]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/f2fs/node.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_msg(sbi->sb, KERN_WARNING,
38 "%s: out-of-range nid=%x, run fsck to fix.",
39 __func__, nid);
40 return -EINVAL;
41 }
42 return 0;
43 }
44
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
52
53 si_meminfo(&val);
54
55 /* only uses low memory */
56 avail_ram = val.totalram - val.totalhigh;
57
58 /*
59 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 */
61 if (type == FREE_NIDS) {
62 mem_size = (nm_i->nid_cnt[FREE_NID] *
63 sizeof(struct free_nid)) >> PAGE_SHIFT;
64 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65 } else if (type == NAT_ENTRIES) {
66 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67 PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 if (excess_cached_nats(sbi))
70 res = false;
71 } else if (type == DIRTY_DENTS) {
72 if (sbi->sb->s_bdi->wb.dirty_exceeded)
73 return false;
74 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 } else if (type == INO_ENTRIES) {
77 int i;
78
79 for (i = 0; i < MAX_INO_ENTRY; i++)
80 mem_size += sbi->im[i].ino_num *
81 sizeof(struct ino_entry);
82 mem_size >>= PAGE_SHIFT;
83 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84 } else if (type == EXTENT_CACHE) {
85 mem_size = (atomic_read(&sbi->total_ext_tree) *
86 sizeof(struct extent_tree) +
87 atomic_read(&sbi->total_ext_node) *
88 sizeof(struct extent_node)) >> PAGE_SHIFT;
89 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90 } else if (type == INMEM_PAGES) {
91 /* it allows 20% / total_ram for inmemory pages */
92 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93 res = mem_size < (val.totalram / 5);
94 } else {
95 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96 return true;
97 }
98 return res;
99 }
100
101 static void clear_node_page_dirty(struct page *page)
102 {
103 if (PageDirty(page)) {
104 f2fs_clear_page_cache_dirty_tag(page);
105 clear_page_dirty_for_io(page);
106 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 }
108 ClearPageUptodate(page);
109 }
110
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118 struct page *src_page;
119 struct page *dst_page;
120 pgoff_t dst_off;
121 void *src_addr;
122 void *dst_addr;
123 struct f2fs_nm_info *nm_i = NM_I(sbi);
124
125 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126
127 /* get current nat block page with lock */
128 src_page = get_current_nat_page(sbi, nid);
129 if (IS_ERR(src_page))
130 return src_page;
131 dst_page = f2fs_grab_meta_page(sbi, dst_off);
132 f2fs_bug_on(sbi, PageDirty(src_page));
133
134 src_addr = page_address(src_page);
135 dst_addr = page_address(dst_page);
136 memcpy(dst_addr, src_addr, PAGE_SIZE);
137 set_page_dirty(dst_page);
138 f2fs_put_page(src_page, 1);
139
140 set_to_next_nat(nm_i, nid);
141
142 return dst_page;
143 }
144
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147 struct nat_entry *new;
148
149 if (no_fail)
150 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 else
152 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153 if (new) {
154 nat_set_nid(new, nid);
155 nat_reset_flag(new);
156 }
157 return new;
158 }
159
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162 kmem_cache_free(nat_entry_slab, e);
163 }
164
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169 if (no_fail)
170 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172 return NULL;
173
174 if (raw_ne)
175 node_info_from_raw_nat(&ne->ni, raw_ne);
176
177 spin_lock(&nm_i->nat_list_lock);
178 list_add_tail(&ne->list, &nm_i->nat_entries);
179 spin_unlock(&nm_i->nat_list_lock);
180
181 nm_i->nat_cnt++;
182 return ne;
183 }
184
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt--;
212 __free_nat_entry(e);
213 }
214
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216 struct nat_entry *ne)
217 {
218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219 struct nat_entry_set *head;
220
221 head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 if (!head) {
223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224
225 INIT_LIST_HEAD(&head->entry_list);
226 INIT_LIST_HEAD(&head->set_list);
227 head->set = set;
228 head->entry_cnt = 0;
229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 }
231 return head;
232 }
233
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235 struct nat_entry *ne)
236 {
237 struct nat_entry_set *head;
238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239
240 if (!new_ne)
241 head = __grab_nat_entry_set(nm_i, ne);
242
243 /*
244 * update entry_cnt in below condition:
245 * 1. update NEW_ADDR to valid block address;
246 * 2. update old block address to new one;
247 */
248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249 !get_nat_flag(ne, IS_DIRTY)))
250 head->entry_cnt++;
251
252 set_nat_flag(ne, IS_PREALLOC, new_ne);
253
254 if (get_nat_flag(ne, IS_DIRTY))
255 goto refresh_list;
256
257 nm_i->dirty_nat_cnt++;
258 set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260 spin_lock(&nm_i->nat_list_lock);
261 if (new_ne)
262 list_del_init(&ne->list);
263 else
264 list_move_tail(&ne->list, &head->entry_list);
265 spin_unlock(&nm_i->nat_list_lock);
266 }
267
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269 struct nat_entry_set *set, struct nat_entry *ne)
270 {
271 spin_lock(&nm_i->nat_list_lock);
272 list_move_tail(&ne->list, &nm_i->nat_entries);
273 spin_unlock(&nm_i->nat_list_lock);
274
275 set_nat_flag(ne, IS_DIRTY, false);
276 set->entry_cnt--;
277 nm_i->dirty_nat_cnt--;
278 }
279
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284 start, nr);
285 }
286
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289 return NODE_MAPPING(sbi) == page->mapping &&
290 IS_DNODE(page) && is_cold_node(page);
291 }
292
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295 spin_lock_init(&sbi->fsync_node_lock);
296 INIT_LIST_HEAD(&sbi->fsync_node_list);
297 sbi->fsync_seg_id = 0;
298 sbi->fsync_node_num = 0;
299 }
300
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302 struct page *page)
303 {
304 struct fsync_node_entry *fn;
305 unsigned long flags;
306 unsigned int seq_id;
307
308 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309
310 get_page(page);
311 fn->page = page;
312 INIT_LIST_HEAD(&fn->list);
313
314 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315 list_add_tail(&fn->list, &sbi->fsync_node_list);
316 fn->seq_id = sbi->fsync_seg_id++;
317 seq_id = fn->seq_id;
318 sbi->fsync_node_num++;
319 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320
321 return seq_id;
322 }
323
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326 struct fsync_node_entry *fn;
327 unsigned long flags;
328
329 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331 if (fn->page == page) {
332 list_del(&fn->list);
333 sbi->fsync_node_num--;
334 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335 kmem_cache_free(fsync_node_entry_slab, fn);
336 put_page(page);
337 return;
338 }
339 }
340 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341 f2fs_bug_on(sbi, 1);
342 }
343
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346 unsigned long flags;
347
348 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349 sbi->fsync_seg_id = 0;
350 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355 struct f2fs_nm_info *nm_i = NM_I(sbi);
356 struct nat_entry *e;
357 bool need = false;
358
359 down_read(&nm_i->nat_tree_lock);
360 e = __lookup_nat_cache(nm_i, nid);
361 if (e) {
362 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363 !get_nat_flag(e, HAS_FSYNCED_INODE))
364 need = true;
365 }
366 up_read(&nm_i->nat_tree_lock);
367 return need;
368 }
369
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372 struct f2fs_nm_info *nm_i = NM_I(sbi);
373 struct nat_entry *e;
374 bool is_cp = true;
375
376 down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
378 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379 is_cp = false;
380 up_read(&nm_i->nat_tree_lock);
381 return is_cp;
382 }
383
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386 struct f2fs_nm_info *nm_i = NM_I(sbi);
387 struct nat_entry *e;
388 bool need_update = true;
389
390 down_read(&nm_i->nat_tree_lock);
391 e = __lookup_nat_cache(nm_i, ino);
392 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393 (get_nat_flag(e, IS_CHECKPOINTED) ||
394 get_nat_flag(e, HAS_FSYNCED_INODE)))
395 need_update = false;
396 up_read(&nm_i->nat_tree_lock);
397 return need_update;
398 }
399
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402 struct f2fs_nat_entry *ne)
403 {
404 struct f2fs_nm_info *nm_i = NM_I(sbi);
405 struct nat_entry *new, *e;
406
407 new = __alloc_nat_entry(nid, false);
408 if (!new)
409 return;
410
411 down_write(&nm_i->nat_tree_lock);
412 e = __lookup_nat_cache(nm_i, nid);
413 if (!e)
414 e = __init_nat_entry(nm_i, new, ne, false);
415 else
416 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417 nat_get_blkaddr(e) !=
418 le32_to_cpu(ne->block_addr) ||
419 nat_get_version(e) != ne->version);
420 up_write(&nm_i->nat_tree_lock);
421 if (e != new)
422 __free_nat_entry(new);
423 }
424
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426 block_t new_blkaddr, bool fsync_done)
427 {
428 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *e;
430 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431
432 down_write(&nm_i->nat_tree_lock);
433 e = __lookup_nat_cache(nm_i, ni->nid);
434 if (!e) {
435 e = __init_nat_entry(nm_i, new, NULL, true);
436 copy_node_info(&e->ni, ni);
437 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438 } else if (new_blkaddr == NEW_ADDR) {
439 /*
440 * when nid is reallocated,
441 * previous nat entry can be remained in nat cache.
442 * So, reinitialize it with new information.
443 */
444 copy_node_info(&e->ni, ni);
445 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 }
447 /* let's free early to reduce memory consumption */
448 if (e != new)
449 __free_nat_entry(new);
450
451 /* sanity check */
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454 new_blkaddr == NULL_ADDR);
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456 new_blkaddr == NEW_ADDR);
457 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458 new_blkaddr == NEW_ADDR);
459
460 /* increment version no as node is removed */
461 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462 unsigned char version = nat_get_version(e);
463 nat_set_version(e, inc_node_version(version));
464 }
465
466 /* change address */
467 nat_set_blkaddr(e, new_blkaddr);
468 if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469 set_nat_flag(e, IS_CHECKPOINTED, false);
470 __set_nat_cache_dirty(nm_i, e);
471
472 /* update fsync_mark if its inode nat entry is still alive */
473 if (ni->nid != ni->ino)
474 e = __lookup_nat_cache(nm_i, ni->ino);
475 if (e) {
476 if (fsync_done && ni->nid == ni->ino)
477 set_nat_flag(e, HAS_FSYNCED_INODE, true);
478 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 }
480 up_write(&nm_i->nat_tree_lock);
481 }
482
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485 struct f2fs_nm_info *nm_i = NM_I(sbi);
486 int nr = nr_shrink;
487
488 if (!down_write_trylock(&nm_i->nat_tree_lock))
489 return 0;
490
491 spin_lock(&nm_i->nat_list_lock);
492 while (nr_shrink) {
493 struct nat_entry *ne;
494
495 if (list_empty(&nm_i->nat_entries))
496 break;
497
498 ne = list_first_entry(&nm_i->nat_entries,
499 struct nat_entry, list);
500 list_del(&ne->list);
501 spin_unlock(&nm_i->nat_list_lock);
502
503 __del_from_nat_cache(nm_i, ne);
504 nr_shrink--;
505
506 spin_lock(&nm_i->nat_list_lock);
507 }
508 spin_unlock(&nm_i->nat_list_lock);
509
510 up_write(&nm_i->nat_tree_lock);
511 return nr - nr_shrink;
512 }
513
514 /*
515 * This function always returns success
516 */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 int i;
530
531 ni->nid = nid;
532
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
542 }
543
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
552 }
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
557 }
558
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
562
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
566
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571 cache:
572 /* cache nat entry */
573 cache_nat_entry(sbi, nid, &ne);
574 return 0;
575 }
576
577 /*
578 * readahead MAX_RA_NODE number of node pages.
