]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/node.c
c59341d5539ca76e5a2ea186669506fa943d1170
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32 struct f2fs_nm_info *nm_i = NM_I(sbi);
33 struct sysinfo val;
34 unsigned long avail_ram;
35 unsigned long mem_size = 0;
36 bool res = false;
37
38 si_meminfo(&val);
39
40 /* only uses low memory */
41 avail_ram = val.totalram - val.totalhigh;
42
43 /* give 25%, 25%, 50%, 50% memory for each components respectively */
44 if (type == FREE_NIDS) {
45 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
46 PAGE_CACHE_SHIFT;
47 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
48 } else if (type == NAT_ENTRIES) {
49 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
50 PAGE_CACHE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == DIRTY_DENTS) {
53 if (sbi->sb->s_bdi->dirty_exceeded)
54 return false;
55 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
56 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
57 } else if (type == INO_ENTRIES) {
58 int i;
59
60 if (sbi->sb->s_bdi->dirty_exceeded)
61 return false;
62 for (i = 0; i <= UPDATE_INO; i++)
63 mem_size += (sbi->im[i].ino_num *
64 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
65 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
66 }
67 return res;
68 }
69
70 static void clear_node_page_dirty(struct page *page)
71 {
72 struct address_space *mapping = page->mapping;
73 unsigned int long flags;
74
75 if (PageDirty(page)) {
76 spin_lock_irqsave(&mapping->tree_lock, flags);
77 radix_tree_tag_clear(&mapping->page_tree,
78 page_index(page),
79 PAGECACHE_TAG_DIRTY);
80 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81
82 clear_page_dirty_for_io(page);
83 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
84 }
85 ClearPageUptodate(page);
86 }
87
88 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
89 {
90 pgoff_t index = current_nat_addr(sbi, nid);
91 return get_meta_page(sbi, index);
92 }
93
94 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
95 {
96 struct page *src_page;
97 struct page *dst_page;
98 pgoff_t src_off;
99 pgoff_t dst_off;
100 void *src_addr;
101 void *dst_addr;
102 struct f2fs_nm_info *nm_i = NM_I(sbi);
103
104 src_off = current_nat_addr(sbi, nid);
105 dst_off = next_nat_addr(sbi, src_off);
106
107 /* get current nat block page with lock */
108 src_page = get_meta_page(sbi, src_off);
109 dst_page = grab_meta_page(sbi, dst_off);
110 f2fs_bug_on(sbi, PageDirty(src_page));
111
112 src_addr = page_address(src_page);
113 dst_addr = page_address(dst_page);
114 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
115 set_page_dirty(dst_page);
116 f2fs_put_page(src_page, 1);
117
118 set_to_next_nat(nm_i, nid);
119
120 return dst_page;
121 }
122
123 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
124 {
125 return radix_tree_lookup(&nm_i->nat_root, n);
126 }
127
128 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
129 nid_t start, unsigned int nr, struct nat_entry **ep)
130 {
131 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
132 }
133
134 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
135 {
136 list_del(&e->list);
137 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
138 nm_i->nat_cnt--;
139 kmem_cache_free(nat_entry_slab, e);
140 }
141
142 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
143 struct nat_entry *ne)
144 {
145 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
146 struct nat_entry_set *head;
147
148 if (get_nat_flag(ne, IS_DIRTY))
149 return;
150 retry:
151 head = radix_tree_lookup(&nm_i->nat_set_root, set);
152 if (!head) {
153 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
154
155 INIT_LIST_HEAD(&head->entry_list);
156 INIT_LIST_HEAD(&head->set_list);
157 head->set = set;
158 head->entry_cnt = 0;
159
160 if (radix_tree_insert(&nm_i->nat_set_root, set, head)) {
161 kmem_cache_free(nat_entry_set_slab, head);
162 goto retry;
163 }
164 }
165 list_move_tail(&ne->list, &head->entry_list);
166 nm_i->dirty_nat_cnt++;
167 head->entry_cnt++;
168 set_nat_flag(ne, IS_DIRTY, true);
169 }
170
171 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
172 struct nat_entry *ne)
173 {
174 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
175 struct nat_entry_set *head;
176
177 head = radix_tree_lookup(&nm_i->nat_set_root, set);
178 if (head) {
179 list_move_tail(&ne->list, &nm_i->nat_entries);
180 set_nat_flag(ne, IS_DIRTY, false);
181 head->entry_cnt--;
182 nm_i->dirty_nat_cnt--;
183 }
184 }
185
186 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
187 nid_t start, unsigned int nr, struct nat_entry_set **ep)
188 {
189 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
190 start, nr);
191 }
192
193 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
194 {
195 struct f2fs_nm_info *nm_i = NM_I(sbi);
196 struct nat_entry *e;
197 bool is_cp = true;
198
199 read_lock(&nm_i->nat_tree_lock);
200 e = __lookup_nat_cache(nm_i, nid);
201 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
202 is_cp = false;
203 read_unlock(&nm_i->nat_tree_lock);
204 return is_cp;
205 }
206
207 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
208 {
209 struct f2fs_nm_info *nm_i = NM_I(sbi);
210 struct nat_entry *e;
211 bool fsynced = false;
212
213 read_lock(&nm_i->nat_tree_lock);
214 e = __lookup_nat_cache(nm_i, ino);
215 if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
216 fsynced = true;
217 read_unlock(&nm_i->nat_tree_lock);
218 return fsynced;
219 }
220
221 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
222 {
223 struct f2fs_nm_info *nm_i = NM_I(sbi);
224 struct nat_entry *e;
225 bool need_update = true;
226
227 read_lock(&nm_i->nat_tree_lock);
228 e = __lookup_nat_cache(nm_i, ino);
229 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
230 (get_nat_flag(e, IS_CHECKPOINTED) ||
231 get_nat_flag(e, HAS_FSYNCED_INODE)))
232 need_update = false;
233 read_unlock(&nm_i->nat_tree_lock);
234 return need_update;
235 }
236
237 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
238 {
239 struct nat_entry *new;
240
241 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
242 if (!new)
243 return NULL;
244 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
245 kmem_cache_free(nat_entry_slab, new);
246 return NULL;
247 }
248 memset(new, 0, sizeof(struct nat_entry));
249 nat_set_nid(new, nid);
250 nat_reset_flag(new);
251 list_add_tail(&new->list, &nm_i->nat_entries);
252 nm_i->nat_cnt++;
253 return new;
254 }
255
256 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
257 struct f2fs_nat_entry *ne)
258 {
259 struct nat_entry *e;
260 retry:
261 write_lock(&nm_i->nat_tree_lock);
262 e = __lookup_nat_cache(nm_i, nid);
263 if (!e) {
264 e = grab_nat_entry(nm_i, nid);
265 if (!e) {
266 write_unlock(&nm_i->nat_tree_lock);
267 goto retry;
268 }
269 node_info_from_raw_nat(&e->ni, ne);
270 }
271 write_unlock(&nm_i->nat_tree_lock);
272 }
273
274 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
275 block_t new_blkaddr, bool fsync_done)
276 {
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
279 retry:
280 write_lock(&nm_i->nat_tree_lock);
281 e = __lookup_nat_cache(nm_i, ni->nid);
282 if (!e) {
283 e = grab_nat_entry(nm_i, ni->nid);
284 if (!e) {
285 write_unlock(&nm_i->nat_tree_lock);
286 goto retry;
287 }
288 e->ni = *ni;
289 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
290 } else if (new_blkaddr == NEW_ADDR) {
291 /*
292 * when nid is reallocated,
293 * previous nat entry can be remained in nat cache.
294 * So, reinitialize it with new information.
