]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/node.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
64
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
78 }
79 return res;
80 }
81
82 static void clear_node_page_dirty(struct page *page)
83 {
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
86
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
93
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
96 }
97 ClearPageUptodate(page);
98 }
99
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
101 {
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
104 }
105
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
115
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
118
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
123
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
129
130 set_to_next_nat(nm_i, nid);
131
132 return dst_page;
133 }
134
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
136 {
137 return radix_tree_lookup(&nm_i->nat_root, n);
138 }
139
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
142 {
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
144 }
145
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
147 {
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
152 }
153
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
156 {
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
159
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
162
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
166
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 }
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
177 }
178
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
181 {
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
184
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
191 }
192 }
193
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
199 }
200
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
206
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
213 }
214 up_read(&nm_i->nat_tree_lock);
215 return need;
216 }
217
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
223
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
230 }
231
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
237
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
246 }
247
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 bool no_fail)
250 {
251 struct nat_entry *new;
252
253 if (no_fail) {
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 } else {
257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 if (!new)
259 return NULL;
260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 kmem_cache_free(nat_entry_slab, new);
262 return NULL;
263 }
264 }
265
266 memset(new, 0, sizeof(struct nat_entry));
267 nat_set_nid(new, nid);
268 nat_reset_flag(new);
269 list_add_tail(&new->list, &nm_i->nat_entries);
270 nm_i->nat_cnt++;
271 return new;
272 }
273
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 struct f2fs_nat_entry *ne)
276 {
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
279
280 e = __lookup_nat_cache(nm_i, nid);
281 if (!e) {
282 e = grab_nat_entry(nm_i, nid, false);
283 if (e)
284 node_info_from_raw_nat(&e->ni, ne);
285 } else {
286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 nat_get_blkaddr(e) !=
288 le32_to_cpu(ne->block_addr) ||
289 nat_get_version(e) != ne->version);
290 }
291 }
292
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 block_t new_blkaddr, bool fsync_done)
295 {
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
298
299 down_write(&nm_i->nat_tree_lock);
300 e = __lookup_nat_cache(nm_i, ni->nid);
301 if (!e) {
302 e = grab_nat_entry(nm_i, ni->nid, true);
303 copy_node_info(&e->ni, ni);
304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 } else if (new_blkaddr == NEW_ADDR) {
306 /*
307 * when nid is reallocated,
308 * previous nat entry can be remained in nat cache.
309 * So, reinitialize it with new information.
310 */
311 copy_node_info(&e->ni, ni);
312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313 }
314
315 /* sanity check */
316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 new_blkaddr == NULL_ADDR);
319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 new_blkaddr == NEW_ADDR);
321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 nat_get_blkaddr(e) != NULL_ADDR &&
323 new_blkaddr == NEW_ADDR);
324
325 /* increment version no as node is removed */
326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 unsigned char version = nat_get_version(e);
328 nat_set_version(e, inc_node_version(version));
329
330 /* in order to reuse the nid */
331 if (nm_i->next_scan_nid > ni->nid)
332 nm_i->next_scan_nid = ni->nid;
333 }
334
335 /* change address */
336 nat_set_blkaddr(e, new_blkaddr);
337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 set_nat_flag(e, IS_CHECKPOINTED, false);
339 __set_nat_cache_dirty(nm_i, e);
340
341 if (enabled_nat_bits(sbi, NULL) && new_blkaddr == NEW_ADDR)
342 clear_bit_le(NAT_BLOCK_OFFSET(ni->nid), nm_i->empty_nat_bits);
343
344 /* update fsync_mark if its inode nat entry is still alive */
345 if (ni->nid != ni->ino)
346 e = __lookup_nat_cache(nm_i, ni->ino);
347 if (e) {
348 if (fsync_done && ni->nid == ni->ino)
349 set_nat_flag(e, HAS_FSYNCED_INODE, true);
350 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
351 }
352 up_write(&nm_i->nat_tree_lock);
353 }
354
355 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
356 {
357 struct f2fs_nm_info *nm_i = NM_I(sbi);
358 int nr = nr_shrink;
359
360 if (!down_write_trylock(&nm_i->nat_tree_lock))
361 return 0;
362
363 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
364 struct nat_entry *ne;
365 ne = list_first_entry(&nm_i->nat_entries,
366 struct nat_entry, list);
367 __del_from_nat_cache(nm_i, ne);
368 nr_shrink--;
369 }
370 up_write(&nm_i->nat_tree_lock);
371 return nr - nr_shrink;
372 }
373
374 /*
375 * This function always returns success
376 */
377 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
378 {
379 struct f2fs_nm_info *nm_i = NM_I(sbi);
380 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
381 struct f2fs_journal *journal = curseg->journal;
382 nid_t start_nid = START_NID(nid);
383 struct f2fs_nat_block *nat_blk;
384 struct page *page = NULL;
385 struct f2fs_nat_entry ne;
386 struct nat_entry *e;
387 int i;
388
389 ni->nid = nid;
390
391 /* Check nat cache */
392 down_read(&nm_i->nat_tree_lock);
393 e = __lookup_nat_cache(nm_i, nid);
394 if (e) {
395 ni->ino = nat_get_ino(e);
396 ni->blk_addr = nat_get_blkaddr(e);
397 ni->version = nat_get_version(e);
398 up_read(&nm_i->nat_tree_lock);
399 return;
400 }
401
402 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
403
404 /* Check current segment summary */
405 down_read(&curseg->journal_rwsem);
406 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
407 if (i >= 0) {
408 ne = nat_in_journal(journal, i);
409 node_info_from_raw_nat(ni, &ne);
410 }
411 up_read(&curseg->journal_rwsem);
412 if (i >= 0)
413 goto cache;
414
415 /* Fill node_info from nat page */
416 page = get_current_nat_page(sbi, start_nid);
417 nat_blk = (struct f2fs_nat_block *)page_address(page);
418 ne = nat_blk->entries[nid - start_nid];
419 node_info_from_raw_nat(ni, &ne);
420 f2fs_put_page(page, 1);
421 cache:
422 up_read(&nm_i->nat_tree_lock);
423 /* cache nat entry */
424 down_write(&nm_i->nat_tree_lock);
425 cache_nat_entry(sbi, nid, &ne);
426 up_write(&nm_i->nat_tree_lock);
427 }
428
429 /*
430 * readahead MAX_RA_NODE number of node pages.
431 */
432 static void ra_node_pages(struct page *parent, int start, int n)
433 {
434 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
435 struct blk_plug plug;
436 int i, end;
437 nid_t nid;
438
439 blk_start_plug(&plug);
440
441 /* Then, try readahead for siblings of the desired node */
442 end = start + n;
443 end = min(end, NIDS_PER_BLOCK);
444 for (i = start; i < end; i++) {
445 nid = get_nid(parent, i, false);
446 ra_node_page(sbi, nid);
447 }
448
449 blk_finish_plug(&plug);
450 }
451
452 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
453 {
454 const long direct_index = ADDRS_PER_INODE(dn->inode);
455 const long direct_blks = ADDRS_PER_BLOCK;
456 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
457 unsigned int skipped_unit = ADDRS_PER_BLOCK;
458 int cur_level = dn->cur_level;
459 int max_level = dn->max_level;
460 pgoff_t base = 0;
461
462 if (!dn->max_level)
463 return pgofs + 1;
464
465 while (max_level-- > cur_level)
466 skipped_unit *= NIDS_PER_BLOCK;
467
468 switch (dn->max_level) {
469 case 3:
470 base += 2 * indirect_blks;
471 case 2:
472 base += 2 * direct_blks;
473 case 1:
474 base += direct_index;
475 break;
476 default:
477 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
478 }
479
480 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
481 }
482
483 /*
484 * The maximum depth is four.
485 * Offset[0] will have raw inode offset.
486 */
487 static int get_node_path(struct inode *inode, long block,
488 int offset[4], unsigned int noffset[4])
489 {
490 const long direct_index = ADDRS_PER_INODE(inode);
491 const long direct_blks = ADDRS_PER_BLOCK;
492 const long dptrs_per_blk = NIDS_PER_BLOCK;
493 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
494 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
495 int n = 0;
496 int level = 0;
497
498 noffset[0] = 0;
499
500 if (block < direct_index) {
501 offset[n] = block;
502 goto got;
503 }
504 block -= direct_index;
505 if (block < direct_blks) {
506 offset[n++] = NODE_DIR1_BLOCK;
507 noffset[n] = 1;
508 offset[n] = block;
509 level = 1;
510 goto got;
511 }
512 block -= direct_blks;
513 if (block < direct_blks) {
514 offset[n++] = NODE_DIR2_BLOCK;
515 noffset[n] = 2;
516 offset[n] = block;
517 level = 1;
518 goto got;
519 }
520 block -= direct_blks;
521 if (block < indirect_blks) {
522 offset[n++] = NODE_IND1_BLOCK;
523 noffset[n] = 3;
524 offset[n++] = block / direct_blks;
525 noffset[n] = 4 + offset[n - 1];
526 offset[n] = block % direct_blks;
527 level = 2;
528 goto got;
529 }
530 block -= indirect_blks;
531 if (block < indirect_blks) {
532 offset[n++] = NODE_IND2_BLOCK;
533 noffset[n] = 4 + dptrs_per_blk;
534 offset[n++] = block / direct_blks;
535 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
536 offset[n] = block % direct_blks;
537 level = 2;
538 goto got;
539 }
540 block -= indirect_blks;
541 if (block < dindirect_blks) {
542 offset[n++] = NODE_DIND_BLOCK;
543 noffset[n] = 5 + (dptrs_per_blk * 2);
544 offset[n++] = block / indirect_blks;
545 noffset[n] = 6 + (dptrs_per_blk * 2) +
546 offset[n - 1] * (dptrs_per_blk + 1);
547 offset[n++] = (block / direct_blks) % dptrs_per_blk;
548 noffset[n] = 7 + (dptrs_per_blk * 2) +
549 offset[n - 2] * (dptrs_per_blk + 1) +
550 offset[n - 1];
551 offset[n] = block % direct_blks;
552 level = 3;
553 goto got;
554 } else {
555 BUG();
556 }
557 got:
558 return level;
559 }
560
561 /*
562 * Caller should call f2fs_put_dnode(dn).