579 */
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
581 {
582 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583 struct blk_plug plug;
584 int i, end;
585 nid_t nid;
586
587 blk_start_plug(&plug);
588
589 /* Then, try readahead for siblings of the desired node */
590 end = start + n;
591 end = min(end, NIDS_PER_BLOCK);
592 for (i = start; i < end; i++) {
593 nid = get_nid(parent, i, false);
594 f2fs_ra_node_page(sbi, nid);
595 }
596
597 blk_finish_plug(&plug);
598 }
599
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
601 {
602 const long direct_index = ADDRS_PER_INODE(dn->inode);
603 const long direct_blks = ADDRS_PER_BLOCK;
604 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605 unsigned int skipped_unit = ADDRS_PER_BLOCK;
606 int cur_level = dn->cur_level;
607 int max_level = dn->max_level;
608 pgoff_t base = 0;
609
610 if (!dn->max_level)
611 return pgofs + 1;
612
613 while (max_level-- > cur_level)
614 skipped_unit *= NIDS_PER_BLOCK;
615
616 switch (dn->max_level) {
617 case 3:
618 base += 2 * indirect_blks;
619 case 2:
620 base += 2 * direct_blks;
621 case 1:
622 base += direct_index;
623 break;
624 default:
625 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
626 }
627
628 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
629 }
630
631 /*
632 * The maximum depth is four.
633 * Offset[0] will have raw inode offset.
634 */
635 static int get_node_path(struct inode *inode, long block,
636 int offset[4], unsigned int noffset[4])
637 {
638 const long direct_index = ADDRS_PER_INODE(inode);
639 const long direct_blks = ADDRS_PER_BLOCK;
640 const long dptrs_per_blk = NIDS_PER_BLOCK;
641 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
642 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
643 int n = 0;
644 int level = 0;
645
646 noffset[0] = 0;
647
648 if (block < direct_index) {
649 offset[n] = block;
650 goto got;
651 }
652 block -= direct_index;
653 if (block < direct_blks) {
654 offset[n++] = NODE_DIR1_BLOCK;
655 noffset[n] = 1;
656 offset[n] = block;
657 level = 1;
658 goto got;
659 }
660 block -= direct_blks;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR2_BLOCK;
663 noffset[n] = 2;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < indirect_blks) {
670 offset[n++] = NODE_IND1_BLOCK;
671 noffset[n] = 3;
672 offset[n++] = block / direct_blks;
673 noffset[n] = 4 + offset[n - 1];
674 offset[n] = block % direct_blks;
675 level = 2;
676 goto got;
677 }
678 block -= indirect_blks;
679 if (block < indirect_blks) {
680 offset[n++] = NODE_IND2_BLOCK;
681 noffset[n] = 4 + dptrs_per_blk;
682 offset[n++] = block / direct_blks;
683 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
684 offset[n] = block % direct_blks;
685 level = 2;
686 goto got;
687 }
688 block -= indirect_blks;
689 if (block < dindirect_blks) {
690 offset[n++] = NODE_DIND_BLOCK;
691 noffset[n] = 5 + (dptrs_per_blk * 2);
692 offset[n++] = block / indirect_blks;
693 noffset[n] = 6 + (dptrs_per_blk * 2) +
694 offset[n - 1] * (dptrs_per_blk + 1);
695 offset[n++] = (block / direct_blks) % dptrs_per_blk;
696 noffset[n] = 7 + (dptrs_per_blk * 2) +
697 offset[n - 2] * (dptrs_per_blk + 1) +
698 offset[n - 1];
699 offset[n] = block % direct_blks;
700 level = 3;
701 goto got;
702 } else {
703 return -E2BIG;
704 }
705 got:
706 return level;
707 }
708
709 /*
710 * Caller should call f2fs_put_dnode(dn).
711 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713 * In the case of RDONLY_NODE, we don't need to care about mutex.
714 */
715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
716 {
717 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
718 struct page *npage[4];
719 struct page *parent = NULL;
720 int offset[4];
721 unsigned int noffset[4];
722 nid_t nids[4];
723 int level, i = 0;
724 int err = 0;
725
726 level = get_node_path(dn->inode, index, offset, noffset);
727 if (level < 0)
728 return level;
729
730 nids[0] = dn->inode->i_ino;
731 npage[0] = dn->inode_page;
732
733 if (!npage[0]) {
734 npage[0] = f2fs_get_node_page(sbi, nids[0]);
735 if (IS_ERR(npage[0]))
736 return PTR_ERR(npage[0]);
737 }
738
739 /* if inline_data is set, should not report any block indices */
740 if (f2fs_has_inline_data(dn->inode) && index) {
741 err = -ENOENT;
742 f2fs_put_page(npage[0], 1);
743 goto release_out;
744 }
745
746 parent = npage[0];
747 if (level != 0)
748 nids[1] = get_nid(parent, offset[0], true);
749 dn->inode_page = npage[0];
750 dn->inode_page_locked = true;
751
752 /* get indirect or direct nodes */
753 for (i = 1; i <= level; i++) {
754 bool done = false;
755
756 if (!nids[i] && mode == ALLOC_NODE) {
757 /* alloc new node */
758 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
759 err = -ENOSPC;
760 goto release_pages;
761 }
762
763 dn->nid = nids[i];
764 npage[i] = f2fs_new_node_page(dn, noffset[i]);
765 if (IS_ERR(npage[i])) {
766 f2fs_alloc_nid_failed(sbi, nids[i]);
767 err = PTR_ERR(npage[i]);
768 goto release_pages;
769 }
770
771 set_nid(parent, offset[i - 1], nids[i], i == 1);
772 f2fs_alloc_nid_done(sbi, nids[i]);
773 done = true;
774 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
775 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
776 if (IS_ERR(npage[i])) {
777 err = PTR_ERR(npage[i]);
778 goto release_pages;
779 }
780 done = true;
781 }
782 if (i == 1) {
783 dn->inode_page_locked = false;
784 unlock_page(parent);
785 } else {
786 f2fs_put_page(parent, 1);
787 }
788
789 if (!done) {
790 npage[i] = f2fs_get_node_page(sbi, nids[i]);
791 if (IS_ERR(npage[i])) {
792 err = PTR_ERR(npage[i]);
793 f2fs_put_page(npage[0], 0);
794 goto release_out;
795 }
796 }
797 if (i < level) {
798 parent = npage[i];
799 nids[i + 1] = get_nid(parent, offset[i], false);
800 }
801 }
802 dn->nid = nids[level];
803 dn->ofs_in_node = offset[level];
804 dn->node_page = npage[level];
805 dn->data_blkaddr = datablock_addr(dn->inode,
806 dn->node_page, dn->ofs_in_node);
807 return 0;
808
809 release_pages:
810 f2fs_put_page(parent, 1);
811 if (i > 1)
812 f2fs_put_page(npage[0], 0);
813 release_out:
814 dn->inode_page = NULL;
815 dn->node_page = NULL;
816 if (err == -ENOENT) {
817 dn->cur_level = i;
818 dn->max_level = level;
819 dn->ofs_in_node = offset[level];
820 }
821 return err;
822 }
823
824 static int truncate_node(struct dnode_of_data *dn)
825 {
826 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
827 struct node_info ni;
828 int err;
829 pgoff_t index;
830
831 err = f2fs_get_node_info(sbi, dn->nid, &ni);
832 if (err)
833 return err;
834
835 /* Deallocate node address */
836 f2fs_invalidate_blocks(sbi, ni.blk_addr);
837 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838 set_node_addr(sbi, &ni, NULL_ADDR, false);
839
840 if (dn->nid == dn->inode->i_ino) {
841 f2fs_remove_orphan_inode(sbi, dn->nid);
842 dec_valid_inode_count(sbi);
843 f2fs_inode_synced(dn->inode);
844 }
845
846 clear_node_page_dirty(dn->node_page);
847 set_sbi_flag(sbi, SBI_IS_DIRTY);
848
849 index = dn->node_page->index;
850 f2fs_put_page(dn->node_page, 1);
851
852 invalidate_mapping_pages(NODE_MAPPING(sbi),
853 index, index);
854
855 dn->node_page = NULL;
856 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
857
858 return 0;
859 }
860
861 static int truncate_dnode(struct dnode_of_data *dn)
862 {
863 struct page *page;
864 int err;
865
866 if (dn->nid == 0)
867 return 1;
868
869 /* get direct node */
870 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
871 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
872 return 1;
873 else if (IS_ERR(page))
874 return PTR_ERR(page);
875
876 /* Make dnode_of_data for parameter */
877 dn->node_page = page;
878 dn->ofs_in_node = 0;
879 f2fs_truncate_data_blocks(dn);
880 err = truncate_node(dn);
881 if (err)
882 return err;
883
884 return 1;
885 }
886
887 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
888 int ofs, int depth)
889 {
890 struct dnode_of_data rdn = *dn;
891 struct page *page;
892 struct f2fs_node *rn;
893 nid_t child_nid;
894 unsigned int child_nofs;
895 int freed = 0;
896 int i, ret;
897
898 if (dn->nid == 0)
899 return NIDS_PER_BLOCK + 1;
900
901 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
902
903 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
904 if (IS_ERR(page)) {
905 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
906 return PTR_ERR(page);
907 }
908
909 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
910
911 rn = F2FS_NODE(page);
912 if (depth < 3) {
913 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
914 child_nid = le32_to_cpu(rn->in.nid[i]);
915 if (child_nid == 0)
916 continue;
917 rdn.nid = child_nid;
918 ret = truncate_dnode(&rdn);
919 if (ret < 0)
920 goto out_err;
921 if (set_nid(page, i, 0, false))
922 dn->node_changed = true;
923 }
924 } else {
925 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
926 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
927 child_nid = le32_to_cpu(rn->in.nid[i]);
928 if (child_nid == 0) {
929 child_nofs += NIDS_PER_BLOCK + 1;
930 continue;
931 }
932 rdn.nid = child_nid;
933 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
934 if (ret == (NIDS_PER_BLOCK + 1)) {
935 if (set_nid(page, i, 0, false))
936 dn->node_changed = true;
937 child_nofs += ret;
938 } else if (ret < 0 && ret != -ENOENT) {
939 goto out_err;
940 }
941 }
942 freed = child_nofs;
943 }
944
945 if (!ofs) {
946 /* remove current indirect node */
947 dn->node_page = page;
948 ret = truncate_node(dn);
949 if (ret)
950 goto out_err;
951 freed++;
952 } else {
953 f2fs_put_page(page, 1);
954 }
955 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
956 return freed;
957
958 out_err:
959 f2fs_put_page(page, 1);
960 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
961 return ret;
962 }
963
964 static int truncate_partial_nodes(struct dnode_of_data *dn,
965 struct f2fs_inode *ri, int *offset, int depth)
966 {
967 struct page *pages[2];
968 nid_t nid[3];
969 nid_t child_nid;
970 int err = 0;
971 int i;
972 int idx = depth - 2;
973
974 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
975 if (!nid[0])
976 return 0;
977
978 /* get indirect nodes in the path */
979 for (i = 0; i < idx + 1; i++) {
980 /* reference count'll be increased */
981 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
982 if (IS_ERR(pages[i])) {
983 err = PTR_ERR(pages[i]);
984 idx = i - 1;
985 goto fail;
986 }
987 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
988 }
989
990 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
991
992 /* free direct nodes linked to a partial indirect node */
993 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
994 child_nid = get_nid(pages[idx], i, false);
995 if (!child_nid)
996 continue;
997 dn->nid = child_nid;
998 err = truncate_dnode(dn);
999 if (err < 0)
1000 goto fail;
1001 if (set_nid(pages[idx], i, 0, false))
1002 dn->node_changed = true;
1003 }
1004
1005 if (offset[idx + 1] == 0) {
1006 dn->node_page = pages[idx];
1007 dn->nid = nid[idx];
1008 err = truncate_node(dn);
1009 if (err)
1010 goto fail;
1011 } else {
1012 f2fs_put_page(pages[idx], 1);
1013 }
1014 offset[idx]++;
1015 offset[idx + 1] = 0;
1016 idx--;
1017 fail:
1018 for (i = idx; i >= 0; i--)
1019 f2fs_put_page(pages[i], 1);
1020
1021 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1022
1023 return err;
1024 }
1025
1026 /*
1027 * All the block addresses of data and nodes should be nullified.
