]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/node.c
bcfd67c801960c1435753a214525dc68e6abc208
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32 struct f2fs_nm_info *nm_i = NM_I(sbi);
33 struct sysinfo val;
34 unsigned long avail_ram;
35 unsigned long mem_size = 0;
36 bool res = false;
37
38 si_meminfo(&val);
39
40 /* only uses low memory */
41 avail_ram = val.totalram - val.totalhigh;
42
43 /* give 25%, 25%, 50%, 50% memory for each components respectively */
44 if (type == FREE_NIDS) {
45 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
46 PAGE_CACHE_SHIFT;
47 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
48 } else if (type == NAT_ENTRIES) {
49 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
50 PAGE_CACHE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == DIRTY_DENTS) {
53 if (sbi->sb->s_bdi->dirty_exceeded)
54 return false;
55 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
56 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
57 } else if (type == INO_ENTRIES) {
58 int i;
59
60 for (i = 0; i <= UPDATE_INO; i++)
61 mem_size += (sbi->im[i].ino_num *
62 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
64 } else {
65 if (sbi->sb->s_bdi->dirty_exceeded)
66 return false;
67 }
68 return res;
69 }
70
71 static void clear_node_page_dirty(struct page *page)
72 {
73 struct address_space *mapping = page->mapping;
74 unsigned int long flags;
75
76 if (PageDirty(page)) {
77 spin_lock_irqsave(&mapping->tree_lock, flags);
78 radix_tree_tag_clear(&mapping->page_tree,
79 page_index(page),
80 PAGECACHE_TAG_DIRTY);
81 spin_unlock_irqrestore(&mapping->tree_lock, flags);
82
83 clear_page_dirty_for_io(page);
84 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
85 }
86 ClearPageUptodate(page);
87 }
88
89 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
90 {
91 pgoff_t index = current_nat_addr(sbi, nid);
92 return get_meta_page(sbi, index);
93 }
94
95 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
96 {
97 struct page *src_page;
98 struct page *dst_page;
99 pgoff_t src_off;
100 pgoff_t dst_off;
101 void *src_addr;
102 void *dst_addr;
103 struct f2fs_nm_info *nm_i = NM_I(sbi);
104
105 src_off = current_nat_addr(sbi, nid);
106 dst_off = next_nat_addr(sbi, src_off);
107
108 /* get current nat block page with lock */
109 src_page = get_meta_page(sbi, src_off);
110 dst_page = grab_meta_page(sbi, dst_off);
111 f2fs_bug_on(sbi, PageDirty(src_page));
112
113 src_addr = page_address(src_page);
114 dst_addr = page_address(dst_page);
115 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
116 set_page_dirty(dst_page);
117 f2fs_put_page(src_page, 1);
118
119 set_to_next_nat(nm_i, nid);
120
121 return dst_page;
122 }
123
124 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
125 {
126 return radix_tree_lookup(&nm_i->nat_root, n);
127 }
128
129 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
130 nid_t start, unsigned int nr, struct nat_entry **ep)
131 {
132 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
133 }
134
135 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
136 {
137 list_del(&e->list);
138 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
139 nm_i->nat_cnt--;
140 kmem_cache_free(nat_entry_slab, e);
141 }
142
143 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
144 struct nat_entry *ne)
145 {
146 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
147 struct nat_entry_set *head;
148
149 if (get_nat_flag(ne, IS_DIRTY))
150 return;
151
152 head = radix_tree_lookup(&nm_i->nat_set_root, set);
153 if (!head) {
154 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
155
156 INIT_LIST_HEAD(&head->entry_list);
157 INIT_LIST_HEAD(&head->set_list);
158 head->set = set;
159 head->entry_cnt = 0;
160 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
161 }
162 list_move_tail(&ne->list, &head->entry_list);
163 nm_i->dirty_nat_cnt++;
164 head->entry_cnt++;
165 set_nat_flag(ne, IS_DIRTY, true);
166 }
167
168 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
169 struct nat_entry *ne)
170 {
171 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
172 struct nat_entry_set *head;
173
174 head = radix_tree_lookup(&nm_i->nat_set_root, set);
175 if (head) {
176 list_move_tail(&ne->list, &nm_i->nat_entries);
177 set_nat_flag(ne, IS_DIRTY, false);
178 head->entry_cnt--;
179 nm_i->dirty_nat_cnt--;
180 }
181 }
182
183 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
184 nid_t start, unsigned int nr, struct nat_entry_set **ep)
185 {
186 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
187 start, nr);
188 }
189
190 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 struct nat_entry *e;
194 bool is_cp = true;
195
196 down_read(&nm_i->nat_tree_lock);
197 e = __lookup_nat_cache(nm_i, nid);
198 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
199 is_cp = false;
200 up_read(&nm_i->nat_tree_lock);
201 return is_cp;
202 }
203
204 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
205 {
206 struct f2fs_nm_info *nm_i = NM_I(sbi);
207 struct nat_entry *e;
208 bool fsynced = false;
209
210 down_read(&nm_i->nat_tree_lock);
211 e = __lookup_nat_cache(nm_i, ino);
212 if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
213 fsynced = true;
214 up_read(&nm_i->nat_tree_lock);
215 return fsynced;
216 }
217
218 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
219 {
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool need_update = true;
223
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, ino);
226 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
227 (get_nat_flag(e, IS_CHECKPOINTED) ||
228 get_nat_flag(e, HAS_FSYNCED_INODE)))
229 need_update = false;
230 up_read(&nm_i->nat_tree_lock);
231 return need_update;
232 }
233
234 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
235 {
236 struct nat_entry *new;
237
238 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
239 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
240 memset(new, 0, sizeof(struct nat_entry));
241 nat_set_nid(new, nid);
242 nat_reset_flag(new);
243 list_add_tail(&new->list, &nm_i->nat_entries);
244 nm_i->nat_cnt++;
245 return new;
246 }
247
248 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 struct f2fs_nat_entry *ne)
250 {
251 struct nat_entry *e;
252
253 down_write(&nm_i->nat_tree_lock);
254 e = __lookup_nat_cache(nm_i, nid);
255 if (!e) {
256 e = grab_nat_entry(nm_i, nid);
257 node_info_from_raw_nat(&e->ni, ne);
258 }
259 up_write(&nm_i->nat_tree_lock);
260 }
261
262 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
263 block_t new_blkaddr, bool fsync_done)
264 {
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
267
268 down_write(&nm_i->nat_tree_lock);
269 e = __lookup_nat_cache(nm_i, ni->nid);
270 if (!e) {
271 e = grab_nat_entry(nm_i, ni->nid);
272 copy_node_info(&e->ni, ni);
273 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
274 } else if (new_blkaddr == NEW_ADDR) {
275 /*
276 * when nid is reallocated,
277 * previous nat entry can be remained in nat cache.
278 * So, reinitialize it with new information.