563 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
564 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
565 * In the case of RDONLY_NODE, we don't need to care about mutex.
566 */
567 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
568 {
569 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
570 struct page *npage[4];
571 struct page *parent = NULL;
572 int offset[4];
573 unsigned int noffset[4];
574 nid_t nids[4];
575 int level, i = 0;
576 int err = 0;
577
578 level = get_node_path(dn->inode, index, offset, noffset);
579
580 nids[0] = dn->inode->i_ino;
581 npage[0] = dn->inode_page;
582
583 if (!npage[0]) {
584 npage[0] = get_node_page(sbi, nids[0]);
585 if (IS_ERR(npage[0]))
586 return PTR_ERR(npage[0]);
587 }
588
589 /* if inline_data is set, should not report any block indices */
590 if (f2fs_has_inline_data(dn->inode) && index) {
591 err = -ENOENT;
592 f2fs_put_page(npage[0], 1);
593 goto release_out;
594 }
595
596 parent = npage[0];
597 if (level != 0)
598 nids[1] = get_nid(parent, offset[0], true);
599 dn->inode_page = npage[0];
600 dn->inode_page_locked = true;
601
602 /* get indirect or direct nodes */
603 for (i = 1; i <= level; i++) {
604 bool done = false;
605
606 if (!nids[i] && mode == ALLOC_NODE) {
607 /* alloc new node */
608 if (!alloc_nid(sbi, &(nids[i]))) {
609 err = -ENOSPC;
610 goto release_pages;
611 }
612
613 dn->nid = nids[i];
614 npage[i] = new_node_page(dn, noffset[i], NULL);
615 if (IS_ERR(npage[i])) {
616 alloc_nid_failed(sbi, nids[i]);
617 err = PTR_ERR(npage[i]);
618 goto release_pages;
619 }
620
621 set_nid(parent, offset[i - 1], nids[i], i == 1);
622 alloc_nid_done(sbi, nids[i]);
623 done = true;
624 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
625 npage[i] = get_node_page_ra(parent, offset[i - 1]);
626 if (IS_ERR(npage[i])) {
627 err = PTR_ERR(npage[i]);
628 goto release_pages;
629 }
630 done = true;
631 }
632 if (i == 1) {
633 dn->inode_page_locked = false;
634 unlock_page(parent);
635 } else {
636 f2fs_put_page(parent, 1);
637 }
638
639 if (!done) {
640 npage[i] = get_node_page(sbi, nids[i]);
641 if (IS_ERR(npage[i])) {
642 err = PTR_ERR(npage[i]);
643 f2fs_put_page(npage[0], 0);
644 goto release_out;
645 }
646 }
647 if (i < level) {
648 parent = npage[i];
649 nids[i + 1] = get_nid(parent, offset[i], false);
650 }
651 }
652 dn->nid = nids[level];
653 dn->ofs_in_node = offset[level];
654 dn->node_page = npage[level];
655 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
656 return 0;
657
658 release_pages:
659 f2fs_put_page(parent, 1);
660 if (i > 1)
661 f2fs_put_page(npage[0], 0);
662 release_out:
663 dn->inode_page = NULL;
664 dn->node_page = NULL;
665 if (err == -ENOENT) {
666 dn->cur_level = i;
667 dn->max_level = level;
668 dn->ofs_in_node = offset[level];
669 }
670 return err;
671 }
672
673 static void truncate_node(struct dnode_of_data *dn)
674 {
675 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
676 struct node_info ni;
677
678 get_node_info(sbi, dn->nid, &ni);
679 if (dn->inode->i_blocks == 0) {
680 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
681 goto invalidate;
682 }
683 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
684
685 /* Deallocate node address */
686 invalidate_blocks(sbi, ni.blk_addr);
687 dec_valid_node_count(sbi, dn->inode);
688 set_node_addr(sbi, &ni, NULL_ADDR, false);
689
690 if (dn->nid == dn->inode->i_ino) {
691 remove_orphan_inode(sbi, dn->nid);
692 dec_valid_inode_count(sbi);
693 f2fs_inode_synced(dn->inode);
694 }
695 invalidate:
696 clear_node_page_dirty(dn->node_page);
697 set_sbi_flag(sbi, SBI_IS_DIRTY);
698
699 f2fs_put_page(dn->node_page, 1);
700
701 invalidate_mapping_pages(NODE_MAPPING(sbi),
702 dn->node_page->index, dn->node_page->index);
703
704 dn->node_page = NULL;
705 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
706 }
707
708 static int truncate_dnode(struct dnode_of_data *dn)
709 {
710 struct page *page;
711
712 if (dn->nid == 0)
713 return 1;
714
715 /* get direct node */
716 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
717 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
718 return 1;
719 else if (IS_ERR(page))
720 return PTR_ERR(page);
721
722 /* Make dnode_of_data for parameter */
723 dn->node_page = page;
724 dn->ofs_in_node = 0;
725 truncate_data_blocks(dn);
726 truncate_node(dn);
727 return 1;
728 }
729
730 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
731 int ofs, int depth)
732 {
733 struct dnode_of_data rdn = *dn;
734 struct page *page;
735 struct f2fs_node *rn;
736 nid_t child_nid;
737 unsigned int child_nofs;
738 int freed = 0;
739 int i, ret;
740
741 if (dn->nid == 0)
742 return NIDS_PER_BLOCK + 1;
743
744 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
745
746 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
747 if (IS_ERR(page)) {
748 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
749 return PTR_ERR(page);
750 }
751
752 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
753
754 rn = F2FS_NODE(page);
755 if (depth < 3) {
756 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
757 child_nid = le32_to_cpu(rn->in.nid[i]);
758 if (child_nid == 0)
759 continue;
760 rdn.nid = child_nid;
761 ret = truncate_dnode(&rdn);
762 if (ret < 0)
763 goto out_err;
764 if (set_nid(page, i, 0, false))
765 dn->node_changed = true;
766 }
767 } else {
768 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
769 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
770 child_nid = le32_to_cpu(rn->in.nid[i]);
771 if (child_nid == 0) {
772 child_nofs += NIDS_PER_BLOCK + 1;
773 continue;
774 }
775 rdn.nid = child_nid;
776 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
777 if (ret == (NIDS_PER_BLOCK + 1)) {
778 if (set_nid(page, i, 0, false))
779 dn->node_changed = true;
780 child_nofs += ret;
781 } else if (ret < 0 && ret != -ENOENT) {
782 goto out_err;
783 }
784 }
785 freed = child_nofs;
786 }
787
788 if (!ofs) {
789 /* remove current indirect node */
790 dn->node_page = page;
791 truncate_node(dn);
792 freed++;
793 } else {
794 f2fs_put_page(page, 1);
795 }
796 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
797 return freed;
798
799 out_err:
800 f2fs_put_page(page, 1);
801 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
802 return ret;
803 }
804
805 static int truncate_partial_nodes(struct dnode_of_data *dn,
806 struct f2fs_inode *ri, int *offset, int depth)
807 {
808 struct page *pages[2];
809 nid_t nid[3];
810 nid_t child_nid;
811 int err = 0;
812 int i;
813 int idx = depth - 2;
814
815 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
816 if (!nid[0])
817 return 0;
818
819 /* get indirect nodes in the path */
820 for (i = 0; i < idx + 1; i++) {
821 /* reference count'll be increased */
822 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
823 if (IS_ERR(pages[i])) {
824 err = PTR_ERR(pages[i]);
825 idx = i - 1;
826 goto fail;
827 }
828 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
829 }
830
831 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
832
833 /* free direct nodes linked to a partial indirect node */
834 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
835 child_nid = get_nid(pages[idx], i, false);
836 if (!child_nid)
837 continue;
838 dn->nid = child_nid;
839 err = truncate_dnode(dn);
840 if (err < 0)
841 goto fail;
842 if (set_nid(pages[idx], i, 0, false))
843 dn->node_changed = true;
844 }
845
846 if (offset[idx + 1] == 0) {
847 dn->node_page = pages[idx];
848 dn->nid = nid[idx];
849 truncate_node(dn);
850 } else {
851 f2fs_put_page(pages[idx], 1);
852 }
853 offset[idx]++;
854 offset[idx + 1] = 0;
855 idx--;
856 fail:
857 for (i = idx; i >= 0; i--)
858 f2fs_put_page(pages[i], 1);
859
860 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
861
862 return err;
863 }
864
865 /*
866 * All the block addresses of data and nodes should be nullified.