1028 */
1029 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1030 {
1031 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1032 int err = 0, cont = 1;
1033 int level, offset[4], noffset[4];
1034 unsigned int nofs = 0;
1035 struct f2fs_inode *ri;
1036 struct dnode_of_data dn;
1037 struct page *page;
1038
1039 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1040
1041 level = get_node_path(inode, from, offset, noffset);
1042 if (level < 0)
1043 return level;
1044
1045 page = f2fs_get_node_page(sbi, inode->i_ino);
1046 if (IS_ERR(page)) {
1047 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1048 return PTR_ERR(page);
1049 }
1050
1051 set_new_dnode(&dn, inode, page, NULL, 0);
1052 unlock_page(page);
1053
1054 ri = F2FS_INODE(page);
1055 switch (level) {
1056 case 0:
1057 case 1:
1058 nofs = noffset[1];
1059 break;
1060 case 2:
1061 nofs = noffset[1];
1062 if (!offset[level - 1])
1063 goto skip_partial;
1064 err = truncate_partial_nodes(&dn, ri, offset, level);
1065 if (err < 0 && err != -ENOENT)
1066 goto fail;
1067 nofs += 1 + NIDS_PER_BLOCK;
1068 break;
1069 case 3:
1070 nofs = 5 + 2 * NIDS_PER_BLOCK;
1071 if (!offset[level - 1])
1072 goto skip_partial;
1073 err = truncate_partial_nodes(&dn, ri, offset, level);
1074 if (err < 0 && err != -ENOENT)
1075 goto fail;
1076 break;
1077 default:
1078 BUG();
1079 }
1080
1081 skip_partial:
1082 while (cont) {
1083 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1084 switch (offset[0]) {
1085 case NODE_DIR1_BLOCK:
1086 case NODE_DIR2_BLOCK:
1087 err = truncate_dnode(&dn);
1088 break;
1089
1090 case NODE_IND1_BLOCK:
1091 case NODE_IND2_BLOCK:
1092 err = truncate_nodes(&dn, nofs, offset[1], 2);
1093 break;
1094
1095 case NODE_DIND_BLOCK:
1096 err = truncate_nodes(&dn, nofs, offset[1], 3);
1097 cont = 0;
1098 break;
1099
1100 default:
1101 BUG();
1102 }
1103 if (err < 0 && err != -ENOENT)
1104 goto fail;
1105 if (offset[1] == 0 &&
1106 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1107 lock_page(page);
1108 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1109 f2fs_wait_on_page_writeback(page, NODE, true, true);
1110 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1111 set_page_dirty(page);
1112 unlock_page(page);
1113 }
1114 offset[1] = 0;
1115 offset[0]++;
1116 nofs += err;
1117 }
1118 fail:
1119 f2fs_put_page(page, 0);
1120 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1121 return err > 0 ? 0 : err;
1122 }
1123
1124 /* caller must lock inode page */
1125 int f2fs_truncate_xattr_node(struct inode *inode)
1126 {
1127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1129 struct dnode_of_data dn;
1130 struct page *npage;
1131 int err;
1132
1133 if (!nid)
1134 return 0;
1135
1136 npage = f2fs_get_node_page(sbi, nid);
1137 if (IS_ERR(npage))
1138 return PTR_ERR(npage);
1139
1140 set_new_dnode(&dn, inode, NULL, npage, nid);
1141 err = truncate_node(&dn);
1142 if (err) {
1143 f2fs_put_page(npage, 1);
1144 return err;
1145 }
1146
1147 f2fs_i_xnid_write(inode, 0);
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1154 * f2fs_unlock_op().
1155 */
1156 int f2fs_remove_inode_page(struct inode *inode)
1157 {
1158 struct dnode_of_data dn;
1159 int err;
1160
1161 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1162 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1163 if (err)
1164 return err;
1165
1166 err = f2fs_truncate_xattr_node(inode);
1167 if (err) {
1168 f2fs_put_dnode(&dn);
1169 return err;
1170 }
1171
1172 /* remove potential inline_data blocks */
1173 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1174 S_ISLNK(inode->i_mode))
1175 f2fs_truncate_data_blocks_range(&dn, 1);
1176
1177 /* 0 is possible, after f2fs_new_inode() has failed */
1178 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1179 f2fs_put_dnode(&dn);
1180 return -EIO;
1181 }
1182 f2fs_bug_on(F2FS_I_SB(inode),
1183 inode->i_blocks != 0 && inode->i_blocks != 8);
1184
1185 /* will put inode & node pages */
1186 err = truncate_node(&dn);
1187 if (err) {
1188 f2fs_put_dnode(&dn);
1189 return err;
1190 }
1191 return 0;
1192 }
1193
1194 struct page *f2fs_new_inode_page(struct inode *inode)
1195 {
1196 struct dnode_of_data dn;
1197
1198 /* allocate inode page for new inode */
1199 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1200
1201 /* caller should f2fs_put_page(page, 1); */
1202 return f2fs_new_node_page(&dn, 0);
1203 }
1204
1205 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1206 {
1207 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1208 struct node_info new_ni;
1209 struct page *page;
1210 int err;
1211
1212 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1213 return ERR_PTR(-EPERM);
1214
1215 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1216 if (!page)
1217 return ERR_PTR(-ENOMEM);
1218
1219 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1220 goto fail;
1221
1222 #ifdef CONFIG_F2FS_CHECK_FS
1223 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1224 if (err) {
1225 dec_valid_node_count(sbi, dn->inode, !ofs);
1226 goto fail;
1227 }
1228 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1229 #endif
1230 new_ni.nid = dn->nid;
1231 new_ni.ino = dn->inode->i_ino;
1232 new_ni.blk_addr = NULL_ADDR;
1233 new_ni.flag = 0;
1234 new_ni.version = 0;
1235 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1236
1237 f2fs_wait_on_page_writeback(page, NODE, true, true);
1238 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1239 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1240 if (!PageUptodate(page))
1241 SetPageUptodate(page);
1242 if (set_page_dirty(page))
1243 dn->node_changed = true;
1244
1245 if (f2fs_has_xattr_block(ofs))
1246 f2fs_i_xnid_write(dn->inode, dn->nid);
1247
1248 if (ofs == 0)
1249 inc_valid_inode_count(sbi);
1250 return page;
1251
1252 fail:
1253 clear_node_page_dirty(page);
1254 f2fs_put_page(page, 1);
1255 return ERR_PTR(err);
1256 }
1257
1258 /*
1259 * Caller should do after getting the following values.