279 */
280 copy_node_info(&e->ni, ni);
281 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
282 }
283
284 /* sanity check */
285 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
286 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
287 new_blkaddr == NULL_ADDR);
288 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
289 new_blkaddr == NEW_ADDR);
290 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
291 nat_get_blkaddr(e) != NULL_ADDR &&
292 new_blkaddr == NEW_ADDR);
293
294 /* increment version no as node is removed */
295 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
296 unsigned char version = nat_get_version(e);
297 nat_set_version(e, inc_node_version(version));
298 }
299
300 /* change address */
301 nat_set_blkaddr(e, new_blkaddr);
302 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
303 set_nat_flag(e, IS_CHECKPOINTED, false);
304 __set_nat_cache_dirty(nm_i, e);
305
306 /* update fsync_mark if its inode nat entry is still alive */
307 e = __lookup_nat_cache(nm_i, ni->ino);
308 if (e) {
309 if (fsync_done && ni->nid == ni->ino)
310 set_nat_flag(e, HAS_FSYNCED_INODE, true);
311 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
312 }
313 up_write(&nm_i->nat_tree_lock);
314 }
315
316 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
317 {
318 struct f2fs_nm_info *nm_i = NM_I(sbi);
319
320 if (available_free_memory(sbi, NAT_ENTRIES))
321 return 0;
322
323 down_write(&nm_i->nat_tree_lock);
324 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
325 struct nat_entry *ne;
326 ne = list_first_entry(&nm_i->nat_entries,
327 struct nat_entry, list);
328 __del_from_nat_cache(nm_i, ne);
329 nr_shrink--;
330 }
331 up_write(&nm_i->nat_tree_lock);
332 return nr_shrink;
333 }
334
335 /*
336 * This function always returns success
337 */
338 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
339 {
340 struct f2fs_nm_info *nm_i = NM_I(sbi);
341 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
342 struct f2fs_summary_block *sum = curseg->sum_blk;
343 nid_t start_nid = START_NID(nid);
344 struct f2fs_nat_block *nat_blk;
345 struct page *page = NULL;
346 struct f2fs_nat_entry ne;
347 struct nat_entry *e;
348 int i;
349
350 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
351 ni->nid = nid;
352
353 /* Check nat cache */
354 down_read(&nm_i->nat_tree_lock);
355 e = __lookup_nat_cache(nm_i, nid);
356 if (e) {
357 ni->ino = nat_get_ino(e);
358 ni->blk_addr = nat_get_blkaddr(e);
359 ni->version = nat_get_version(e);
360 }
361 up_read(&nm_i->nat_tree_lock);
362 if (e)
363 return;
364
365 /* Check current segment summary */
366 mutex_lock(&curseg->curseg_mutex);
367 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
368 if (i >= 0) {
369 ne = nat_in_journal(sum, i);
370 node_info_from_raw_nat(ni, &ne);
371 }
372 mutex_unlock(&curseg->curseg_mutex);
373 if (i >= 0)
374 goto cache;
375
376 /* Fill node_info from nat page */
377 page = get_current_nat_page(sbi, start_nid);
378 nat_blk = (struct f2fs_nat_block *)page_address(page);
379 ne = nat_blk->entries[nid - start_nid];
380 node_info_from_raw_nat(ni, &ne);
381 f2fs_put_page(page, 1);
382 cache:
383 /* cache nat entry */
384 cache_nat_entry(NM_I(sbi), nid, &ne);
385 }
386
387 /*
388 * The maximum depth is four.
389 * Offset[0] will have raw inode offset.
390 */
391 static int get_node_path(struct f2fs_inode_info *fi, long block,
392 int offset[4], unsigned int noffset[4])
393 {
394 const long direct_index = ADDRS_PER_INODE(fi);
395 const long direct_blks = ADDRS_PER_BLOCK;
396 const long dptrs_per_blk = NIDS_PER_BLOCK;
397 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
398 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
399 int n = 0;
400 int level = 0;
401
402 noffset[0] = 0;
403
404 if (block < direct_index) {
405 offset[n] = block;
406 goto got;
407 }
408 block -= direct_index;
409 if (block < direct_blks) {
410 offset[n++] = NODE_DIR1_BLOCK;
411 noffset[n] = 1;
412 offset[n] = block;
413 level = 1;
414 goto got;
415 }
416 block -= direct_blks;
417 if (block < direct_blks) {
418 offset[n++] = NODE_DIR2_BLOCK;
419 noffset[n] = 2;
420 offset[n] = block;
421 level = 1;
422 goto got;
423 }
424 block -= direct_blks;
425 if (block < indirect_blks) {
426 offset[n++] = NODE_IND1_BLOCK;
427 noffset[n] = 3;
428 offset[n++] = block / direct_blks;
429 noffset[n] = 4 + offset[n - 1];
430 offset[n] = block % direct_blks;
431 level = 2;
432 goto got;
433 }
434 block -= indirect_blks;
435 if (block < indirect_blks) {
436 offset[n++] = NODE_IND2_BLOCK;
437 noffset[n] = 4 + dptrs_per_blk;
438 offset[n++] = block / direct_blks;
439 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
440 offset[n] = block % direct_blks;
441 level = 2;
442 goto got;
443 }
444 block -= indirect_blks;
445 if (block < dindirect_blks) {
446 offset[n++] = NODE_DIND_BLOCK;
447 noffset[n] = 5 + (dptrs_per_blk * 2);
448 offset[n++] = block / indirect_blks;
449 noffset[n] = 6 + (dptrs_per_blk * 2) +
450 offset[n - 1] * (dptrs_per_blk + 1);
451 offset[n++] = (block / direct_blks) % dptrs_per_blk;
452 noffset[n] = 7 + (dptrs_per_blk * 2) +
453 offset[n - 2] * (dptrs_per_blk + 1) +
454 offset[n - 1];
455 offset[n] = block % direct_blks;
456 level = 3;
457 goto got;
458 } else {
459 BUG();
460 }
461 got:
462 return level;
463 }
464
465 /*
466 * Caller should call f2fs_put_dnode(dn).
467 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
468 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
469 * In the case of RDONLY_NODE, we don't need to care about mutex.