867 */
868 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
869 {
870 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
871 int err = 0, cont = 1;
872 int level, offset[4], noffset[4];
873 unsigned int nofs = 0;
874 struct f2fs_inode *ri;
875 struct dnode_of_data dn;
876 struct page *page;
877
878 trace_f2fs_truncate_inode_blocks_enter(inode, from);
879
880 level = get_node_path(inode, from, offset, noffset);
881
882 page = get_node_page(sbi, inode->i_ino);
883 if (IS_ERR(page)) {
884 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
885 return PTR_ERR(page);
886 }
887
888 set_new_dnode(&dn, inode, page, NULL, 0);
889 unlock_page(page);
890
891 ri = F2FS_INODE(page);
892 switch (level) {
893 case 0:
894 case 1:
895 nofs = noffset[1];
896 break;
897 case 2:
898 nofs = noffset[1];
899 if (!offset[level - 1])
900 goto skip_partial;
901 err = truncate_partial_nodes(&dn, ri, offset, level);
902 if (err < 0 && err != -ENOENT)
903 goto fail;
904 nofs += 1 + NIDS_PER_BLOCK;
905 break;
906 case 3:
907 nofs = 5 + 2 * NIDS_PER_BLOCK;
908 if (!offset[level - 1])
909 goto skip_partial;
910 err = truncate_partial_nodes(&dn, ri, offset, level);
911 if (err < 0 && err != -ENOENT)
912 goto fail;
913 break;
914 default:
915 BUG();
916 }
917
918 skip_partial:
919 while (cont) {
920 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
921 switch (offset[0]) {
922 case NODE_DIR1_BLOCK:
923 case NODE_DIR2_BLOCK:
924 err = truncate_dnode(&dn);
925 break;
926
927 case NODE_IND1_BLOCK:
928 case NODE_IND2_BLOCK:
929 err = truncate_nodes(&dn, nofs, offset[1], 2);
930 break;
931
932 case NODE_DIND_BLOCK:
933 err = truncate_nodes(&dn, nofs, offset[1], 3);
934 cont = 0;
935 break;
936
937 default:
938 BUG();
939 }
940 if (err < 0 && err != -ENOENT)
941 goto fail;
942 if (offset[1] == 0 &&
943 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
944 lock_page(page);
945 BUG_ON(page->mapping != NODE_MAPPING(sbi));
946 f2fs_wait_on_page_writeback(page, NODE, true);
947 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
948 set_page_dirty(page);
949 unlock_page(page);
950 }
951 offset[1] = 0;
952 offset[0]++;
953 nofs += err;
954 }
955 fail:
956 f2fs_put_page(page, 0);
957 trace_f2fs_truncate_inode_blocks_exit(inode, err);
958 return err > 0 ? 0 : err;
959 }
960
961 int truncate_xattr_node(struct inode *inode, struct page *page)
962 {
963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
964 nid_t nid = F2FS_I(inode)->i_xattr_nid;
965 struct dnode_of_data dn;
966 struct page *npage;
967
968 if (!nid)
969 return 0;
970
971 npage = get_node_page(sbi, nid);
972 if (IS_ERR(npage))
973 return PTR_ERR(npage);
974
975 f2fs_i_xnid_write(inode, 0);
976
977 set_new_dnode(&dn, inode, page, npage, nid);
978
979 if (page)
980 dn.inode_page_locked = true;
981 truncate_node(&dn);
982 return 0;
983 }
984
985 /*
986 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
987 * f2fs_unlock_op().
988 */
989 int remove_inode_page(struct inode *inode)
990 {
991 struct dnode_of_data dn;
992 int err;
993
994 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
995 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
996 if (err)
997 return err;
998
999 err = truncate_xattr_node(inode, dn.inode_page);
1000 if (err) {
1001 f2fs_put_dnode(&dn);
1002 return err;
1003 }
1004
1005 /* remove potential inline_data blocks */
1006 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1007 S_ISLNK(inode->i_mode))
1008 truncate_data_blocks_range(&dn, 1);
1009
1010 /* 0 is possible, after f2fs_new_inode() has failed */
1011 f2fs_bug_on(F2FS_I_SB(inode),
1012 inode->i_blocks != 0 && inode->i_blocks != 1);
1013
1014 /* will put inode & node pages */
1015 truncate_node(&dn);
1016 return 0;
1017 }
1018
1019 struct page *new_inode_page(struct inode *inode)
1020 {
1021 struct dnode_of_data dn;
1022
1023 /* allocate inode page for new inode */
1024 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1025
1026 /* caller should f2fs_put_page(page, 1); */
1027 return new_node_page(&dn, 0, NULL);
1028 }
1029
1030 struct page *new_node_page(struct dnode_of_data *dn,
1031 unsigned int ofs, struct page *ipage)
1032 {
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1034 struct node_info new_ni;
1035 struct page *page;
1036 int err;
1037
1038 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1039 return ERR_PTR(-EPERM);
1040
1041 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1042 if (!page)
1043 return ERR_PTR(-ENOMEM);
1044
1045 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1046 err = -ENOSPC;
1047 goto fail;
1048 }
1049 #ifdef CONFIG_F2FS_CHECK_FS
1050 get_node_info(sbi, dn->nid, &new_ni);
1051 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1052 #endif
1053 new_ni.nid = dn->nid;
1054 new_ni.ino = dn->inode->i_ino;
1055 new_ni.blk_addr = NULL_ADDR;
1056 new_ni.flag = 0;
1057 new_ni.version = 0;
1058 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1059
1060 f2fs_wait_on_page_writeback(page, NODE, true);
1061 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1062 set_cold_node(dn->inode, page);
1063 if (!PageUptodate(page))
1064 SetPageUptodate(page);
1065 if (set_page_dirty(page))
1066 dn->node_changed = true;
1067
1068 if (f2fs_has_xattr_block(ofs))
1069 f2fs_i_xnid_write(dn->inode, dn->nid);
1070
1071 if (ofs == 0)
1072 inc_valid_inode_count(sbi);
1073 return page;
1074
1075 fail:
1076 clear_node_page_dirty(page);
1077 f2fs_put_page(page, 1);
1078 return ERR_PTR(err);
1079 }
1080
1081 /*
1082 * Caller should do after getting the following values.
1083 * 0: f2fs_put_page(page, 0)
1084 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1085 */
1086 static int read_node_page(struct page *page, int op_flags)
1087 {
1088 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1089 struct node_info ni;
1090 struct f2fs_io_info fio = {
1091 .sbi = sbi,
1092 .type = NODE,
1093 .op = REQ_OP_READ,
1094 .op_flags = op_flags,
1095 .page = page,
1096 .encrypted_page = NULL,
1097 };
1098
1099 if (PageUptodate(page))
1100 return LOCKED_PAGE;
1101
1102 get_node_info(sbi, page->index, &ni);
1103
1104 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1105 ClearPageUptodate(page);
1106 return -ENOENT;
1107 }
1108
1109 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1110 return f2fs_submit_page_bio(&fio);
1111 }
1112
1113 /*
1114 * Readahead a node page
1115 */
1116 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1117 {
1118 struct page *apage;
1119 int err;
1120
1121 if (!nid)
1122 return;
1123 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1124
1125 rcu_read_lock();
1126 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1127 rcu_read_unlock();
1128 if (apage)
1129 return;
1130
1131 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1132 if (!apage)
1133 return;
1134
1135 err = read_node_page(apage, REQ_RAHEAD);
1136 f2fs_put_page(apage, err ? 1 : 0);
1137 }
1138
1139 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1140 struct page *parent, int start)
1141 {
1142 struct page *page;
1143 int err;
1144
1145 if (!nid)
1146 return ERR_PTR(-ENOENT);
1147 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1148 repeat:
1149 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1150 if (!page)
1151 return ERR_PTR(-ENOMEM);
1152
1153 err = read_node_page(page, 0);
1154 if (err < 0) {
1155 f2fs_put_page(page, 1);
1156 return ERR_PTR(err);
1157 } else if (err == LOCKED_PAGE) {
1158 goto page_hit;
1159 }
1160
1161 if (parent)
1162 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1163
1164 lock_page(page);
1165
1166 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1167 f2fs_put_page(page, 1);
1168 goto repeat;
1169 }
1170
1171 if (unlikely(!PageUptodate(page)))
1172 goto out_err;
1173 page_hit:
1174 if(unlikely(nid != nid_of_node(page))) {
1175 f2fs_bug_on(sbi, 1);
1176 ClearPageUptodate(page);
1177 out_err:
1178 f2fs_put_page(page, 1);
1179 return ERR_PTR(-EIO);
1180 }
1181 return page;
1182 }
1183
1184 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1185 {
1186 return __get_node_page(sbi, nid, NULL, 0);
1187 }
1188
1189 struct page *get_node_page_ra(struct page *parent, int start)