1260 * 0: f2fs_put_page(page, 0)
1261 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1262 */
1263 static int read_node_page(struct page *page, int op_flags)
1264 {
1265 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1266 struct node_info ni;
1267 struct f2fs_io_info fio = {
1268 .sbi = sbi,
1269 .type = NODE,
1270 .op = REQ_OP_READ,
1271 .op_flags = op_flags,
1272 .page = page,
1273 .encrypted_page = NULL,
1274 };
1275 int err;
1276
1277 if (PageUptodate(page)) {
1278 #ifdef CONFIG_F2FS_CHECK_FS
1279 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1280 #endif
1281 return LOCKED_PAGE;
1282 }
1283
1284 err = f2fs_get_node_info(sbi, page->index, &ni);
1285 if (err)
1286 return err;
1287
1288 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1289 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1290 ClearPageUptodate(page);
1291 return -ENOENT;
1292 }
1293
1294 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1295 return f2fs_submit_page_bio(&fio);
1296 }
1297
1298 /*
1299 * Readahead a node page
1300 */
1301 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1302 {
1303 struct page *apage;
1304 int err;
1305
1306 if (!nid)
1307 return;
1308 if (f2fs_check_nid_range(sbi, nid))
1309 return;
1310
1311 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1312 if (apage)
1313 return;
1314
1315 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1316 if (!apage)
1317 return;
1318
1319 err = read_node_page(apage, REQ_RAHEAD);
1320 f2fs_put_page(apage, err ? 1 : 0);
1321 }
1322
1323 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1324 struct page *parent, int start)
1325 {
1326 struct page *page;
1327 int err;
1328
1329 if (!nid)
1330 return ERR_PTR(-ENOENT);
1331 if (f2fs_check_nid_range(sbi, nid))
1332 return ERR_PTR(-EINVAL);
1333 repeat:
1334 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335 if (!page)
1336 return ERR_PTR(-ENOMEM);
1337
1338 err = read_node_page(page, 0);
1339 if (err < 0) {
1340 f2fs_put_page(page, 1);
1341 return ERR_PTR(err);
1342 } else if (err == LOCKED_PAGE) {
1343 err = 0;
1344 goto page_hit;
1345 }
1346
1347 if (parent)
1348 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1349
1350 lock_page(page);
1351
1352 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1353 f2fs_put_page(page, 1);
1354 goto repeat;
1355 }
1356
1357 if (unlikely(!PageUptodate(page))) {
1358 err = -EIO;
1359 goto out_err;
1360 }
1361
1362 if (!f2fs_inode_chksum_verify(sbi, page)) {
1363 err = -EBADMSG;
1364 goto out_err;
1365 }
1366 page_hit:
1367 if(unlikely(nid != nid_of_node(page))) {
1368 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1369 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1370 nid, nid_of_node(page), ino_of_node(page),
1371 ofs_of_node(page), cpver_of_node(page),
1372 next_blkaddr_of_node(page));
1373 err = -EINVAL;
1374 out_err:
1375 ClearPageUptodate(page);
1376 f2fs_put_page(page, 1);
1377 return ERR_PTR(err);
1378 }
1379 return page;
1380 }
1381
1382 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1383 {
1384 return __get_node_page(sbi, nid, NULL, 0);
1385 }
1386
1387 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1388 {
1389 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1390 nid_t nid = get_nid(parent, start, false);
1391
1392 return __get_node_page(sbi, nid, parent, start);
1393 }
1394
1395 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1396 {
1397 struct inode *inode;
1398 struct page *page;
1399 int ret;
1400
1401 /* should flush inline_data before evict_inode */
1402 inode = ilookup(sbi->sb, ino);
1403 if (!inode)
1404 return;
1405
1406 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1407 FGP_LOCK|FGP_NOWAIT, 0);
1408 if (!page)
1409 goto iput_out;
1410
1411 if (!PageUptodate(page))
1412 goto page_out;
1413
1414 if (!PageDirty(page))
1415 goto page_out;
1416
1417 if (!clear_page_dirty_for_io(page))
1418 goto page_out;
1419
1420 ret = f2fs_write_inline_data(inode, page);
1421 inode_dec_dirty_pages(inode);
1422 f2fs_remove_dirty_inode(inode);
1423 if (ret)
1424 set_page_dirty(page);
1425 page_out:
1426 f2fs_put_page(page, 1);
1427 iput_out:
1428 iput(inode);
1429 }
1430
1431 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1432 {
1433 pgoff_t index;
1434 struct pagevec pvec;
1435 struct page *last_page = NULL;
1436 int nr_pages;
1437
1438 pagevec_init(&pvec);
1439 index = 0;
1440
1441 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1442 PAGECACHE_TAG_DIRTY))) {
1443 int i;
1444
1445 for (i = 0; i < nr_pages; i++) {
1446 struct page *page = pvec.pages[i];
1447
1448 if (unlikely(f2fs_cp_error(sbi))) {
1449 f2fs_put_page(last_page, 0);
1450 pagevec_release(&pvec);
1451 return ERR_PTR(-EIO);
1452 }
1453
1454 if (!IS_DNODE(page) || !is_cold_node(page))
1455 continue;
1456 if (ino_of_node(page) != ino)
1457 continue;
1458
1459 lock_page(page);
1460
1461 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1462 continue_unlock:
1463 unlock_page(page);
1464 continue;
1465 }
1466 if (ino_of_node(page) != ino)
1467 goto continue_unlock;
1468
1469 if (!PageDirty(page)) {
1470 /* someone wrote it for us */
1471 goto continue_unlock;
1472 }
1473
1474 if (last_page)
1475 f2fs_put_page(last_page, 0);
1476
1477 get_page(page);
1478 last_page = page;
1479 unlock_page(page);
1480 }
1481 pagevec_release(&pvec);
1482 cond_resched();
1483 }
1484 return last_page;
1485 }
1486
1487 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1488 struct writeback_control *wbc, bool do_balance,
1489 enum iostat_type io_type, unsigned int *seq_id)
1490 {
1491 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1492 nid_t nid;
1493 struct node_info ni;
1494 struct f2fs_io_info fio = {
1495 .sbi = sbi,
1496 .ino = ino_of_node(page),
1497 .type = NODE,
1498 .op = REQ_OP_WRITE,
1499 .op_flags = wbc_to_write_flags(wbc),
1500 .page = page,
1501 .encrypted_page = NULL,
1502 .submitted = false,
1503 .io_type = io_type,
1504 .io_wbc = wbc,
1505 };
1506 unsigned int seq;
1507
1508 trace_f2fs_writepage(page, NODE);
1509
1510 if (unlikely(f2fs_cp_error(sbi)))
1511 goto redirty_out;
1512
1513 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1514 goto redirty_out;
1515
1516 if (wbc->sync_mode == WB_SYNC_NONE &&
1517 IS_DNODE(page) && is_cold_node(page))
1518 goto redirty_out;
1519
1520 /* get old block addr of this node page */
1521 nid = nid_of_node(page);
1522 f2fs_bug_on(sbi, page->index != nid);
1523
1524 if (f2fs_get_node_info(sbi, nid, &ni))
1525 goto redirty_out;
1526
1527 if (wbc->for_reclaim) {
1528 if (!down_read_trylock(&sbi->node_write))
1529 goto redirty_out;
1530 } else {
1531 down_read(&sbi->node_write);
1532 }
1533
1534 /* This page is already truncated */
1535 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1536 ClearPageUptodate(page);
1537 dec_page_count(sbi, F2FS_DIRTY_NODES);
1538 up_read(&sbi->node_write);
1539 unlock_page(page);
1540 return 0;
1541 }
1542
1543 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1544 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1545 up_read(&sbi->node_write);
1546 goto redirty_out;
1547 }
1548
1549 if (atomic && !test_opt(sbi, NOBARRIER))
1550 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1551
1552 set_page_writeback(page);
1553 ClearPageError(page);
1554
1555 if (f2fs_in_warm_node_list(sbi, page)) {
1556 seq = f2fs_add_fsync_node_entry(sbi, page);
1557 if (seq_id)
1558 *seq_id = seq;
1559 }
1560
1561 fio.old_blkaddr = ni.blk_addr;
1562 f2fs_do_write_node_page(nid, &fio);
1563 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1564 dec_page_count(sbi, F2FS_DIRTY_NODES);
1565 up_read(&sbi->node_write);
1566
1567 if (wbc->for_reclaim) {
1568 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1569 submitted = NULL;
1570 }
1571
1572 unlock_page(page);
1573
1574 if (unlikely(f2fs_cp_error(sbi))) {
1575 f2fs_submit_merged_write(sbi, NODE);
1576 submitted = NULL;
1577 }
1578 if (submitted)
1579 *submitted = fio.submitted;
1580
1581 if (do_balance)
1582 f2fs_balance_fs(sbi, false);
1583 return 0;
1584
1585 redirty_out:
1586 redirty_page_for_writepage(wbc, page);
1587 return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589
1590 int f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592 int err = 0;
1593
1594 if (gc_type == FG_GC) {
1595 struct writeback_control wbc = {
1596 .sync_mode = WB_SYNC_ALL,
1597 .nr_to_write = 1,
1598 .for_reclaim = 0,
1599 };
1600
1601 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1602
1603 set_page_dirty(node_page);
1604
1605 if (!clear_page_dirty_for_io(node_page)) {
1606 err = -EAGAIN;
1607 goto out_page;
1608 }
1609
1610 if (__write_node_page(node_page, false, NULL,
1611 &wbc, false, FS_GC_NODE_IO, NULL)) {
1612 err = -EAGAIN;
1613 unlock_page(node_page);
1614 }
1615 goto release_page;
1616 } else {
1617 /* set page dirty and write it */
1618 if (!PageWriteback(node_page))
1619 set_page_dirty(node_page);
1620 }
1621 out_page:
1622 unlock_page(node_page);
1623 release_page:
1624 f2fs_put_page(node_page, 0);
1625 return err;
1626 }
1627
1628 static int f2fs_write_node_page(struct page *page,
1629 struct writeback_control *wbc)
1630 {
1631 return __write_node_page(page, false, NULL, wbc, false,
1632 FS_NODE_IO, NULL);
1633 }
1634
1635 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1636 struct writeback_control *wbc, bool atomic,
1637 unsigned int *seq_id)
1638 {
1639 pgoff_t index;
1640 struct pagevec pvec;
1641 int ret = 0;
1642 struct page *last_page = NULL;
1643 bool marked = false;
1644 nid_t ino = inode->i_ino;
1645 int nr_pages;
1646 int nwritten = 0;
1647
1648 if (atomic) {
1649 last_page = last_fsync_dnode(sbi, ino);
1650 if (IS_ERR_OR_NULL(last_page))
1651 return PTR_ERR_OR_ZERO(last_page);