470 */
471 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
472 {
473 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
474 struct page *npage[4];
475 struct page *parent;
476 int offset[4];
477 unsigned int noffset[4];
478 nid_t nids[4];
479 int level, i;
480 int err = 0;
481
482 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
483
484 nids[0] = dn->inode->i_ino;
485 npage[0] = dn->inode_page;
486
487 if (!npage[0]) {
488 npage[0] = get_node_page(sbi, nids[0]);
489 if (IS_ERR(npage[0]))
490 return PTR_ERR(npage[0]);
491 }
492 parent = npage[0];
493 if (level != 0)
494 nids[1] = get_nid(parent, offset[0], true);
495 dn->inode_page = npage[0];
496 dn->inode_page_locked = true;
497
498 /* get indirect or direct nodes */
499 for (i = 1; i <= level; i++) {
500 bool done = false;
501
502 if (!nids[i] && mode == ALLOC_NODE) {
503 /* alloc new node */
504 if (!alloc_nid(sbi, &(nids[i]))) {
505 err = -ENOSPC;
506 goto release_pages;
507 }
508
509 dn->nid = nids[i];
510 npage[i] = new_node_page(dn, noffset[i], NULL);
511 if (IS_ERR(npage[i])) {
512 alloc_nid_failed(sbi, nids[i]);
513 err = PTR_ERR(npage[i]);
514 goto release_pages;
515 }
516
517 set_nid(parent, offset[i - 1], nids[i], i == 1);
518 alloc_nid_done(sbi, nids[i]);
519 done = true;
520 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
521 npage[i] = get_node_page_ra(parent, offset[i - 1]);
522 if (IS_ERR(npage[i])) {
523 err = PTR_ERR(npage[i]);
524 goto release_pages;
525 }
526 done = true;
527 }
528 if (i == 1) {
529 dn->inode_page_locked = false;
530 unlock_page(parent);
531 } else {
532 f2fs_put_page(parent, 1);
533 }
534
535 if (!done) {
536 npage[i] = get_node_page(sbi, nids[i]);
537 if (IS_ERR(npage[i])) {
538 err = PTR_ERR(npage[i]);
539 f2fs_put_page(npage[0], 0);
540 goto release_out;
541 }
542 }
543 if (i < level) {
544 parent = npage[i];
545 nids[i + 1] = get_nid(parent, offset[i], false);
546 }
547 }
548 dn->nid = nids[level];
549 dn->ofs_in_node = offset[level];
550 dn->node_page = npage[level];
551 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
552 return 0;
553
554 release_pages:
555 f2fs_put_page(parent, 1);
556 if (i > 1)
557 f2fs_put_page(npage[0], 0);
558 release_out:
559 dn->inode_page = NULL;
560 dn->node_page = NULL;
561 return err;
562 }
563
564 static void truncate_node(struct dnode_of_data *dn)
565 {
566 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
567 struct node_info ni;
568
569 get_node_info(sbi, dn->nid, &ni);
570 if (dn->inode->i_blocks == 0) {
571 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
572 goto invalidate;
573 }
574 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
575
576 /* Deallocate node address */
577 invalidate_blocks(sbi, ni.blk_addr);
578 dec_valid_node_count(sbi, dn->inode);
579 set_node_addr(sbi, &ni, NULL_ADDR, false);
580
581 if (dn->nid == dn->inode->i_ino) {
582 remove_orphan_inode(sbi, dn->nid);
583 dec_valid_inode_count(sbi);
584 } else {
585 sync_inode_page(dn);
586 }
587 invalidate:
588 clear_node_page_dirty(dn->node_page);
589 F2FS_SET_SB_DIRT(sbi);
590
591 f2fs_put_page(dn->node_page, 1);
592
593 invalidate_mapping_pages(NODE_MAPPING(sbi),
594 dn->node_page->index, dn->node_page->index);
595
596 dn->node_page = NULL;
597 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
598 }
599
600 static int truncate_dnode(struct dnode_of_data *dn)
601 {
602 struct page *page;
603
604 if (dn->nid == 0)
605 return 1;
606
607 /* get direct node */
608 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
609 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
610 return 1;
611 else if (IS_ERR(page))
612 return PTR_ERR(page);
613
614 /* Make dnode_of_data for parameter */
615 dn->node_page = page;
616 dn->ofs_in_node = 0;
617 truncate_data_blocks(dn);
618 truncate_node(dn);
619 return 1;
620 }
621
622 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
623 int ofs, int depth)
624 {
625 struct dnode_of_data rdn = *dn;
626 struct page *page;
627 struct f2fs_node *rn;
628 nid_t child_nid;
629 unsigned int child_nofs;
630 int freed = 0;
631 int i, ret;
632
633 if (dn->nid == 0)
634 return NIDS_PER_BLOCK + 1;
635
636 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
637
638 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
639 if (IS_ERR(page)) {
640 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
641 return PTR_ERR(page);
642 }
643
644 rn = F2FS_NODE(page);
645 if (depth < 3) {
646 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
647 child_nid = le32_to_cpu(rn->in.nid[i]);
648 if (child_nid == 0)
649 continue;
650 rdn.nid = child_nid;
651 ret = truncate_dnode(&rdn);
652 if (ret < 0)
653 goto out_err;
654 set_nid(page, i, 0, false);
655 }
656 } else {
657 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
658 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
659 child_nid = le32_to_cpu(rn->in.nid[i]);
660 if (child_nid == 0) {
661 child_nofs += NIDS_PER_BLOCK + 1;
662 continue;
663 }
664 rdn.nid = child_nid;
665 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
666 if (ret == (NIDS_PER_BLOCK + 1)) {
667 set_nid(page, i, 0, false);
668 child_nofs += ret;
669 } else if (ret < 0 && ret != -ENOENT) {
670 goto out_err;
671 }
672 }
673 freed = child_nofs;
674 }
675
676 if (!ofs) {
677 /* remove current indirect node */
678 dn->node_page = page;
679 truncate_node(dn);
680 freed++;
681 } else {
682 f2fs_put_page(page, 1);
683 }
684 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
685 return freed;
686
687 out_err:
688 f2fs_put_page(page, 1);
689 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
690 return ret;
691 }
692
693 static int truncate_partial_nodes(struct dnode_of_data *dn,
694 struct f2fs_inode *ri, int *offset, int depth)
695 {
696 struct page *pages[2];
697 nid_t nid[3];
698 nid_t child_nid;
699 int err = 0;
700 int i;
701 int idx = depth - 2;
702
703 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
704 if (!nid[0])
705 return 0;
706
707 /* get indirect nodes in the path */
708 for (i = 0; i < idx + 1; i++) {
709 /* reference count'll be increased */
710 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
711 if (IS_ERR(pages[i])) {
712 err = PTR_ERR(pages[i]);
713 idx = i - 1;
714 goto fail;
715 }
716 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
717 }
718
719 /* free direct nodes linked to a partial indirect node */
720 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
721 child_nid = get_nid(pages[idx], i, false);
722 if (!child_nid)
723 continue;
724 dn->nid = child_nid;
725 err = truncate_dnode(dn);
726 if (err < 0)
727 goto fail;
728 set_nid(pages[idx], i, 0, false);
729 }
730
731 if (offset[idx + 1] == 0) {
732 dn->node_page = pages[idx];
733 dn->nid = nid[idx];
734 truncate_node(dn);
735 } else {
736 f2fs_put_page(pages[idx], 1);
737 }
738 offset[idx]++;
739 offset[idx + 1] = 0;
740 idx--;
741 fail:
742 for (i = idx; i >= 0; i--)
743 f2fs_put_page(pages[i], 1);
744
745 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
746
747 return err;
748 }
749
750 /*
751 * All the block addresses of data and nodes should be nullified.
752 */
753 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
754 {
755 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
756 int err = 0, cont = 1;
757 int level, offset[4], noffset[4];
758 unsigned int nofs = 0;
759 struct f2fs_inode *ri;
760 struct dnode_of_data dn;
761 struct page *page;
762
763 trace_f2fs_truncate_inode_blocks_enter(inode, from);
764
765 level = get_node_path(F2FS_I(inode), from, offset, noffset);
766 restart:
767 page = get_node_page(sbi, inode->i_ino);
768 if (IS_ERR(page)) {
769 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
770 return PTR_ERR(page);
771 }
772
773 set_new_dnode(&dn, inode, page, NULL, 0);
774 unlock_page(page);
775
776 ri = F2FS_INODE(page);
777 switch (level) {
778 case 0:
779 case 1:
780 nofs = noffset[1];
781 break;
782 case 2:
783 nofs = noffset[1];
784 if (!offset[level - 1])
785 goto skip_partial;
786 err = truncate_partial_nodes(&dn, ri, offset, level);
787 if (err < 0 && err != -ENOENT)
788 goto fail;
789 nofs += 1 + NIDS_PER_BLOCK;
790 break;
791 case 3:
792 nofs = 5 + 2 * NIDS_PER_BLOCK;
793 if (!offset[level - 1])
794 goto skip_partial;
795 err = truncate_partial_nodes(&dn, ri, offset, level);
796 if (err < 0 && err != -ENOENT)
797 goto fail;
798 break;
799 default:
800 BUG();
801 }
802
803 skip_partial:
804 while (cont) {
805 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
806 switch (offset[0]) {
807 case NODE_DIR1_BLOCK:
808 case NODE_DIR2_BLOCK:
809 err = truncate_dnode(&dn);
810 break;
811
812 case NODE_IND1_BLOCK:
813 case NODE_IND2_BLOCK:
814 err = truncate_nodes(&dn, nofs, offset[1], 2);
815 break;
816
817 case NODE_DIND_BLOCK:
818 err = truncate_nodes(&dn, nofs, offset[1], 3);
819 cont = 0;
820 break;
821
822 default:
823 BUG();
824 }
825 if (err < 0 && err != -ENOENT)
826 goto fail;
827 if (offset[1] == 0 &&
828 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
829 lock_page(page);
830 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
831 f2fs_put_page(page, 1);
832 goto restart;
833 }
834 f2fs_wait_on_page_writeback(page, NODE);
835 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
836 set_page_dirty(page);
837 unlock_page(page);
838 }
839 offset[1] = 0;
840 offset[0]++;
841 nofs += err;
842 }
843 fail:
844 f2fs_put_page(page, 0);
845 trace_f2fs_truncate_inode_blocks_exit(inode, err);
846 return err > 0 ? 0 : err;
847 }
848
849 int truncate_xattr_node(struct inode *inode, struct page *page)
850 {
851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
852 nid_t nid = F2FS_I(inode)->i_xattr_nid;
853 struct dnode_of_data dn;
854 struct page *npage;
855
856 if (!nid)
857 return 0;
858
859 npage = get_node_page(sbi, nid);
860 if (IS_ERR(npage))
861 return PTR_ERR(npage);
862
863 F2FS_I(inode)->i_xattr_nid = 0;
864
865 /* need to do checkpoint during fsync */
866 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
867
868 set_new_dnode(&dn, inode, page, npage, nid);
869
870 if (page)
871 dn.inode_page_locked = true;
872 truncate_node(&dn);
873 return 0;
874 }
875
876 /*
877 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
878 * f2fs_unlock_op().