1190 {
1191 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1192 nid_t nid = get_nid(parent, start, false);
1193
1194 return __get_node_page(sbi, nid, parent, start);
1195 }
1196
1197 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1198 {
1199 struct inode *inode;
1200 struct page *page;
1201 int ret;
1202
1203 /* should flush inline_data before evict_inode */
1204 inode = ilookup(sbi->sb, ino);
1205 if (!inode)
1206 return;
1207
1208 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1209 if (!page)
1210 goto iput_out;
1211
1212 if (!PageUptodate(page))
1213 goto page_out;
1214
1215 if (!PageDirty(page))
1216 goto page_out;
1217
1218 if (!clear_page_dirty_for_io(page))
1219 goto page_out;
1220
1221 ret = f2fs_write_inline_data(inode, page);
1222 inode_dec_dirty_pages(inode);
1223 remove_dirty_inode(inode);
1224 if (ret)
1225 set_page_dirty(page);
1226 page_out:
1227 f2fs_put_page(page, 1);
1228 iput_out:
1229 iput(inode);
1230 }
1231
1232 void move_node_page(struct page *node_page, int gc_type)
1233 {
1234 if (gc_type == FG_GC) {
1235 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1236 struct writeback_control wbc = {
1237 .sync_mode = WB_SYNC_ALL,
1238 .nr_to_write = 1,
1239 .for_reclaim = 0,
1240 };
1241
1242 set_page_dirty(node_page);
1243 f2fs_wait_on_page_writeback(node_page, NODE, true);
1244
1245 f2fs_bug_on(sbi, PageWriteback(node_page));
1246 if (!clear_page_dirty_for_io(node_page))
1247 goto out_page;
1248
1249 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1250 unlock_page(node_page);
1251 goto release_page;
1252 } else {
1253 /* set page dirty and write it */
1254 if (!PageWriteback(node_page))
1255 set_page_dirty(node_page);
1256 }
1257 out_page:
1258 unlock_page(node_page);
1259 release_page:
1260 f2fs_put_page(node_page, 0);
1261 }
1262
1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1264 {
1265 pgoff_t index, end;
1266 struct pagevec pvec;
1267 struct page *last_page = NULL;
1268
1269 pagevec_init(&pvec, 0);
1270 index = 0;
1271 end = ULONG_MAX;
1272
1273 while (index <= end) {
1274 int i, nr_pages;
1275 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1276 PAGECACHE_TAG_DIRTY,
1277 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1278 if (nr_pages == 0)
1279 break;
1280
1281 for (i = 0; i < nr_pages; i++) {
1282 struct page *page = pvec.pages[i];
1283
1284 if (unlikely(f2fs_cp_error(sbi))) {
1285 f2fs_put_page(last_page, 0);
1286 pagevec_release(&pvec);
1287 return ERR_PTR(-EIO);
1288 }
1289
1290 if (!IS_DNODE(page) || !is_cold_node(page))
1291 continue;
1292 if (ino_of_node(page) != ino)
1293 continue;
1294
1295 lock_page(page);
1296
1297 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1298 continue_unlock:
1299 unlock_page(page);
1300 continue;
1301 }
1302 if (ino_of_node(page) != ino)
1303 goto continue_unlock;
1304
1305 if (!PageDirty(page)) {
1306 /* someone wrote it for us */
1307 goto continue_unlock;
1308 }
1309
1310 if (last_page)
1311 f2fs_put_page(last_page, 0);
1312
1313 get_page(page);
1314 last_page = page;
1315 unlock_page(page);
1316 }
1317 pagevec_release(&pvec);
1318 cond_resched();
1319 }
1320 return last_page;
1321 }
1322
1323 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1324 struct writeback_control *wbc)
1325 {
1326 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1327 nid_t nid;
1328 struct node_info ni;
1329 struct f2fs_io_info fio = {
1330 .sbi = sbi,
1331 .type = NODE,
1332 .op = REQ_OP_WRITE,
1333 .op_flags = wbc_to_write_flags(wbc),
1334 .page = page,
1335 .encrypted_page = NULL,
1336 .submitted = false,
1337 };
1338
1339 trace_f2fs_writepage(page, NODE);
1340
1341 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1342 goto redirty_out;
1343 if (unlikely(f2fs_cp_error(sbi)))
1344 goto redirty_out;
1345
1346 /* get old block addr of this node page */
1347 nid = nid_of_node(page);
1348 f2fs_bug_on(sbi, page->index != nid);
1349
1350 if (wbc->for_reclaim) {
1351 if (!down_read_trylock(&sbi->node_write))
1352 goto redirty_out;
1353 } else {
1354 down_read(&sbi->node_write);
1355 }
1356
1357 get_node_info(sbi, nid, &ni);
1358
1359 /* This page is already truncated */
1360 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1361 ClearPageUptodate(page);
1362 dec_page_count(sbi, F2FS_DIRTY_NODES);
1363 up_read(&sbi->node_write);
1364 unlock_page(page);
1365 return 0;
1366 }
1367
1368 if (atomic && !test_opt(sbi, NOBARRIER))
1369 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1370
1371 set_page_writeback(page);
1372 fio.old_blkaddr = ni.blk_addr;
1373 write_node_page(nid, &fio);
1374 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1375 dec_page_count(sbi, F2FS_DIRTY_NODES);
1376 up_read(&sbi->node_write);
1377
1378 if (wbc->for_reclaim) {
1379 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 0,
1380 page->index, NODE, WRITE);
1381 submitted = NULL;
1382 }
1383
1384 unlock_page(page);
1385
1386 if (unlikely(f2fs_cp_error(sbi))) {
1387 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1388 submitted = NULL;
1389 }
1390 if (submitted)
1391 *submitted = fio.submitted;
1392
1393 return 0;
1394
1395 redirty_out:
1396 redirty_page_for_writepage(wbc, page);
1397 return AOP_WRITEPAGE_ACTIVATE;
1398 }
1399
1400 static int f2fs_write_node_page(struct page *page,
1401 struct writeback_control *wbc)
1402 {
1403 return __write_node_page(page, false, NULL, wbc);
1404 }
1405
1406 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1407 struct writeback_control *wbc, bool atomic)
1408 {
1409 pgoff_t index, end;
1410 pgoff_t last_idx = ULONG_MAX;
1411 struct pagevec pvec;
1412 int ret = 0;
1413 struct page *last_page = NULL;
1414 bool marked = false;
1415 nid_t ino = inode->i_ino;
1416
1417 if (atomic) {
1418 last_page = last_fsync_dnode(sbi, ino);
1419 if (IS_ERR_OR_NULL(last_page))
1420 return PTR_ERR_OR_ZERO(last_page);
1421 }
1422 retry:
1423 pagevec_init(&pvec, 0);
1424 index = 0;
1425 end = ULONG_MAX;
1426
1427 while (index <= end) {
1428 int i, nr_pages;
1429 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1430 PAGECACHE_TAG_DIRTY,
1431 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1432 if (nr_pages == 0)
1433 break;
1434
1435 for (i = 0; i < nr_pages; i++) {
1436 struct page *page = pvec.pages[i];
1437 bool submitted = false;
1438
1439 if (unlikely(f2fs_cp_error(sbi))) {
1440 f2fs_put_page(last_page, 0);
1441 pagevec_release(&pvec);
1442 ret = -EIO;
1443 goto out;
1444 }
1445
1446 if (!IS_DNODE(page) || !is_cold_node(page))
1447 continue;
1448 if (ino_of_node(page) != ino)
1449 continue;
1450
1451 lock_page(page);
1452
1453 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1454 continue_unlock:
1455 unlock_page(page);
1456 continue;
1457 }
1458 if (ino_of_node(page) != ino)
1459 goto continue_unlock;
1460
1461 if (!PageDirty(page) && page != last_page) {
1462 /* someone wrote it for us */
1463 goto continue_unlock;
1464 }
1465
1466 f2fs_wait_on_page_writeback(page, NODE, true);
1467 BUG_ON(PageWriteback(page));
1468
1469 if (!atomic || page == last_page) {
1470 set_fsync_mark(page, 1);
1471 if (IS_INODE(page)) {
1472 if (is_inode_flag_set(inode,
1473 FI_DIRTY_INODE))
1474 update_inode(inode, page);
1475 set_dentry_mark(page,
1476 need_dentry_mark(sbi, ino));
1477 }
1478 /* may be written by other thread */
1479 if (!PageDirty(page))
1480 set_page_dirty(page);
1481 }
1482
1483 if (!clear_page_dirty_for_io(page))
1484 goto continue_unlock;
1485
1486 ret = __write_node_page(page, atomic &&
1487 page == last_page,
1488 &submitted, wbc);
1489 if (ret) {
1490 unlock_page(page);
1491 f2fs_put_page(last_page, 0);
1492 break;
1493 } else if (submitted) {
1494 last_idx = page->index;
1495 }
1496
1497 if (page == last_page) {
1498 f2fs_put_page(page, 0);
1499 marked = true;
1500 break;
1501 }
1502 }
1503 pagevec_release(&pvec);
1504 cond_resched();
1505
1506 if (ret || marked)
1507 break;
1508 }
1509 if (!ret && atomic && !marked) {
1510 f2fs_msg(sbi->sb, KERN_DEBUG,
1511 "Retry to write fsync mark: ino=%u, idx=%lx",
1512 ino, last_page->index);
1513 lock_page(last_page);