295 */
296 e->ni = *ni;
297 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
298 }
299
300 /* sanity check */
301 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
302 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
303 new_blkaddr == NULL_ADDR);
304 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
305 new_blkaddr == NEW_ADDR);
306 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
307 nat_get_blkaddr(e) != NULL_ADDR &&
308 new_blkaddr == NEW_ADDR);
309
310 /* increment version no as node is removed */
311 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
312 unsigned char version = nat_get_version(e);
313 nat_set_version(e, inc_node_version(version));
314 }
315
316 /* change address */
317 nat_set_blkaddr(e, new_blkaddr);
318 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
319 set_nat_flag(e, IS_CHECKPOINTED, false);
320 __set_nat_cache_dirty(nm_i, e);
321
322 /* update fsync_mark if its inode nat entry is still alive */
323 e = __lookup_nat_cache(nm_i, ni->ino);
324 if (e) {
325 if (fsync_done && ni->nid == ni->ino)
326 set_nat_flag(e, HAS_FSYNCED_INODE, true);
327 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
328 }
329 write_unlock(&nm_i->nat_tree_lock);
330 }
331
332 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
333 {
334 struct f2fs_nm_info *nm_i = NM_I(sbi);
335
336 if (available_free_memory(sbi, NAT_ENTRIES))
337 return 0;
338
339 write_lock(&nm_i->nat_tree_lock);
340 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
341 struct nat_entry *ne;
342 ne = list_first_entry(&nm_i->nat_entries,
343 struct nat_entry, list);
344 __del_from_nat_cache(nm_i, ne);
345 nr_shrink--;
346 }
347 write_unlock(&nm_i->nat_tree_lock);
348 return nr_shrink;
349 }
350
351 /*
352 * This function always returns success
353 */
354 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
355 {
356 struct f2fs_nm_info *nm_i = NM_I(sbi);
357 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
358 struct f2fs_summary_block *sum = curseg->sum_blk;
359 nid_t start_nid = START_NID(nid);
360 struct f2fs_nat_block *nat_blk;
361 struct page *page = NULL;
362 struct f2fs_nat_entry ne;
363 struct nat_entry *e;
364 int i;
365
366 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
367 ni->nid = nid;
368
369 /* Check nat cache */
370 read_lock(&nm_i->nat_tree_lock);
371 e = __lookup_nat_cache(nm_i, nid);
372 if (e) {
373 ni->ino = nat_get_ino(e);
374 ni->blk_addr = nat_get_blkaddr(e);
375 ni->version = nat_get_version(e);
376 }
377 read_unlock(&nm_i->nat_tree_lock);
378 if (e)
379 return;
380
381 /* Check current segment summary */
382 mutex_lock(&curseg->curseg_mutex);
383 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
384 if (i >= 0) {
385 ne = nat_in_journal(sum, i);
386 node_info_from_raw_nat(ni, &ne);
387 }
388 mutex_unlock(&curseg->curseg_mutex);
389 if (i >= 0)
390 goto cache;
391
392 /* Fill node_info from nat page */
393 page = get_current_nat_page(sbi, start_nid);
394 nat_blk = (struct f2fs_nat_block *)page_address(page);
395 ne = nat_blk->entries[nid - start_nid];
396 node_info_from_raw_nat(ni, &ne);
397 f2fs_put_page(page, 1);
398 cache:
399 /* cache nat entry */
400 cache_nat_entry(NM_I(sbi), nid, &ne);
401 }
402
403 /*
404 * The maximum depth is four.
405 * Offset[0] will have raw inode offset.
406 */
407 static int get_node_path(struct f2fs_inode_info *fi, long block,
408 int offset[4], unsigned int noffset[4])
409 {
410 const long direct_index = ADDRS_PER_INODE(fi);
411 const long direct_blks = ADDRS_PER_BLOCK;
412 const long dptrs_per_blk = NIDS_PER_BLOCK;
413 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
414 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
415 int n = 0;
416 int level = 0;
417
418 noffset[0] = 0;
419
420 if (block < direct_index) {
421 offset[n] = block;
422 goto got;
423 }
424 block -= direct_index;
425 if (block < direct_blks) {
426 offset[n++] = NODE_DIR1_BLOCK;
427 noffset[n] = 1;
428 offset[n] = block;
429 level = 1;
430 goto got;
431 }
432 block -= direct_blks;
433 if (block < direct_blks) {
434 offset[n++] = NODE_DIR2_BLOCK;
435 noffset[n] = 2;
436 offset[n] = block;
437 level = 1;
438 goto got;
439 }
440 block -= direct_blks;
441 if (block < indirect_blks) {
442 offset[n++] = NODE_IND1_BLOCK;
443 noffset[n] = 3;
444 offset[n++] = block / direct_blks;
445 noffset[n] = 4 + offset[n - 1];
446 offset[n] = block % direct_blks;
447 level = 2;
448 goto got;
449 }
450 block -= indirect_blks;
451 if (block < indirect_blks) {
452 offset[n++] = NODE_IND2_BLOCK;
453 noffset[n] = 4 + dptrs_per_blk;
454 offset[n++] = block / direct_blks;
455 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
456 offset[n] = block % direct_blks;
457 level = 2;
458 goto got;
459 }
460 block -= indirect_blks;
461 if (block < dindirect_blks) {
462 offset[n++] = NODE_DIND_BLOCK;
463 noffset[n] = 5 + (dptrs_per_blk * 2);
464 offset[n++] = block / indirect_blks;
465 noffset[n] = 6 + (dptrs_per_blk * 2) +
466 offset[n - 1] * (dptrs_per_blk + 1);
467 offset[n++] = (block / direct_blks) % dptrs_per_blk;
468 noffset[n] = 7 + (dptrs_per_blk * 2) +
469 offset[n - 2] * (dptrs_per_blk + 1) +
470 offset[n - 1];
471 offset[n] = block % direct_blks;
472 level = 3;
473 goto got;
474 } else {
475 BUG();
476 }
477 got:
478 return level;
479 }
480
481 /*
482 * Caller should call f2fs_put_dnode(dn).
483 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
484 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
485 * In the case of RDONLY_NODE, we don't need to care about mutex.
