 2);
593 offset[n++] = block / indirect_blks;
594 noffset[n] = 6 + (dptrs_per_blk * 2) +
595 offset[n - 1] * (dptrs_per_blk + 1);
596 offset[n++] = (block / direct_blks) % dptrs_per_blk;
597 noffset[n] = 7 + (dptrs_per_blk * 2) +
598 offset[n - 2] * (dptrs_per_blk + 1) +
599 offset[n - 1];
600 offset[n] = block % direct_blks;
601 level = 3;
602 goto got;
603 } else {
604 return -E2BIG;
605 }
606 got:
607 return level;
608 }
609
610 /*
611 * Caller should call f2fs_put_dnode(dn).
612 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
613 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
614 * In the case of RDONLY_NODE, we don't need to care about mutex.
615 */
616 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
617 {
618 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
619 struct page *npage[4];
620 struct page *parent = NULL;
621 int offset[4];
622 unsigned int noffset[4];
623 nid_t nids[4];
624 int level, i = 0;
625 int err = 0;
626
627 level = get_node_path(dn->inode, index, offset, noffset);
628 if (level < 0)
629 return level;
630
631 nids[0] = dn->inode->i_ino;
632 npage[0] = dn->inode_page;
633
634 if (!npage[0]) {
635 npage[0] = f2fs_get_node_page(sbi, nids[0]);
636 if (IS_ERR(npage[0]))
637 return PTR_ERR(npage[0]);
638 }
639
640 /* if inline_data is set, should not report any block indices */
641 if (f2fs_has_inline_data(dn->inode) && index) {
642 err = -ENOENT;
643 f2fs_put_page(npage[0], 1);
644 goto release_out;
645 }
646
647 parent = npage[0];
648 if (level != 0)
649 nids[1] = get_nid(parent, offset[0], true);
650 dn->inode_page = npage[0];
651 dn->inode_page_locked = true;
652
653 /* get indirect or direct nodes */
654 for (i = 1; i <= level; i++) {
655 bool done = false;
656
657 if (!nids[i] && mode == ALLOC_NODE) {
658 /* alloc new node */
659 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
660 err = -ENOSPC;
661 goto release_pages;
662 }
663
664 dn->nid = nids[i];
665 npage[i] = f2fs_new_node_page(dn, noffset[i]);
666 if (IS_ERR(npage[i])) {
667 f2fs_alloc_nid_failed(sbi, nids[i]);
668 err = PTR_ERR(npage[i]);
669 goto release_pages;
670 }
671
672 set_nid(parent, offset[i - 1], nids[i], i == 1);
673 f2fs_alloc_nid_done(sbi, nids[i]);
674 done = true;
675 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
676 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
677 if (IS_ERR(npage[i])) {
678 err = PTR_ERR(npage[i]);
679 goto release_pages;
680 }
681 done = true;
682 }
683 if (i == 1) {
684 dn->inode_page_locked = false;
685 unlock_page(parent);
686 } else {
687 f2fs_put_page(parent, 1);
688 }
689
690 if (!done) {
691 npage[i] = f2fs_get_node_page(sbi, nids[i]);
692 if (IS_ERR(npage[i])) {
693 err = PTR_ERR(npage[i]);
694 f2fs_put_page(npage[0], 0);
695 goto release_out;
696 }
697 }
698 if (i < level) {
699 parent = npage[i];
700 nids[i + 1] = get_nid(parent, offset[i], false);
701 }
702 }
703 dn->nid = nids[level];
704 dn->ofs_in_node = offset[level];
705 dn->node_page = npage[level];
706 dn->data_blkaddr = datablock_addr(dn->inode,
707 dn->node_page, dn->ofs_in_node);
708 return 0;
709
710 release_pages:
711 f2fs_put_page(parent, 1);
712 if (i > 1)
713 f2fs_put_page(npage[0], 0);
714 release_out:
715 dn->inode_page = NULL;
716 dn->node_page = NULL;
717 if (err == -ENOENT) {
718 dn->cur_level = i;
719 dn->max_level = level;
720 dn->ofs_in_node = offset[level];
721 }
722 return err;
723 }
724
725 static void truncate_node(struct dnode_of_data *dn)
726 {
727 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
728 struct node_info ni;
729
730 f2fs_get_node_info(sbi, dn->nid, &ni);
731
732 /* Deallocate node address */
733 f2fs_invalidate_blocks(sbi, ni.blk_addr);
734 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
735 set_node_addr(sbi, &ni, NULL_ADDR, false);
736
737 if (dn->nid == dn->inode->i_ino) {
738 f2fs_remove_orphan_inode(sbi, dn->nid);
739 dec_valid_inode_count(sbi);
740 f2fs_inode_synced(dn->inode);
741 }
742
743 clear_node_page_dirty(dn->node_page);
744 set_sbi_flag(sbi, SBI_IS_DIRTY);
745
746 f2fs_put_page(dn->node_page, 1);
747
748 invalidate_mapping_pages(NODE_MAPPING(sbi),
749 dn->node_page->index, dn->node_page->index);
750
751 dn->node_page = NULL;
752 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
753 }
754
755 static int truncate_dnode(struct dnode_of_data *dn)
756 {
757 struct page *page;
758
759 if (dn->nid == 0)
760 return 1;
761
762 /* get direct node */
763 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
764 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
765 return 1;
766 else if (IS_ERR(page))
767 return PTR_ERR(page);
768
769 /* Make dnode_of_data for parameter */
770 dn->node_page = page;
771 dn->ofs_in_node = 0;
772 f2fs_truncate_data_blocks(dn);
773 truncate_node(dn);
774 return 1;
775 }
776
777 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
778 int ofs, int depth)
779 {
780 struct dnode_of_data rdn = *dn;
781 struct page *page;
782 struct f2fs_node *rn;
783 nid_t child_nid;
784 unsigned int child_nofs;
785 int freed = 0;
786 int i, ret;
787
788 if (dn->nid == 0)
789 return NIDS_PER_BLOCK + 1;
790
791 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
792
793 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
794 if (IS_ERR(page)) {
795 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
796 return PTR_ERR(page);
797 }
798
799 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
800
801 rn = F2FS_NODE(page);
802 if (depth < 3) {
803 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
804 child_nid = le32_to_cpu(rn->in.nid[i]);
805 if (child_nid == 0)
806 continue;
807 rdn.nid = child_nid;
808 ret = truncate_dnode(&rdn);
809 if (ret < 0)
810 goto out_err;
811 if (set_nid(page, i, 0, false))
812 dn->node_changed = true;
813 }
814 } else {
815 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
816 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
817 child_nid = le32_to_cpu(rn->in.nid[i]);
818 if (child_nid == 0) {
819 child_nofs += NIDS_PER_BLOCK + 1;
820 continue;
821 }
822 rdn.nid = child_nid;
823 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
824 if (ret == (NIDS_PER_BLOCK + 1)) {
825 if (set_nid(page, i, 0, false))
826 dn->node_changed = true;
827 child_nofs += ret;
828 } else if (ret < 0 && ret != -ENOENT) {
829 goto out_err;
830 }
831 }
832 freed = child_nofs;
833 }
834
835 if (!ofs) {
836 /* remove current indirect node */
837 dn->node_page = page;
838 truncate_node(dn);
839 freed++;
840 } else {
841 f2fs_put_page(page, 1);
842 }
843 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
844 return freed;
845
846 out_err:
847 f2fs_put_page(page, 1);
848 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
849 return ret;
850 }
851
852 static int truncate_partial_nodes(struct dnode_of_data *dn,
853 struct f2fs_inode *ri, int *offset, int depth)
854 {
855 struct page *pages[2];
856 nid_t nid[3];
857 nid_t child_nid;
858 int err = 0;
859 int i;
860 int idx = depth - 2;
861
862 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
863 if (!nid[0])
864 return 0;
865
866 /* get indirect nodes in the path */
867 for (i = 0; i < idx + 1; i++) {
868 /* reference count'll be increased */
869 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
870 if (IS_ERR(pages[i])) {
871 err = PTR_ERR(pages[i]);
872 idx = i - 1;
873 goto fail;
874 }
875 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
876 }
877
878 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
879
880 /* free direct nodes linked to a partial indirect node */
881 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
882 child_nid = get_nid(pages[idx], i, false);
883 if (!child_nid)
884 continue;
885 dn->nid = child_nid;
886 err = truncate_dnode(dn);
887 if (err < 0)
888 goto fail;
889 if (set_nid(pages[idx], i, 0, false))
890 dn->node_changed = true;
891 }
892
893 if (offset[idx + 1] == 0) {
894 dn->node_page = pages[idx];
895 dn->nid = nid[idx];
896 truncate_node(dn);
897 } else {
898 f2fs_put_page(pages[idx], 1);
899 }
900 offset[idx]++;
901 offset[idx + 1] = 0;
902 idx--;
903 fail:
904 for (i = idx; i >= 0; i--)
905 f2fs_put_page(pages[i], 1);
906
907 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
908
909 return err;
910 }
911
912 /*
913 * All the block addresses of data and nodes should be nullified.