1514 f2fs_wait_on_page_writeback(last_page, NODE, true);
1515 set_page_dirty(last_page);
1516 unlock_page(last_page);
1517 goto retry;
1518 }
1519 out:
1520 if (last_idx != ULONG_MAX)
1521 f2fs_submit_merged_bio_cond(sbi, NULL, ino, last_idx,
1522 NODE, WRITE);
1523 return ret ? -EIO: 0;
1524 }
1525
1526 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1527 {
1528 pgoff_t index, end;
1529 struct pagevec pvec;
1530 int step = 0;
1531 int nwritten = 0;
1532 int ret = 0;
1533
1534 pagevec_init(&pvec, 0);
1535
1536 next_step:
1537 index = 0;
1538 end = ULONG_MAX;
1539
1540 while (index <= end) {
1541 int i, nr_pages;
1542 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1543 PAGECACHE_TAG_DIRTY,
1544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1545 if (nr_pages == 0)
1546 break;
1547
1548 for (i = 0; i < nr_pages; i++) {
1549 struct page *page = pvec.pages[i];
1550 bool submitted = false;
1551
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 pagevec_release(&pvec);
1554 ret = -EIO;
1555 goto out;
1556 }
1557
1558 /*
1559 * flushing sequence with step:
1560 * 0. indirect nodes
1561 * 1. dentry dnodes
1562 * 2. file dnodes
1563 */
1564 if (step == 0 && IS_DNODE(page))
1565 continue;
1566 if (step == 1 && (!IS_DNODE(page) ||
1567 is_cold_node(page)))
1568 continue;
1569 if (step == 2 && (!IS_DNODE(page) ||
1570 !is_cold_node(page)))
1571 continue;
1572 lock_node:
1573 if (!trylock_page(page))
1574 continue;
1575
1576 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1577 continue_unlock:
1578 unlock_page(page);
1579 continue;
1580 }
1581
1582 if (!PageDirty(page)) {
1583 /* someone wrote it for us */
1584 goto continue_unlock;
1585 }
1586
1587 /* flush inline_data */
1588 if (is_inline_node(page)) {
1589 clear_inline_node(page);
1590 unlock_page(page);
1591 flush_inline_data(sbi, ino_of_node(page));
1592 goto lock_node;
1593 }
1594
1595 f2fs_wait_on_page_writeback(page, NODE, true);
1596
1597 BUG_ON(PageWriteback(page));
1598 if (!clear_page_dirty_for_io(page))
1599 goto continue_unlock;
1600
1601 set_fsync_mark(page, 0);
1602 set_dentry_mark(page, 0);
1603
1604 ret = __write_node_page(page, false, &submitted, wbc);
1605 if (ret)
1606 unlock_page(page);
1607 else if (submitted)
1608 nwritten++;
1609
1610 if (--wbc->nr_to_write == 0)
1611 break;
1612 }
1613 pagevec_release(&pvec);
1614 cond_resched();
1615
1616 if (wbc->nr_to_write == 0) {
1617 step = 2;
1618 break;
1619 }
1620 }
1621
1622 if (step < 2) {
1623 step++;
1624 goto next_step;
1625 }
1626 out:
1627 if (nwritten)
1628 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1629 return ret;
1630 }
1631
1632 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1633 {
1634 pgoff_t index = 0, end = ULONG_MAX;
1635 struct pagevec pvec;
1636 int ret2, ret = 0;
1637
1638 pagevec_init(&pvec, 0);
1639
1640 while (index <= end) {
1641 int i, nr_pages;
1642 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1643 PAGECACHE_TAG_WRITEBACK,
1644 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1645 if (nr_pages == 0)
1646 break;
1647
1648 for (i = 0; i < nr_pages; i++) {
1649 struct page *page = pvec.pages[i];
1650
1651 /* until radix tree lookup accepts end_index */
1652 if (unlikely(page->index > end))
1653 continue;
1654
1655 if (ino && ino_of_node(page) == ino) {
1656 f2fs_wait_on_page_writeback(page, NODE, true);
1657 if (TestClearPageError(page))
1658 ret = -EIO;
1659 }
1660 }
1661 pagevec_release(&pvec);
1662 cond_resched();
1663 }
1664
1665 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1666 if (!ret)
1667 ret = ret2;
1668 return ret;
1669 }
1670
1671 static int f2fs_write_node_pages(struct address_space *mapping,
1672 struct writeback_control *wbc)
1673 {
1674 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1675 struct blk_plug plug;
1676 long diff;
1677
1678 /* balancing f2fs's metadata in background */
1679 f2fs_balance_fs_bg(sbi);
1680
1681 /* collect a number of dirty node pages and write together */
1682 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1683 goto skip_write;
1684
1685 trace_f2fs_writepages(mapping->host, wbc, NODE);
1686
1687 diff = nr_pages_to_write(sbi, NODE, wbc);
1688 wbc->sync_mode = WB_SYNC_NONE;
1689 blk_start_plug(&plug);
1690 sync_node_pages(sbi, wbc);
1691 blk_finish_plug(&plug);
1692 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1693 return 0;
1694
1695 skip_write:
1696 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1697 trace_f2fs_writepages(mapping->host, wbc, NODE);
1698 return 0;
1699 }
1700
1701 static int f2fs_set_node_page_dirty(struct page *page)
1702 {
1703 trace_f2fs_set_page_dirty(page, NODE);
1704
1705 if (!PageUptodate(page))
1706 SetPageUptodate(page);
1707 if (!PageDirty(page)) {
1708 f2fs_set_page_dirty_nobuffers(page);
1709 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1710 SetPagePrivate(page);
1711 f2fs_trace_pid(page);
1712 return 1;
1713 }
1714 return 0;
1715 }
1716
1717 /*
1718 * Structure of the f2fs node operations
1719 */
1720 const struct address_space_operations f2fs_node_aops = {
1721 .writepage = f2fs_write_node_page,
1722 .writepages = f2fs_write_node_pages,
1723 .set_page_dirty = f2fs_set_node_page_dirty,
1724 .invalidatepage = f2fs_invalidate_page,
1725 .releasepage = f2fs_release_page,
1726 #ifdef CONFIG_MIGRATION
1727 .migratepage = f2fs_migrate_page,
1728 #endif
1729 };
1730
1731 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1732 nid_t n)
1733 {
1734 return radix_tree_lookup(&nm_i->free_nid_root, n);
1735 }
1736
1737 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1738 struct free_nid *i, enum nid_list list, bool new)
1739 {
1740 struct f2fs_nm_info *nm_i = NM_I(sbi);
1741
1742 if (new) {
1743 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1744 if (err)
1745 return err;
1746 }
1747
1748 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1749 i->state != NID_ALLOC);
1750 nm_i->nid_cnt[list]++;
1751 list_add_tail(&i->list, &nm_i->nid_list[list]);
1752 return 0;
1753 }
1754
1755 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1756 struct free_nid *i, enum nid_list list, bool reuse)
1757 {
1758 struct f2fs_nm_info *nm_i = NM_I(sbi);
1759
1760 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1761 i->state != NID_ALLOC);
1762 nm_i->nid_cnt[list]--;
1763 list_del(&i->list);
1764 if (!reuse)
1765 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1766 }
1767
1768 /* return if the nid is recognized as free */
1769 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1770 {
1771 struct f2fs_nm_info *nm_i = NM_I(sbi);
1772 struct free_nid *i;
1773 struct nat_entry *ne;
1774 int err;
1775
1776 /* 0 nid should not be used */
1777 if (unlikely(nid == 0))
1778 return false;
1779
1780 if (build) {
1781 /* do not add allocated nids */
1782 ne = __lookup_nat_cache(nm_i, nid);
1783 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1784 nat_get_blkaddr(ne) != NULL_ADDR))
1785 return false;
1786 }
1787
1788 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1789 i->nid = nid;
1790 i->state = NID_NEW;
1791
1792 if (radix_tree_preload(GFP_NOFS)) {
1793 kmem_cache_free(free_nid_slab, i);
1794 return true;
1795 }
1796
1797 spin_lock(&nm_i->nid_list_lock);
1798 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1799 spin_unlock(&nm_i->nid_list_lock);
1800 radix_tree_preload_end();
1801 if (err) {
1802 kmem_cache_free(free_nid_slab, i);
1803 return true;
1804 }
1805 return true;
1806 }
1807
1808 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1809 {
1810 struct f2fs_nm_info *nm_i = NM_I(sbi);
1811 struct free_nid *i;
1812 bool need_free = false;
1813
1814 spin_lock(&nm_i->nid_list_lock);
1815 i = __lookup_free_nid_list(nm_i, nid);
1816 if (i && i->state == NID_NEW) {
1817 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1818 need_free = true;
1819 }
1820 spin_unlock(&nm_i->nid_list_lock);
1821
1822 if (need_free)
1823 kmem_cache_free(free_nid_slab, i);
1824 }
1825
1826 void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, bool set)
1827 {
1828 struct f2fs_nm_info *nm_i = NM_I(sbi);
1829 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1830 unsigned int nid_ofs = nid - START_NID(nid);