1652 }
1653 retry:
1654 pagevec_init(&pvec);
1655 index = 0;
1656
1657 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1658 PAGECACHE_TAG_DIRTY))) {
1659 int i;
1660
1661 for (i = 0; i < nr_pages; i++) {
1662 struct page *page = pvec.pages[i];
1663 bool submitted = false;
1664
1665 if (unlikely(f2fs_cp_error(sbi))) {
1666 f2fs_put_page(last_page, 0);
1667 pagevec_release(&pvec);
1668 ret = -EIO;
1669 goto out;
1670 }
1671
1672 if (!IS_DNODE(page) || !is_cold_node(page))
1673 continue;
1674 if (ino_of_node(page) != ino)
1675 continue;
1676
1677 lock_page(page);
1678
1679 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1680 continue_unlock:
1681 unlock_page(page);
1682 continue;
1683 }
1684 if (ino_of_node(page) != ino)
1685 goto continue_unlock;
1686
1687 if (!PageDirty(page) && page != last_page) {
1688 /* someone wrote it for us */
1689 goto continue_unlock;
1690 }
1691
1692 f2fs_wait_on_page_writeback(page, NODE, true, true);
1693
1694 set_fsync_mark(page, 0);
1695 set_dentry_mark(page, 0);
1696
1697 if (!atomic || page == last_page) {
1698 set_fsync_mark(page, 1);
1699 if (IS_INODE(page)) {
1700 if (is_inode_flag_set(inode,
1701 FI_DIRTY_INODE))
1702 f2fs_update_inode(inode, page);
1703 set_dentry_mark(page,
1704 f2fs_need_dentry_mark(sbi, ino));
1705 }
1706 /* may be written by other thread */
1707 if (!PageDirty(page))
1708 set_page_dirty(page);
1709 }
1710
1711 if (!clear_page_dirty_for_io(page))
1712 goto continue_unlock;
1713
1714 ret = __write_node_page(page, atomic &&
1715 page == last_page,
1716 &submitted, wbc, true,
1717 FS_NODE_IO, seq_id);
1718 if (ret) {
1719 unlock_page(page);
1720 f2fs_put_page(last_page, 0);
1721 break;
1722 } else if (submitted) {
1723 nwritten++;
1724 }
1725
1726 if (page == last_page) {
1727 f2fs_put_page(page, 0);
1728 marked = true;
1729 break;
1730 }
1731 }
1732 pagevec_release(&pvec);
1733 cond_resched();
1734
1735 if (ret || marked)
1736 break;
1737 }
1738 if (!ret && atomic && !marked) {
1739 f2fs_msg(sbi->sb, KERN_DEBUG,
1740 "Retry to write fsync mark: ino=%u, idx=%lx",
1741 ino, last_page->index);
1742 lock_page(last_page);
1743 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1744 set_page_dirty(last_page);
1745 unlock_page(last_page);
1746 goto retry;
1747 }
1748 out:
1749 if (nwritten)
1750 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1751 return ret ? -EIO: 0;
1752 }
1753
1754 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1755 struct writeback_control *wbc,
1756 bool do_balance, enum iostat_type io_type)
1757 {
1758 pgoff_t index;
1759 struct pagevec pvec;
1760 int step = 0;
1761 int nwritten = 0;
1762 int ret = 0;
1763 int nr_pages, done = 0;
1764
1765 pagevec_init(&pvec);
1766
1767 next_step:
1768 index = 0;
1769
1770 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1771 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1772 int i;
1773
1774 for (i = 0; i < nr_pages; i++) {
1775 struct page *page = pvec.pages[i];
1776 bool submitted = false;
1777
1778 /* give a priority to WB_SYNC threads */
1779 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1780 wbc->sync_mode == WB_SYNC_NONE) {
1781 done = 1;
1782 break;
1783 }
1784
1785 /*
1786 * flushing sequence with step:
1787 * 0. indirect nodes
1788 * 1. dentry dnodes
1789 * 2. file dnodes
1790 */
1791 if (step == 0 && IS_DNODE(page))
1792 continue;
1793 if (step == 1 && (!IS_DNODE(page) ||
1794 is_cold_node(page)))
1795 continue;
1796 if (step == 2 && (!IS_DNODE(page) ||
1797 !is_cold_node(page)))
1798 continue;
1799 lock_node:
1800 if (wbc->sync_mode == WB_SYNC_ALL)
1801 lock_page(page);
1802 else if (!trylock_page(page))
1803 continue;
1804
1805 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1806 continue_unlock:
1807 unlock_page(page);
1808 continue;
1809 }
1810
1811 if (!PageDirty(page)) {
1812 /* someone wrote it for us */
1813 goto continue_unlock;
1814 }
1815
1816 /* flush inline_data */
1817 if (is_inline_node(page)) {
1818 clear_inline_node(page);
1819 unlock_page(page);
1820 flush_inline_data(sbi, ino_of_node(page));
1821 goto lock_node;
1822 }
1823
1824 f2fs_wait_on_page_writeback(page, NODE, true, true);
1825
1826 if (!clear_page_dirty_for_io(page))
1827 goto continue_unlock;
1828
1829 set_fsync_mark(page, 0);
1830 set_dentry_mark(page, 0);
1831
1832 ret = __write_node_page(page, false, &submitted,
1833 wbc, do_balance, io_type, NULL);
1834 if (ret)
1835 unlock_page(page);
1836 else if (submitted)
1837 nwritten++;
1838
1839 if (--wbc->nr_to_write == 0)
1840 break;
1841 }
1842 pagevec_release(&pvec);
1843 cond_resched();
1844
1845 if (wbc->nr_to_write == 0) {
1846 step = 2;
1847 break;
1848 }
1849 }
1850
1851 if (step < 2) {
1852 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1853 goto out;
1854 step++;
1855 goto next_step;
1856 }
1857 out:
1858 if (nwritten)
1859 f2fs_submit_merged_write(sbi, NODE);
1860
1861 if (unlikely(f2fs_cp_error(sbi)))
1862 return -EIO;
1863 return ret;
1864 }
1865
1866 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1867 unsigned int seq_id)
1868 {
1869 struct fsync_node_entry *fn;
1870 struct page *page;
1871 struct list_head *head = &sbi->fsync_node_list;
1872 unsigned long flags;
1873 unsigned int cur_seq_id = 0;
1874 int ret2, ret = 0;
1875
1876 while (seq_id && cur_seq_id < seq_id) {
1877 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1878 if (list_empty(head)) {
1879 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880 break;
1881 }
1882 fn = list_first_entry(head, struct fsync_node_entry, list);
1883 if (fn->seq_id > seq_id) {
1884 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1885 break;
1886 }
1887 cur_seq_id = fn->seq_id;
1888 page = fn->page;
1889 get_page(page);
1890 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1891
1892 f2fs_wait_on_page_writeback(page, NODE, true, false);
1893 if (TestClearPageError(page))
1894 ret = -EIO;
1895
1896 put_page(page);
1897
1898 if (ret)
1899 break;
1900 }
1901
1902 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1903 if (!ret)
1904 ret = ret2;
1905
1906 return ret;
1907 }
1908
1909 static int f2fs_write_node_pages(struct address_space *mapping,
1910 struct writeback_control *wbc)
1911 {
1912 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1913 struct blk_plug plug;
1914 long diff;
1915
1916 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1917 goto skip_write;
1918
1919 /* balancing f2fs's metadata in background */
1920 f2fs_balance_fs_bg(sbi);
1921
1922 /* collect a number of dirty node pages and write together */
1923 if (wbc->sync_mode != WB_SYNC_ALL &&
1924 get_pages(sbi, F2FS_DIRTY_NODES) <
1925 nr_pages_to_skip(sbi, NODE))
1926 goto skip_write;
1927
1928 if (wbc->sync_mode == WB_SYNC_ALL)
1929 atomic_inc(&sbi->wb_sync_req[NODE]);
1930 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1931 goto skip_write;
1932
1933 trace_f2fs_writepages(mapping->host, wbc, NODE);
1934
1935 diff = nr_pages_to_write(sbi, NODE, wbc);
1936 blk_start_plug(&plug);
1937 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1938 blk_finish_plug(&plug);
1939 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1940
1941 if (wbc->sync_mode == WB_SYNC_ALL)
1942 atomic_dec(&sbi->wb_sync_req[NODE]);
1943 return 0;
1944
1945 skip_write:
1946 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1947 trace_f2fs_writepages(mapping->host, wbc, NODE);
1948 return 0;
1949 }
1950
1951 static int f2fs_set_node_page_dirty(struct page *page)
1952 {
1953 trace_f2fs_set_page_dirty(page, NODE);
1954
1955 if (!PageUptodate(page))
1956 SetPageUptodate(page);
1957 #ifdef CONFIG_F2FS_CHECK_FS
1958 if (IS_INODE(page))
1959 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1960 #endif
1961 if (!PageDirty(page)) {
1962 __set_page_dirty_nobuffers(page);
1963 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1964 f2fs_set_page_private(page, 0);
1965 f2fs_trace_pid(page);
1966 return 1;
1967 }
1968 return 0;
1969 }
1970
1971 /*
1972 * Structure of the f2fs node operations
1973 */
1974 const struct address_space_operations f2fs_node_aops = {
1975 .writepage = f2fs_write_node_page,
1976 .writepages = f2fs_write_node_pages,
1977 .set_page_dirty = f2fs_set_node_page_dirty,
1978 .invalidatepage = f2fs_invalidate_page,
1979 .releasepage = f2fs_release_page,
1980 #ifdef CONFIG_MIGRATION
1981 .migratepage = f2fs_migrate_page,
1982 #endif
1983 };
1984
1985 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1986 nid_t n)
1987 {
1988 return radix_tree_lookup(&nm_i->free_nid_root, n);
1989 }
1990
1991 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1992 struct free_nid *i, enum nid_state state)
1993 {
1994 struct f2fs_nm_info *nm_i = NM_I(sbi);
1995
1996 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1997 if (err)
1998 return err;
1999
2000 f2fs_bug_on(sbi, state != i->state);
2001 nm_i->nid_cnt[state]++;
2002 if (state == FREE_NID)
2003 list_add_tail(&i->list, &nm_i->free_nid_list);
2004 return 0;
2005 }
2006
2007 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2008 struct free_nid *i, enum nid_state state)
2009 {
2010 struct f2fs_nm_info *nm_i = NM_I(sbi);
2011
2012 f2fs_bug_on(sbi, state != i->state);
2013 nm_i->nid_cnt[state]--;
2014 if (state == FREE_NID)
2015 list_del(&i->list);
2016 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2017 }
2018
2019 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2020 enum nid_state org_state, enum nid_state dst_state)
2021 {
2022 struct f2fs_nm_info *nm_i = NM_I(sbi);
2023
2024 f2fs_bug_on(sbi, org_state != i->state);
2025 i->state = dst_state;
2026 nm_i->nid_cnt[org_state]--;
2027 nm_i->nid_cnt[dst_state]++;
2028
2029 switch (dst_state) {
2030 case PREALLOC_NID:
2031 list_del(&i->list);