914 */
915 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
916 {
917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
918 int err = 0, cont = 1;
919 int level, offset[4], noffset[4];
920 unsigned int nofs = 0;
921 struct f2fs_inode *ri;
922 struct dnode_of_data dn;
923 struct page *page;
924
925 trace_f2fs_truncate_inode_blocks_enter(inode, from);
926
927 level = get_node_path(inode, from, offset, noffset);
928 if (level < 0)
929 return level;
930
931 page = f2fs_get_node_page(sbi, inode->i_ino);
932 if (IS_ERR(page)) {
933 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
934 return PTR_ERR(page);
935 }
936
937 set_new_dnode(&dn, inode, page, NULL, 0);
938 unlock_page(page);
939
940 ri = F2FS_INODE(page);
941 switch (level) {
942 case 0:
943 case 1:
944 nofs = noffset[1];
945 break;
946 case 2:
947 nofs = noffset[1];
948 if (!offset[level - 1])
949 goto skip_partial;
950 err = truncate_partial_nodes(&dn, ri, offset, level);
951 if (err < 0 && err != -ENOENT)
952 goto fail;
953 nofs += 1 + NIDS_PER_BLOCK;
954 break;
955 case 3:
956 nofs = 5 + 2 * NIDS_PER_BLOCK;
957 if (!offset[level - 1])
958 goto skip_partial;
959 err = truncate_partial_nodes(&dn, ri, offset, level);
960 if (err < 0 && err != -ENOENT)
961 goto fail;
962 break;
963 default:
964 BUG();
965 }
966
967 skip_partial:
968 while (cont) {
969 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
970 switch (offset[0]) {
971 case NODE_DIR1_BLOCK:
972 case NODE_DIR2_BLOCK:
973 err = truncate_dnode(&dn);
974 break;
975
976 case NODE_IND1_BLOCK:
977 case NODE_IND2_BLOCK:
978 err = truncate_nodes(&dn, nofs, offset[1], 2);
979 break;
980
981 case NODE_DIND_BLOCK:
982 err = truncate_nodes(&dn, nofs, offset[1], 3);
983 cont = 0;
984 break;
985
986 default:
987 BUG();
988 }
989 if (err < 0 && err != -ENOENT)
990 goto fail;
991 if (offset[1] == 0 &&
992 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
993 lock_page(page);
994 BUG_ON(page->mapping != NODE_MAPPING(sbi));
995 f2fs_wait_on_page_writeback(page, NODE, true);
996 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
997 set_page_dirty(page);
998 unlock_page(page);
999 }
1000 offset[1] = 0;
1001 offset[0]++;
1002 nofs += err;
1003 }
1004 fail:
1005 f2fs_put_page(page, 0);
1006 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1007 return err > 0 ? 0 : err;
1008 }
1009
1010 /* caller must lock inode page */
1011 int f2fs_truncate_xattr_node(struct inode *inode)
1012 {
1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1014 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1015 struct dnode_of_data dn;
1016 struct page *npage;
1017
1018 if (!nid)
1019 return 0;
1020
1021 npage = f2fs_get_node_page(sbi, nid);
1022 if (IS_ERR(npage))
1023 return PTR_ERR(npage);
1024
1025 f2fs_i_xnid_write(inode, 0);
1026
1027 set_new_dnode(&dn, inode, NULL, npage, nid);
1028 truncate_node(&dn);
1029 return 0;
1030 }
1031
1032 /*
1033 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1034 * f2fs_unlock_op().
1035 */
1036 int f2fs_remove_inode_page(struct inode *inode)
1037 {
1038 struct dnode_of_data dn;
1039 int err;
1040
1041 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1042 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1043 if (err)
1044 return err;
1045
1046 err = f2fs_truncate_xattr_node(inode);
1047 if (err) {
1048 f2fs_put_dnode(&dn);
1049 return err;
1050 }
1051
1052 /* remove potential inline_data blocks */
1053 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1054 S_ISLNK(inode->i_mode))
1055 f2fs_truncate_data_blocks_range(&dn, 1);
1056
1057 /* 0 is possible, after f2fs_new_inode() has failed */
1058 f2fs_bug_on(F2FS_I_SB(inode),
1059 inode->i_blocks != 0 && inode->i_blocks != 8);
1060
1061 /* will put inode & node pages */
1062 truncate_node(&dn);
1063 return 0;
1064 }
1065
1066 struct page *f2fs_new_inode_page(struct inode *inode)
1067 {
1068 struct dnode_of_data dn;
1069
1070 /* allocate inode page for new inode */
1071 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1072
1073 /* caller should f2fs_put_page(page, 1); */
1074 return f2fs_new_node_page(&dn, 0);
1075 }
1076
1077 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1078 {
1079 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1080 struct node_info new_ni;
1081 struct page *page;
1082 int err;
1083
1084 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1085 return ERR_PTR(-EPERM);
1086
1087 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1088 if (!page)
1089 return ERR_PTR(-ENOMEM);
1090
1091 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1092 goto fail;
1093
1094 #ifdef CONFIG_F2FS_CHECK_FS
1095 f2fs_get_node_info(sbi, dn->nid, &new_ni);
1096 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1097 #endif
1098 new_ni.nid = dn->nid;
1099 new_ni.ino = dn->inode->i_ino;
1100 new_ni.blk_addr = NULL_ADDR;
1101 new_ni.flag = 0;
1102 new_ni.version = 0;
1103 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1104
1105 f2fs_wait_on_page_writeback(page, NODE, true);
1106 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1107 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1108 if (!PageUptodate(page))
1109 SetPageUptodate(page);
1110 if (set_page_dirty(page))
1111 dn->node_changed = true;
1112
1113 if (f2fs_has_xattr_block(ofs))
1114 f2fs_i_xnid_write(dn->inode, dn->nid);
1115
1116 if (ofs == 0)
1117 inc_valid_inode_count(sbi);
1118 return page;
1119
1120 fail:
1121 clear_node_page_dirty(page);
1122 f2fs_put_page(page, 1);
1123 return ERR_PTR(err);
1124 }
1125
1126 /*
1127 * Caller should do after getting the following values.