879 */
880 void remove_inode_page(struct inode *inode)
881 {
882 struct dnode_of_data dn;
883
884 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
885 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
886 return;
887
888 if (truncate_xattr_node(inode, dn.inode_page)) {
889 f2fs_put_dnode(&dn);
890 return;
891 }
892
893 /* remove potential inline_data blocks */
894 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
895 S_ISLNK(inode->i_mode))
896 truncate_data_blocks_range(&dn, 1);
897
898 /* 0 is possible, after f2fs_new_inode() has failed */
899 f2fs_bug_on(F2FS_I_SB(inode),
900 inode->i_blocks != 0 && inode->i_blocks != 1);
901
902 /* will put inode & node pages */
903 truncate_node(&dn);
904 }
905
906 struct page *new_inode_page(struct inode *inode)
907 {
908 struct dnode_of_data dn;
909
910 /* allocate inode page for new inode */
911 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
912
913 /* caller should f2fs_put_page(page, 1); */
914 return new_node_page(&dn, 0, NULL);
915 }
916
917 struct page *new_node_page(struct dnode_of_data *dn,
918 unsigned int ofs, struct page *ipage)
919 {
920 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
921 struct node_info old_ni, new_ni;
922 struct page *page;
923 int err;
924
925 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
926 return ERR_PTR(-EPERM);
927
928 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
929 if (!page)
930 return ERR_PTR(-ENOMEM);
931
932 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
933 err = -ENOSPC;
934 goto fail;
935 }
936
937 get_node_info(sbi, dn->nid, &old_ni);
938
939 /* Reinitialize old_ni with new node page */
940 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
941 new_ni = old_ni;
942 new_ni.ino = dn->inode->i_ino;
943 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
944
945 f2fs_wait_on_page_writeback(page, NODE);
946 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
947 set_cold_node(dn->inode, page);
948 SetPageUptodate(page);
949 set_page_dirty(page);
950
951 if (f2fs_has_xattr_block(ofs))
952 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
953
954 dn->node_page = page;
955 if (ipage)
956 update_inode(dn->inode, ipage);
957 else
958 sync_inode_page(dn);
959 if (ofs == 0)
960 inc_valid_inode_count(sbi);
961
962 return page;
963
964 fail:
965 clear_node_page_dirty(page);
966 f2fs_put_page(page, 1);
967 return ERR_PTR(err);
968 }
969
970 /*
971 * Caller should do after getting the following values.
972 * 0: f2fs_put_page(page, 0)
973 * LOCKED_PAGE: f2fs_put_page(page, 1)
974 * error: nothing
975 */
976 static int read_node_page(struct page *page, int rw)
977 {
978 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
979 struct node_info ni;
980
981 get_node_info(sbi, page->index, &ni);
982
983 if (unlikely(ni.blk_addr == NULL_ADDR)) {
984 f2fs_put_page(page, 1);
985 return -ENOENT;
986 }
987
988 if (PageUptodate(page))
989 return LOCKED_PAGE;
990
991 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
992 }
993
994 /*
995 * Readahead a node page
996 */
997 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
998 {
999 struct page *apage;
1000 int err;
1001
1002 apage = find_get_page(NODE_MAPPING(sbi), nid);
1003 if (apage && PageUptodate(apage)) {
1004 f2fs_put_page(apage, 0);
1005 return;
1006 }
1007 f2fs_put_page(apage, 0);
1008
1009 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1010 if (!apage)
1011 return;
1012
1013 err = read_node_page(apage, READA);
1014 if (err == 0)
1015 f2fs_put_page(apage, 0);
1016 else if (err == LOCKED_PAGE)
1017 f2fs_put_page(apage, 1);
1018 }
1019
1020 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1021 {
1022 struct page *page;
1023 int err;
1024 repeat:
1025 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1026 if (!page)
1027 return ERR_PTR(-ENOMEM);
1028
1029 err = read_node_page(page, READ_SYNC);
1030 if (err < 0)
1031 return ERR_PTR(err);
1032 else if (err == LOCKED_PAGE)
1033 goto got_it;
1034
1035 lock_page(page);
1036 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1037 f2fs_put_page(page, 1);
1038 return ERR_PTR(-EIO);
1039 }
1040 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1041 f2fs_put_page(page, 1);
1042 goto repeat;
1043 }
1044 got_it:
1045 return page;
1046 }
1047
1048 /*
1049 * Return a locked page for the desired node page.
1050 * And, readahead MAX_RA_NODE number of node pages.