1831
1832 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1833 return;
1834
1835 if (set)
1836 set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1837 else
1838 clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1839 }
1840
1841 static void scan_nat_page(struct f2fs_sb_info *sbi,
1842 struct page *nat_page, nid_t start_nid)
1843 {
1844 struct f2fs_nm_info *nm_i = NM_I(sbi);
1845 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1846 block_t blk_addr;
1847 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1848 int i;
1849
1850 set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1851
1852 i = start_nid % NAT_ENTRY_PER_BLOCK;
1853
1854 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1855 bool freed = false;
1856
1857 if (unlikely(start_nid >= nm_i->max_nid))
1858 break;
1859
1860 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1861 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1862 if (blk_addr == NULL_ADDR)
1863 freed = add_free_nid(sbi, start_nid, true);
1864 update_free_nid_bitmap(sbi, start_nid, freed);
1865 }
1866 }
1867
1868 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1869 {
1870 struct f2fs_nm_info *nm_i = NM_I(sbi);
1871 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1872 struct f2fs_journal *journal = curseg->journal;
1873 unsigned int i, idx;
1874
1875 down_read(&nm_i->nat_tree_lock);
1876
1877 for (i = 0; i < nm_i->nat_blocks; i++) {
1878 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1879 continue;
1880 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1881 nid_t nid;
1882
1883 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1884 continue;
1885
1886 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1887 add_free_nid(sbi, nid, true);
1888
1889 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1890 goto out;
1891 }
1892 }
1893 out:
1894 down_read(&curseg->journal_rwsem);
1895 for (i = 0; i < nats_in_cursum(journal); i++) {
1896 block_t addr;
1897 nid_t nid;
1898
1899 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1900 nid = le32_to_cpu(nid_in_journal(journal, i));
1901 if (addr == NULL_ADDR)
1902 add_free_nid(sbi, nid, true);
1903 else
1904 remove_free_nid(sbi, nid);
1905 }
1906 up_read(&curseg->journal_rwsem);
1907 up_read(&nm_i->nat_tree_lock);
1908 }
1909
1910 static int scan_nat_bits(struct f2fs_sb_info *sbi)
1911 {
1912 struct f2fs_nm_info *nm_i = NM_I(sbi);
1913 struct page *page;
1914 unsigned int i = 0;
1915 nid_t nid;
1916
1917 if (!enabled_nat_bits(sbi, NULL))
1918 return -EAGAIN;
1919
1920 down_read(&nm_i->nat_tree_lock);
1921 check_empty:
1922 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
1923 if (i >= nm_i->nat_blocks) {
1924 i = 0;
1925 goto check_partial;
1926 }
1927
1928 for (nid = i * NAT_ENTRY_PER_BLOCK; nid < (i + 1) * NAT_ENTRY_PER_BLOCK;
1929 nid++) {
1930 if (unlikely(nid >= nm_i->max_nid))
1931 break;
1932 add_free_nid(sbi, nid, true);
1933 }
1934
1935 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1936 goto out;
1937 i++;
1938 goto check_empty;
1939
1940 check_partial:
1941 i = find_next_zero_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
1942 if (i >= nm_i->nat_blocks) {
1943 disable_nat_bits(sbi, true);
1944 up_read(&nm_i->nat_tree_lock);
1945 return -EINVAL;
1946 }
1947
1948 nid = i * NAT_ENTRY_PER_BLOCK;
1949 page = get_current_nat_page(sbi, nid);
1950 scan_nat_page(sbi, page, nid);
1951 f2fs_put_page(page, 1);
1952
1953 if (nm_i->nid_cnt[FREE_NID_LIST] < MAX_FREE_NIDS) {
1954 i++;
1955 goto check_partial;
1956 }
1957 out:
1958 up_read(&nm_i->nat_tree_lock);
1959 return 0;
1960 }
1961
1962 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1963 {
1964 struct f2fs_nm_info *nm_i = NM_I(sbi);
1965 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966 struct f2fs_journal *journal = curseg->journal;
1967 int i = 0;
1968 nid_t nid = nm_i->next_scan_nid;
1969
1970 /* Enough entries */
1971 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1972 return;
1973
1974 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1975 return;
1976
1977 if (!mount) {
1978 /* try to find free nids in free_nid_bitmap */
1979 scan_free_nid_bits(sbi);
1980
1981 if (nm_i->nid_cnt[FREE_NID_LIST])
1982 return;
1983
1984 /* try to find free nids with nat_bits */
1985 if (!scan_nat_bits(sbi) && nm_i->nid_cnt[FREE_NID_LIST])
1986 return;
1987 }
1988
1989 /* find next valid candidate */
1990 if (enabled_nat_bits(sbi, NULL)) {
1991 int idx = find_next_zero_bit_le(nm_i->full_nat_bits,
1992 nm_i->nat_blocks, 0);
1993
1994 if (idx >= nm_i->nat_blocks)
1995 set_sbi_flag(sbi, SBI_NEED_FSCK);
1996 else
1997 nid = idx * NAT_ENTRY_PER_BLOCK;
1998 }
1999
2000 /* readahead nat pages to be scanned */
2001 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2002 META_NAT, true);
2003
2004 down_read(&nm_i->nat_tree_lock);
2005
2006 while (1) {
2007 struct page *page = get_current_nat_page(sbi, nid);
2008
2009 scan_nat_page(sbi, page, nid);
2010 f2fs_put_page(page, 1);
2011
2012 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2013 if (unlikely(nid >= nm_i->max_nid))
2014 nid = 0;
2015
2016 if (++i >= FREE_NID_PAGES)
2017 break;
2018 }
2019
2020 /* go to the next free nat pages to find free nids abundantly */
2021 nm_i->next_scan_nid = nid;
2022
2023 /* find free nids from current sum_pages */
2024 down_read(&curseg->journal_rwsem);
2025 for (i = 0; i < nats_in_cursum(journal); i++) {
2026 block_t addr;
2027
2028 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2029 nid = le32_to_cpu(nid_in_journal(journal, i));
2030 if (addr == NULL_ADDR)
2031 add_free_nid(sbi, nid, true);
2032 else
2033 remove_free_nid(sbi, nid);
2034 }
2035 up_read(&curseg->journal_rwsem);
2036 up_read(&nm_i->nat_tree_lock);
2037
2038 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2039 nm_i->ra_nid_pages, META_NAT, false);
2040 }
2041
2042 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2043 {
2044 mutex_lock(&NM_I(sbi)->build_lock);
2045 __build_free_nids(sbi, sync, mount);
2046 mutex_unlock(&NM_I(sbi)->build_lock);
2047 }
2048
2049 /*
2050 * If this function returns success, caller can obtain a new nid
2051 * from second parameter of this function.
2052 * The returned nid could be used ino as well as nid when inode is created.
2053 */
2054 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2055 {
2056 struct f2fs_nm_info *nm_i = NM_I(sbi);
2057 struct free_nid *i = NULL;
2058 retry:
2059 #ifdef CONFIG_F2FS_FAULT_INJECTION
2060 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2061 f2fs_show_injection_info(FAULT_ALLOC_NID);
2062 return false;
2063 }
2064 #endif
2065 spin_lock(&nm_i->nid_list_lock);
2066
2067 if (unlikely(nm_i->available_nids == 0)) {
2068 spin_unlock(&nm_i->nid_list_lock);
2069 return false;
2070 }
2071
2072 /* We should not use stale free nids created by build_free_nids */
2073 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2074 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2075 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2076 struct free_nid, list);
2077 *nid = i->nid;
2078
2079 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2080 i->state = NID_ALLOC;
2081 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2082 nm_i->available_nids--;
2083
2084 update_free_nid_bitmap(sbi, *nid, false);
2085
2086 spin_unlock(&nm_i->nid_list_lock);
2087 return true;
2088 }
2089 spin_unlock(&nm_i->nid_list_lock);
2090
2091 /* Let's scan nat pages and its caches to get free nids */
2092 build_free_nids(sbi, true, false);
2093 goto retry;
2094 }
2095
2096 /*
2097 * alloc_nid() should be called prior to this function.
2098 */
2099 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2100 {
2101 struct f2fs_nm_info *nm_i = NM_I(sbi);
2102 struct free_nid *i;
2103
2104 spin_lock(&nm_i->nid_list_lock);
2105 i = __lookup_free_nid_list(nm_i, nid);
2106 f2fs_bug_on(sbi, !i);
2107 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2108 spin_unlock(&nm_i->nid_list_lock);
2109
2110 kmem_cache_free(free_nid_slab, i);
2111 }
2112
2113 /*
2114 * alloc_nid() should be called prior to this function.