486 */
487 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
488 {
489 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
490 struct page *npage[4];
491 struct page *parent;
492 int offset[4];
493 unsigned int noffset[4];
494 nid_t nids[4];
495 int level, i;
496 int err = 0;
497
498 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
499
500 nids[0] = dn->inode->i_ino;
501 npage[0] = dn->inode_page;
502
503 if (!npage[0]) {
504 npage[0] = get_node_page(sbi, nids[0]);
505 if (IS_ERR(npage[0]))
506 return PTR_ERR(npage[0]);
507 }
508 parent = npage[0];
509 if (level != 0)
510 nids[1] = get_nid(parent, offset[0], true);
511 dn->inode_page = npage[0];
512 dn->inode_page_locked = true;
513
514 /* get indirect or direct nodes */
515 for (i = 1; i <= level; i++) {
516 bool done = false;
517
518 if (!nids[i] && mode == ALLOC_NODE) {
519 /* alloc new node */
520 if (!alloc_nid(sbi, &(nids[i]))) {
521 err = -ENOSPC;
522 goto release_pages;
523 }
524
525 dn->nid = nids[i];
526 npage[i] = new_node_page(dn, noffset[i], NULL);
527 if (IS_ERR(npage[i])) {
528 alloc_nid_failed(sbi, nids[i]);
529 err = PTR_ERR(npage[i]);
530 goto release_pages;
531 }
532
533 set_nid(parent, offset[i - 1], nids[i], i == 1);
534 alloc_nid_done(sbi, nids[i]);
535 done = true;
536 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
537 npage[i] = get_node_page_ra(parent, offset[i - 1]);
538 if (IS_ERR(npage[i])) {
539 err = PTR_ERR(npage[i]);
540 goto release_pages;
541 }
542 done = true;
543 }
544 if (i == 1) {
545 dn->inode_page_locked = false;
546 unlock_page(parent);
547 } else {
548 f2fs_put_page(parent, 1);
549 }
550
551 if (!done) {
552 npage[i] = get_node_page(sbi, nids[i]);
553 if (IS_ERR(npage[i])) {
554 err = PTR_ERR(npage[i]);
555 f2fs_put_page(npage[0], 0);
556 goto release_out;
557 }
558 }
559 if (i < level) {
560 parent = npage[i];
561 nids[i + 1] = get_nid(parent, offset[i], false);
562 }
563 }
564 dn->nid = nids[level];
565 dn->ofs_in_node = offset[level];
566 dn->node_page = npage[level];
567 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
568 return 0;
569
570 release_pages:
571 f2fs_put_page(parent, 1);
572 if (i > 1)
573 f2fs_put_page(npage[0], 0);
574 release_out:
575 dn->inode_page = NULL;
576 dn->node_page = NULL;
577 return err;
578 }
579
580 static void truncate_node(struct dnode_of_data *dn)
581 {
582 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
583 struct node_info ni;
584
585 get_node_info(sbi, dn->nid, &ni);
586 if (dn->inode->i_blocks == 0) {
587 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
588 goto invalidate;
589 }
590 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
591
592 /* Deallocate node address */
593 invalidate_blocks(sbi, ni.blk_addr);
594 dec_valid_node_count(sbi, dn->inode);
595 set_node_addr(sbi, &ni, NULL_ADDR, false);
596
597 if (dn->nid == dn->inode->i_ino) {
598 remove_orphan_inode(sbi, dn->nid);
599 dec_valid_inode_count(sbi);
600 } else {
601 sync_inode_page(dn);
602 }
603 invalidate:
604 clear_node_page_dirty(dn->node_page);
605 F2FS_SET_SB_DIRT(sbi);
606
607 f2fs_put_page(dn->node_page, 1);
608
609 invalidate_mapping_pages(NODE_MAPPING(sbi),
610 dn->node_page->index, dn->node_page->index);
611
612 dn->node_page = NULL;
613 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
614 }
615
616 static int truncate_dnode(struct dnode_of_data *dn)
617 {
618 struct page *page;
619
620 if (dn->nid == 0)
621 return 1;
622
623 /* get direct node */
624 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
625 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
626 return 1;
627 else if (IS_ERR(page))
628 return PTR_ERR(page);
629
630 /* Make dnode_of_data for parameter */
631 dn->node_page = page;
632 dn->ofs_in_node = 0;
633 truncate_data_blocks(dn);
634 truncate_node(dn);
635 return 1;
636 }
637
638 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
639 int ofs, int depth)
640 {
641 struct dnode_of_data rdn = *dn;
642 struct page *page;
643 struct f2fs_node *rn;
644 nid_t child_nid;
645 unsigned int child_nofs;
646 int freed = 0;
647 int i, ret;
648
649 if (dn->nid == 0)
650 return NIDS_PER_BLOCK + 1;
651
652 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
653
654 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
655 if (IS_ERR(page)) {
656 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
657 return PTR_ERR(page);
658 }
659
660 rn = F2FS_NODE(page);
661 if (depth < 3) {
662 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
663 child_nid = le32_to_cpu(rn->in.nid[i]);
664 if (child_nid == 0)
665 continue;
666 rdn.nid = child_nid;
667 ret = truncate_dnode(&rdn);
668 if (ret < 0)
669 goto out_err;
670 set_nid(page, i, 0, false);
671 }
672 } else {
673 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
674 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
675 child_nid = le32_to_cpu(rn->in.nid[i]);
676 if (child_nid == 0) {
677 child_nofs += NIDS_PER_BLOCK + 1;
678 continue;
679 }
680 rdn.nid = child_nid;
681 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
682 if (ret == (NIDS_PER_BLOCK + 1)) {
683 set_nid(page, i, 0, false);
684 child_nofs += ret;
685 } else if (ret < 0 && ret != -ENOENT) {
686 goto out_err;
687 }
688 }
689 freed = child_nofs;
690 }
691
692 if (!ofs) {
693 /* remove current indirect node */
694 dn->node_page = page;
695 truncate_node(dn);
696 freed++;
697 } else {
698 f2fs_put_page(page, 1);
699 }
700 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
701 return freed;
702
703 out_err:
704 f2fs_put_page(page, 1);
705 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
706 return ret;
707 }
708
709 static int truncate_partial_nodes(struct dnode_of_data *dn,
710 struct f2fs_inode *ri, int *offset, int depth)
711 {
712 struct page *pages[2];
713 nid_t nid[3];
714 nid_t child_nid;
715 int err = 0;
716 int i;
717 int idx = depth - 2;
718
719 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
720 if (!nid[0])
721 return 0;
722
723 /* get indirect nodes in the path */
724 for (i = 0; i < idx + 1; i++) {
725 /* reference count'll be increased */
726 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
727 if (IS_ERR(pages[i])) {
728 err = PTR_ERR(pages[i]);
729 idx = i - 1;
730 goto fail;
731 }
732 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
733 }
734
735 /* free direct nodes linked to a partial indirect node */
736 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
737 child_nid = get_nid(pages[idx], i, false);
738 if (!child_nid)
739 continue;
740 dn->nid = child_nid;
741 err = truncate_dnode(dn);
742 if (err < 0)
743 goto fail;
744 set_nid(pages[idx], i, 0, false);
745 }
746
747 if (offset[idx + 1] == 0) {
748 dn->node_page = pages[idx];
749 dn->nid = nid[idx];
750 truncate_node(dn);
751 } else {
752 f2fs_put_page(pages[idx], 1);
753 }
754 offset[idx]++;
755 offset[idx + 1] = 0;
756 idx--;
757 fail:
758 for (i = idx; i >= 0; i--)
759 f2fs_put_page(pages[i], 1);
760
761 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
762
763 return err;
764 }
765
766 /*
767 * All the block addresses of data and nodes should be nullified.