2032 break;
2033 case FREE_NID:
2034 list_add_tail(&i->list, &nm_i->free_nid_list);
2035 break;
2036 default:
2037 BUG_ON(1);
2038 }
2039 }
2040
2041 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2042 bool set, bool build)
2043 {
2044 struct f2fs_nm_info *nm_i = NM_I(sbi);
2045 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2046 unsigned int nid_ofs = nid - START_NID(nid);
2047
2048 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2049 return;
2050
2051 if (set) {
2052 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2053 return;
2054 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2055 nm_i->free_nid_count[nat_ofs]++;
2056 } else {
2057 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2058 return;
2059 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2060 if (!build)
2061 nm_i->free_nid_count[nat_ofs]--;
2062 }
2063 }
2064
2065 /* return if the nid is recognized as free */
2066 static bool add_free_nid(struct f2fs_sb_info *sbi,
2067 nid_t nid, bool build, bool update)
2068 {
2069 struct f2fs_nm_info *nm_i = NM_I(sbi);
2070 struct free_nid *i, *e;
2071 struct nat_entry *ne;
2072 int err = -EINVAL;
2073 bool ret = false;
2074
2075 /* 0 nid should not be used */
2076 if (unlikely(nid == 0))
2077 return false;
2078
2079 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2080 i->nid = nid;
2081 i->state = FREE_NID;
2082
2083 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2084
2085 spin_lock(&nm_i->nid_list_lock);
2086
2087 if (build) {
2088 /*
2089 * Thread A Thread B
2090 * - f2fs_create
2091 * - f2fs_new_inode
2092 * - f2fs_alloc_nid
2093 * - __insert_nid_to_list(PREALLOC_NID)
2094 * - f2fs_balance_fs_bg
2095 * - f2fs_build_free_nids
2096 * - __f2fs_build_free_nids
2097 * - scan_nat_page
2098 * - add_free_nid
2099 * - __lookup_nat_cache
2100 * - f2fs_add_link
2101 * - f2fs_init_inode_metadata
2102 * - f2fs_new_inode_page
2103 * - f2fs_new_node_page
2104 * - set_node_addr
2105 * - f2fs_alloc_nid_done
2106 * - __remove_nid_from_list(PREALLOC_NID)
2107 * - __insert_nid_to_list(FREE_NID)
2108 */
2109 ne = __lookup_nat_cache(nm_i, nid);
2110 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2111 nat_get_blkaddr(ne) != NULL_ADDR))
2112 goto err_out;
2113
2114 e = __lookup_free_nid_list(nm_i, nid);
2115 if (e) {
2116 if (e->state == FREE_NID)
2117 ret = true;
2118 goto err_out;
2119 }
2120 }
2121 ret = true;
2122 err = __insert_free_nid(sbi, i, FREE_NID);
2123 err_out:
2124 if (update) {
2125 update_free_nid_bitmap(sbi, nid, ret, build);
2126 if (!build)
2127 nm_i->available_nids++;
2128 }
2129 spin_unlock(&nm_i->nid_list_lock);
2130 radix_tree_preload_end();
2131
2132 if (err)
2133 kmem_cache_free(free_nid_slab, i);
2134 return ret;
2135 }
2136
2137 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2138 {
2139 struct f2fs_nm_info *nm_i = NM_I(sbi);
2140 struct free_nid *i;
2141 bool need_free = false;
2142
2143 spin_lock(&nm_i->nid_list_lock);
2144 i = __lookup_free_nid_list(nm_i, nid);
2145 if (i && i->state == FREE_NID) {
2146 __remove_free_nid(sbi, i, FREE_NID);
2147 need_free = true;
2148 }
2149 spin_unlock(&nm_i->nid_list_lock);
2150
2151 if (need_free)
2152 kmem_cache_free(free_nid_slab, i);
2153 }
2154
2155 static int scan_nat_page(struct f2fs_sb_info *sbi,
2156 struct page *nat_page, nid_t start_nid)
2157 {
2158 struct f2fs_nm_info *nm_i = NM_I(sbi);
2159 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2160 block_t blk_addr;
2161 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2162 int i;
2163
2164 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2165
2166 i = start_nid % NAT_ENTRY_PER_BLOCK;
2167
2168 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2169 if (unlikely(start_nid >= nm_i->max_nid))
2170 break;
2171
2172 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2173
2174 if (blk_addr == NEW_ADDR)
2175 return -EINVAL;
2176
2177 if (blk_addr == NULL_ADDR) {
2178 add_free_nid(sbi, start_nid, true, true);
2179 } else {
2180 spin_lock(&NM_I(sbi)->nid_list_lock);
2181 update_free_nid_bitmap(sbi, start_nid, false, true);
2182 spin_unlock(&NM_I(sbi)->nid_list_lock);
2183 }
2184 }
2185
2186 return 0;
2187 }
2188
2189 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2190 {
2191 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2192 struct f2fs_journal *journal = curseg->journal;
2193 int i;
2194
2195 down_read(&curseg->journal_rwsem);
2196 for (i = 0; i < nats_in_cursum(journal); i++) {
2197 block_t addr;
2198 nid_t nid;
2199
2200 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2201 nid = le32_to_cpu(nid_in_journal(journal, i));
2202 if (addr == NULL_ADDR)
2203 add_free_nid(sbi, nid, true, false);
2204 else
2205 remove_free_nid(sbi, nid);
2206 }
2207 up_read(&curseg->journal_rwsem);
2208 }
2209
2210 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2211 {
2212 struct f2fs_nm_info *nm_i = NM_I(sbi);
2213 unsigned int i, idx;
2214 nid_t nid;
2215
2216 down_read(&nm_i->nat_tree_lock);
2217
2218 for (i = 0; i < nm_i->nat_blocks; i++) {
2219 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2220 continue;
2221 if (!nm_i->free_nid_count[i])
2222 continue;
2223 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2224 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2225 NAT_ENTRY_PER_BLOCK, idx);
2226 if (idx >= NAT_ENTRY_PER_BLOCK)
2227 break;
2228
2229 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2230 add_free_nid(sbi, nid, true, false);
2231
2232 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2233 goto out;
2234 }
2235 }
2236 out:
2237 scan_curseg_cache(sbi);
2238
2239 up_read(&nm_i->nat_tree_lock);
2240 }
2241
2242 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2243 bool sync, bool mount)
2244 {
2245 struct f2fs_nm_info *nm_i = NM_I(sbi);
2246 int i = 0, ret;
2247 nid_t nid = nm_i->next_scan_nid;
2248
2249 if (unlikely(nid >= nm_i->max_nid))
2250 nid = 0;
2251
2252 /* Enough entries */
2253 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2254 return 0;
2255
2256 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2257 return 0;
2258
2259 if (!mount) {
2260 /* try to find free nids in free_nid_bitmap */
2261 scan_free_nid_bits(sbi);
2262
2263 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2264 return 0;
2265 }
2266
2267 /* readahead nat pages to be scanned */
2268 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2269 META_NAT, true);
2270
2271 down_read(&nm_i->nat_tree_lock);
2272
2273 while (1) {
2274 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2275 nm_i->nat_block_bitmap)) {
2276 struct page *page = get_current_nat_page(sbi, nid);
2277
2278 if (IS_ERR(page)) {
2279 ret = PTR_ERR(page);
2280 } else {
2281 ret = scan_nat_page(sbi, page, nid);
2282 f2fs_put_page(page, 1);
2283 }
2284
2285 if (ret) {
2286 up_read(&nm_i->nat_tree_lock);
2287 f2fs_bug_on(sbi, !mount);
2288 f2fs_msg(sbi->sb, KERN_ERR,
2289 "NAT is corrupt, run fsck to fix it");
2290 return ret;
2291 }
2292 }
2293
2294 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2295 if (unlikely(nid >= nm_i->max_nid))
2296 nid = 0;
2297
2298 if (++i >= FREE_NID_PAGES)
2299 break;
2300 }
2301
2302 /* go to the next free nat pages to find free nids abundantly */
2303 nm_i->next_scan_nid = nid;
2304
2305 /* find free nids from current sum_pages */
2306 scan_curseg_cache(sbi);
2307
2308 up_read(&nm_i->nat_tree_lock);
2309
2310 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2311 nm_i->ra_nid_pages, META_NAT, false);
2312
2313 return 0;
2314 }
2315
2316 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2317 {
2318 int ret;
2319
2320 mutex_lock(&NM_I(sbi)->build_lock);
2321 ret = __f2fs_build_free_nids(sbi, sync, mount);
2322 mutex_unlock(&NM_I(sbi)->build_lock);
2323
2324 return ret;
2325 }
2326
2327 /*
2328 * If this function returns success, caller can obtain a new nid
2329 * from second parameter of this function.
2330 * The returned nid could be used ino as well as nid when inode is created.
2331 */
2332 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2333 {
2334 struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 struct free_nid *i = NULL;
2336 retry:
2337 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2338 f2fs_show_injection_info(FAULT_ALLOC_NID);
2339 return false;
2340 }
2341
2342 spin_lock(&nm_i->nid_list_lock);
2343
2344 if (unlikely(nm_i->available_nids == 0)) {
2345 spin_unlock(&nm_i->nid_list_lock);
2346 return false;
2347 }
2348
2349 /* We should not use stale free nids created by f2fs_build_free_nids */
2350 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2351 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2352 i = list_first_entry(&nm_i->free_nid_list,
2353 struct free_nid, list);
2354 *nid = i->nid;
2355
2356 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2357 nm_i->available_nids--;
2358
2359 update_free_nid_bitmap(sbi, *nid, false, false);
2360
2361 spin_unlock(&nm_i->nid_list_lock);
2362 return true;
2363 }
2364 spin_unlock(&nm_i->nid_list_lock);
2365
2366 /* Let's scan nat pages and its caches to get free nids */
2367 if (!f2fs_build_free_nids(sbi, true, false))
2368 goto retry;
2369 return false;
2370 }
2371
2372 /*
2373 * f2fs_alloc_nid() should be called prior to this function.
2374 */
2375 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2376 {
2377 struct f2fs_nm_info *nm_i = NM_I(sbi);
2378 struct free_nid *i;
2379
2380 spin_lock(&nm_i->nid_list_lock);
2381 i = __lookup_free_nid_list(nm_i, nid);
2382 f2fs_bug_on(sbi, !i);
2383 __remove_free_nid(sbi, i, PREALLOC_NID);
2384 spin_unlock(&nm_i->nid_list_lock);
2385
2386 kmem_cache_free(free_nid_slab, i);
2387 }
2388
2389 /*
2390 * f2fs_alloc_nid() should be called prior to this function.