1128 * 0: f2fs_put_page(page, 0)
1129 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1130 */
1131 static int read_node_page(struct page *page, int op_flags)
1132 {
1133 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1134 struct node_info ni;
1135 struct f2fs_io_info fio = {
1136 .sbi = sbi,
1137 .type = NODE,
1138 .op = REQ_OP_READ,
1139 .op_flags = op_flags,
1140 .page = page,
1141 .encrypted_page = NULL,
1142 };
1143
1144 if (PageUptodate(page))
1145 return LOCKED_PAGE;
1146
1147 f2fs_get_node_info(sbi, page->index, &ni);
1148
1149 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1150 ClearPageUptodate(page);
1151 return -ENOENT;
1152 }
1153
1154 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1155 return f2fs_submit_page_bio(&fio);
1156 }
1157
1158 /*
1159 * Readahead a node page
1160 */
1161 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1162 {
1163 struct page *apage;
1164 int err;
1165
1166 if (!nid)
1167 return;
1168 if (f2fs_check_nid_range(sbi, nid))
1169 return;
1170
1171 rcu_read_lock();
1172 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1173 rcu_read_unlock();
1174 if (apage)
1175 return;
1176
1177 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1178 if (!apage)
1179 return;
1180
1181 err = read_node_page(apage, REQ_RAHEAD);
1182 f2fs_put_page(apage, err ? 1 : 0);
1183 }
1184
1185 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1186 struct page *parent, int start)
1187 {
1188 struct page *page;
1189 int err;
1190
1191 if (!nid)
1192 return ERR_PTR(-ENOENT);
1193 if (f2fs_check_nid_range(sbi, nid))
1194 return ERR_PTR(-EINVAL);
1195 repeat:
1196 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1197 if (!page)
1198 return ERR_PTR(-ENOMEM);
1199
1200 err = read_node_page(page, 0);
1201 if (err < 0) {
1202 f2fs_put_page(page, 1);
1203 return ERR_PTR(err);
1204 } else if (err == LOCKED_PAGE) {
1205 err = 0;
1206 goto page_hit;
1207 }
1208
1209 if (parent)
1210 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1211
1212 lock_page(page);
1213
1214 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1215 f2fs_put_page(page, 1);
1216 goto repeat;
1217 }
1218
1219 if (unlikely(!PageUptodate(page))) {
1220 err = -EIO;
1221 goto out_err;
1222 }
1223
1224 if (!f2fs_inode_chksum_verify(sbi, page)) {
1225 err = -EBADMSG;
1226 goto out_err;
1227 }
1228 page_hit:
1229 if(unlikely(nid != nid_of_node(page))) {
1230 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1231 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1232 nid, nid_of_node(page), ino_of_node(page),
1233 ofs_of_node(page), cpver_of_node(page),
1234 next_blkaddr_of_node(page));
1235 err = -EINVAL;
1236 out_err:
1237 ClearPageUptodate(page);
1238 f2fs_put_page(page, 1);
1239 return ERR_PTR(err);
1240 }
1241 return page;
1242 }
1243
1244 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1245 {
1246 return __get_node_page(sbi, nid, NULL, 0);
1247 }
1248
1249 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1250 {
1251 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1252 nid_t nid = get_nid(parent, start, false);
1253
1254 return __get_node_page(sbi, nid, parent, start);
1255 }
1256
1257 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1258 {
1259 struct inode *inode;
1260 struct page *page;
1261 int ret;
1262
1263 /* should flush inline_data before evict_inode */
1264 inode = ilookup(sbi->sb, ino);
1265 if (!inode)
1266 return;
1267
1268 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1269 FGP_LOCK|FGP_NOWAIT, 0);
1270 if (!page)
1271 goto iput_out;
1272
1273 if (!PageUptodate(page))
1274 goto page_out;
1275
1276 if (!PageDirty(page))
1277 goto page_out;
1278
1279 if (!clear_page_dirty_for_io(page))
1280 goto page_out;
1281
1282 ret = f2fs_write_inline_data(inode, page);
1283 inode_dec_dirty_pages(inode);
1284 f2fs_remove_dirty_inode(inode);
1285 if (ret)
1286 set_page_dirty(page);
1287 page_out:
1288 f2fs_put_page(page, 1);
1289 iput_out:
1290 iput(inode);
1291 }
1292
1293 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1294 {
1295 pgoff_t index;
1296 struct pagevec pvec;
1297 struct page *last_page = NULL;
1298 int nr_pages;
1299
1300 pagevec_init(&pvec);
1301 index = 0;
1302
1303 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1304 PAGECACHE_TAG_DIRTY))) {
1305 int i;
1306
1307 for (i = 0; i < nr_pages; i++) {
1308 struct page *page = pvec.pages[i];
1309
1310 if (unlikely(f2fs_cp_error(sbi))) {
1311 f2fs_put_page(last_page, 0);
1312 pagevec_release(&pvec);
1313 return ERR_PTR(-EIO);
1314 }
1315
1316 if (!IS_DNODE(page) || !is_cold_node(page))
1317 continue;
1318 if (ino_of_node(page) != ino)
1319 continue;
1320
1321 lock_page(page);
1322
1323 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1324 continue_unlock:
1325 unlock_page(page);
1326 continue;
1327 }
1328 if (ino_of_node(page) != ino)
1329 goto continue_unlock;
1330
1331 if (!PageDirty(page)) {
1332 /* someone wrote it for us */
1333 goto continue_unlock;
1334 }
1335
1336 if (last_page)
1337 f2fs_put_page(last_page, 0);
1338
1339 get_page(page);
1340 last_page = page;
1341 unlock_page(page);
1342 }
1343 pagevec_release(&pvec);
1344 cond_resched();
1345 }
1346 return last_page;
1347 }
1348
1349 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1350 struct writeback_control *wbc, bool do_balance,
1351 enum iostat_type io_type)
1352 {
1353 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1354 nid_t nid;
1355 struct node_info ni;
1356 struct f2fs_io_info fio = {
1357 .sbi = sbi,
1358 .ino = ino_of_node(page),
1359 .type = NODE,
1360 .op = REQ_OP_WRITE,
1361 .op_flags = wbc_to_write_flags(wbc),
1362 .page = page,
1363 .encrypted_page = NULL,
1364 .submitted = false,
1365 .io_type = io_type,
1366 .io_wbc = wbc,
1367 };
1368
1369 trace_f2fs_writepage(page, NODE);
1370
1371 if (unlikely(f2fs_cp_error(sbi)))
1372 goto redirty_out;
1373
1374 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1375 goto redirty_out;
1376
1377 /* get old block addr of this node page */
1378 nid = nid_of_node(page);
1379 f2fs_bug_on(sbi, page->index != nid);
1380
1381 if (wbc->for_reclaim) {
1382 if (!down_read_trylock(&sbi->node_write))
1383 goto redirty_out;
1384 } else {
1385 down_read(&sbi->node_write);
1386 }
1387
1388 f2fs_get_node_info(sbi, nid, &ni);
1389
1390 /* This page is already truncated */
1391 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1392 ClearPageUptodate(page);
1393 dec_page_count(sbi, F2FS_DIRTY_NODES);
1394 up_read(&sbi->node_write);
1395 unlock_page(page);
1396 return 0;
1397 }
1398
1399 if (atomic && !test_opt(sbi, NOBARRIER))
1400 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1401
1402 set_page_writeback(page);
1403 ClearPageError(page);
1404 fio.old_blkaddr = ni.blk_addr;
1405 f2fs_do_write_node_page(nid, &fio);
1406 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1407 dec_page_count(sbi, F2FS_DIRTY_NODES);
1408 up_read(&sbi->node_write);
1409
1410 if (wbc->for_reclaim) {
1411 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1412 page->index, NODE);
1413 submitted = NULL;
1414 }
1415
1416 unlock_page(page);
1417
1418 if (unlikely(f2fs_cp_error(sbi))) {
1419 f2fs_submit_merged_write(sbi, NODE);
1420 submitted = NULL;
1421 }
1422 if (submitted)
1423 *submitted = fio.submitted;
1424
1425 if (do_balance)
1426 f2fs_balance_fs(sbi, false);
1427 return 0;
1428
1429 redirty_out:
1430 redirty_page_for_writepage(wbc, page);
1431 return AOP_WRITEPAGE_ACTIVATE;
1432 }
1433
1434 void f2fs_move_node_page(struct page *node_page, int gc_type)
1435 {
1436 if (gc_type == FG_GC) {
1437 struct writeback_control wbc = {
1438 .sync_mode = WB_SYNC_ALL,
1439 .nr_to_write = 1,
1440 .for_reclaim = 0,
1441 };
1442
1443 set_page_dirty(node_page);
1444 f2fs_wait_on_page_writeback(node_page, NODE, true);
1445
1446 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1447 if (!clear_page_dirty_for_io(node_page))
1448 goto out_page;
1449
1450 if (__write_node_page(node_page, false, NULL,
1451 &wbc, false, FS_GC_NODE_IO))
1452 unlock_page(node_page);
1453 goto release_page;
1454 } else {
1455 /* set page dirty and write it */
1456 if (!PageWriteback(node_page))
1457 set_page_dirty(node_page);
1458 }
1459 out_page:
1460 unlock_page(node_page);
1461 release_page:
1462 f2fs_put_page(node_page, 0);
1463 }
1464
1465 static int f2fs_write_node_page(struct page *page,
1466 struct writeback_control *wbc)
1467 {
1468 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1469 }
1470