768 */
769 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
770 {
771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
772 int err = 0, cont = 1;
773 int level, offset[4], noffset[4];
774 unsigned int nofs = 0;
775 struct f2fs_inode *ri;
776 struct dnode_of_data dn;
777 struct page *page;
778
779 trace_f2fs_truncate_inode_blocks_enter(inode, from);
780
781 level = get_node_path(F2FS_I(inode), from, offset, noffset);
782 restart:
783 page = get_node_page(sbi, inode->i_ino);
784 if (IS_ERR(page)) {
785 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
786 return PTR_ERR(page);
787 }
788
789 set_new_dnode(&dn, inode, page, NULL, 0);
790 unlock_page(page);
791
792 ri = F2FS_INODE(page);
793 switch (level) {
794 case 0:
795 case 1:
796 nofs = noffset[1];
797 break;
798 case 2:
799 nofs = noffset[1];
800 if (!offset[level - 1])
801 goto skip_partial;
802 err = truncate_partial_nodes(&dn, ri, offset, level);
803 if (err < 0 && err != -ENOENT)
804 goto fail;
805 nofs += 1 + NIDS_PER_BLOCK;
806 break;
807 case 3:
808 nofs = 5 + 2 * NIDS_PER_BLOCK;
809 if (!offset[level - 1])
810 goto skip_partial;
811 err = truncate_partial_nodes(&dn, ri, offset, level);
812 if (err < 0 && err != -ENOENT)
813 goto fail;
814 break;
815 default:
816 BUG();
817 }
818
819 skip_partial:
820 while (cont) {
821 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
822 switch (offset[0]) {
823 case NODE_DIR1_BLOCK:
824 case NODE_DIR2_BLOCK:
825 err = truncate_dnode(&dn);
826 break;
827
828 case NODE_IND1_BLOCK:
829 case NODE_IND2_BLOCK:
830 err = truncate_nodes(&dn, nofs, offset[1], 2);
831 break;
832
833 case NODE_DIND_BLOCK:
834 err = truncate_nodes(&dn, nofs, offset[1], 3);
835 cont = 0;
836 break;
837
838 default:
839 BUG();
840 }
841 if (err < 0 && err != -ENOENT)
842 goto fail;
843 if (offset[1] == 0 &&
844 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
845 lock_page(page);
846 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
847 f2fs_put_page(page, 1);
848 goto restart;
849 }
850 f2fs_wait_on_page_writeback(page, NODE);
851 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
852 set_page_dirty(page);
853 unlock_page(page);
854 }
855 offset[1] = 0;
856 offset[0]++;
857 nofs += err;
858 }
859 fail:
860 f2fs_put_page(page, 0);
861 trace_f2fs_truncate_inode_blocks_exit(inode, err);
862 return err > 0 ? 0 : err;
863 }
864
865 int truncate_xattr_node(struct inode *inode, struct page *page)
866 {
867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868 nid_t nid = F2FS_I(inode)->i_xattr_nid;
869 struct dnode_of_data dn;
870 struct page *npage;
871
872 if (!nid)
873 return 0;
874
875 npage = get_node_page(sbi, nid);
876 if (IS_ERR(npage))
877 return PTR_ERR(npage);
878
879 F2FS_I(inode)->i_xattr_nid = 0;
880
881 /* need to do checkpoint during fsync */
882 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
883
884 set_new_dnode(&dn, inode, page, npage, nid);
885
886 if (page)
887 dn.inode_page_locked = true;
888 truncate_node(&dn);
889 return 0;
890 }
891
892 /*
893 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
894 * f2fs_unlock_op().
895 */
896 void remove_inode_page(struct inode *inode)
897 {
898 struct dnode_of_data dn;
899
900 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
901 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
902 return;
903
904 if (truncate_xattr_node(inode, dn.inode_page)) {
905 f2fs_put_dnode(&dn);
906 return;
907 }
908
909 /* remove potential inline_data blocks */
910 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
911 S_ISLNK(inode->i_mode))
912 truncate_data_blocks_range(&dn, 1);
913
914 /* 0 is possible, after f2fs_new_inode() has failed */
915 f2fs_bug_on(F2FS_I_SB(inode),
916 inode->i_blocks != 0 && inode->i_blocks != 1);
917
918 /* will put inode & node pages */
919 truncate_node(&dn);
920 }
921
922 struct page *new_inode_page(struct inode *inode)
923 {
924 struct dnode_of_data dn;
925
926 /* allocate inode page for new inode */
927 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
928
929 /* caller should f2fs_put_page(page, 1); */
930 return new_node_page(&dn, 0, NULL);
931 }
932
933 struct page *new_node_page(struct dnode_of_data *dn,
934 unsigned int ofs, struct page *ipage)
935 {
936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937 struct node_info old_ni, new_ni;
938 struct page *page;
939 int err;
940
941 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
942 return ERR_PTR(-EPERM);
943
944 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
945 if (!page)
946 return ERR_PTR(-ENOMEM);
947
948 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
949 err = -ENOSPC;
950 goto fail;
951 }
952
953 get_node_info(sbi, dn->nid, &old_ni);
954
955 /* Reinitialize old_ni with new node page */
956 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
957 new_ni = old_ni;
958 new_ni.ino = dn->inode->i_ino;
959 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
960
961 f2fs_wait_on_page_writeback(page, NODE);
962 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
963 set_cold_node(dn->inode, page);
964 SetPageUptodate(page);
965 set_page_dirty(page);
966
967 if (f2fs_has_xattr_block(ofs))
968 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
969
970 dn->node_page = page;
971 if (ipage)
972 update_inode(dn->inode, ipage);
973 else
974 sync_inode_page(dn);
975 if (ofs == 0)
976 inc_valid_inode_count(sbi);
977
978 return page;
979
980 fail:
981 clear_node_page_dirty(page);
982 f2fs_put_page(page, 1);
983 return ERR_PTR(err);
984 }
985
986 /*
987 * Caller should do after getting the following values.
988 * 0: f2fs_put_page(page, 0)
989 * LOCKED_PAGE: f2fs_put_page(page, 1)
990 * error: nothing
991 */
992 static int read_node_page(struct page *page, int rw)
993 {
994 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
995 struct node_info ni;
996
997 get_node_info(sbi, page->index, &ni);
998
999 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1000 f2fs_put_page(page, 1);
1001 return -ENOENT;
1002 }
1003
1004 if (PageUptodate(page))
1005 return LOCKED_PAGE;
1006
1007 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
1008 }
1009
1010 /*
1011 * Readahead a node page
1012 */
1013 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1014 {
1015 struct page *apage;
1016 int err;
1017
1018 apage = find_get_page(NODE_MAPPING(sbi), nid);
1019 if (apage && PageUptodate(apage)) {
1020 f2fs_put_page(apage, 0);
1021 return;
1022 }
1023 f2fs_put_page(apage, 0);
1024
1025 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1026 if (!apage)
1027 return;
1028
1029 err = read_node_page(apage, READA);
1030 if (err == 0)
1031 f2fs_put_page(apage, 0);
1032 else if (err == LOCKED_PAGE)
1033 f2fs_put_page(apage, 1);
1034 }
1035
1036 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1037 {
1038 struct page *page;
1039 int err;
1040 repeat:
1041 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1042 if (!page)
1043 return ERR_PTR(-ENOMEM);
1044
1045 err = read_node_page(page, READ_SYNC);
1046 if (err < 0)
1047 return ERR_PTR(err);
1048 else if (err == LOCKED_PAGE)
1049 goto got_it;
1050
1051 lock_page(page);
1052 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1053 f2fs_put_page(page, 1);
1054 return ERR_PTR(-EIO);
1055 }
1056 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1057 f2fs_put_page(page, 1);
1058 goto repeat;
1059 }
1060 got_it:
1061 return page;
1062 }
1063
1064 /*
1065 * Return a locked page for the desired node page.
1066 * And, readahead MAX_RA_NODE number of node pages.