1051 */
1052 struct page *get_node_page_ra(struct page *parent, int start)
1053 {
1054 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1055 struct blk_plug plug;
1056 struct page *page;
1057 int err, i, end;
1058 nid_t nid;
1059
1060 /* First, try getting the desired direct node. */
1061 nid = get_nid(parent, start, false);
1062 if (!nid)
1063 return ERR_PTR(-ENOENT);
1064 repeat:
1065 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1066 if (!page)
1067 return ERR_PTR(-ENOMEM);
1068
1069 err = read_node_page(page, READ_SYNC);
1070 if (err < 0)
1071 return ERR_PTR(err);
1072 else if (err == LOCKED_PAGE)
1073 goto page_hit;
1074
1075 blk_start_plug(&plug);
1076
1077 /* Then, try readahead for siblings of the desired node */
1078 end = start + MAX_RA_NODE;
1079 end = min(end, NIDS_PER_BLOCK);
1080 for (i = start + 1; i < end; i++) {
1081 nid = get_nid(parent, i, false);
1082 if (!nid)
1083 continue;
1084 ra_node_page(sbi, nid);
1085 }
1086
1087 blk_finish_plug(&plug);
1088
1089 lock_page(page);
1090 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1091 f2fs_put_page(page, 1);
1092 goto repeat;
1093 }
1094 page_hit:
1095 if (unlikely(!PageUptodate(page))) {
1096 f2fs_put_page(page, 1);
1097 return ERR_PTR(-EIO);
1098 }
1099 return page;
1100 }
1101
1102 void sync_inode_page(struct dnode_of_data *dn)
1103 {
1104 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1105 update_inode(dn->inode, dn->node_page);
1106 } else if (dn->inode_page) {
1107 if (!dn->inode_page_locked)
1108 lock_page(dn->inode_page);
1109 update_inode(dn->inode, dn->inode_page);
1110 if (!dn->inode_page_locked)
1111 unlock_page(dn->inode_page);
1112 } else {
1113 update_inode_page(dn->inode);
1114 }
1115 }
1116
1117 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1118 struct writeback_control *wbc)
1119 {
1120 pgoff_t index, end;
1121 struct pagevec pvec;
1122 int step = ino ? 2 : 0;
1123 int nwritten = 0, wrote = 0;
1124
1125 pagevec_init(&pvec, 0);
1126
1127 next_step:
1128 index = 0;
1129 end = LONG_MAX;
1130
1131 while (index <= end) {
1132 int i, nr_pages;
1133 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1134 PAGECACHE_TAG_DIRTY,
1135 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1136 if (nr_pages == 0)
1137 break;
1138
1139 for (i = 0; i < nr_pages; i++) {
1140 struct page *page = pvec.pages[i];
1141
1142 /*
1143 * flushing sequence with step:
1144 * 0. indirect nodes
1145 * 1. dentry dnodes
1146 * 2. file dnodes
1147 */
1148 if (step == 0 && IS_DNODE(page))
1149 continue;
1150 if (step == 1 && (!IS_DNODE(page) ||
1151 is_cold_node(page)))
1152 continue;
1153 if (step == 2 && (!IS_DNODE(page) ||
1154 !is_cold_node(page)))
1155 continue;
1156
1157 /*
1158 * If an fsync mode,
1159 * we should not skip writing node pages.
1160 */
1161 if (ino && ino_of_node(page) == ino)
1162 lock_page(page);
1163 else if (!trylock_page(page))
1164 continue;
1165
1166 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1167 continue_unlock:
1168 unlock_page(page);
1169 continue;
1170 }
1171 if (ino && ino_of_node(page) != ino)
1172 goto continue_unlock;
1173
1174 if (!PageDirty(page)) {
1175 /* someone wrote it for us */
1176 goto continue_unlock;
1177 }
1178
1179 if (!clear_page_dirty_for_io(page))
1180 goto continue_unlock;
1181
1182 /* called by fsync() */
1183 if (ino && IS_DNODE(page)) {
1184 set_fsync_mark(page, 1);
1185 if (IS_INODE(page)) {
1186 if (!is_checkpointed_node(sbi, ino) &&
1187 !has_fsynced_inode(sbi, ino))
1188 set_dentry_mark(page, 1);
1189 else
1190 set_dentry_mark(page, 0);
1191 }
1192 nwritten++;
1193 } else {
1194 set_fsync_mark(page, 0);
1195 set_dentry_mark(page, 0);
1196 }
1197
1198 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1199 unlock_page(page);
1200 else
1201 wrote++;
1202
1203 if (--wbc->nr_to_write == 0)
1204 break;
1205 }
1206 pagevec_release(&pvec);
1207 cond_resched();
1208
1209 if (wbc->nr_to_write == 0) {
1210 step = 2;
1211 break;
1212 }
1213 }
1214
1215 if (step < 2) {
1216 step++;
1217 goto next_step;
1218 }
1219
1220 if (wrote)
1221 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1222 return nwritten;
1223 }
1224
1225 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1226 {
1227 pgoff_t index = 0, end = LONG_MAX;
1228 struct pagevec pvec;
1229 int ret2 = 0, ret = 0;
1230
1231 pagevec_init(&pvec, 0);
1232
1233 while (index <= end) {
1234 int i, nr_pages;
1235 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1236 PAGECACHE_TAG_WRITEBACK,
1237 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1238 if (nr_pages == 0)
1239 break;
1240
1241 for (i = 0; i < nr_pages; i++) {
1242 struct page *page = pvec.pages[i];
1243
1244 /* until radix tree lookup accepts end_index */
1245 if (unlikely(page->index > end))
1246 continue;
1247
1248 if (ino && ino_of_node(page) == ino) {
1249 f2fs_wait_on_page_writeback(page, NODE);
1250 if (TestClearPageError(page))
1251 ret = -EIO;
1252 }
1253 }
1254 pagevec_release(&pvec);
1255 cond_resched();
1256 }
1257
1258 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1259 ret2 = -ENOSPC;
1260 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1261 ret2 = -EIO;
1262 if (!ret)
1263 ret = ret2;
1264 return ret;
1265 }
1266
1267 static int f2fs_write_node_page(struct page *page,
1268 struct writeback_control *wbc)
1269 {
1270 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1271 nid_t nid;
1272 block_t new_addr;
1273 struct node_info ni;
1274 struct f2fs_io_info fio = {
1275 .type = NODE,
1276 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1277 };
1278
1279 trace_f2fs_writepage(page, NODE);
1280
1281 if (unlikely(sbi->por_doing))
1282 goto redirty_out;
1283 if (unlikely(f2fs_cp_error(sbi)))
1284 goto redirty_out;
1285
1286 f2fs_wait_on_page_writeback(page, NODE);
1287
1288 /* get old block addr of this node page */
1289 nid = nid_of_node(page);
1290 f2fs_bug_on(sbi, page->index != nid);
1291
1292 get_node_info(sbi, nid, &ni);
1293
1294 /* This page is already truncated */
1295 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1296 dec_page_count(sbi, F2FS_DIRTY_NODES);
1297 unlock_page(page);
1298 return 0;
1299 }
1300
1301 if (wbc->for_reclaim) {
1302 if (!down_read_trylock(&sbi->node_write))
1303 goto redirty_out;
1304 } else {
1305 down_read(&sbi->node_write);
1306 }
1307 set_page_writeback(page);
1308 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1309 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1310 dec_page_count(sbi, F2FS_DIRTY_NODES);
1311 up_read(&sbi->node_write);
1312 unlock_page(page);
1313
1314 if (wbc->for_reclaim)
1315 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1316
1317 return 0;
1318
1319 redirty_out:
1320 redirty_page_for_writepage(wbc, page);
1321 return AOP_WRITEPAGE_ACTIVATE;
1322 }
1323
1324 static int f2fs_write_node_pages(struct address_space *mapping,
1325 struct writeback_control *wbc)
1326 {
1327 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1328 long diff;
1329
1330 trace_f2fs_writepages(mapping->host, wbc, NODE);
1331
1332 /* balancing f2fs's metadata in background */
1333 f2fs_balance_fs_bg(sbi);
1334
1335 /* collect a number of dirty node pages and write together */
1336 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1337 goto skip_write;
