]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/node.c
UBUNTU: [Config] arm64: snapdragon: SND*=m
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 struct f2fs_nm_info *nm_i = NM_I(sbi);
35 struct sysinfo val;
36 unsigned long avail_ram;
37 unsigned long mem_size = 0;
38 bool res = false;
39
40 si_meminfo(&val);
41
42 /* only uses low memory */
43 avail_ram = val.totalram - val.totalhigh;
44
45 /*
46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 */
48 if (type == FREE_NIDS) {
49 mem_size = (nm_i->nid_cnt[FREE_NID] *
50 sizeof(struct free_nid)) >> PAGE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == NAT_ENTRIES) {
53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 PAGE_SHIFT;
55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 if (excess_cached_nats(sbi))
57 res = false;
58 } else if (type == DIRTY_DENTS) {
59 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 return false;
61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 } else if (type == INO_ENTRIES) {
64 int i;
65
66 for (i = 0; i < MAX_INO_ENTRY; i++)
67 mem_size += sbi->im[i].ino_num *
68 sizeof(struct ino_entry);
69 mem_size >>= PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 } else if (type == INMEM_PAGES) {
78 /* it allows 20% / total_ram for inmemory pages */
79 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 res = mem_size < (val.totalram / 5);
81 } else {
82 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 return true;
84 }
85 return res;
86 }
87
88 static void clear_node_page_dirty(struct page *page)
89 {
90 struct address_space *mapping = page->mapping;
91 unsigned int long flags;
92
93 if (PageDirty(page)) {
94 spin_lock_irqsave(&mapping->tree_lock, flags);
95 radix_tree_tag_clear(&mapping->page_tree,
96 page_index(page),
97 PAGECACHE_TAG_DIRTY);
98 spin_unlock_irqrestore(&mapping->tree_lock, flags);
99
100 clear_page_dirty_for_io(page);
101 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 }
103 ClearPageUptodate(page);
104 }
105
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 pgoff_t index = current_nat_addr(sbi, nid);
109 return get_meta_page(sbi, index);
110 }
111
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114 struct page *src_page;
115 struct page *dst_page;
116 pgoff_t src_off;
117 pgoff_t dst_off;
118 void *src_addr;
119 void *dst_addr;
120 struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122 src_off = current_nat_addr(sbi, nid);
123 dst_off = next_nat_addr(sbi, src_off);
124
125 /* get current nat block page with lock */
126 src_page = get_meta_page(sbi, src_off);
127 dst_page = grab_meta_page(sbi, dst_off);
128 f2fs_bug_on(sbi, PageDirty(src_page));
129
130 src_addr = page_address(src_page);
131 dst_addr = page_address(dst_page);
132 memcpy(dst_addr, src_addr, PAGE_SIZE);
133 set_page_dirty(dst_page);
134 f2fs_put_page(src_page, 1);
135
136 set_to_next_nat(nm_i, nid);
137
138 return dst_page;
139 }
140
141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143 struct nat_entry *new;
144
145 if (no_fail)
146 new = f2fs_kmem_cache_alloc(nat_entry_slab,
147 GFP_NOFS | __GFP_ZERO);
148 else
149 new = kmem_cache_alloc(nat_entry_slab,
150 GFP_NOFS | __GFP_ZERO);
151 if (new) {
152 nat_set_nid(new, nid);
153 nat_reset_flag(new);
154 }
155 return new;
156 }
157
158 static void __free_nat_entry(struct nat_entry *e)
159 {
160 kmem_cache_free(nat_entry_slab, e);
161 }
162
163 /* must be locked by nat_tree_lock */
164 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
165 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
166 {
167 if (no_fail)
168 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
169 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
170 return NULL;
171
172 if (raw_ne)
173 node_info_from_raw_nat(&ne->ni, raw_ne);
174 list_add_tail(&ne->list, &nm_i->nat_entries);
175 nm_i->nat_cnt++;
176 return ne;
177 }
178
179 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
180 {
181 return radix_tree_lookup(&nm_i->nat_root, n);
182 }
183
184 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
185 nid_t start, unsigned int nr, struct nat_entry **ep)
186 {
187 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