1471 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1472 struct writeback_control *wbc, bool atomic)
1473 {
1474 pgoff_t index;
1475 pgoff_t last_idx = ULONG_MAX;
1476 struct pagevec pvec;
1477 int ret = 0;
1478 struct page *last_page = NULL;
1479 bool marked = false;
1480 nid_t ino = inode->i_ino;
1481 int nr_pages;
1482
1483 if (atomic) {
1484 last_page = last_fsync_dnode(sbi, ino);
1485 if (IS_ERR_OR_NULL(last_page))
1486 return PTR_ERR_OR_ZERO(last_page);
1487 }
1488 retry:
1489 pagevec_init(&pvec);
1490 index = 0;
1491
1492 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1493 PAGECACHE_TAG_DIRTY))) {
1494 int i;
1495
1496 for (i = 0; i < nr_pages; i++) {
1497 struct page *page = pvec.pages[i];
1498 bool submitted = false;
1499
1500 if (unlikely(f2fs_cp_error(sbi))) {
1501 f2fs_put_page(last_page, 0);
1502 pagevec_release(&pvec);
1503 ret = -EIO;
1504 goto out;
1505 }
1506
1507 if (!IS_DNODE(page) || !is_cold_node(page))
1508 continue;
1509 if (ino_of_node(page) != ino)
1510 continue;
1511
1512 lock_page(page);
1513
1514 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1515 continue_unlock:
1516 unlock_page(page);
1517 continue;
1518 }
1519 if (ino_of_node(page) != ino)
1520 goto continue_unlock;
1521
1522 if (!PageDirty(page) && page != last_page) {
1523 /* someone wrote it for us */
1524 goto continue_unlock;
1525 }
1526
1527 f2fs_wait_on_page_writeback(page, NODE, true);
1528 BUG_ON(PageWriteback(page));
1529
1530 set_fsync_mark(page, 0);
1531 set_dentry_mark(page, 0);
1532
1533 if (!atomic || page == last_page) {
1534 set_fsync_mark(page, 1);
1535 if (IS_INODE(page)) {
1536 if (is_inode_flag_set(inode,
1537 FI_DIRTY_INODE))
1538 f2fs_update_inode(inode, page);
1539 set_dentry_mark(page,
1540 f2fs_need_dentry_mark(sbi, ino));
1541 }
1542 /* may be written by other thread */
1543 if (!PageDirty(page))
1544 set_page_dirty(page);
1545 }
1546
1547 if (!clear_page_dirty_for_io(page))
1548 goto continue_unlock;
1549
1550 ret = __write_node_page(page, atomic &&
1551 page == last_page,
1552 &submitted, wbc, true,
1553 FS_NODE_IO);
1554 if (ret) {
1555 unlock_page(page);
1556 f2fs_put_page(last_page, 0);
1557 break;
1558 } else if (submitted) {
1559 last_idx = page->index;
1560 }
1561
1562 if (page == last_page) {
1563 f2fs_put_page(page, 0);
1564 marked = true;
1565 break;
1566 }
1567 }
1568 pagevec_release(&pvec);
1569 cond_resched();
1570
1571 if (ret || marked)
1572 break;
1573 }
1574 if (!ret && atomic && !marked) {
1575 f2fs_msg(sbi->sb, KERN_DEBUG,
1576 "Retry to write fsync mark: ino=%u, idx=%lx",
1577 ino, last_page->index);
1578 lock_page(last_page);
1579 f2fs_wait_on_page_writeback(last_page, NODE, true);
1580 set_page_dirty(last_page);
1581 unlock_page(last_page);
1582 goto retry;
1583 }
1584 out:
1585 if (last_idx != ULONG_MAX)
1586 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1587 return ret ? -EIO: 0;
1588 }
1589
1590 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1591 struct writeback_control *wbc,
1592 bool do_balance, enum iostat_type io_type)
1593 {
1594 pgoff_t index;
1595 struct pagevec pvec;
1596 int step = 0;
1597 int nwritten = 0;
1598 int ret = 0;
1599 int nr_pages, done = 0;
1600
1601 pagevec_init(&pvec);
1602
1603 next_step:
1604 index = 0;
1605
1606 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1607 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1608 int i;
1609
1610 for (i = 0; i < nr_pages; i++) {
1611 struct page *page = pvec.pages[i];
1612 bool submitted = false;
1613
1614 /* give a priority to WB_SYNC threads */
1615 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1616 wbc->sync_mode == WB_SYNC_NONE) {
1617 done = 1;
1618 break;
1619 }
1620
1621 /*
1622 * flushing sequence with step:
1623 * 0. indirect nodes
1624 * 1. dentry dnodes
1625 * 2. file dnodes
1626 */
1627 if (step == 0 && IS_DNODE(page))
1628 continue;
1629 if (step == 1 && (!IS_DNODE(page) ||
1630 is_cold_node(page)))
1631 continue;
1632 if (step == 2 && (!IS_DNODE(page) ||
1633 !is_cold_node(page)))
1634 continue;
1635 lock_node:
1636 if (!trylock_page(page))
1637 continue;
1638
1639 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1640 continue_unlock:
1641 unlock_page(page);
1642 continue;
1643 }
1644
1645 if (!PageDirty(page)) {
1646 /* someone wrote it for us */
1647 goto continue_unlock;
1648 }
1649
1650 /* flush inline_data */
1651 if (is_inline_node(page)) {
1652 clear_inline_node(page);
1653 unlock_page(page);
1654 flush_inline_data(sbi, ino_of_node(page));
1655 goto lock_node;
1656 }
1657
1658 f2fs_wait_on_page_writeback(page, NODE, true);
1659
1660 BUG_ON(PageWriteback(page));
1661 if (!clear_page_dirty_for_io(page))
1662 goto continue_unlock;
1663
1664 set_fsync_mark(page, 0);
1665 set_dentry_mark(page, 0);
1666
1667 ret = __write_node_page(page, false, &submitted,
1668 wbc, do_balance, io_type);
1669 if (ret)
1670 unlock_page(page);
1671 else if (submitted)
1672 nwritten++;
1673
1674 if (--wbc->nr_to_write == 0)
1675 break;
1676 }
1677 pagevec_release(&pvec);
1678 cond_resched();
1679
1680 if (wbc->nr_to_write == 0) {
1681 step = 2;
1682 break;
1683 }
1684 }
1685
1686 if (step < 2) {
1687 step++;
1688 goto next_step;
1689 }
1690
1691 if (nwritten)
1692 f2fs_submit_merged_write(sbi, NODE);
1693
1694 if (unlikely(f2fs_cp_error(sbi)))
1695 return -EIO;
1696 return ret;
1697 }
1698
1699 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1700 {
1701 pgoff_t index = 0;
1702 struct pagevec pvec;
1703 int ret2, ret = 0;
1704 int nr_pages;
1705
1706 pagevec_init(&pvec);
1707
1708 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1709 PAGECACHE_TAG_WRITEBACK))) {
1710 int i;
1711
1712 for (i = 0; i < nr_pages; i++) {
1713 struct page *page = pvec.pages[i];
1714
1715 if (ino && ino_of_node(page) == ino) {
1716 f2fs_wait_on_page_writeback(page, NODE, true);
1717 if (TestClearPageError(page))
1718 ret = -EIO;
1719 }
1720 }
1721 pagevec_release(&pvec);
1722 cond_resched();
1723 }
1724
1725 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1726 if (!ret)
1727 ret = ret2;
1728 return ret;
1729 }
1730
1731 static int f2fs_write_node_pages(struct address_space *mapping,
1732 struct writeback_control *wbc)
1733 {
1734 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1735 struct blk_plug plug;
1736 long diff;
1737
1738 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1739 goto skip_write;
1740
1741 /* balancing f2fs's metadata in background */
1742 f2fs_balance_fs_bg(sbi);
1743
1744 /* collect a number of dirty node pages and write together */
1745 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1746 goto skip_write;
1747
1748 if (wbc->sync_mode == WB_SYNC_ALL)
1749 atomic_inc(&sbi->wb_sync_req[NODE]);
1750 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1751 goto skip_write;
1752
1753 trace_f2fs_writepages(mapping->host, wbc, NODE);
1754
1755 diff = nr_pages_to_write(sbi, NODE, wbc);
1756 blk_start_plug(&plug);
1757 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1758 blk_finish_plug(&plug);
1759 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1760
1761 if (wbc->sync_mode == WB_SYNC_ALL)
1762 atomic_dec(&sbi->wb_sync_req[NODE]);
1763 return 0;
1764
1765 skip_write:
1766 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1767 trace_f2fs_writepages(mapping->host, wbc, NODE);
1768 return 0;
1769 }
1770
1771 static int f2fs_set_node_page_dirty(struct page *page)
1772 {
1773 trace_f2fs_set_page_dirty(page, NODE);
1774
1775 if (!PageUptodate(page))
1776 SetPageUptodate(page);
1777 if (!PageDirty(page)) {
1778 __set_page_dirty_nobuffers(page);
1779 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1780 SetPagePrivate(page);
1781 f2fs_trace_pid(page);
1782 return 1;
1783 }
1784 return 0;
1785 }
1786
1787 /*
1788 * Structure of the f2fs node operations
1789 */
1790 const struct address_space_operations f2fs_node_aops = {
1791 .writepage = f2fs_write_node_page,
1792 .writepages = f2fs_write_node_pages,
1793 .set_page_dirty = f2fs_set_node_page_dirty,
1794 .invalidatepage = f2fs_invalidate_page,
1795 .releasepage = f2fs_release_page,
1796 #ifdef CONFIG_MIGRATION
1797 .migratepage = f2fs_migrate_page,
1798 #endif
1799 };
1800
1801 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1802 nid_t n)
1803 {
1804 return radix_tree_lookup(&nm_i->free_nid_root, n);
1805 }
1806
1807 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1808 struct free_nid *i, enum nid_state state)
1809 {
1810 struct f2fs_nm_info *nm_i = NM_I(sbi);
1811
1812 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1813 if (err)