1338
1339 diff = nr_pages_to_write(sbi, NODE, wbc);
1340 wbc->sync_mode = WB_SYNC_NONE;
1341 sync_node_pages(sbi, 0, wbc);
1342 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1343 return 0;
1344
1345 skip_write:
1346 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1347 return 0;
1348 }
1349
1350 static int f2fs_set_node_page_dirty(struct page *page)
1351 {
1352 trace_f2fs_set_page_dirty(page, NODE);
1353
1354 SetPageUptodate(page);
1355 if (!PageDirty(page)) {
1356 __set_page_dirty_nobuffers(page);
1357 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1358 SetPagePrivate(page);
1359 return 1;
1360 }
1361 return 0;
1362 }
1363
1364 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1365 unsigned int length)
1366 {
1367 struct inode *inode = page->mapping->host;
1368 if (PageDirty(page))
1369 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1370 ClearPagePrivate(page);
1371 }
1372
1373 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1374 {
1375 ClearPagePrivate(page);
1376 return 1;
1377 }
1378
1379 /*
1380 * Structure of the f2fs node operations
1381 */
1382 const struct address_space_operations f2fs_node_aops = {
1383 .writepage = f2fs_write_node_page,
1384 .writepages = f2fs_write_node_pages,
1385 .set_page_dirty = f2fs_set_node_page_dirty,
1386 .invalidatepage = f2fs_invalidate_node_page,
1387 .releasepage = f2fs_release_node_page,
1388 };
1389
1390 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1391 nid_t n)
1392 {
1393 return radix_tree_lookup(&nm_i->free_nid_root, n);
1394 }
1395
1396 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1397 struct free_nid *i)
1398 {
1399 list_del(&i->list);
1400 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1401 }
1402
1403 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1404 {
1405 struct f2fs_nm_info *nm_i = NM_I(sbi);
1406 struct free_nid *i;
1407 struct nat_entry *ne;
1408 bool allocated = false;
1409
1410 if (!available_free_memory(sbi, FREE_NIDS))
1411 return -1;
1412
1413 /* 0 nid should not be used */
1414 if (unlikely(nid == 0))
1415 return 0;
1416
1417 if (build) {
1418 /* do not add allocated nids */
1419 down_read(&nm_i->nat_tree_lock);
1420 ne = __lookup_nat_cache(nm_i, nid);
1421 if (ne &&
1422 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1423 nat_get_blkaddr(ne) != NULL_ADDR))
1424 allocated = true;
1425 up_read(&nm_i->nat_tree_lock);
1426 if (allocated)
1427 return 0;
1428 }
1429
1430 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1431 i->nid = nid;
1432 i->state = NID_NEW;
1433
1434 if (radix_tree_preload(GFP_NOFS)) {
1435 kmem_cache_free(free_nid_slab, i);
1436 return 0;
1437 }
1438
1439 spin_lock(&nm_i->free_nid_list_lock);
1440 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1441 spin_unlock(&nm_i->free_nid_list_lock);
1442 radix_tree_preload_end();
1443 kmem_cache_free(free_nid_slab, i);
1444 return 0;
1445 }
1446 list_add_tail(&i->list, &nm_i->free_nid_list);
1447 nm_i->fcnt++;
1448 spin_unlock(&nm_i->free_nid_list_lock);
1449 radix_tree_preload_end();
1450 return 1;
1451 }
1452
1453 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1454 {
1455 struct free_nid *i;
1456 bool need_free = false;
1457
1458 spin_lock(&nm_i->free_nid_list_lock);
1459 i = __lookup_free_nid_list(nm_i, nid);
1460 if (i && i->state == NID_NEW) {
1461 __del_from_free_nid_list(nm_i, i);
1462 nm_i->fcnt--;
1463 need_free = true;
1464 }
1465 spin_unlock(&nm_i->free_nid_list_lock);
1466
1467 if (need_free)
1468 kmem_cache_free(free_nid_slab, i);
1469 }
1470
1471 static void scan_nat_page(struct f2fs_sb_info *sbi,
1472 struct page *nat_page, nid_t start_nid)
1473 {
1474 struct f2fs_nm_info *nm_i = NM_I(sbi);
1475 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1476 block_t blk_addr;
1477 int i;
1478
1479 i = start_nid % NAT_ENTRY_PER_BLOCK;
1480
1481 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1482
1483 if (unlikely(start_nid >= nm_i->max_nid))
1484 break;
1485
1486 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1487 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1488 if (blk_addr == NULL_ADDR) {
1489 if (add_free_nid(sbi, start_nid, true) < 0)
1490 break;
1491 }
1492 }
1493 }
1494
1495 static void build_free_nids(struct f2fs_sb_info *sbi)
1496 {
1497 struct f2fs_nm_info *nm_i = NM_I(sbi);
1498 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1499 struct f2fs_summary_block *sum = curseg->sum_blk;
1500 int i = 0;
1501 nid_t nid = nm_i->next_scan_nid;
1502
1503 /* Enough entries */
1504 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1505 return;
1506
1507 /* readahead nat pages to be scanned */
1508 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1509
1510 while (1) {
1511 struct page *page = get_current_nat_page(sbi, nid);
1512
1513 scan_nat_page(sbi, page, nid);
1514 f2fs_put_page(page, 1);
1515
1516 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1517 if (unlikely(nid >= nm_i->max_nid))
1518 nid = 0;
1519
1520 if (i++ == FREE_NID_PAGES)
1521 break;
1522 }
1523
1524 /* go to the next free nat pages to find free nids abundantly */
1525 nm_i->next_scan_nid = nid;
1526
1527 /* find free nids from current sum_pages */
1528 mutex_lock(&curseg->curseg_mutex);
1529 for (i = 0; i < nats_in_cursum(sum); i++) {
1530 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1531 nid = le32_to_cpu(nid_in_journal(sum, i));
1532 if (addr == NULL_ADDR)
1533 add_free_nid(sbi, nid, true);
1534 else
1535 remove_free_nid(nm_i, nid);
1536 }
1537 mutex_unlock(&curseg->curseg_mutex);
1538 }
1539
1540 /*
1541 * If this function returns success, caller can obtain a new nid
1542 * from second parameter of this function.
1543 * The returned nid could be used ino as well as nid when inode is created.
1544 */
1545 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1546 {
1547 struct f2fs_nm_info *nm_i = NM_I(sbi);
1548 struct free_nid *i = NULL;
1549 retry:
1550 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1551 return false;
1552
1553 spin_lock(&nm_i->free_nid_list_lock);
1554
1555 /* We should not use stale free nids created by build_free_nids */
1556 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1558 list_for_each_entry(i, &nm_i->free_nid_list, list)
1559 if (i->state == NID_NEW)
1560 break;
1561
1562 f2fs_bug_on(sbi, i->state != NID_NEW);
1563 *nid = i->nid;
1564 i->state = NID_ALLOC;
1565 nm_i->fcnt--;
1566 spin_unlock(&nm_i->free_nid_list_lock);
1567 return true;
1568 }
1569 spin_unlock(&nm_i->free_nid_list_lock);
1570
1571 /* Let's scan nat pages and its caches to get free nids */
1572 mutex_lock(&nm_i->build_lock);
1573 build_free_nids(sbi);
1574 mutex_unlock(&nm_i->build_lock);
1575 goto retry;
1576 }
1577
1578 /*
1579 * alloc_nid() should be called prior to this function.
1580 */
1581 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1582 {
1583 struct f2fs_nm_info *nm_i = NM_I(sbi);
1584 struct free_nid *i;
1585
1586 spin_lock(&nm_i->free_nid_list_lock);
1587 i = __lookup_free_nid_list(nm_i, nid);
1588 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1589 __del_from_free_nid_list(nm_i, i);
1590 spin_unlock(&nm_i->free_nid_list_lock);
1591
1592 kmem_cache_free(free_nid_slab, i);
1593 }
1594
1595 /*
1596 * alloc_nid() should be called prior to this function.