2391 */
2392 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2393 {
2394 struct f2fs_nm_info *nm_i = NM_I(sbi);
2395 struct free_nid *i;
2396 bool need_free = false;
2397
2398 if (!nid)
2399 return;
2400
2401 spin_lock(&nm_i->nid_list_lock);
2402 i = __lookup_free_nid_list(nm_i, nid);
2403 f2fs_bug_on(sbi, !i);
2404
2405 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2406 __remove_free_nid(sbi, i, PREALLOC_NID);
2407 need_free = true;
2408 } else {
2409 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2410 }
2411
2412 nm_i->available_nids++;
2413
2414 update_free_nid_bitmap(sbi, nid, true, false);
2415
2416 spin_unlock(&nm_i->nid_list_lock);
2417
2418 if (need_free)
2419 kmem_cache_free(free_nid_slab, i);
2420 }
2421
2422 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2423 {
2424 struct f2fs_nm_info *nm_i = NM_I(sbi);
2425 struct free_nid *i, *next;
2426 int nr = nr_shrink;
2427
2428 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2429 return 0;
2430
2431 if (!mutex_trylock(&nm_i->build_lock))
2432 return 0;
2433
2434 spin_lock(&nm_i->nid_list_lock);
2435 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2436 if (nr_shrink <= 0 ||
2437 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2438 break;
2439
2440 __remove_free_nid(sbi, i, FREE_NID);
2441 kmem_cache_free(free_nid_slab, i);
2442 nr_shrink--;
2443 }
2444 spin_unlock(&nm_i->nid_list_lock);
2445 mutex_unlock(&nm_i->build_lock);
2446
2447 return nr - nr_shrink;
2448 }
2449
2450 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2451 {
2452 void *src_addr, *dst_addr;
2453 size_t inline_size;
2454 struct page *ipage;
2455 struct f2fs_inode *ri;
2456
2457 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2458 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2459
2460 ri = F2FS_INODE(page);
2461 if (ri->i_inline & F2FS_INLINE_XATTR) {
2462 set_inode_flag(inode, FI_INLINE_XATTR);
2463 } else {
2464 clear_inode_flag(inode, FI_INLINE_XATTR);
2465 goto update_inode;
2466 }
2467
2468 dst_addr = inline_xattr_addr(inode, ipage);
2469 src_addr = inline_xattr_addr(inode, page);
2470 inline_size = inline_xattr_size(inode);
2471
2472 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2473 memcpy(dst_addr, src_addr, inline_size);
2474 update_inode:
2475 f2fs_update_inode(inode, ipage);
2476 f2fs_put_page(ipage, 1);
2477 }
2478
2479 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2480 {
2481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2482 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2483 nid_t new_xnid;
2484 struct dnode_of_data dn;
2485 struct node_info ni;
2486 struct page *xpage;
2487 int err;
2488
2489 if (!prev_xnid)
2490 goto recover_xnid;
2491
2492 /* 1: invalidate the previous xattr nid */
2493 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2494 if (err)
2495 return err;
2496
2497 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2498 dec_valid_node_count(sbi, inode, false);
2499 set_node_addr(sbi, &ni, NULL_ADDR, false);
2500
2501 recover_xnid:
2502 /* 2: update xattr nid in inode */
2503 if (!f2fs_alloc_nid(sbi, &new_xnid))
2504 return -ENOSPC;
2505
2506 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2507 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2508 if (IS_ERR(xpage)) {
2509 f2fs_alloc_nid_failed(sbi, new_xnid);
2510 return PTR_ERR(xpage);
2511 }
2512
2513 f2fs_alloc_nid_done(sbi, new_xnid);
2514 f2fs_update_inode_page(inode);
2515
2516 /* 3: update and set xattr node page dirty */
2517 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2518
2519 set_page_dirty(xpage);
2520 f2fs_put_page(xpage, 1);
2521
2522 return 0;
2523 }
2524
2525 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2526 {
2527 struct f2fs_inode *src, *dst;
2528 nid_t ino = ino_of_node(page);
2529 struct node_info old_ni, new_ni;
2530 struct page *ipage;
2531 int err;
2532
2533 err = f2fs_get_node_info(sbi, ino, &old_ni);
2534 if (err)
2535 return err;
2536
2537 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2538 return -EINVAL;
2539 retry:
2540 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2541 if (!ipage) {
2542 congestion_wait(BLK_RW_ASYNC, HZ/50);
2543 goto retry;
2544 }
2545
2546 /* Should not use this inode from free nid list */
2547 remove_free_nid(sbi, ino);
2548
2549 if (!PageUptodate(ipage))
2550 SetPageUptodate(ipage);
2551 fill_node_footer(ipage, ino, ino, 0, true);
2552 set_cold_node(ipage, false);
2553
2554 src = F2FS_INODE(page);
2555 dst = F2FS_INODE(ipage);
2556
2557 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2558 dst->i_size = 0;
2559 dst->i_blocks = cpu_to_le64(1);
2560 dst->i_links = cpu_to_le32(1);
2561 dst->i_xattr_nid = 0;
2562 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2563 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2564 dst->i_extra_isize = src->i_extra_isize;
2565
2566 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2567 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2568 i_inline_xattr_size))
2569 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2570
2571 if (f2fs_sb_has_project_quota(sbi) &&
2572 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2573 i_projid))
2574 dst->i_projid = src->i_projid;
2575
2576 if (f2fs_sb_has_inode_crtime(sbi) &&
2577 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2578 i_crtime_nsec)) {
2579 dst->i_crtime = src->i_crtime;
2580 dst->i_crtime_nsec = src->i_crtime_nsec;
2581 }
2582 }
2583
2584 new_ni = old_ni;
2585 new_ni.ino = ino;
2586
2587 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2588 WARN_ON(1);
2589 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2590 inc_valid_inode_count(sbi);
2591 set_page_dirty(ipage);
2592 f2fs_put_page(ipage, 1);
2593 return 0;
2594 }
2595
2596 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2597 unsigned int segno, struct f2fs_summary_block *sum)
2598 {
2599 struct f2fs_node *rn;
2600 struct f2fs_summary *sum_entry;
2601 block_t addr;
2602 int i, idx, last_offset, nrpages;
2603
2604 /* scan the node segment */
2605 last_offset = sbi->blocks_per_seg;
2606 addr = START_BLOCK(sbi, segno);
2607 sum_entry = &sum->entries[0];
2608
2609 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2610 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2611
2612 /* readahead node pages */
2613 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2614
2615 for (idx = addr; idx < addr + nrpages; idx++) {
2616 struct page *page = f2fs_get_tmp_page(sbi, idx);
2617
2618 if (IS_ERR(page))
2619 return PTR_ERR(page);
2620
2621 rn = F2FS_NODE(page);
2622 sum_entry->nid = rn->footer.nid;
2623 sum_entry->version = 0;
2624 sum_entry->ofs_in_node = 0;
2625 sum_entry++;
2626 f2fs_put_page(page, 1);
2627 }
2628
2629 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2630 addr + nrpages);
2631 }
2632 return 0;
2633 }
2634
2635 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2636 {
2637 struct f2fs_nm_info *nm_i = NM_I(sbi);
2638 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2639 struct f2fs_journal *journal = curseg->journal;
2640 int i;
2641
2642 down_write(&curseg->journal_rwsem);
2643 for (i = 0; i < nats_in_cursum(journal); i++) {
2644 struct nat_entry *ne;
2645 struct f2fs_nat_entry raw_ne;
2646 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2647
2648 raw_ne = nat_in_journal(journal, i);
2649
2650 ne = __lookup_nat_cache(nm_i, nid);
2651 if (!ne) {
2652 ne = __alloc_nat_entry(nid, true);
2653 __init_nat_entry(nm_i, ne, &raw_ne, true);
2654 }
2655
2656 /*
2657 * if a free nat in journal has not been used after last
2658 * checkpoint, we should remove it from available nids,
2659 * since later we will add it again.
2660 */
2661 if (!get_nat_flag(ne, IS_DIRTY) &&
2662 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2663 spin_lock(&nm_i->nid_list_lock);
2664 nm_i->available_nids--;
2665 spin_unlock(&nm_i->nid_list_lock);
2666 }
2667
2668 __set_nat_cache_dirty(nm_i, ne);
2669 }
2670 update_nats_in_cursum(journal, -i);
2671 up_write(&curseg->journal_rwsem);
2672 }
2673
2674 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2675 struct list_head *head, int max)
2676 {
2677 struct nat_entry_set *cur;
2678
2679 if (nes->entry_cnt >= max)
2680 goto add_out;
2681
2682 list_for_each_entry(cur, head, set_list) {
2683 if (cur->entry_cnt >= nes->entry_cnt) {
2684 list_add(&nes->set_list, cur->set_list.prev);
2685 return;
2686 }
2687 }
2688 add_out:
2689 list_add_tail(&nes->set_list, head);
2690 }
2691
2692 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2693 struct page *page)
2694 {
2695 struct f2fs_nm_info *nm_i = NM_I(sbi);
2696 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2697 struct f2fs_nat_block *nat_blk = page_address(page);
2698 int valid = 0;
2699 int i = 0;
2700
2701 if (!enabled_nat_bits(sbi, NULL))
2702 return;
2703
2704 if (nat_index == 0) {
2705 valid = 1;
2706 i = 1;
2707 }
2708 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2709 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2710 valid++;
2711 }
2712 if (valid == 0) {
2713 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2714 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2715 return;
2716 }
2717
2718 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2719 if (valid == NAT_ENTRY_PER_BLOCK)
2720 __set_bit_le(nat_index, nm_i->full_nat_bits);
2721 else
2722 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2723 }
2724
2725 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2726 struct nat_entry_set *set, struct cp_control *cpc)
2727 {
2728 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2729 struct f2fs_journal *journal = curseg->journal;
2730 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2731 bool to_journal = true;
2732 struct f2fs_nat_block *nat_blk;
2733 struct nat_entry *ne, *cur;
2734 struct page *page = NULL;
2735
2736 /*
2737 * there are two steps to flush nat entries:
2738 * #1, flush nat entries to journal in current hot data summary block.
2739 * #2, flush nat entries to nat page.
2740 */
2741 if (enabled_nat_bits(sbi, cpc) ||
2742 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2743 to_journal = false;
2744
2745 if (to_journal) {
2746 down_write(&curseg->journal_rwsem);
2747 } else {
2748 page = get_next_nat_page(sbi, start_nid);
2749 if (IS_ERR(page))
2750 return PTR_ERR(page);
2751
2752 nat_blk = page_address(page);
2753 f2fs_bug_on(sbi, !nat_blk);
2754 }
2755
2756 /* flush dirty nats in nat entry set */
2757 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2758 struct f2fs_nat_entry *raw_ne;
2759 nid_t nid = nat_get_nid(ne);
2760 int offset;
2761
2762 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2763
2764 if (to_journal) {
2765 offset = f2fs_lookup_journal_in_cursum(journal,
2766 NAT_JOURNAL, nid, 1);
2767 f2fs_bug_on(sbi, offset < 0);
2768 raw_ne = &nat_in_journal(journal, offset);
2769 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2770 } else {
2771 raw_ne = &nat_blk->entries[nid - start_nid];
2772 }
2773 raw_nat_from_node_info(raw_ne, &ne->ni);
2774 nat_reset_flag(ne);
2775 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2776 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2777 add_free_nid(sbi, nid, false, true);
2778 } else {
2779 spin_lock(&NM_I(sbi)->nid_list_lock);
2780 update_free_nid_bitmap(sbi, nid, false, false);
2781 spin_unlock(&NM_I(sbi)->nid_list_lock);
2782 }
2783 }
2784
2785 if (to_journal) {
2786 up_write(&curseg->journal_rwsem);
2787 } else {
2788 __update_nat_bits(sbi, start_nid, page);
2789 f2fs_put_page(page, 1);
2790 }
2791
2792 /* Allow dirty nats by node block allocation in write_begin */
2793 if (!set->entry_cnt) {
2794 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2795 kmem_cache_free(nat_entry_set_slab, set);
2796 }
2797 return 0;
2798 }
2799
2800 /*
2801 * This function is called during the checkpointing process.
2802 */
2803 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2804 {
2805 struct f2fs_nm_info *nm_i = NM_I(sbi);
2806 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2807 struct f2fs_journal *journal = curseg->journal;
2808 struct nat_entry_set *setvec[SETVEC_SIZE];
2809 struct nat_entry_set *set, *tmp;
2810 unsigned int found;
2811 nid_t set_idx = 0;
2812 LIST_HEAD(sets);
2813 int err = 0;
2814
2815 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2816 if (enabled_nat_bits(sbi, cpc)) {
2817 down_write(&nm_i->nat_tree_lock);
2818 remove_nats_in_journal(sbi);
2819 up_write(&nm_i->nat_tree_lock);
2820 }
2821
2822 if (!nm_i->dirty_nat_cnt)
2823 return 0;
2824
2825 down_write(&nm_i->nat_tree_lock);
2826
2827 /*
2828 * if there are no enough space in journal to store dirty nat
2829 * entries, remove all entries from journal and merge them
2830 * into nat entry set.