1814 return err;
1815
1816 f2fs_bug_on(sbi, state != i->state);
1817 nm_i->nid_cnt[state]++;
1818 if (state == FREE_NID)
1819 list_add_tail(&i->list, &nm_i->free_nid_list);
1820 return 0;
1821 }
1822
1823 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1824 struct free_nid *i, enum nid_state state)
1825 {
1826 struct f2fs_nm_info *nm_i = NM_I(sbi);
1827
1828 f2fs_bug_on(sbi, state != i->state);
1829 nm_i->nid_cnt[state]--;
1830 if (state == FREE_NID)
1831 list_del(&i->list);
1832 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1833 }
1834
1835 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1836 enum nid_state org_state, enum nid_state dst_state)
1837 {
1838 struct f2fs_nm_info *nm_i = NM_I(sbi);
1839
1840 f2fs_bug_on(sbi, org_state != i->state);
1841 i->state = dst_state;
1842 nm_i->nid_cnt[org_state]--;
1843 nm_i->nid_cnt[dst_state]++;
1844
1845 switch (dst_state) {
1846 case PREALLOC_NID:
1847 list_del(&i->list);
1848 break;
1849 case FREE_NID:
1850 list_add_tail(&i->list, &nm_i->free_nid_list);
1851 break;
1852 default:
1853 BUG_ON(1);
1854 }
1855 }
1856
1857 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1858 bool set, bool build)
1859 {
1860 struct f2fs_nm_info *nm_i = NM_I(sbi);
1861 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1862 unsigned int nid_ofs = nid - START_NID(nid);
1863
1864 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1865 return;
1866
1867 if (set) {
1868 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1869 return;
1870 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1871 nm_i->free_nid_count[nat_ofs]++;
1872 } else {
1873 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1874 return;
1875 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1876 if (!build)
1877 nm_i->free_nid_count[nat_ofs]--;
1878 }
1879 }
1880
1881 /* return if the nid is recognized as free */
1882 static bool add_free_nid(struct f2fs_sb_info *sbi,
1883 nid_t nid, bool build, bool update)
1884 {
1885 struct f2fs_nm_info *nm_i = NM_I(sbi);
1886 struct free_nid *i, *e;
1887 struct nat_entry *ne;
1888 int err = -EINVAL;
1889 bool ret = false;
1890
1891 /* 0 nid should not be used */
1892 if (unlikely(nid == 0))
1893 return false;
1894
1895 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1896 i->nid = nid;
1897 i->state = FREE_NID;
1898
1899 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1900
1901 spin_lock(&nm_i->nid_list_lock);
1902
1903 if (build) {
1904 /*
1905 * Thread A Thread B
1906 * - f2fs_create
1907 * - f2fs_new_inode
1908 * - f2fs_alloc_nid
1909 * - __insert_nid_to_list(PREALLOC_NID)
1910 * - f2fs_balance_fs_bg
1911 * - f2fs_build_free_nids
1912 * - __f2fs_build_free_nids
1913 * - scan_nat_page
1914 * - add_free_nid
1915 * - __lookup_nat_cache
1916 * - f2fs_add_link
1917 * - f2fs_init_inode_metadata
1918 * - f2fs_new_inode_page
1919 * - f2fs_new_node_page
1920 * - set_node_addr
1921 * - f2fs_alloc_nid_done
1922 * - __remove_nid_from_list(PREALLOC_NID)
1923 * - __insert_nid_to_list(FREE_NID)
1924 */
1925 ne = __lookup_nat_cache(nm_i, nid);
1926 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1927 nat_get_blkaddr(ne) != NULL_ADDR))
1928 goto err_out;
1929
1930 e = __lookup_free_nid_list(nm_i, nid);
1931 if (e) {
1932 if (e->state == FREE_NID)
1933 ret = true;
1934 goto err_out;
1935 }
1936 }
1937 ret = true;
1938 err = __insert_free_nid(sbi, i, FREE_NID);
1939 err_out:
1940 if (update) {
1941 update_free_nid_bitmap(sbi, nid, ret, build);
1942 if (!build)
1943 nm_i->available_nids++;
1944 }
1945 spin_unlock(&nm_i->nid_list_lock);
1946 radix_tree_preload_end();
1947
1948 if (err)
1949 kmem_cache_free(free_nid_slab, i);
1950 return ret;
1951 }
1952
1953 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1954 {
1955 struct f2fs_nm_info *nm_i = NM_I(sbi);
1956 struct free_nid *i;
1957 bool need_free = false;
1958
1959 spin_lock(&nm_i->nid_list_lock);
1960 i = __lookup_free_nid_list(nm_i, nid);
1961 if (i && i->state == FREE_NID) {
1962 __remove_free_nid(sbi, i, FREE_NID);
1963 need_free = true;
1964 }
1965 spin_unlock(&nm_i->nid_list_lock);
1966
1967 if (need_free)
1968 kmem_cache_free(free_nid_slab, i);
1969 }
1970
1971 static void scan_nat_page(struct f2fs_sb_info *sbi,
1972 struct page *nat_page, nid_t start_nid)
1973 {
1974 struct f2fs_nm_info *nm_i = NM_I(sbi);
1975 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1976 block_t blk_addr;
1977 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1978 int i;
1979
1980 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1981
1982 i = start_nid % NAT_ENTRY_PER_BLOCK;
1983
1984 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1985 if (unlikely(start_nid >= nm_i->max_nid))
1986 break;
1987
1988 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1989 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1990 if (blk_addr == NULL_ADDR) {
1991 add_free_nid(sbi, start_nid, true, true);
1992 } else {
1993 spin_lock(&NM_I(sbi)->nid_list_lock);
1994 update_free_nid_bitmap(sbi, start_nid, false, true);
1995 spin_unlock(&NM_I(sbi)->nid_list_lock);
1996 }
1997 }
1998 }
1999
2000 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2001 {
2002 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2003 struct f2fs_journal *journal = curseg->journal;
2004 int i;
2005
2006 down_read(&curseg->journal_rwsem);
2007 for (i = 0; i < nats_in_cursum(journal); i++) {
2008 block_t addr;
2009 nid_t nid;
2010
2011 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2012 nid = le32_to_cpu(nid_in_journal(journal, i));
2013 if (addr == NULL_ADDR)
2014 add_free_nid(sbi, nid, true, false);
2015 else
2016 remove_free_nid(sbi, nid);
2017 }
2018 up_read(&curseg->journal_rwsem);
2019 }
2020
2021 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2022 {
2023 struct f2fs_nm_info *nm_i = NM_I(sbi);
2024 unsigned int i, idx;
2025 nid_t nid;
2026
2027 down_read(&nm_i->nat_tree_lock);
2028
2029 for (i = 0; i < nm_i->nat_blocks; i++) {
2030 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2031 continue;
2032 if (!nm_i->free_nid_count[i])
2033 continue;
2034 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2035 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2036 NAT_ENTRY_PER_BLOCK, idx);
2037 if (idx >= NAT_ENTRY_PER_BLOCK)
2038 break;
2039
2040 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2041 add_free_nid(sbi, nid, true, false);
2042
2043 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2044 goto out;
2045 }
2046 }
2047 out:
2048 scan_curseg_cache(sbi);
2049
2050 up_read(&nm_i->nat_tree_lock);
2051 }
2052
2053 static void __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2054 bool sync, bool mount)
2055 {
2056 struct f2fs_nm_info *nm_i = NM_I(sbi);
2057 int i = 0;
2058 nid_t nid = nm_i->next_scan_nid;
2059
2060 if (unlikely(nid >= nm_i->max_nid))
2061 nid = 0;
2062
2063 /* Enough entries */
2064 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2065 return;
2066
2067 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2068 return;
2069
2070 if (!mount) {
2071 /* try to find free nids in free_nid_bitmap */
2072 scan_free_nid_bits(sbi);
2073
2074 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2075 return;
2076 }
2077
2078 /* readahead nat pages to be scanned */
2079 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2080 META_NAT, true);
2081
2082 down_read(&nm_i->nat_tree_lock);
2083
2084 while (1) {
2085 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2086 nm_i->nat_block_bitmap)) {
2087 struct page *page = get_current_nat_page(sbi, nid);
2088
2089 scan_nat_page(sbi, page, nid);
2090 f2fs_put_page(page, 1);
2091 }
2092
2093 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2094 if (unlikely(nid >= nm_i->max_nid))
2095 nid = 0;
2096
2097 if (++i >= FREE_NID_PAGES)
2098 break;
2099 }
2100
2101 /* go to the next free nat pages to find free nids abundantly */
2102 nm_i->next_scan_nid = nid;
2103
2104 /* find free nids from current sum_pages */
2105 scan_curseg_cache(sbi);
2106
2107 up_read(&nm_i->nat_tree_lock);
2108
2109 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2110 nm_i->ra_nid_pages, META_NAT, false);
2111 }
2112
2113 void f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2114 {
2115 mutex_lock(&NM_I(sbi)->build_lock);
2116 __f2fs_build_free_nids(sbi, sync, mount);
2117 mutex_unlock(&NM_I(sbi)->build_lock);
2118 }
2119
2120 /*
2121 * If this function returns success, caller can obtain a new nid
2122 * from second parameter of this function.