188 }
189
190 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
191 {
192 list_del(&e->list);
193 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
194 nm_i->nat_cnt--;
195 __free_nat_entry(e);
196 }
197
198 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
199 struct nat_entry *ne)
200 {
201 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
202 struct nat_entry_set *head;
203
204 head = radix_tree_lookup(&nm_i->nat_set_root, set);
205 if (!head) {
206 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
207
208 INIT_LIST_HEAD(&head->entry_list);
209 INIT_LIST_HEAD(&head->set_list);
210 head->set = set;
211 head->entry_cnt = 0;
212 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
213 }
214
215 if (get_nat_flag(ne, IS_DIRTY))
216 goto refresh_list;
217
218 nm_i->dirty_nat_cnt++;
219 head->entry_cnt++;
220 set_nat_flag(ne, IS_DIRTY, true);
221 refresh_list:
222 if (nat_get_blkaddr(ne) == NEW_ADDR)
223 list_del_init(&ne->list);
224 else
225 list_move_tail(&ne->list, &head->entry_list);
226 }
227
228 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
229 struct nat_entry_set *set, struct nat_entry *ne)
230 {
231 list_move_tail(&ne->list, &nm_i->nat_entries);
232 set_nat_flag(ne, IS_DIRTY, false);
233 set->entry_cnt--;
234 nm_i->dirty_nat_cnt--;
235 }
236
237 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
238 nid_t start, unsigned int nr, struct nat_entry_set **ep)
239 {
240 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
241 start, nr);
242 }
243
244 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
245 {
246 struct f2fs_nm_info *nm_i = NM_I(sbi);
247 struct nat_entry *e;
248 bool need = false;
249
250 down_read(&nm_i->nat_tree_lock);
251 e = __lookup_nat_cache(nm_i, nid);
252 if (e) {
253 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
254 !get_nat_flag(e, HAS_FSYNCED_INODE))
255 need = true;
256 }
257 up_read(&nm_i->nat_tree_lock);
258 return need;
259 }
260
261 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
262 {
263 struct f2fs_nm_info *nm_i = NM_I(sbi);
264 struct nat_entry *e;
265 bool is_cp = true;
266
267 down_read(&nm_i->nat_tree_lock);
268 e = __lookup_nat_cache(nm_i, nid);
269 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
270 is_cp = false;
271 up_read(&nm_i->nat_tree_lock);
272 return is_cp;
273 }
274
275 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
276 {
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
279 bool need_update = true;
280
281 down_read(&nm_i->nat_tree_lock);
282 e = __lookup_nat_cache(nm_i, ino);
283 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
284 (get_nat_flag(e, IS_CHECKPOINTED) ||
285 get_nat_flag(e, HAS_FSYNCED_INODE)))
286 need_update = false;
287 up_read(&nm_i->nat_tree_lock);
288 return need_update;
289 }
290
291 /* must be locked by nat_tree_lock */
292 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
293 struct f2fs_nat_entry *ne)
294 {
295 struct f2fs_nm_info *nm_i = NM_I(sbi);
296 struct nat_entry *new, *e;
297
298 new = __alloc_nat_entry(nid, false);
299 if (!new)
300 return;
301
302 down_write(&nm_i->nat_tree_lock);
303 e = __lookup_nat_cache(nm_i, nid);
304 if (!e)
305 e = __init_nat_entry(nm_i, new, ne, false);
306 else
307 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
308 nat_get_blkaddr(e) !=
309 le32_to_cpu(ne->block_addr) ||
310 nat_get_version(e) != ne->version);
311 up_write(&nm_i->nat_tree_lock);
312 if (e != new)
313 __free_nat_entry(new);
314 }
315
316 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
317 block_t new_blkaddr, bool fsync_done)
318 {
319 struct f2fs_nm_info *nm_i = NM_I(sbi);
320 struct nat_entry *e;
321 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
322
323 down_write(&nm_i->nat_tree_lock);
324 e = __lookup_nat_cache(nm_i, ni->nid);
325 if (!e) {
326 e = __init_nat_entry(nm_i, new, NULL, true);
327 copy_node_info(&e->ni, ni);
328 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
329 } else if (new_blkaddr == NEW_ADDR) {
330 /*
331 * when nid is reallocated,
332 * previous nat entry can be remained in nat cache.
333 * So, reinitialize it with new information.