1067 */
1068 struct page *get_node_page_ra(struct page *parent, int start)
1069 {
1070 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1071 struct blk_plug plug;
1072 struct page *page;
1073 int err, i, end;
1074 nid_t nid;
1075
1076 /* First, try getting the desired direct node. */
1077 nid = get_nid(parent, start, false);
1078 if (!nid)
1079 return ERR_PTR(-ENOENT);
1080 repeat:
1081 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1082 if (!page)
1083 return ERR_PTR(-ENOMEM);
1084
1085 err = read_node_page(page, READ_SYNC);
1086 if (err < 0)
1087 return ERR_PTR(err);
1088 else if (err == LOCKED_PAGE)
1089 goto page_hit;
1090
1091 blk_start_plug(&plug);
1092
1093 /* Then, try readahead for siblings of the desired node */
1094 end = start + MAX_RA_NODE;
1095 end = min(end, NIDS_PER_BLOCK);
1096 for (i = start + 1; i < end; i++) {
1097 nid = get_nid(parent, i, false);
1098 if (!nid)
1099 continue;
1100 ra_node_page(sbi, nid);
1101 }
1102
1103 blk_finish_plug(&plug);
1104
1105 lock_page(page);
1106 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1107 f2fs_put_page(page, 1);
1108 goto repeat;
1109 }
1110 page_hit:
1111 if (unlikely(!PageUptodate(page))) {
1112 f2fs_put_page(page, 1);
1113 return ERR_PTR(-EIO);
1114 }
1115 return page;
1116 }
1117
1118 void sync_inode_page(struct dnode_of_data *dn)
1119 {
1120 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1121 update_inode(dn->inode, dn->node_page);
1122 } else if (dn->inode_page) {
1123 if (!dn->inode_page_locked)
1124 lock_page(dn->inode_page);
1125 update_inode(dn->inode, dn->inode_page);
1126 if (!dn->inode_page_locked)
1127 unlock_page(dn->inode_page);
1128 } else {
1129 update_inode_page(dn->inode);
1130 }
1131 }
1132
1133 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1134 struct writeback_control *wbc)
1135 {
1136 pgoff_t index, end;
1137 struct pagevec pvec;
1138 int step = ino ? 2 : 0;
1139 int nwritten = 0, wrote = 0;
1140
1141 pagevec_init(&pvec, 0);
1142
1143 next_step:
1144 index = 0;
1145 end = LONG_MAX;
1146
1147 while (index <= end) {
1148 int i, nr_pages;
1149 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1150 PAGECACHE_TAG_DIRTY,
1151 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1152 if (nr_pages == 0)
1153 break;
1154
1155 for (i = 0; i < nr_pages; i++) {
1156 struct page *page = pvec.pages[i];
1157
1158 /*
1159 * flushing sequence with step:
1160 * 0. indirect nodes
1161 * 1. dentry dnodes
1162 * 2. file dnodes
1163 */
1164 if (step == 0 && IS_DNODE(page))
1165 continue;
1166 if (step == 1 && (!IS_DNODE(page) ||
1167 is_cold_node(page)))
1168 continue;
1169 if (step == 2 && (!IS_DNODE(page) ||
1170 !is_cold_node(page)))
1171 continue;
1172
1173 /*
1174 * If an fsync mode,
1175 * we should not skip writing node pages.
1176 */
1177 if (ino && ino_of_node(page) == ino)
1178 lock_page(page);
1179 else if (!trylock_page(page))
1180 continue;
1181
1182 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1183 continue_unlock:
1184 unlock_page(page);
1185 continue;
1186 }
1187 if (ino && ino_of_node(page) != ino)
1188 goto continue_unlock;
1189
1190 if (!PageDirty(page)) {
1191 /* someone wrote it for us */
1192 goto continue_unlock;
1193 }
1194
1195 if (!clear_page_dirty_for_io(page))
1196 goto continue_unlock;
1197
1198 /* called by fsync() */
1199 if (ino && IS_DNODE(page)) {
1200 set_fsync_mark(page, 1);
1201 if (IS_INODE(page)) {
1202 if (!is_checkpointed_node(sbi, ino) &&
1203 !has_fsynced_inode(sbi, ino))
1204 set_dentry_mark(page, 1);
1205 else
1206 set_dentry_mark(page, 0);
1207 }
1208 nwritten++;
1209 } else {
1210 set_fsync_mark(page, 0);
1211 set_dentry_mark(page, 0);
1212 }
1213
1214 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1215 unlock_page(page);
1216 else
1217 wrote++;
1218
1219 if (--wbc->nr_to_write == 0)
1220 break;
1221 }
1222 pagevec_release(&pvec);
1223 cond_resched();
1224
1225 if (wbc->nr_to_write == 0) {
1226 step = 2;
1227 break;
1228 }
1229 }
1230
1231 if (step < 2) {
1232 step++;
1233 goto next_step;
1234 }
1235
1236 if (wrote)
1237 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1238 return nwritten;
1239 }
1240
1241 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1242 {
1243 pgoff_t index = 0, end = LONG_MAX;
1244 struct pagevec pvec;
1245 int ret2 = 0, ret = 0;
1246
1247 pagevec_init(&pvec, 0);
1248
1249 while (index <= end) {
1250 int i, nr_pages;
1251 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1252 PAGECACHE_TAG_WRITEBACK,
1253 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1254 if (nr_pages == 0)
1255 break;
1256
1257 for (i = 0; i < nr_pages; i++) {
1258 struct page *page = pvec.pages[i];
1259
1260 /* until radix tree lookup accepts end_index */
1261 if (unlikely(page->index > end))
1262 continue;
1263
1264 if (ino && ino_of_node(page) == ino) {
1265 f2fs_wait_on_page_writeback(page, NODE);
1266 if (TestClearPageError(page))
1267 ret = -EIO;
1268 }
1269 }
1270 pagevec_release(&pvec);
1271 cond_resched();
1272 }
1273
1274 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1275 ret2 = -ENOSPC;
1276 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1277 ret2 = -EIO;
1278 if (!ret)
1279 ret = ret2;
1280 return ret;
1281 }
1282
1283 static int f2fs_write_node_page(struct page *page,
1284 struct writeback_control *wbc)
1285 {
1286 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1287 nid_t nid;
1288 block_t new_addr;
1289 struct node_info ni;
1290 struct f2fs_io_info fio = {
1291 .type = NODE,
1292 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1293 };
1294
1295 trace_f2fs_writepage(page, NODE);
1296
1297 if (unlikely(sbi->por_doing))
1298 goto redirty_out;
1299 if (unlikely(f2fs_cp_error(sbi)))
1300 goto redirty_out;
1301
1302 f2fs_wait_on_page_writeback(page, NODE);
1303
1304 /* get old block addr of this node page */
1305 nid = nid_of_node(page);
1306 f2fs_bug_on(sbi, page->index != nid);
1307
1308 get_node_info(sbi, nid, &ni);
1309
1310 /* This page is already truncated */
1311 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1312 dec_page_count(sbi, F2FS_DIRTY_NODES);
1313 unlock_page(page);
1314 return 0;
1315 }
1316
1317 if (wbc->for_reclaim) {
1318 if (!down_read_trylock(&sbi->node_write))
1319 goto redirty_out;
1320 } else {
1321 down_read(&sbi->node_write);
1322 }
1323 set_page_writeback(page);
1324 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1325 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1326 dec_page_count(sbi, F2FS_DIRTY_NODES);
1327 up_read(&sbi->node_write);
1328 unlock_page(page);
1329
1330 if (wbc->for_reclaim)
1331 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1332
1333 return 0;
1334
1335 redirty_out:
1336 redirty_page_for_writepage(wbc, page);
1337 return AOP_WRITEPAGE_ACTIVATE;
1338 }
1339
1340 static int f2fs_write_node_pages(struct address_space *mapping,
1341 struct writeback_control *wbc)
1342 {
1343 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1344 long diff;
1345
1346 trace_f2fs_writepages(mapping->host, wbc, NODE);
1347
1348 /* balancing f2fs's metadata in background */
1349 f2fs_balance_fs_bg(sbi);
1350
1351 /* collect a number of dirty node pages and write together */