2123 * The returned nid could be used ino as well as nid when inode is created.
2124 */
2125 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2126 {
2127 struct f2fs_nm_info *nm_i = NM_I(sbi);
2128 struct free_nid *i = NULL;
2129 retry:
2130 #ifdef CONFIG_F2FS_FAULT_INJECTION
2131 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2132 f2fs_show_injection_info(FAULT_ALLOC_NID);
2133 return false;
2134 }
2135 #endif
2136 spin_lock(&nm_i->nid_list_lock);
2137
2138 if (unlikely(nm_i->available_nids == 0)) {
2139 spin_unlock(&nm_i->nid_list_lock);
2140 return false;
2141 }
2142
2143 /* We should not use stale free nids created by f2fs_build_free_nids */
2144 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2145 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2146 i = list_first_entry(&nm_i->free_nid_list,
2147 struct free_nid, list);
2148 *nid = i->nid;
2149
2150 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2151 nm_i->available_nids--;
2152
2153 update_free_nid_bitmap(sbi, *nid, false, false);
2154
2155 spin_unlock(&nm_i->nid_list_lock);
2156 return true;
2157 }
2158 spin_unlock(&nm_i->nid_list_lock);
2159
2160 /* Let's scan nat pages and its caches to get free nids */
2161 f2fs_build_free_nids(sbi, true, false);
2162 goto retry;
2163 }
2164
2165 /*
2166 * f2fs_alloc_nid() should be called prior to this function.
2167 */
2168 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2169 {
2170 struct f2fs_nm_info *nm_i = NM_I(sbi);
2171 struct free_nid *i;
2172
2173 spin_lock(&nm_i->nid_list_lock);
2174 i = __lookup_free_nid_list(nm_i, nid);
2175 f2fs_bug_on(sbi, !i);
2176 __remove_free_nid(sbi, i, PREALLOC_NID);
2177 spin_unlock(&nm_i->nid_list_lock);
2178
2179 kmem_cache_free(free_nid_slab, i);
2180 }
2181
2182 /*
2183 * f2fs_alloc_nid() should be called prior to this function.
2184 */
2185 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2186 {
2187 struct f2fs_nm_info *nm_i = NM_I(sbi);
2188 struct free_nid *i;
2189 bool need_free = false;
2190
2191 if (!nid)
2192 return;
2193
2194 spin_lock(&nm_i->nid_list_lock);
2195 i = __lookup_free_nid_list(nm_i, nid);
2196 f2fs_bug_on(sbi, !i);
2197
2198 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2199 __remove_free_nid(sbi, i, PREALLOC_NID);
2200 need_free = true;
2201 } else {
2202 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2203 }
2204
2205 nm_i->available_nids++;
2206
2207 update_free_nid_bitmap(sbi, nid, true, false);
2208
2209 spin_unlock(&nm_i->nid_list_lock);
2210
2211 if (need_free)
2212 kmem_cache_free(free_nid_slab, i);
2213 }
2214
2215 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2216 {
2217 struct f2fs_nm_info *nm_i = NM_I(sbi);
2218 struct free_nid *i, *next;
2219 int nr = nr_shrink;
2220
2221 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2222 return 0;
2223
2224 if (!mutex_trylock(&nm_i->build_lock))
2225 return 0;
2226
2227 spin_lock(&nm_i->nid_list_lock);
2228 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2229 if (nr_shrink <= 0 ||
2230 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2231 break;
2232
2233 __remove_free_nid(sbi, i, FREE_NID);
2234 kmem_cache_free(free_nid_slab, i);
2235 nr_shrink--;
2236 }
2237 spin_unlock(&nm_i->nid_list_lock);
2238 mutex_unlock(&nm_i->build_lock);
2239
2240 return nr - nr_shrink;
2241 }
2242
2243 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2244 {
2245 void *src_addr, *dst_addr;
2246 size_t inline_size;
2247 struct page *ipage;
2248 struct f2fs_inode *ri;
2249
2250 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2251 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2252
2253 ri = F2FS_INODE(page);
2254 if (ri->i_inline & F2FS_INLINE_XATTR) {
2255 set_inode_flag(inode, FI_INLINE_XATTR);
2256 } else {
2257 clear_inode_flag(inode, FI_INLINE_XATTR);
2258 goto update_inode;
2259 }
2260
2261 dst_addr = inline_xattr_addr(inode, ipage);
2262 src_addr = inline_xattr_addr(inode, page);
2263 inline_size = inline_xattr_size(inode);
2264
2265 f2fs_wait_on_page_writeback(ipage, NODE, true);
2266 memcpy(dst_addr, src_addr, inline_size);
2267 update_inode:
2268 f2fs_update_inode(inode, ipage);
2269 f2fs_put_page(ipage, 1);
2270 }
2271
2272 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2273 {
2274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2275 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2276 nid_t new_xnid;
2277 struct dnode_of_data dn;
2278 struct node_info ni;
2279 struct page *xpage;
2280
2281 if (!prev_xnid)
2282 goto recover_xnid;
2283
2284 /* 1: invalidate the previous xattr nid */
2285 f2fs_get_node_info(sbi, prev_xnid, &ni);
2286 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2287 dec_valid_node_count(sbi, inode, false);
2288 set_node_addr(sbi, &ni, NULL_ADDR, false);
2289
2290 recover_xnid:
2291 /* 2: update xattr nid in inode */
2292 if (!f2fs_alloc_nid(sbi, &new_xnid))
2293 return -ENOSPC;
2294
2295 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2296 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2297 if (IS_ERR(xpage)) {
2298 f2fs_alloc_nid_failed(sbi, new_xnid);
2299 return PTR_ERR(xpage);
2300 }
2301
2302 f2fs_alloc_nid_done(sbi, new_xnid);
2303 f2fs_update_inode_page(inode);
2304
2305 /* 3: update and set xattr node page dirty */
2306 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2307
2308 set_page_dirty(xpage);
2309 f2fs_put_page(xpage, 1);
2310
2311 return 0;
2312 }
2313
2314 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2315 {
2316 struct f2fs_inode *src, *dst;
2317 nid_t ino = ino_of_node(page);
2318 struct node_info old_ni, new_ni;
2319 struct page *ipage;
2320
2321 f2fs_get_node_info(sbi, ino, &old_ni);
2322
2323 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2324 return -EINVAL;
2325 retry:
2326 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2327 if (!ipage) {
2328 congestion_wait(BLK_RW_ASYNC, HZ/50);
2329 goto retry;
2330 }
2331
2332 /* Should not use this inode from free nid list */
2333 remove_free_nid(sbi, ino);
2334
2335 if (!PageUptodate(ipage))
2336 SetPageUptodate(ipage);
2337 fill_node_footer(ipage, ino, ino, 0, true);
2338 set_cold_node(page, false);
2339
2340 src = F2FS_INODE(page);
2341 dst = F2FS_INODE(ipage);
2342
2343 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2344 dst->i_size = 0;
2345 dst->i_blocks = cpu_to_le64(1);
2346 dst->i_links = cpu_to_le32(1);
2347 dst->i_xattr_nid = 0;
2348 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2349 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2350 dst->i_extra_isize = src->i_extra_isize;
2351
2352 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2353 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2354 i_inline_xattr_size))
2355 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2356
2357 if (f2fs_sb_has_project_quota(sbi->sb) &&
2358 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2359 i_projid))
2360 dst->i_projid = src->i_projid;
2361 }
2362
2363 new_ni = old_ni;
2364 new_ni.ino = ino;
2365
2366 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2367 WARN_ON(1);
2368 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2369 inc_valid_inode_count(sbi);
2370 set_page_dirty(ipage);
2371 f2fs_put_page(ipage, 1);
2372 return 0;
2373 }
2374
2375 void f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2376 unsigned int segno, struct f2fs_summary_block *sum)
2377 {
2378 struct f2fs_node *rn;
2379 struct f2fs_summary *sum_entry;
2380 block_t addr;
2381 int i, idx, last_offset, nrpages;
2382
2383 /* scan the node segment */
2384 last_offset = sbi->blocks_per_seg;
2385 addr = START_BLOCK(sbi, segno);
2386 sum_entry = &sum->entries[0];
2387
2388 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2389 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2390
2391 /* readahead node pages */
2392 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2393
2394 for (idx = addr; idx < addr + nrpages; idx++) {
2395 struct page *page = f2fs_get_tmp_page(sbi, idx);
2396
2397 rn = F2FS_NODE(page);
2398 sum_entry->nid = rn->footer.nid;
2399 sum_entry->version = 0;
2400 sum_entry->ofs_in_node = 0;
2401 sum_entry++;
2402 f2fs_put_page(page, 1);
2403 }
2404
2405 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2406 addr + nrpages);
2407 }
2408 }
2409
2410 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2411 {
2412 struct f2fs_nm_info *nm_i = NM_I(sbi);
2413 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2414 struct f2fs_journal *journal = curseg->journal;
2415 int i;
2416
2417 down_write(&curseg->journal_rwsem);
2418 for (i = 0; i < nats_in_cursum(journal); i++) {
2419 struct nat_entry *ne;
2420 struct f2fs_nat_entry raw_ne;
2421 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2422
2423 raw_ne = nat_in_journal(journal, i);
2424
2425 ne = __lookup_nat_cache(nm_i, nid);
2426 if (!ne) {
2427 ne = __alloc_nat_entry(nid, true);
2428 __init_nat_entry(nm_i, ne, &raw_ne, true);
2429 }
2430
2431 /*
2432 * if a free nat in journal has not been used after last
2433 * checkpoint, we should remove it from available nids,
2434 * since later we will add it again.