334 */
335 copy_node_info(&e->ni, ni);
336 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
337 }
338 /* let's free early to reduce memory consumption */
339 if (e != new)
340 __free_nat_entry(new);
341
342 /* sanity check */
343 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
344 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
345 new_blkaddr == NULL_ADDR);
346 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
347 new_blkaddr == NEW_ADDR);
348 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
349 nat_get_blkaddr(e) != NULL_ADDR &&
350 new_blkaddr == NEW_ADDR);
351
352 /* increment version no as node is removed */
353 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
354 unsigned char version = nat_get_version(e);
355 nat_set_version(e, inc_node_version(version));
356 }
357
358 /* change address */
359 nat_set_blkaddr(e, new_blkaddr);
360 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
361 set_nat_flag(e, IS_CHECKPOINTED, false);
362 __set_nat_cache_dirty(nm_i, e);
363
364 /* update fsync_mark if its inode nat entry is still alive */
365 if (ni->nid != ni->ino)
366 e = __lookup_nat_cache(nm_i, ni->ino);
367 if (e) {
368 if (fsync_done && ni->nid == ni->ino)
369 set_nat_flag(e, HAS_FSYNCED_INODE, true);
370 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
371 }
372 up_write(&nm_i->nat_tree_lock);
373 }
374
375 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
376 {
377 struct f2fs_nm_info *nm_i = NM_I(sbi);
378 int nr = nr_shrink;
379
380 if (!down_write_trylock(&nm_i->nat_tree_lock))
381 return 0;
382
383 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
384 struct nat_entry *ne;
385 ne = list_first_entry(&nm_i->nat_entries,
386 struct nat_entry, list);
387 __del_from_nat_cache(nm_i, ne);
388 nr_shrink--;
389 }
390 up_write(&nm_i->nat_tree_lock);
391 return nr - nr_shrink;
392 }
393
394 /*
395 * This function always returns success
396 */
397 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
398 {
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
401 struct f2fs_journal *journal = curseg->journal;
402 nid_t start_nid = START_NID(nid);
403 struct f2fs_nat_block *nat_blk;
404 struct page *page = NULL;
405 struct f2fs_nat_entry ne;
406 struct nat_entry *e;
407 pgoff_t index;
408 int i;
409
410 ni->nid = nid;
411
412 /* Check nat cache */
413 down_read(&nm_i->nat_tree_lock);
414 e = __lookup_nat_cache(nm_i, nid);
415 if (e) {
416 ni->ino = nat_get_ino(e);
417 ni->blk_addr = nat_get_blkaddr(e);
418 ni->version = nat_get_version(e);
419 up_read(&nm_i->nat_tree_lock);
420 return;
421 }
422
423 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
424
425 /* Check current segment summary */
426 down_read(&curseg->journal_rwsem);
427 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
428 if (i >= 0) {
429 ne = nat_in_journal(journal, i);
430 node_info_from_raw_nat(ni, &ne);
431 }
432 up_read(&curseg->journal_rwsem);
433 if (i >= 0) {
434 up_read(&nm_i->nat_tree_lock);
435 goto cache;
436 }
437
438 /* Fill node_info from nat page */
439 index = current_nat_addr(sbi, nid);
440 up_read(&nm_i->nat_tree_lock);
441
442 page = get_meta_page(sbi, index);
443 nat_blk = (struct f2fs_nat_block *)page_address(page);
444 ne = nat_blk->entries[nid - start_nid];
445 node_info_from_raw_nat(ni, &ne);
446 f2fs_put_page(page, 1);
447 cache:
448 /* cache nat entry */
449 cache_nat_entry(sbi, nid, &ne);
450 }
451
452 /*
453 * readahead MAX_RA_NODE number of node pages.
454 */
455 static void ra_node_pages(struct page *parent, int start, int n)
456 {
457 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
458 struct blk_plug plug;
459 int i, end;
460 nid_t nid;
461
462 blk_start_plug(&plug);
463
464 /* Then, try readahead for siblings of the desired node */
465 end = start + n;
466 end = min(end, NIDS_PER_BLOCK);
467 for (i = start; i < end; i++) {
468 nid = get_nid(parent, i, false);
469 ra_node_page(sbi, nid);
470 }
471
472 blk_finish_plug(&plug);
473 }
474
475 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
476 {
477 const long direct_index = ADDRS_PER_INODE(dn->inode);
478 const long direct_blks = ADDRS_PER_BLOCK;
479 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
480 unsigned int skipped_unit = ADDRS_PER_BLOCK;
481 int cur_level = dn->cur_level;
482 int max_level = dn->max_level;
483 pgoff_t base = 0;
484
485 if (!dn->max_level)
486 return pgofs + 1;
487
488 while (max_level-- > cur_level)
489 skipped_unit *= NIDS_PER_BLOCK;
490
491 switch (dn->max_level) {
492 case 3:
493 base += 2 * indirect_blks;
494 case 2:
495 base += 2 * direct_blks;
496 case 1:
497 base += direct_index;
498 break;
499 default:
500 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
501 }
502
503 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
504 }
505
506 /*
507 * The maximum depth is four.