1352 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1353 goto skip_write;
1354
1355 diff = nr_pages_to_write(sbi, NODE, wbc);
1356 wbc->sync_mode = WB_SYNC_NONE;
1357 sync_node_pages(sbi, 0, wbc);
1358 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1359 return 0;
1360
1361 skip_write:
1362 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1363 return 0;
1364 }
1365
1366 static int f2fs_set_node_page_dirty(struct page *page)
1367 {
1368 trace_f2fs_set_page_dirty(page, NODE);
1369
1370 SetPageUptodate(page);
1371 if (!PageDirty(page)) {
1372 __set_page_dirty_nobuffers(page);
1373 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1374 SetPagePrivate(page);
1375 return 1;
1376 }
1377 return 0;
1378 }
1379
1380 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1381 unsigned int length)
1382 {
1383 struct inode *inode = page->mapping->host;
1384 if (PageDirty(page))
1385 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1386 ClearPagePrivate(page);
1387 }
1388
1389 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1390 {
1391 ClearPagePrivate(page);
1392 return 1;
1393 }
1394
1395 /*
1396 * Structure of the f2fs node operations
1397 */
1398 const struct address_space_operations f2fs_node_aops = {
1399 .writepage = f2fs_write_node_page,
1400 .writepages = f2fs_write_node_pages,
1401 .set_page_dirty = f2fs_set_node_page_dirty,
1402 .invalidatepage = f2fs_invalidate_node_page,
1403 .releasepage = f2fs_release_node_page,
1404 };
1405
1406 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1407 nid_t n)
1408 {
1409 return radix_tree_lookup(&nm_i->free_nid_root, n);
1410 }
1411
1412 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1413 struct free_nid *i)
1414 {
1415 list_del(&i->list);
1416 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1417 }
1418
1419 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1420 {
1421 struct f2fs_nm_info *nm_i = NM_I(sbi);
1422 struct free_nid *i;
1423 struct nat_entry *ne;
1424 bool allocated = false;
1425
1426 if (!available_free_memory(sbi, FREE_NIDS))
1427 return -1;
1428
1429 /* 0 nid should not be used */
1430 if (unlikely(nid == 0))
1431 return 0;
1432
1433 if (build) {
1434 /* do not add allocated nids */
1435 read_lock(&nm_i->nat_tree_lock);
1436 ne = __lookup_nat_cache(nm_i, nid);
1437 if (ne &&
1438 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1439 nat_get_blkaddr(ne) != NULL_ADDR))
1440 allocated = true;
1441 read_unlock(&nm_i->nat_tree_lock);
1442 if (allocated)
1443 return 0;
1444 }
1445
1446 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1447 i->nid = nid;
1448 i->state = NID_NEW;
1449
1450 spin_lock(&nm_i->free_nid_list_lock);
1451 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1452 spin_unlock(&nm_i->free_nid_list_lock);
1453 kmem_cache_free(free_nid_slab, i);
1454 return 0;
1455 }
1456 list_add_tail(&i->list, &nm_i->free_nid_list);
1457 nm_i->fcnt++;
1458 spin_unlock(&nm_i->free_nid_list_lock);
1459 return 1;
1460 }
1461
1462 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1463 {
1464 struct free_nid *i;
1465 bool need_free = false;
1466
1467 spin_lock(&nm_i->free_nid_list_lock);
1468 i = __lookup_free_nid_list(nm_i, nid);
1469 if (i && i->state == NID_NEW) {
1470 __del_from_free_nid_list(nm_i, i);
1471 nm_i->fcnt--;
1472 need_free = true;
1473 }
1474 spin_unlock(&nm_i->free_nid_list_lock);
1475
1476 if (need_free)
1477 kmem_cache_free(free_nid_slab, i);
1478 }
1479
1480 static void scan_nat_page(struct f2fs_sb_info *sbi,
1481 struct page *nat_page, nid_t start_nid)
1482 {
1483 struct f2fs_nm_info *nm_i = NM_I(sbi);
1484 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1485 block_t blk_addr;
1486 int i;
1487
1488 i = start_nid % NAT_ENTRY_PER_BLOCK;
1489
1490 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1491
1492 if (unlikely(start_nid >= nm_i->max_nid))
1493 break;
1494
1495 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1496 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1497 if (blk_addr == NULL_ADDR) {
1498 if (add_free_nid(sbi, start_nid, true) < 0)
1499 break;
1500 }
1501 }
1502 }
1503
1504 static void build_free_nids(struct f2fs_sb_info *sbi)
1505 {
1506 struct f2fs_nm_info *nm_i = NM_I(sbi);
1507 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1508 struct f2fs_summary_block *sum = curseg->sum_blk;
1509 int i = 0;
1510 nid_t nid = nm_i->next_scan_nid;
1511
1512 /* Enough entries */
1513 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1514 return;
1515
1516 /* readahead nat pages to be scanned */
1517 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1518
1519 while (1) {
1520 struct page *page = get_current_nat_page(sbi, nid);
1521
1522 scan_nat_page(sbi, page, nid);
1523 f2fs_put_page(page, 1);
1524
1525 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1526 if (unlikely(nid >= nm_i->max_nid))
1527 nid = 0;
1528
1529 if (i++ == FREE_NID_PAGES)
1530 break;
1531 }
1532
1533 /* go to the next free nat pages to find free nids abundantly */
1534 nm_i->next_scan_nid = nid;
1535
1536 /* find free nids from current sum_pages */
1537 mutex_lock(&curseg->curseg_mutex);
1538 for (i = 0; i < nats_in_cursum(sum); i++) {
1539 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1540 nid = le32_to_cpu(nid_in_journal(sum, i));
1541 if (addr == NULL_ADDR)
1542 add_free_nid(sbi, nid, true);
1543 else
1544 remove_free_nid(nm_i, nid);
1545 }
1546 mutex_unlock(&curseg->curseg_mutex);
1547 }
1548
1549 /*
1550 * If this function returns success, caller can obtain a new nid
1551 * from second parameter of this function.
1552 * The returned nid could be used ino as well as nid when inode is created.
1553 */
1554 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1555 {
1556 struct f2fs_nm_info *nm_i = NM_I(sbi);
1557 struct free_nid *i = NULL;
1558 retry:
1559 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1560 return false;
1561
1562 spin_lock(&nm_i->free_nid_list_lock);
1563
1564 /* We should not use stale free nids created by build_free_nids */
1565 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1566 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1567 list_for_each_entry(i, &nm_i->free_nid_list, list)
1568 if (i->state == NID_NEW)
1569 break;
1570
1571 f2fs_bug_on(sbi, i->state != NID_NEW);
1572 *nid = i->nid;
1573 i->state = NID_ALLOC;
1574 nm_i->fcnt--;
1575 spin_unlock(&nm_i->free_nid_list_lock);
1576 return true;
1577 }
1578 spin_unlock(&nm_i->free_nid_list_lock);
1579
1580 /* Let's scan nat pages and its caches to get free nids */
1581 mutex_lock(&nm_i->build_lock);
1582 build_free_nids(sbi);
1583 mutex_unlock(&nm_i->build_lock);
1584 goto retry;
1585 }
1586
1587 /*
1588 * alloc_nid() should be called prior to this function.
1589 */
1590 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1591 {
1592 struct f2fs_nm_info *nm_i = NM_I(sbi);
1593 struct free_nid *i;
1594
1595 spin_lock(&nm_i->free_nid_list_lock);
1596 i = __lookup_free_nid_list(nm_i, nid);
1597 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1598 __del_from_free_nid_list(nm_i, i);
1599 spin_unlock(&nm_i->free_nid_list_lock);
1600
1601 kmem_cache_free(free_nid_slab, i);
1602 }
1603
1604 /*
1605 * alloc_nid() should be called prior to this function.