2435 */
2436 if (!get_nat_flag(ne, IS_DIRTY) &&
2437 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2438 spin_lock(&nm_i->nid_list_lock);
2439 nm_i->available_nids--;
2440 spin_unlock(&nm_i->nid_list_lock);
2441 }
2442
2443 __set_nat_cache_dirty(nm_i, ne);
2444 }
2445 update_nats_in_cursum(journal, -i);
2446 up_write(&curseg->journal_rwsem);
2447 }
2448
2449 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2450 struct list_head *head, int max)
2451 {
2452 struct nat_entry_set *cur;
2453
2454 if (nes->entry_cnt >= max)
2455 goto add_out;
2456
2457 list_for_each_entry(cur, head, set_list) {
2458 if (cur->entry_cnt >= nes->entry_cnt) {
2459 list_add(&nes->set_list, cur->set_list.prev);
2460 return;
2461 }
2462 }
2463 add_out:
2464 list_add_tail(&nes->set_list, head);
2465 }
2466
2467 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2468 struct page *page)
2469 {
2470 struct f2fs_nm_info *nm_i = NM_I(sbi);
2471 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2472 struct f2fs_nat_block *nat_blk = page_address(page);
2473 int valid = 0;
2474 int i = 0;
2475
2476 if (!enabled_nat_bits(sbi, NULL))
2477 return;
2478
2479 if (nat_index == 0) {
2480 valid = 1;
2481 i = 1;
2482 }
2483 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2484 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2485 valid++;
2486 }
2487 if (valid == 0) {
2488 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2489 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2490 return;
2491 }
2492
2493 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2494 if (valid == NAT_ENTRY_PER_BLOCK)
2495 __set_bit_le(nat_index, nm_i->full_nat_bits);
2496 else
2497 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2498 }
2499
2500 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2501 struct nat_entry_set *set, struct cp_control *cpc)
2502 {
2503 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2504 struct f2fs_journal *journal = curseg->journal;
2505 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2506 bool to_journal = true;
2507 struct f2fs_nat_block *nat_blk;
2508 struct nat_entry *ne, *cur;
2509 struct page *page = NULL;
2510
2511 /*
2512 * there are two steps to flush nat entries:
2513 * #1, flush nat entries to journal in current hot data summary block.
2514 * #2, flush nat entries to nat page.
2515 */
2516 if (enabled_nat_bits(sbi, cpc) ||
2517 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2518 to_journal = false;
2519
2520 if (to_journal) {
2521 down_write(&curseg->journal_rwsem);
2522 } else {
2523 page = get_next_nat_page(sbi, start_nid);
2524 nat_blk = page_address(page);
2525 f2fs_bug_on(sbi, !nat_blk);
2526 }
2527
2528 /* flush dirty nats in nat entry set */
2529 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2530 struct f2fs_nat_entry *raw_ne;
2531 nid_t nid = nat_get_nid(ne);
2532 int offset;
2533
2534 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2535
2536 if (to_journal) {
2537 offset = f2fs_lookup_journal_in_cursum(journal,
2538 NAT_JOURNAL, nid, 1);
2539 f2fs_bug_on(sbi, offset < 0);
2540 raw_ne = &nat_in_journal(journal, offset);
2541 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2542 } else {
2543 raw_ne = &nat_blk->entries[nid - start_nid];
2544 }
2545 raw_nat_from_node_info(raw_ne, &ne->ni);
2546 nat_reset_flag(ne);
2547 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2548 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2549 add_free_nid(sbi, nid, false, true);
2550 } else {
2551 spin_lock(&NM_I(sbi)->nid_list_lock);
2552 update_free_nid_bitmap(sbi, nid, false, false);
2553 spin_unlock(&NM_I(sbi)->nid_list_lock);
2554 }
2555 }
2556
2557 if (to_journal) {
2558 up_write(&curseg->journal_rwsem);
2559 } else {
2560 __update_nat_bits(sbi, start_nid, page);
2561 f2fs_put_page(page, 1);
2562 }
2563
2564 /* Allow dirty nats by node block allocation in write_begin */
2565 if (!set->entry_cnt) {
2566 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2567 kmem_cache_free(nat_entry_set_slab, set);
2568 }
2569 }
2570
2571 /*
2572 * This function is called during the checkpointing process.
2573 */
2574 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2575 {
2576 struct f2fs_nm_info *nm_i = NM_I(sbi);
2577 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2578 struct f2fs_journal *journal = curseg->journal;
2579 struct nat_entry_set *setvec[SETVEC_SIZE];
2580 struct nat_entry_set *set, *tmp;
2581 unsigned int found;
2582 nid_t set_idx = 0;
2583 LIST_HEAD(sets);
2584
2585 if (!nm_i->dirty_nat_cnt)
2586 return;
2587
2588 down_write(&nm_i->nat_tree_lock);
2589
2590 /*
2591 * if there are no enough space in journal to store dirty nat
2592 * entries, remove all entries from journal and merge them
2593 * into nat entry set.