1597 */
1598 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1599 {
1600 struct f2fs_nm_info *nm_i = NM_I(sbi);
1601 struct free_nid *i;
1602 bool need_free = false;
1603
1604 if (!nid)
1605 return;
1606
1607 spin_lock(&nm_i->free_nid_list_lock);
1608 i = __lookup_free_nid_list(nm_i, nid);
1609 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1610 if (!available_free_memory(sbi, FREE_NIDS)) {
1611 __del_from_free_nid_list(nm_i, i);
1612 need_free = true;
1613 } else {
1614 i->state = NID_NEW;
1615 nm_i->fcnt++;
1616 }
1617 spin_unlock(&nm_i->free_nid_list_lock);
1618
1619 if (need_free)
1620 kmem_cache_free(free_nid_slab, i);
1621 }
1622
1623 void recover_inline_xattr(struct inode *inode, struct page *page)
1624 {
1625 void *src_addr, *dst_addr;
1626 size_t inline_size;
1627 struct page *ipage;
1628 struct f2fs_inode *ri;
1629
1630 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1631 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1632
1633 ri = F2FS_INODE(page);
1634 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1635 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1636 goto update_inode;
1637 }
1638
1639 dst_addr = inline_xattr_addr(ipage);
1640 src_addr = inline_xattr_addr(page);
1641 inline_size = inline_xattr_size(inode);
1642
1643 f2fs_wait_on_page_writeback(ipage, NODE);
1644 memcpy(dst_addr, src_addr, inline_size);
1645 update_inode:
1646 update_inode(inode, ipage);
1647 f2fs_put_page(ipage, 1);
1648 }
1649
1650 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1651 {
1652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1653 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1654 nid_t new_xnid = nid_of_node(page);
1655 struct node_info ni;
1656
1657 /* 1: invalidate the previous xattr nid */
1658 if (!prev_xnid)
1659 goto recover_xnid;
1660
1661 /* Deallocate node address */
1662 get_node_info(sbi, prev_xnid, &ni);
1663 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1664 invalidate_blocks(sbi, ni.blk_addr);
1665 dec_valid_node_count(sbi, inode);
1666 set_node_addr(sbi, &ni, NULL_ADDR, false);
1667
1668 recover_xnid:
1669 /* 2: allocate new xattr nid */
1670 if (unlikely(!inc_valid_node_count(sbi, inode)))
1671 f2fs_bug_on(sbi, 1);
1672
1673 remove_free_nid(NM_I(sbi), new_xnid);
1674 get_node_info(sbi, new_xnid, &ni);
1675 ni.ino = inode->i_ino;
1676 set_node_addr(sbi, &ni, NEW_ADDR, false);
1677 F2FS_I(inode)->i_xattr_nid = new_xnid;
1678
1679 /* 3: update xattr blkaddr */
1680 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1681 set_node_addr(sbi, &ni, blkaddr, false);
1682
1683 update_inode_page(inode);
1684 }
1685
1686 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1687 {
1688 struct f2fs_inode *src, *dst;
1689 nid_t ino = ino_of_node(page);
1690 struct node_info old_ni, new_ni;
1691 struct page *ipage;
1692
1693 get_node_info(sbi, ino, &old_ni);
1694
1695 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1696 return -EINVAL;
1697
1698 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1699 if (!ipage)
1700 return -ENOMEM;
1701
1702 /* Should not use this inode from free nid list */
1703 remove_free_nid(NM_I(sbi), ino);
1704
1705 SetPageUptodate(ipage);
1706 fill_node_footer(ipage, ino, ino, 0, true);
1707
1708 src = F2FS_INODE(page);
1709 dst = F2FS_INODE(ipage);
1710
1711 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1712 dst->i_size = 0;
1713 dst->i_blocks = cpu_to_le64(1);
1714 dst->i_links = cpu_to_le32(1);
1715 dst->i_xattr_nid = 0;
1716 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1717
1718 new_ni = old_ni;
1719 new_ni.ino = ino;
1720
1721 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1722 WARN_ON(1);
1723 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1724 inc_valid_inode_count(sbi);
1725 set_page_dirty(ipage);
1726 f2fs_put_page(ipage, 1);
1727 return 0;
1728 }
1729
1730 int restore_node_summary(struct f2fs_sb_info *sbi,
1731 unsigned int segno, struct f2fs_summary_block *sum)
1732 {
1733 struct f2fs_node *rn;
1734 struct f2fs_summary *sum_entry;
1735 block_t addr;
1736 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1737 int i, idx, last_offset, nrpages;
1738
1739 /* scan the node segment */
1740 last_offset = sbi->blocks_per_seg;
1741 addr = START_BLOCK(sbi, segno);
1742 sum_entry = &sum->entries[0];
1743
1744 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1745 nrpages = min(last_offset - i, bio_blocks);
1746
1747 /* readahead node pages */
1748 ra_meta_pages(sbi, addr, nrpages, META_POR);
1749
1750 for (idx = addr; idx < addr + nrpages; idx++) {
1751 struct page *page = get_meta_page(sbi, idx);
1752
1753 rn = F2FS_NODE(page);
1754 sum_entry->nid = rn->footer.nid;
1755 sum_entry->version = 0;
1756 sum_entry->ofs_in_node = 0;
1757 sum_entry++;
1758 f2fs_put_page(page, 1);
1759 }
1760
1761 invalidate_mapping_pages(META_MAPPING(sbi), addr,
1762 addr + nrpages);
1763 }
1764 return 0;
1765 }
1766
1767 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1768 {
1769 struct f2fs_nm_info *nm_i = NM_I(sbi);
1770 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1771 struct f2fs_summary_block *sum = curseg->sum_blk;
1772 int i;
1773
1774 mutex_lock(&curseg->curseg_mutex);
1775 for (i = 0; i < nats_in_cursum(sum); i++) {
1776 struct nat_entry *ne;
1777 struct f2fs_nat_entry raw_ne;
1778 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1779
1780 raw_ne = nat_in_journal(sum, i);
1781
1782 down_write(&nm_i->nat_tree_lock);
1783 ne = __lookup_nat_cache(nm_i, nid);
1784 if (!ne) {
1785 ne = grab_nat_entry(nm_i, nid);
1786 node_info_from_raw_nat(&ne->ni, &raw_ne);
1787 }
1788 __set_nat_cache_dirty(nm_i, ne);
1789 up_write(&nm_i->nat_tree_lock);
1790 }
1791 update_nats_in_cursum(sum, -i);
1792 mutex_unlock(&curseg->curseg_mutex);
1793 }
1794
1795 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1796 struct list_head *head, int max)
1797 {
1798 struct nat_entry_set *cur;
1799
1800 if (nes->entry_cnt >= max)
1801 goto add_out;
1802
1803 list_for_each_entry(cur, head, set_list) {
1804 if (cur->entry_cnt >= nes->entry_cnt) {
1805 list_add(&nes->set_list, cur->set_list.prev);
1806 return;
1807 }
1808 }
1809 add_out:
1810 list_add_tail(&nes->set_list, head);
1811 }
1812
1813 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1814 struct nat_entry_set *set)
1815 {
1816 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1817 struct f2fs_summary_block *sum = curseg->sum_blk;
1818 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1819 bool to_journal = true;
1820 struct f2fs_nat_block *nat_blk;
1821 struct nat_entry *ne, *cur;
1822 struct page *page = NULL;
1823
1824 /*
1825 * there are two steps to flush nat entries:
1826 * #1, flush nat entries to journal in current hot data summary block.
1827 * #2, flush nat entries to nat page.