1606 */
1607 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1608 {
1609 struct f2fs_nm_info *nm_i = NM_I(sbi);
1610 struct free_nid *i;
1611 bool need_free = false;
1612
1613 if (!nid)
1614 return;
1615
1616 spin_lock(&nm_i->free_nid_list_lock);
1617 i = __lookup_free_nid_list(nm_i, nid);
1618 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1619 if (!available_free_memory(sbi, FREE_NIDS)) {
1620 __del_from_free_nid_list(nm_i, i);
1621 need_free = true;
1622 } else {
1623 i->state = NID_NEW;
1624 nm_i->fcnt++;
1625 }
1626 spin_unlock(&nm_i->free_nid_list_lock);
1627
1628 if (need_free)
1629 kmem_cache_free(free_nid_slab, i);
1630 }
1631
1632 void recover_inline_xattr(struct inode *inode, struct page *page)
1633 {
1634 void *src_addr, *dst_addr;
1635 size_t inline_size;
1636 struct page *ipage;
1637 struct f2fs_inode *ri;
1638
1639 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1640 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1641
1642 ri = F2FS_INODE(page);
1643 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1644 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1645 goto update_inode;
1646 }
1647
1648 dst_addr = inline_xattr_addr(ipage);
1649 src_addr = inline_xattr_addr(page);
1650 inline_size = inline_xattr_size(inode);
1651
1652 f2fs_wait_on_page_writeback(ipage, NODE);
1653 memcpy(dst_addr, src_addr, inline_size);
1654 update_inode:
1655 update_inode(inode, ipage);
1656 f2fs_put_page(ipage, 1);
1657 }
1658
1659 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1660 {
1661 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1662 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1663 nid_t new_xnid = nid_of_node(page);
1664 struct node_info ni;
1665
1666 /* 1: invalidate the previous xattr nid */
1667 if (!prev_xnid)
1668 goto recover_xnid;
1669
1670 /* Deallocate node address */
1671 get_node_info(sbi, prev_xnid, &ni);
1672 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1673 invalidate_blocks(sbi, ni.blk_addr);
1674 dec_valid_node_count(sbi, inode);
1675 set_node_addr(sbi, &ni, NULL_ADDR, false);
1676
1677 recover_xnid:
1678 /* 2: allocate new xattr nid */
1679 if (unlikely(!inc_valid_node_count(sbi, inode)))
1680 f2fs_bug_on(sbi, 1);
1681
1682 remove_free_nid(NM_I(sbi), new_xnid);
1683 get_node_info(sbi, new_xnid, &ni);
1684 ni.ino = inode->i_ino;
1685 set_node_addr(sbi, &ni, NEW_ADDR, false);
1686 F2FS_I(inode)->i_xattr_nid = new_xnid;
1687
1688 /* 3: update xattr blkaddr */
1689 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1690 set_node_addr(sbi, &ni, blkaddr, false);
1691
1692 update_inode_page(inode);
1693 }
1694
1695 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1696 {
1697 struct f2fs_inode *src, *dst;
1698 nid_t ino = ino_of_node(page);
1699 struct node_info old_ni, new_ni;
1700 struct page *ipage;
1701
1702 get_node_info(sbi, ino, &old_ni);
1703
1704 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1705 return -EINVAL;
1706
1707 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1708 if (!ipage)
1709 return -ENOMEM;
1710
1711 /* Should not use this inode from free nid list */
1712 remove_free_nid(NM_I(sbi), ino);
1713
1714 SetPageUptodate(ipage);
1715 fill_node_footer(ipage, ino, ino, 0, true);
1716
1717 src = F2FS_INODE(page);
1718 dst = F2FS_INODE(ipage);
1719
1720 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1721 dst->i_size = 0;
1722 dst->i_blocks = cpu_to_le64(1);
1723 dst->i_links = cpu_to_le32(1);
1724 dst->i_xattr_nid = 0;
1725 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1726
1727 new_ni = old_ni;
1728 new_ni.ino = ino;
1729
1730 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1731 WARN_ON(1);
1732 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1733 inc_valid_inode_count(sbi);
1734 set_page_dirty(ipage);
1735 f2fs_put_page(ipage, 1);
1736 return 0;
1737 }
1738
1739 /*
1740 * ra_sum_pages() merge contiguous pages into one bio and submit.
1741 * these pre-read pages are allocated in bd_inode's mapping tree.
1742 */
1743 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1744 int start, int nrpages)
1745 {
1746 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1747 struct address_space *mapping = inode->i_mapping;
1748 int i, page_idx = start;
1749 struct f2fs_io_info fio = {
1750 .type = META,
1751 .rw = READ_SYNC | REQ_META | REQ_PRIO
1752 };
1753
1754 for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1755 /* alloc page in bd_inode for reading node summary info */
1756 pages[i] = grab_cache_page(mapping, page_idx);
1757 if (!pages[i])
1758 break;
1759 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1760 }
1761
1762 f2fs_submit_merged_bio(sbi, META, READ);
1763 return i;
1764 }
1765
1766 int restore_node_summary(struct f2fs_sb_info *sbi,
1767 unsigned int segno, struct f2fs_summary_block *sum)
1768 {
1769 struct f2fs_node *rn;
1770 struct f2fs_summary *sum_entry;
1771 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1772 block_t addr;
1773 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1774 struct page *pages[bio_blocks];
1775 int i, idx, last_offset, nrpages, err = 0;
1776
1777 /* scan the node segment */
1778 last_offset = sbi->blocks_per_seg;
1779 addr = START_BLOCK(sbi, segno);
1780 sum_entry = &sum->entries[0];
1781
1782 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1783 nrpages = min(last_offset - i, bio_blocks);
1784
1785 /* readahead node pages */
1786 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1787 if (!nrpages)
1788 return -ENOMEM;
1789
1790 for (idx = 0; idx < nrpages; idx++) {
1791 if (err)
1792 goto skip;
1793
1794 lock_page(pages[idx]);
1795 if (unlikely(!PageUptodate(pages[idx]))) {
1796 err = -EIO;
1797 } else {
1798 rn = F2FS_NODE(pages[idx]);
1799 sum_entry->nid = rn->footer.nid;
1800 sum_entry->version = 0;
1801 sum_entry->ofs_in_node = 0;
1802 sum_entry++;
1803 }
1804 unlock_page(pages[idx]);
1805 skip:
1806 page_cache_release(pages[idx]);
1807 }
1808
1809 invalidate_mapping_pages(inode->i_mapping, addr,
1810 addr + nrpages);
1811 }
1812 return err;
1813 }
1814
1815 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1816 {
1817 struct f2fs_nm_info *nm_i = NM_I(sbi);
1818 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1819 struct f2fs_summary_block *sum = curseg->sum_blk;
1820 int i;
1821
1822 mutex_lock(&curseg->curseg_mutex);
1823 for (i = 0; i < nats_in_cursum(sum); i++) {
1824 struct nat_entry *ne;
1825 struct f2fs_nat_entry raw_ne;
1826 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1827
1828 raw_ne = nat_in_journal(sum, i);
1829 retry:
1830 write_lock(&nm_i->nat_tree_lock);
1831 ne = __lookup_nat_cache(nm_i, nid);
1832 if (ne)
1833 goto found;
1834
1835 ne = grab_nat_entry(nm_i, nid);
1836 if (!ne) {
1837 write_unlock(&nm_i->nat_tree_lock);
1838 goto retry;
1839 }
1840 node_info_from_raw_nat(&ne->ni, &raw_ne);
1841 found:
1842 __set_nat_cache_dirty(nm_i, ne);
1843 write_unlock(&nm_i->nat_tree_lock);
1844 }
1845 update_nats_in_cursum(sum, -i);
1846 mutex_unlock(&curseg->curseg_mutex);
1847 }
1848
1849 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1850 struct list_head *head, int max)
1851 {
1852 struct nat_entry_set *cur;
1853
1854 if (nes->entry_cnt >= max)
1855 goto add_out;
1856
1857 list_for_each_entry(cur, head, set_list) {
1858 if (cur->entry_cnt >= nes->entry_cnt) {
1859 list_add(&nes->set_list, cur->set_list.prev);
1860 return;
1861 }
1862 }
1863 add_out:
1864 list_add_tail(&nes->set_list, head);
1865 }
1866
1867 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1868 struct nat_entry_set *set)
1869 {
1870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1871 struct f2fs_summary_block *sum = curseg->sum_blk;
1872 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1873 bool to_journal = true;
1874 struct f2fs_nat_block *nat_blk;
1875 struct nat_entry *ne, *cur;
1876 struct page *page = NULL;
1877
1878 /*
1879 * there are two steps to flush nat entries:
1880 * #1, flush nat entries to journal in current hot data summary block.