2594 */
2595 if (enabled_nat_bits(sbi, cpc) ||
2596 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2597 remove_nats_in_journal(sbi);
2598
2599 while ((found = __gang_lookup_nat_set(nm_i,
2600 set_idx, SETVEC_SIZE, setvec))) {
2601 unsigned idx;
2602 set_idx = setvec[found - 1]->set + 1;
2603 for (idx = 0; idx < found; idx++)
2604 __adjust_nat_entry_set(setvec[idx], &sets,
2605 MAX_NAT_JENTRIES(journal));
2606 }
2607
2608 /* flush dirty nats in nat entry set */
2609 list_for_each_entry_safe(set, tmp, &sets, set_list)
2610 __flush_nat_entry_set(sbi, set, cpc);
2611
2612 up_write(&nm_i->nat_tree_lock);
2613 /* Allow dirty nats by node block allocation in write_begin */
2614 }
2615
2616 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2617 {
2618 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2619 struct f2fs_nm_info *nm_i = NM_I(sbi);
2620 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2621 unsigned int i;
2622 __u64 cp_ver = cur_cp_version(ckpt);
2623 block_t nat_bits_addr;
2624
2625 if (!enabled_nat_bits(sbi, NULL))
2626 return 0;
2627
2628 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2629 nm_i->nat_bits = f2fs_kzalloc(sbi,
2630 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2631 if (!nm_i->nat_bits)
2632 return -ENOMEM;
2633
2634 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2635 nm_i->nat_bits_blocks;
2636 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2637 struct page *page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2638
2639 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2640 page_address(page), F2FS_BLKSIZE);
2641 f2fs_put_page(page, 1);
2642 }
2643
2644 cp_ver |= (cur_cp_crc(ckpt) << 32);
2645 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2646 disable_nat_bits(sbi, true);
2647 return 0;
2648 }
2649
2650 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2651 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2652
2653 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2654 return 0;
2655 }
2656
2657 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2658 {
2659 struct f2fs_nm_info *nm_i = NM_I(sbi);
2660 unsigned int i = 0;
2661 nid_t nid, last_nid;
2662
2663 if (!enabled_nat_bits(sbi, NULL))
2664 return;
2665
2666 for (i = 0; i < nm_i->nat_blocks; i++) {
2667 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2668 if (i >= nm_i->nat_blocks)
2669 break;
2670
2671 __set_bit_le(i, nm_i->nat_block_bitmap);
2672
2673 nid = i * NAT_ENTRY_PER_BLOCK;
2674 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2675
2676 spin_lock(&NM_I(sbi)->nid_list_lock);
2677 for (; nid < last_nid; nid++)
2678 update_free_nid_bitmap(sbi, nid, true, true);
2679 spin_unlock(&NM_I(sbi)->nid_list_lock);
2680 }
2681
2682 for (i = 0; i < nm_i->nat_blocks; i++) {
2683 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2684 if (i >= nm_i->nat_blocks)
2685 break;
2686
2687 __set_bit_le(i, nm_i->nat_block_bitmap);
2688 }
2689 }
2690
2691 static int init_node_manager(struct f2fs_sb_info *sbi)
2692 {
2693 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2694 struct f2fs_nm_info *nm_i = NM_I(sbi);
2695 unsigned char *version_bitmap;
2696 unsigned int nat_segs;
2697 int err;
2698
2699 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2700
2701 /* segment_count_nat includes pair segment so divide to 2. */
2702 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2703 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2704 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2705
2706 /* not used nids: 0, node, meta, (and root counted as valid node) */
2707 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2708 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2709 nm_i->nid_cnt[FREE_NID] = 0;
2710 nm_i->nid_cnt[PREALLOC_NID] = 0;
2711 nm_i->nat_cnt = 0;
2712 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2713 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2714 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2715
2716 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2717 INIT_LIST_HEAD(&nm_i->free_nid_list);
2718 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2719 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2720 INIT_LIST_HEAD(&nm_i->nat_entries);
2721
2722 mutex_init(&nm_i->build_lock);
2723 spin_lock_init(&nm_i->nid_list_lock);
2724 init_rwsem(&nm_i->nat_tree_lock);
2725
2726 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2727 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2728 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2729 if (!version_bitmap)
2730 return -EFAULT;
2731
2732 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2733 GFP_KERNEL);
2734 if (!nm_i->nat_bitmap)
2735 return -ENOMEM;
2736
2737 err = __get_nat_bitmaps(sbi);
2738 if (err)
2739 return err;
2740
2741 #ifdef CONFIG_F2FS_CHECK_FS
2742 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2743 GFP_KERNEL);
2744 if (!nm_i->nat_bitmap_mir)
2745 return -ENOMEM;
2746 #endif
2747
2748 return 0;
2749 }
2750
2751 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2752 {
2753 struct f2fs_nm_info *nm_i = NM_I(sbi);
2754 int i;
2755
2756 nm_i->free_nid_bitmap =
2757 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2758 nm_i->nat_blocks),
2759 GFP_KERNEL);
2760 if (!nm_i->free_nid_bitmap)
2761 return -ENOMEM;
2762
2763 for (i = 0; i < nm_i->nat_blocks; i++) {
2764 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2765 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2766 if (!nm_i->free_nid_bitmap)
2767 return -ENOMEM;
2768 }
2769
2770 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2771 GFP_KERNEL);
2772 if (!nm_i->nat_block_bitmap)
2773 return -ENOMEM;
2774
2775 nm_i->free_nid_count =
2776 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
2777 nm_i->nat_blocks),
2778 GFP_KERNEL);
2779 if (!nm_i->free_nid_count)
2780 return -ENOMEM;
2781 return 0;
2782 }
2783
2784 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
2785 {
2786 int err;
2787
2788 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2789 GFP_KERNEL);
2790 if (!sbi->nm_info)
2791 return -ENOMEM;
2792
2793 err = init_node_manager(sbi);
2794 if (err)
2795 return err;
2796
2797 err = init_free_nid_cache(sbi);
2798 if (err)
2799 return err;
2800
2801 /* load free nid status from nat_bits table */
2802 load_free_nid_bitmap(sbi);
2803
2804 f2fs_build_free_nids(sbi, true, true);
2805 return 0;
2806 }
2807
2808 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
2809 {
2810 struct f2fs_nm_info *nm_i = NM_I(sbi);
2811 struct free_nid *i, *next_i;
2812 struct nat_entry *natvec[NATVEC_SIZE];
2813 struct nat_entry_set *setvec[SETVEC_SIZE];
2814 nid_t nid = 0;
2815 unsigned int found;
2816
2817 if (!nm_i)
2818 return;
2819
2820 /* destroy free nid list */
2821 spin_lock(&nm_i->nid_list_lock);
2822 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2823 __remove_free_nid(sbi, i, FREE_NID);
2824 spin_unlock(&nm_i->nid_list_lock);
2825 kmem_cache_free(free_nid_slab, i);
2826 spin_lock(&nm_i->nid_list_lock);
2827 }
2828 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2829 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2830 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2831 spin_unlock(&nm_i->nid_list_lock);
2832
2833 /* destroy nat cache */
2834 down_write(&nm_i->nat_tree_lock);
2835 while ((found = __gang_lookup_nat_cache(nm_i,
2836 nid, NATVEC_SIZE, natvec))) {
2837 unsigned idx;
2838
2839 nid = nat_get_nid(natvec[found - 1]) + 1;
2840 for (idx = 0; idx < found; idx++)
2841 __del_from_nat_cache(nm_i, natvec[idx]);
2842 }
2843 f2fs_bug_on(sbi, nm_i->nat_cnt);
2844
2845 /* destroy nat set cache */
2846 nid = 0;
2847 while ((found = __gang_lookup_nat_set(nm_i,
2848 nid, SETVEC_SIZE, setvec))) {
2849 unsigned idx;
2850
2851 nid = setvec[found - 1]->set + 1;
2852 for (idx = 0; idx < found; idx++) {
2853 /* entry_cnt is not zero, when cp_error was occurred */
2854 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2855 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2856 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2857 }
2858 }
2859 up_write(&nm_i->nat_tree_lock);
2860
2861 kvfree(nm_i->nat_block_bitmap);
2862 if (nm_i->free_nid_bitmap) {
2863 int i;
2864
2865 for (i = 0; i < nm_i->nat_blocks; i++)
2866 kvfree(nm_i->free_nid_bitmap[i]);
2867 kfree(nm_i->free_nid_bitmap);
2868 }
2869 kvfree(nm_i->free_nid_count);
2870
2871 kfree(nm_i->nat_bitmap);
2872 kfree(nm_i->nat_bits);
2873 #ifdef CONFIG_F2FS_CHECK_FS
2874 kfree(nm_i->nat_bitmap_mir);
2875 #endif
2876 sbi->nm_info = NULL;
2877 kfree(nm_i);
2878 }
2879
2880 int __init f2fs_create_node_manager_caches(void)
2881 {
2882 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2883 sizeof(struct nat_entry));
2884 if (!nat_entry_slab)
2885 goto fail;
2886
2887 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2888 sizeof(struct free_nid));
2889 if (!free_nid_slab)
2890 goto destroy_nat_entry;
2891
2892 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2893 sizeof(struct nat_entry_set));
2894 if (!nat_entry_set_slab)
2895 goto destroy_free_nid;
2896 return 0;
2897
2898 destroy_free_nid:
2899 kmem_cache_destroy(free_nid_slab);
2900 destroy_nat_entry:
2901 kmem_cache_destroy(nat_entry_slab);
2902 fail:
2903 return -ENOMEM;
2904 }
2905
2906 void f2fs_destroy_node_manager_caches(void)
2907 {
2908 kmem_cache_destroy(nat_entry_set_slab);
2909 kmem_cache_destroy(free_nid_slab);
2910 kmem_cache_destroy(nat_entry_slab);
2911 }