1828 */
1829 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1830 to_journal = false;
1831
1832 if (to_journal) {
1833 mutex_lock(&curseg->curseg_mutex);
1834 } else {
1835 page = get_next_nat_page(sbi, start_nid);
1836 nat_blk = page_address(page);
1837 f2fs_bug_on(sbi, !nat_blk);
1838 }
1839
1840 /* flush dirty nats in nat entry set */
1841 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1842 struct f2fs_nat_entry *raw_ne;
1843 nid_t nid = nat_get_nid(ne);
1844 int offset;
1845
1846 if (nat_get_blkaddr(ne) == NEW_ADDR)
1847 continue;
1848
1849 if (to_journal) {
1850 offset = lookup_journal_in_cursum(sum,
1851 NAT_JOURNAL, nid, 1);
1852 f2fs_bug_on(sbi, offset < 0);
1853 raw_ne = &nat_in_journal(sum, offset);
1854 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1855 } else {
1856 raw_ne = &nat_blk->entries[nid - start_nid];
1857 }
1858 raw_nat_from_node_info(raw_ne, &ne->ni);
1859
1860 down_write(&NM_I(sbi)->nat_tree_lock);
1861 nat_reset_flag(ne);
1862 __clear_nat_cache_dirty(NM_I(sbi), ne);
1863 up_write(&NM_I(sbi)->nat_tree_lock);
1864
1865 if (nat_get_blkaddr(ne) == NULL_ADDR)
1866 add_free_nid(sbi, nid, false);
1867 }
1868
1869 if (to_journal)
1870 mutex_unlock(&curseg->curseg_mutex);
1871 else
1872 f2fs_put_page(page, 1);
1873
1874 f2fs_bug_on(sbi, set->entry_cnt);
1875
1876 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1877 kmem_cache_free(nat_entry_set_slab, set);
1878 }
1879
1880 /*
1881 * This function is called during the checkpointing process.
1882 */
1883 void flush_nat_entries(struct f2fs_sb_info *sbi)
1884 {
1885 struct f2fs_nm_info *nm_i = NM_I(sbi);
1886 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1887 struct f2fs_summary_block *sum = curseg->sum_blk;
1888 struct nat_entry_set *setvec[NATVEC_SIZE];
1889 struct nat_entry_set *set, *tmp;
1890 unsigned int found;
1891 nid_t set_idx = 0;
1892 LIST_HEAD(sets);
1893
1894 if (!nm_i->dirty_nat_cnt)
1895 return;
1896 /*
1897 * if there are no enough space in journal to store dirty nat
1898 * entries, remove all entries from journal and merge them
1899 * into nat entry set.
1900 */
1901 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1902 remove_nats_in_journal(sbi);
1903
1904 while ((found = __gang_lookup_nat_set(nm_i,
1905 set_idx, NATVEC_SIZE, setvec))) {
1906 unsigned idx;
1907 set_idx = setvec[found - 1]->set + 1;
1908 for (idx = 0; idx < found; idx++)
1909 __adjust_nat_entry_set(setvec[idx], &sets,
1910 MAX_NAT_JENTRIES(sum));
1911 }
1912
1913 /* flush dirty nats in nat entry set */
1914 list_for_each_entry_safe(set, tmp, &sets, set_list)
1915 __flush_nat_entry_set(sbi, set);
1916
1917 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1918 }
1919
1920 static int init_node_manager(struct f2fs_sb_info *sbi)
1921 {
1922 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1923 struct f2fs_nm_info *nm_i = NM_I(sbi);
1924 unsigned char *version_bitmap;
1925 unsigned int nat_segs, nat_blocks;
1926
1927 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1928
1929 /* segment_count_nat includes pair segment so divide to 2. */
1930 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1931 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1932
1933 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1934
1935 /* not used nids: 0, node, meta, (and root counted as valid node) */
1936 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1937 nm_i->fcnt = 0;
1938 nm_i->nat_cnt = 0;
1939 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1940
1941 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1942 INIT_LIST_HEAD(&nm_i->free_nid_list);
1943 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1944 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1945 INIT_LIST_HEAD(&nm_i->nat_entries);
1946
1947 mutex_init(&nm_i->build_lock);
1948 spin_lock_init(&nm_i->free_nid_list_lock);
1949 init_rwsem(&nm_i->nat_tree_lock);
1950
1951 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1952 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1953 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1954 if (!version_bitmap)
1955 return -EFAULT;
1956
1957 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1958 GFP_KERNEL);
1959 if (!nm_i->nat_bitmap)
1960 return -ENOMEM;
1961 return 0;
1962 }
1963
1964 int build_node_manager(struct f2fs_sb_info *sbi)
1965 {
1966 int err;
1967
1968 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1969 if (!sbi->nm_info)
1970 return -ENOMEM;
1971
1972 err = init_node_manager(sbi);
1973 if (err)
1974 return err;
1975
1976 build_free_nids(sbi);
1977 return 0;
1978 }
1979
1980 void destroy_node_manager(struct f2fs_sb_info *sbi)
1981 {
1982 struct f2fs_nm_info *nm_i = NM_I(sbi);
1983 struct free_nid *i, *next_i;
1984 struct nat_entry *natvec[NATVEC_SIZE];
1985 nid_t nid = 0;
1986 unsigned int found;
1987
1988 if (!nm_i)
1989 return;
1990
1991 /* destroy free nid list */
1992 spin_lock(&nm_i->free_nid_list_lock);
1993 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1994 f2fs_bug_on(sbi, i->state == NID_ALLOC);
1995 __del_from_free_nid_list(nm_i, i);
1996 nm_i->fcnt--;
1997 spin_unlock(&nm_i->free_nid_list_lock);
1998 kmem_cache_free(free_nid_slab, i);
1999 spin_lock(&nm_i->free_nid_list_lock);
2000 }
2001 f2fs_bug_on(sbi, nm_i->fcnt);
2002 spin_unlock(&nm_i->free_nid_list_lock);
2003
2004 /* destroy nat cache */
2005 down_write(&nm_i->nat_tree_lock);
2006 while ((found = __gang_lookup_nat_cache(nm_i,
2007 nid, NATVEC_SIZE, natvec))) {
2008 unsigned idx;
2009 nid = nat_get_nid(natvec[found - 1]) + 1;
2010 for (idx = 0; idx < found; idx++)
2011 __del_from_nat_cache(nm_i, natvec[idx]);
2012 }
2013 f2fs_bug_on(sbi, nm_i->nat_cnt);
2014 up_write(&nm_i->nat_tree_lock);
2015
2016 kfree(nm_i->nat_bitmap);
2017 sbi->nm_info = NULL;
2018 kfree(nm_i);
2019 }
2020
2021 int __init create_node_manager_caches(void)
2022 {
2023 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2024 sizeof(struct nat_entry));
2025 if (!nat_entry_slab)
2026 goto fail;
2027
2028 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2029 sizeof(struct free_nid));
2030 if (!free_nid_slab)
2031 goto destroy_nat_entry;
2032
2033 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2034 sizeof(struct nat_entry_set));
2035 if (!nat_entry_set_slab)
2036 goto destroy_free_nid;
2037 return 0;
2038
2039 destroy_free_nid:
2040 kmem_cache_destroy(free_nid_slab);
2041 destroy_nat_entry:
2042 kmem_cache_destroy(nat_entry_slab);
2043 fail:
2044 return -ENOMEM;
2045 }
2046
2047 void destroy_node_manager_caches(void)
2048 {
2049 kmem_cache_destroy(nat_entry_set_slab);
2050 kmem_cache_destroy(free_nid_slab);
2051 kmem_cache_destroy(nat_entry_slab);
2052 }