1881 * #2, flush nat entries to nat page.
1882 */
1883 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1884 to_journal = false;
1885
1886 if (to_journal) {
1887 mutex_lock(&curseg->curseg_mutex);
1888 } else {
1889 page = get_next_nat_page(sbi, start_nid);
1890 nat_blk = page_address(page);
1891 f2fs_bug_on(sbi, !nat_blk);
1892 }
1893
1894 /* flush dirty nats in nat entry set */
1895 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1896 struct f2fs_nat_entry *raw_ne;
1897 nid_t nid = nat_get_nid(ne);
1898 int offset;
1899
1900 if (nat_get_blkaddr(ne) == NEW_ADDR)
1901 continue;
1902
1903 if (to_journal) {
1904 offset = lookup_journal_in_cursum(sum,
1905 NAT_JOURNAL, nid, 1);
1906 f2fs_bug_on(sbi, offset < 0);
1907 raw_ne = &nat_in_journal(sum, offset);
1908 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1909 } else {
1910 raw_ne = &nat_blk->entries[nid - start_nid];
1911 }
1912 raw_nat_from_node_info(raw_ne, &ne->ni);
1913
1914 write_lock(&NM_I(sbi)->nat_tree_lock);
1915 nat_reset_flag(ne);
1916 __clear_nat_cache_dirty(NM_I(sbi), ne);
1917 write_unlock(&NM_I(sbi)->nat_tree_lock);
1918
1919 if (nat_get_blkaddr(ne) == NULL_ADDR)
1920 add_free_nid(sbi, nid, false);
1921 }
1922
1923 if (to_journal)
1924 mutex_unlock(&curseg->curseg_mutex);
1925 else
1926 f2fs_put_page(page, 1);
1927
1928 f2fs_bug_on(sbi, set->entry_cnt);
1929
1930 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1931 kmem_cache_free(nat_entry_set_slab, set);
1932 }
1933
1934 /*
1935 * This function is called during the checkpointing process.
1936 */
1937 void flush_nat_entries(struct f2fs_sb_info *sbi)
1938 {
1939 struct f2fs_nm_info *nm_i = NM_I(sbi);
1940 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1941 struct f2fs_summary_block *sum = curseg->sum_blk;
1942 struct nat_entry_set *setvec[NATVEC_SIZE];
1943 struct nat_entry_set *set, *tmp;
1944 unsigned int found;
1945 nid_t set_idx = 0;
1946 LIST_HEAD(sets);
1947
1948 if (!nm_i->dirty_nat_cnt)
1949 return;
1950 /*
1951 * if there are no enough space in journal to store dirty nat
1952 * entries, remove all entries from journal and merge them
1953 * into nat entry set.
1954 */
1955 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1956 remove_nats_in_journal(sbi);
1957
1958 while ((found = __gang_lookup_nat_set(nm_i,
1959 set_idx, NATVEC_SIZE, setvec))) {
1960 unsigned idx;
1961 set_idx = setvec[found - 1]->set + 1;
1962 for (idx = 0; idx < found; idx++)
1963 __adjust_nat_entry_set(setvec[idx], &sets,
1964 MAX_NAT_JENTRIES(sum));
1965 }
1966
1967 /* flush dirty nats in nat entry set */
1968 list_for_each_entry_safe(set, tmp, &sets, set_list)
1969 __flush_nat_entry_set(sbi, set);
1970
1971 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1972 }
1973
1974 static int init_node_manager(struct f2fs_sb_info *sbi)
1975 {
1976 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1977 struct f2fs_nm_info *nm_i = NM_I(sbi);
1978 unsigned char *version_bitmap;
1979 unsigned int nat_segs, nat_blocks;
1980
1981 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1982
1983 /* segment_count_nat includes pair segment so divide to 2. */
1984 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1985 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1986
1987 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1988
1989 /* not used nids: 0, node, meta, (and root counted as valid node) */
1990 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1991 nm_i->fcnt = 0;
1992 nm_i->nat_cnt = 0;
1993 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1994
1995 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1996 INIT_LIST_HEAD(&nm_i->free_nid_list);
1997 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1998 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_ATOMIC);
1999 INIT_LIST_HEAD(&nm_i->nat_entries);
2000
2001 mutex_init(&nm_i->build_lock);
2002 spin_lock_init(&nm_i->free_nid_list_lock);
2003 rwlock_init(&nm_i->nat_tree_lock);
2004
2005 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2006 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2007 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2008 if (!version_bitmap)
2009 return -EFAULT;
2010
2011 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2012 GFP_KERNEL);
2013 if (!nm_i->nat_bitmap)
2014 return -ENOMEM;
2015 return 0;
2016 }
2017
2018 int build_node_manager(struct f2fs_sb_info *sbi)
2019 {
2020 int err;
2021
2022 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2023 if (!sbi->nm_info)
2024 return -ENOMEM;
2025
2026 err = init_node_manager(sbi);
2027 if (err)
2028 return err;
2029
2030 build_free_nids(sbi);
2031 return 0;
2032 }
2033
2034 void destroy_node_manager(struct f2fs_sb_info *sbi)
2035 {
2036 struct f2fs_nm_info *nm_i = NM_I(sbi);
2037 struct free_nid *i, *next_i;
2038 struct nat_entry *natvec[NATVEC_SIZE];
2039 nid_t nid = 0;
2040 unsigned int found;
2041
2042 if (!nm_i)
2043 return;
2044
2045 /* destroy free nid list */
2046 spin_lock(&nm_i->free_nid_list_lock);
2047 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2048 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2049 __del_from_free_nid_list(nm_i, i);
2050 nm_i->fcnt--;
2051 spin_unlock(&nm_i->free_nid_list_lock);
2052 kmem_cache_free(free_nid_slab, i);
2053 spin_lock(&nm_i->free_nid_list_lock);
2054 }
2055 f2fs_bug_on(sbi, nm_i->fcnt);
2056 spin_unlock(&nm_i->free_nid_list_lock);
2057
2058 /* destroy nat cache */
2059 write_lock(&nm_i->nat_tree_lock);
2060 while ((found = __gang_lookup_nat_cache(nm_i,
2061 nid, NATVEC_SIZE, natvec))) {
2062 unsigned idx;
2063 nid = nat_get_nid(natvec[found - 1]) + 1;
2064 for (idx = 0; idx < found; idx++)
2065 __del_from_nat_cache(nm_i, natvec[idx]);
2066 }
2067 f2fs_bug_on(sbi, nm_i->nat_cnt);
2068 write_unlock(&nm_i->nat_tree_lock);
2069
2070 kfree(nm_i->nat_bitmap);
2071 sbi->nm_info = NULL;
2072 kfree(nm_i);
2073 }
2074
2075 int __init create_node_manager_caches(void)
2076 {
2077 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2078 sizeof(struct nat_entry));
2079 if (!nat_entry_slab)
2080 goto fail;
2081
2082 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2083 sizeof(struct free_nid));
2084 if (!free_nid_slab)
2085 goto destroy_nat_entry;
2086
2087 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2088 sizeof(struct nat_entry_set));
2089 if (!nat_entry_set_slab)
2090 goto destroy_free_nid;
2091 return 0;
2092
2093 destroy_free_nid:
2094 kmem_cache_destroy(free_nid_slab);
2095 destroy_nat_entry:
2096 kmem_cache_destroy(nat_entry_slab);
2097 fail:
2098 return -ENOMEM;
2099 }
2100
2101 void destroy_node_manager_caches(void)
2102 {
2103 kmem_cache_destroy(nat_entry_set_slab);
2104 kmem_cache_destroy(free_nid_slab);
2105 kmem_cache_destroy(nat_entry_slab);
2106 }