2115 */
2116 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2117 {
2118 struct f2fs_nm_info *nm_i = NM_I(sbi);
2119 struct free_nid *i;
2120 bool need_free = false;
2121
2122 if (!nid)
2123 return;
2124
2125 spin_lock(&nm_i->nid_list_lock);
2126 i = __lookup_free_nid_list(nm_i, nid);
2127 f2fs_bug_on(sbi, !i);
2128
2129 if (!available_free_memory(sbi, FREE_NIDS)) {
2130 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2131 need_free = true;
2132 } else {
2133 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2134 i->state = NID_NEW;
2135 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2136 }
2137
2138 nm_i->available_nids++;
2139
2140 update_free_nid_bitmap(sbi, nid, true);
2141
2142 spin_unlock(&nm_i->nid_list_lock);
2143
2144 if (need_free)
2145 kmem_cache_free(free_nid_slab, i);
2146 }
2147
2148 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2149 {
2150 struct f2fs_nm_info *nm_i = NM_I(sbi);
2151 struct free_nid *i, *next;
2152 int nr = nr_shrink;
2153
2154 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2155 return 0;
2156
2157 if (!mutex_trylock(&nm_i->build_lock))
2158 return 0;
2159
2160 spin_lock(&nm_i->nid_list_lock);
2161 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2162 list) {
2163 if (nr_shrink <= 0 ||
2164 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2165 break;
2166
2167 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2168 kmem_cache_free(free_nid_slab, i);
2169 nr_shrink--;
2170 }
2171 spin_unlock(&nm_i->nid_list_lock);
2172 mutex_unlock(&nm_i->build_lock);
2173
2174 return nr - nr_shrink;
2175 }
2176
2177 void recover_inline_xattr(struct inode *inode, struct page *page)
2178 {
2179 void *src_addr, *dst_addr;
2180 size_t inline_size;
2181 struct page *ipage;
2182 struct f2fs_inode *ri;
2183
2184 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2185 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2186
2187 ri = F2FS_INODE(page);
2188 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2189 clear_inode_flag(inode, FI_INLINE_XATTR);
2190 goto update_inode;
2191 }
2192
2193 dst_addr = inline_xattr_addr(ipage);
2194 src_addr = inline_xattr_addr(page);
2195 inline_size = inline_xattr_size(inode);
2196
2197 f2fs_wait_on_page_writeback(ipage, NODE, true);
2198 memcpy(dst_addr, src_addr, inline_size);
2199 update_inode:
2200 update_inode(inode, ipage);
2201 f2fs_put_page(ipage, 1);
2202 }
2203
2204 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2205 {
2206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2207 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2208 nid_t new_xnid = nid_of_node(page);
2209 struct node_info ni;
2210 struct page *xpage;
2211
2212 if (!prev_xnid)
2213 goto recover_xnid;
2214
2215 /* 1: invalidate the previous xattr nid */
2216 get_node_info(sbi, prev_xnid, &ni);
2217 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2218 invalidate_blocks(sbi, ni.blk_addr);
2219 dec_valid_node_count(sbi, inode);
2220 set_node_addr(sbi, &ni, NULL_ADDR, false);
2221
2222 recover_xnid:
2223 /* 2: update xattr nid in inode */
2224 remove_free_nid(sbi, new_xnid);
2225 f2fs_i_xnid_write(inode, new_xnid);
2226 if (unlikely(!inc_valid_node_count(sbi, inode)))
2227 f2fs_bug_on(sbi, 1);
2228 update_inode_page(inode);
2229
2230 /* 3: update and set xattr node page dirty */
2231 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2232 if (!xpage)
2233 return -ENOMEM;
2234
2235 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2236
2237 get_node_info(sbi, new_xnid, &ni);
2238 ni.ino = inode->i_ino;
2239 set_node_addr(sbi, &ni, NEW_ADDR, false);
2240 set_page_dirty(xpage);
2241 f2fs_put_page(xpage, 1);
2242
2243 return 0;
2244 }
2245
2246 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2247 {
2248 struct f2fs_inode *src, *dst;
2249 nid_t ino = ino_of_node(page);
2250 struct node_info old_ni, new_ni;
2251 struct page *ipage;
2252
2253 get_node_info(sbi, ino, &old_ni);
2254
2255 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2256 return -EINVAL;
2257 retry:
2258 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2259 if (!ipage) {
2260 congestion_wait(BLK_RW_ASYNC, HZ/50);
2261 goto retry;
2262 }
2263
2264 /* Should not use this inode from free nid list */
2265 remove_free_nid(sbi, ino);
2266
2267 if (!PageUptodate(ipage))
2268 SetPageUptodate(ipage);
2269 fill_node_footer(ipage, ino, ino, 0, true);
2270
2271 src = F2FS_INODE(page);
2272 dst = F2FS_INODE(ipage);
2273
2274 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2275 dst->i_size = 0;
2276 dst->i_blocks = cpu_to_le64(1);
2277 dst->i_links = cpu_to_le32(1);
2278 dst->i_xattr_nid = 0;
2279 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2280
2281 new_ni = old_ni;
2282 new_ni.ino = ino;
2283
2284 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2285 WARN_ON(1);
2286 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2287 inc_valid_inode_count(sbi);
2288 set_page_dirty(ipage);
2289 f2fs_put_page(ipage, 1);
2290 return 0;
2291 }
2292
2293 int restore_node_summary(struct f2fs_sb_info *sbi,
2294 unsigned int segno, struct f2fs_summary_block *sum)
2295 {
2296 struct f2fs_node *rn;
2297 struct f2fs_summary *sum_entry;
2298 block_t addr;
2299 int i, idx, last_offset, nrpages;
2300
2301 /* scan the node segment */
2302 last_offset = sbi->blocks_per_seg;
2303 addr = START_BLOCK(sbi, segno);
2304 sum_entry = &sum->entries[0];
2305
2306 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2307 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2308
2309 /* readahead node pages */
2310 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2311
2312 for (idx = addr; idx < addr + nrpages; idx++) {
2313 struct page *page = get_tmp_page(sbi, idx);
2314
2315 rn = F2FS_NODE(page);
2316 sum_entry->nid = rn->footer.nid;
2317 sum_entry->version = 0;
2318 sum_entry->ofs_in_node = 0;
2319 sum_entry++;
2320 f2fs_put_page(page, 1);
2321 }
2322
2323 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2324 addr + nrpages);
2325 }
2326 return 0;
2327 }
2328
2329 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2330 {
2331 struct f2fs_nm_info *nm_i = NM_I(sbi);
2332 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2333 struct f2fs_journal *journal = curseg->journal;
2334 int i;
2335
2336 down_write(&curseg->journal_rwsem);
2337 for (i = 0; i < nats_in_cursum(journal); i++) {
2338 struct nat_entry *ne;
2339 struct f2fs_nat_entry raw_ne;
2340 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2341
2342 raw_ne = nat_in_journal(journal, i);
2343
2344 ne = __lookup_nat_cache(nm_i, nid);
2345 if (!ne) {
2346 ne = grab_nat_entry(nm_i, nid, true);
2347 node_info_from_raw_nat(&ne->ni, &raw_ne);
2348 }
2349
2350 /*
2351 * if a free nat in journal has not been used after last
2352 * checkpoint, we should remove it from available nids,
2353 * since later we will add it again.
2354 */
2355 if (!get_nat_flag(ne, IS_DIRTY) &&
2356 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2357 spin_lock(&nm_i->nid_list_lock);
2358 nm_i->available_nids--;
2359 spin_unlock(&nm_i->nid_list_lock);
2360 }
2361
2362 __set_nat_cache_dirty(nm_i, ne);
2363 }
2364 update_nats_in_cursum(journal, -i);
2365 up_write(&curseg->journal_rwsem);
2366 }
2367
2368 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2369 struct list_head *head, int max)
2370 {
2371 struct nat_entry_set *cur;
2372
2373 if (nes->entry_cnt >= max)
2374 goto add_out;
2375
2376 list_for_each_entry(cur, head, set_list) {
2377 if (cur->entry_cnt >= nes->entry_cnt) {
2378 list_add(&nes->set_list, cur->set_list.prev);
2379 return;
2380 }
2381 }
2382 add_out:
2383 list_add_tail(&nes->set_list, head);
2384 }
2385
2386 void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2387 struct page *page)
2388 {
2389 struct f2fs_nm_info *nm_i = NM_I(sbi);
2390 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2391 struct f2fs_nat_block *nat_blk = page_address(page);
2392 int valid = 0;
2393 int i;
2394
2395 if (!enabled_nat_bits(sbi, NULL))
2396 return;
2397
2398 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2399 if (start_nid == 0 && i == 0)
2400 valid++;
2401 if (nat_blk->entries[i].block_addr)
2402 valid++;
2403 }
2404 if (valid == 0) {
2405 set_bit_le(nat_index, nm_i->empty_nat_bits);
2406 clear_bit_le(nat_index, nm_i->full_nat_bits);
2407 return;
2408 }
2409
2410 clear_bit_le(nat_index, nm_i->empty_nat_bits);
2411 if (valid == NAT_ENTRY_PER_BLOCK)
2412 set_bit_le(nat_index, nm_i->full_nat_bits);
2413 else
2414 clear_bit_le(nat_index, nm_i->full_nat_bits);
2415 }
2416
2417 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2418 struct nat_entry_set *set, struct cp_control *cpc)
2419 {
2420 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2421 struct f2fs_journal *journal = curseg->journal;
2422 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2423 bool to_journal = true;
2424 struct f2fs_nat_block *nat_blk;
2425 struct nat_entry *ne, *cur;
2426 struct page *page = NULL;
2427
2428 /*
2429 * there are two steps to flush nat entries:
2430 * #1, flush nat entries to journal in current hot data summary block.
2431 * #2, flush nat entries to nat page.
2432 */
2433 if (enabled_nat_bits(sbi, cpc) ||
2434 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2435 to_journal = false;
2436
2437 if (to_journal) {
2438 down_write(&curseg->journal_rwsem);
2439 } else {
2440 page = get_next_nat_page(sbi, start_nid);
2441 nat_blk = page_address(page);
2442 f2fs_bug_on(sbi, !nat_blk);
2443 }
2444
2445 /* flush dirty nats in nat entry set */
2446 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2447 struct f2fs_nat_entry *raw_ne;
2448 nid_t nid = nat_get_nid(ne);
2449 int offset;
2450
2451 if (nat_get_blkaddr(ne) == NEW_ADDR)
2452 continue;
2453
2454 if (to_journal) {
2455 offset = lookup_journal_in_cursum(journal,
2456 NAT_JOURNAL, nid, 1);
2457 f2fs_bug_on(sbi, offset < 0);
2458 raw_ne = &nat_in_journal(journal, offset);
2459 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2460 } else {
2461 raw_ne = &nat_blk->entries[nid - start_nid];
2462 }
2463 raw_nat_from_node_info(raw_ne, &ne->ni);
2464 nat_reset_flag(ne);
2465 __clear_nat_cache_dirty(NM_I(sbi), ne);
2466 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2467 add_free_nid(sbi, nid, false);
2468 spin_lock(&NM_I(sbi)->nid_list_lock);
2469 NM_I(sbi)->available_nids++;
2470 update_free_nid_bitmap(sbi, nid, true);
2471 spin_unlock(&NM_I(sbi)->nid_list_lock);
2472 } else {
2473 spin_lock(&NM_I(sbi)->nid_list_lock);
2474 update_free_nid_bitmap(sbi, nid, false);
2475 spin_unlock(&NM_I(sbi)->nid_list_lock);
2476 }
2477 }
2478
2479 if (to_journal) {
2480 up_write(&curseg->journal_rwsem);
2481 } else {
2482 __update_nat_bits(sbi, start_nid, page);
2483 f2fs_put_page(page, 1);
2484 }
2485
2486 f2fs_bug_on(sbi, set->entry_cnt);
2487
2488 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2489 kmem_cache_free(nat_entry_set_slab, set);
2490 }
2491
2492 /*
2493 * This function is called during the checkpointing process.