2831 */
2832 if (enabled_nat_bits(sbi, cpc) ||
2833 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2834 remove_nats_in_journal(sbi);
2835
2836 while ((found = __gang_lookup_nat_set(nm_i,
2837 set_idx, SETVEC_SIZE, setvec))) {
2838 unsigned idx;
2839 set_idx = setvec[found - 1]->set + 1;
2840 for (idx = 0; idx < found; idx++)
2841 __adjust_nat_entry_set(setvec[idx], &sets,
2842 MAX_NAT_JENTRIES(journal));
2843 }
2844
2845 /* flush dirty nats in nat entry set */
2846 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2847 err = __flush_nat_entry_set(sbi, set, cpc);
2848 if (err)
2849 break;
2850 }
2851
2852 up_write(&nm_i->nat_tree_lock);
2853 /* Allow dirty nats by node block allocation in write_begin */
2854
2855 return err;
2856 }
2857
2858 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2859 {
2860 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2861 struct f2fs_nm_info *nm_i = NM_I(sbi);
2862 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2863 unsigned int i;
2864 __u64 cp_ver = cur_cp_version(ckpt);
2865 block_t nat_bits_addr;
2866
2867 if (!enabled_nat_bits(sbi, NULL))
2868 return 0;
2869
2870 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2871 nm_i->nat_bits = f2fs_kzalloc(sbi,
2872 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2873 if (!nm_i->nat_bits)
2874 return -ENOMEM;
2875
2876 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2877 nm_i->nat_bits_blocks;
2878 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2879 struct page *page;
2880
2881 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2882 if (IS_ERR(page))
2883 return PTR_ERR(page);
2884
2885 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2886 page_address(page), F2FS_BLKSIZE);
2887 f2fs_put_page(page, 1);
2888 }
2889
2890 cp_ver |= (cur_cp_crc(ckpt) << 32);
2891 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2892 disable_nat_bits(sbi, true);
2893 return 0;
2894 }
2895
2896 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2897 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2898
2899 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2900 return 0;
2901 }
2902
2903 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2904 {
2905 struct f2fs_nm_info *nm_i = NM_I(sbi);
2906 unsigned int i = 0;
2907 nid_t nid, last_nid;
2908
2909 if (!enabled_nat_bits(sbi, NULL))
2910 return;
2911
2912 for (i = 0; i < nm_i->nat_blocks; i++) {
2913 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2914 if (i >= nm_i->nat_blocks)
2915 break;
2916
2917 __set_bit_le(i, nm_i->nat_block_bitmap);
2918
2919 nid = i * NAT_ENTRY_PER_BLOCK;
2920 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2921
2922 spin_lock(&NM_I(sbi)->nid_list_lock);
2923 for (; nid < last_nid; nid++)
2924 update_free_nid_bitmap(sbi, nid, true, true);
2925 spin_unlock(&NM_I(sbi)->nid_list_lock);
2926 }
2927
2928 for (i = 0; i < nm_i->nat_blocks; i++) {
2929 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2930 if (i >= nm_i->nat_blocks)
2931 break;
2932
2933 __set_bit_le(i, nm_i->nat_block_bitmap);
2934 }
2935 }
2936
2937 static int init_node_manager(struct f2fs_sb_info *sbi)
2938 {
2939 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2940 struct f2fs_nm_info *nm_i = NM_I(sbi);
2941 unsigned char *version_bitmap;
2942 unsigned int nat_segs;
2943 int err;
2944
2945 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2946
2947 /* segment_count_nat includes pair segment so divide to 2. */
2948 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2949 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2950 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2951
2952 /* not used nids: 0, node, meta, (and root counted as valid node) */
2953 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2954 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2955 nm_i->nid_cnt[FREE_NID] = 0;
2956 nm_i->nid_cnt[PREALLOC_NID] = 0;
2957 nm_i->nat_cnt = 0;
2958 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2959 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2960 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2961
2962 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2963 INIT_LIST_HEAD(&nm_i->free_nid_list);
2964 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2965 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2966 INIT_LIST_HEAD(&nm_i->nat_entries);
2967 spin_lock_init(&nm_i->nat_list_lock);
2968
2969 mutex_init(&nm_i->build_lock);
2970 spin_lock_init(&nm_i->nid_list_lock);
2971 init_rwsem(&nm_i->nat_tree_lock);
2972
2973 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2974 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2975 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2976 if (!version_bitmap)
2977 return -EFAULT;
2978
2979 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2980 GFP_KERNEL);
2981 if (!nm_i->nat_bitmap)
2982 return -ENOMEM;
2983
2984 err = __get_nat_bitmaps(sbi);
2985 if (err)
2986 return err;
2987
2988 #ifdef CONFIG_F2FS_CHECK_FS
2989 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2990 GFP_KERNEL);
2991 if (!nm_i->nat_bitmap_mir)
2992 return -ENOMEM;
2993 #endif
2994
2995 return 0;
2996 }
2997
2998 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2999 {
3000 struct f2fs_nm_info *nm_i = NM_I(sbi);
3001 int i;
3002
3003 nm_i->free_nid_bitmap =
3004 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3005 nm_i->nat_blocks),
3006 GFP_KERNEL);
3007 if (!nm_i->free_nid_bitmap)
3008 return -ENOMEM;
3009
3010 for (i = 0; i < nm_i->nat_blocks; i++) {
3011 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3012 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3013 if (!nm_i->free_nid_bitmap[i])
3014 return -ENOMEM;
3015 }
3016
3017 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3018 GFP_KERNEL);
3019 if (!nm_i->nat_block_bitmap)
3020 return -ENOMEM;
3021
3022 nm_i->free_nid_count =
3023 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3024 nm_i->nat_blocks),
3025 GFP_KERNEL);
3026 if (!nm_i->free_nid_count)
3027 return -ENOMEM;
3028 return 0;
3029 }
3030
3031 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3032 {
3033 int err;
3034
3035 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3036 GFP_KERNEL);
3037 if (!sbi->nm_info)
3038 return -ENOMEM;
3039
3040 err = init_node_manager(sbi);
3041 if (err)
3042 return err;
3043
3044 err = init_free_nid_cache(sbi);
3045 if (err)
3046 return err;
3047
3048 /* load free nid status from nat_bits table */
3049 load_free_nid_bitmap(sbi);
3050
3051 return f2fs_build_free_nids(sbi, true, true);
3052 }
3053
3054 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3055 {
3056 struct f2fs_nm_info *nm_i = NM_I(sbi);
3057 struct free_nid *i, *next_i;
3058 struct nat_entry *natvec[NATVEC_SIZE];
3059 struct nat_entry_set *setvec[SETVEC_SIZE];
3060 nid_t nid = 0;
3061 unsigned int found;
3062
3063 if (!nm_i)
3064 return;
3065
3066 /* destroy free nid list */
3067 spin_lock(&nm_i->nid_list_lock);
3068 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3069 __remove_free_nid(sbi, i, FREE_NID);
3070 spin_unlock(&nm_i->nid_list_lock);
3071 kmem_cache_free(free_nid_slab, i);
3072 spin_lock(&nm_i->nid_list_lock);
3073 }
3074 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3075 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3076 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3077 spin_unlock(&nm_i->nid_list_lock);
3078
3079 /* destroy nat cache */
3080 down_write(&nm_i->nat_tree_lock);
3081 while ((found = __gang_lookup_nat_cache(nm_i,
3082 nid, NATVEC_SIZE, natvec))) {
3083 unsigned idx;
3084
3085 nid = nat_get_nid(natvec[found - 1]) + 1;
3086 for (idx = 0; idx < found; idx++) {
3087 spin_lock(&nm_i->nat_list_lock);
3088 list_del(&natvec[idx]->list);
3089 spin_unlock(&nm_i->nat_list_lock);
3090
3091 __del_from_nat_cache(nm_i, natvec[idx]);
3092 }
3093 }
3094 f2fs_bug_on(sbi, nm_i->nat_cnt);
3095
3096 /* destroy nat set cache */
3097 nid = 0;
3098 while ((found = __gang_lookup_nat_set(nm_i,
3099 nid, SETVEC_SIZE, setvec))) {
3100 unsigned idx;
3101
3102 nid = setvec[found - 1]->set + 1;
3103 for (idx = 0; idx < found; idx++) {
3104 /* entry_cnt is not zero, when cp_error was occurred */
3105 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3106 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3107 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3108 }
3109 }
3110 up_write(&nm_i->nat_tree_lock);
3111
3112 kvfree(nm_i->nat_block_bitmap);
3113 if (nm_i->free_nid_bitmap) {
3114 int i;
3115
3116 for (i = 0; i < nm_i->nat_blocks; i++)
3117 kvfree(nm_i->free_nid_bitmap[i]);
3118 kvfree(nm_i->free_nid_bitmap);
3119 }
3120 kvfree(nm_i->free_nid_count);
3121
3122 kvfree(nm_i->nat_bitmap);
3123 kvfree(nm_i->nat_bits);
3124 #ifdef CONFIG_F2FS_CHECK_FS
3125 kvfree(nm_i->nat_bitmap_mir);
3126 #endif
3127 sbi->nm_info = NULL;
3128 kvfree(nm_i);
3129 }
3130
3131 int __init f2fs_create_node_manager_caches(void)
3132 {
3133 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3134 sizeof(struct nat_entry));
3135 if (!nat_entry_slab)
3136 goto fail;
3137
3138 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3139 sizeof(struct free_nid));
3140 if (!free_nid_slab)
3141 goto destroy_nat_entry;
3142
3143 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3144 sizeof(struct nat_entry_set));
3145 if (!nat_entry_set_slab)
3146 goto destroy_free_nid;
3147
3148 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3149 sizeof(struct fsync_node_entry));
3150 if (!fsync_node_entry_slab)
3151 goto destroy_nat_entry_set;
3152 return 0;
3153
3154 destroy_nat_entry_set:
3155 kmem_cache_destroy(nat_entry_set_slab);
3156 destroy_free_nid:
3157 kmem_cache_destroy(free_nid_slab);
3158 destroy_nat_entry:
3159 kmem_cache_destroy(nat_entry_slab);
3160 fail:
3161 return -ENOMEM;
3162 }
3163
3164 void f2fs_destroy_node_manager_caches(void)
3165 {
3166 kmem_cache_destroy(fsync_node_entry_slab);
3167 kmem_cache_destroy(nat_entry_set_slab);
3168 kmem_cache_destroy(free_nid_slab);
3169 kmem_cache_destroy(nat_entry_slab);
3170 }