2494 */
2495 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2496 {
2497 struct f2fs_nm_info *nm_i = NM_I(sbi);
2498 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2499 struct f2fs_journal *journal = curseg->journal;
2500 struct nat_entry_set *setvec[SETVEC_SIZE];
2501 struct nat_entry_set *set, *tmp;
2502 unsigned int found;
2503 nid_t set_idx = 0;
2504 LIST_HEAD(sets);
2505
2506 if (!nm_i->dirty_nat_cnt)
2507 return;
2508
2509 down_write(&nm_i->nat_tree_lock);
2510
2511 /*
2512 * if there are no enough space in journal to store dirty nat
2513 * entries, remove all entries from journal and merge them
2514 * into nat entry set.
2515 */
2516 if (enabled_nat_bits(sbi, cpc) ||
2517 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2518 remove_nats_in_journal(sbi);
2519
2520 while ((found = __gang_lookup_nat_set(nm_i,
2521 set_idx, SETVEC_SIZE, setvec))) {
2522 unsigned idx;
2523 set_idx = setvec[found - 1]->set + 1;
2524 for (idx = 0; idx < found; idx++)
2525 __adjust_nat_entry_set(setvec[idx], &sets,
2526 MAX_NAT_JENTRIES(journal));
2527 }
2528
2529 /* flush dirty nats in nat entry set */
2530 list_for_each_entry_safe(set, tmp, &sets, set_list)
2531 __flush_nat_entry_set(sbi, set, cpc);
2532
2533 up_write(&nm_i->nat_tree_lock);
2534
2535 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2536 }
2537
2538 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2539 {
2540 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2541 struct f2fs_nm_info *nm_i = NM_I(sbi);
2542 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2543 unsigned int i;
2544 __u64 cp_ver = cur_cp_version(ckpt);
2545 block_t nat_bits_addr;
2546
2547 if (!enabled_nat_bits(sbi, NULL))
2548 return 0;
2549
2550 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2551 F2FS_BLKSIZE - 1);
2552 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2553 GFP_KERNEL);
2554 if (!nm_i->nat_bits)
2555 return -ENOMEM;
2556
2557 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2558 nm_i->nat_bits_blocks;
2559 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2560 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2561
2562 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2563 page_address(page), F2FS_BLKSIZE);
2564 f2fs_put_page(page, 1);
2565 }
2566
2567 cp_ver |= (cur_cp_crc(ckpt) << 32);
2568 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2569 disable_nat_bits(sbi, true);
2570 return 0;
2571 }
2572
2573 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2574 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2575
2576 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2577 return 0;
2578 }
2579
2580 static int init_node_manager(struct f2fs_sb_info *sbi)
2581 {
2582 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2583 struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 unsigned char *version_bitmap;
2585 unsigned int nat_segs;
2586 int err;
2587
2588 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2589
2590 /* segment_count_nat includes pair segment so divide to 2. */
2591 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2592 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2593 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2594
2595 /* not used nids: 0, node, meta, (and root counted as valid node) */
2596 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2597 F2FS_RESERVED_NODE_NUM;
2598 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2599 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2600 nm_i->nat_cnt = 0;
2601 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2602 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2603 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2604
2605 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2606 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2607 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2608 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2609 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2610 INIT_LIST_HEAD(&nm_i->nat_entries);
2611
2612 mutex_init(&nm_i->build_lock);
2613 spin_lock_init(&nm_i->nid_list_lock);
2614 init_rwsem(&nm_i->nat_tree_lock);
2615
2616 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2617 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2618 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2619 if (!version_bitmap)
2620 return -EFAULT;
2621
2622 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2623 GFP_KERNEL);
2624 if (!nm_i->nat_bitmap)
2625 return -ENOMEM;
2626
2627 err = __get_nat_bitmaps(sbi);
2628 if (err)
2629 return err;
2630
2631 #ifdef CONFIG_F2FS_CHECK_FS
2632 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2633 GFP_KERNEL);
2634 if (!nm_i->nat_bitmap_mir)
2635 return -ENOMEM;
2636 #endif
2637
2638 return 0;
2639 }
2640
2641 int init_free_nid_cache(struct f2fs_sb_info *sbi)
2642 {
2643 struct f2fs_nm_info *nm_i = NM_I(sbi);
2644
2645 nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks *
2646 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2647 if (!nm_i->free_nid_bitmap)
2648 return -ENOMEM;
2649
2650 nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8,
2651 GFP_KERNEL);
2652 if (!nm_i->nat_block_bitmap)
2653 return -ENOMEM;
2654 return 0;
2655 }
2656
2657 int build_node_manager(struct f2fs_sb_info *sbi)
2658 {
2659 int err;
2660
2661 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2662 if (!sbi->nm_info)
2663 return -ENOMEM;
2664
2665 err = init_node_manager(sbi);
2666 if (err)
2667 return err;
2668
2669 err = init_free_nid_cache(sbi);
2670 if (err)
2671 return err;
2672
2673 build_free_nids(sbi, true, true);
2674 return 0;
2675 }
2676
2677 void destroy_node_manager(struct f2fs_sb_info *sbi)
2678 {
2679 struct f2fs_nm_info *nm_i = NM_I(sbi);
2680 struct free_nid *i, *next_i;
2681 struct nat_entry *natvec[NATVEC_SIZE];
2682 struct nat_entry_set *setvec[SETVEC_SIZE];
2683 nid_t nid = 0;
2684 unsigned int found;
2685
2686 if (!nm_i)
2687 return;
2688
2689 /* destroy free nid list */
2690 spin_lock(&nm_i->nid_list_lock);
2691 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2692 list) {
2693 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2694 spin_unlock(&nm_i->nid_list_lock);
2695 kmem_cache_free(free_nid_slab, i);
2696 spin_lock(&nm_i->nid_list_lock);
2697 }
2698 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2699 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2700 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2701 spin_unlock(&nm_i->nid_list_lock);
2702
2703 /* destroy nat cache */
2704 down_write(&nm_i->nat_tree_lock);
2705 while ((found = __gang_lookup_nat_cache(nm_i,
2706 nid, NATVEC_SIZE, natvec))) {
2707 unsigned idx;
2708
2709 nid = nat_get_nid(natvec[found - 1]) + 1;
2710 for (idx = 0; idx < found; idx++)
2711 __del_from_nat_cache(nm_i, natvec[idx]);
2712 }
2713 f2fs_bug_on(sbi, nm_i->nat_cnt);
2714
2715 /* destroy nat set cache */
2716 nid = 0;
2717 while ((found = __gang_lookup_nat_set(nm_i,
2718 nid, SETVEC_SIZE, setvec))) {
2719 unsigned idx;
2720
2721 nid = setvec[found - 1]->set + 1;
2722 for (idx = 0; idx < found; idx++) {
2723 /* entry_cnt is not zero, when cp_error was occurred */
2724 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2725 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2726 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2727 }
2728 }
2729 up_write(&nm_i->nat_tree_lock);
2730
2731 kvfree(nm_i->nat_block_bitmap);
2732 kvfree(nm_i->free_nid_bitmap);
2733
2734 kfree(nm_i->nat_bitmap);
2735 kfree(nm_i->nat_bits);
2736 #ifdef CONFIG_F2FS_CHECK_FS
2737 kfree(nm_i->nat_bitmap_mir);
2738 #endif
2739 sbi->nm_info = NULL;
2740 kfree(nm_i);
2741 }
2742
2743 int __init create_node_manager_caches(void)
2744 {
2745 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2746 sizeof(struct nat_entry));
2747 if (!nat_entry_slab)
2748 goto fail;
2749
2750 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2751 sizeof(struct free_nid));
2752 if (!free_nid_slab)
2753 goto destroy_nat_entry;
2754
2755 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2756 sizeof(struct nat_entry_set));
2757 if (!nat_entry_set_slab)
2758 goto destroy_free_nid;
2759 return 0;
2760
2761 destroy_free_nid:
2762 kmem_cache_destroy(free_nid_slab);
2763 destroy_nat_entry:
2764 kmem_cache_destroy(nat_entry_slab);
2765 fail:
2766 return -ENOMEM;
2767 }
2768
2769 void destroy_node_manager_caches(void)
2770 {
2771 kmem_cache_destroy(nat_entry_set_slab);
2772 kmem_cache_destroy(free_nid_slab);
2773 kmem_cache_destroy(nat_entry_slab);
2774 }