508 * Offset[0] will have raw inode offset.
509 */
510 static int get_node_path(struct inode *inode, long block,
511 int offset[4], unsigned int noffset[4])
512 {
513 const long direct_index = ADDRS_PER_INODE(inode);
514 const long direct_blks = ADDRS_PER_BLOCK;
515 const long dptrs_per_blk = NIDS_PER_BLOCK;
516 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
517 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
518 int n = 0;
519 int level = 0;
520
521 noffset[0] = 0;
522
523 if (block < direct_index) {
524 offset[n] = block;
525 goto got;
526 }
527 block -= direct_index;
528 if (block < direct_blks) {
529 offset[n++] = NODE_DIR1_BLOCK;
530 noffset[n] = 1;
531 offset[n] = block;
532 level = 1;
533 goto got;
534 }
535 block -= direct_blks;
536 if (block < direct_blks) {
537 offset[n++] = NODE_DIR2_BLOCK;
538 noffset[n] = 2;
539 offset[n] = block;
540 level = 1;
541 goto got;
542 }
543 block -= direct_blks;
544 if (block < indirect_blks) {
545 offset[n++] = NODE_IND1_BLOCK;
546 noffset[n] = 3;
547 offset[n++] = block / direct_blks;
548 noffset[n] = 4 + offset[n - 1];
549 offset[n] = block % direct_blks;
550 level = 2;
551 goto got;
552 }
553 block -= indirect_blks;
554 if (block < indirect_blks) {
555 offset[n++] = NODE_IND2_BLOCK;
556 noffset[n] = 4 + dptrs_per_blk;
557 offset[n++] = block / direct_blks;
558 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
559 offset[n] = block % direct_blks;
560 level = 2;
561 goto got;
562 }
563 block -= indirect_blks;
564 if (block < dindirect_blks) {
565 offset[n++] = NODE_DIND_BLOCK;
566 noffset[n] = 5 + (dptrs_per_blk * 2);
567 offset[n++] = block / indirect_blks;
568 noffset[n] = 6 + (dptrs_per_blk * 2) +
569 offset[n - 1] * (dptrs_per_blk + 1);
570 offset[n++] = (block / direct_blks) % dptrs_per_blk;
571 noffset[n] = 7 + (dptrs_per_blk * 2) +
572 offset[n - 2] * (dptrs_per_blk + 1) +
573 offset[n - 1];
574 offset[n] = block % direct_blks;
575 level = 3;
576 goto got;
577 } else {
578 return -E2BIG;
579 }
580 got:
581 return level;
582 }
583
584 /*
585 * Caller should call f2fs_put_dnode(dn).
586 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
587 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
588 * In the case of RDONLY_NODE, we don't need to care about mutex.
589 */
590 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
591 {
592 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
593 struct page *npage[4];
594 struct page *parent = NULL;
595 int offset[4];
596 unsigned int noffset[4];
597 nid_t nids[4];
598 int level, i = 0;
599 int err = 0;
600
601 level = get_node_path(dn->inode, index, offset, noffset);
602 if (level < 0)
603 return level;
604
605 nids[0] = dn->inode->i_ino;
606 npage[0] = dn->inode_page;
607
608 if (!npage[0]) {
609 npage[0] = get_node_page(sbi, nids[0]);
610 if (IS_ERR(npage[0]))
611 return PTR_ERR(npage[0]);
612 }
613
614 /* if inline_data is set, should not report any block indices */
615 if (f2fs_has_inline_data(dn->inode) && index) {
616 err = -ENOENT;
617 f2fs_put_page(npage[0], 1);
618 goto release_out;
619 }
620
621 parent = npage[0];
622 if (level != 0)
623 nids[1] = get_nid(parent, offset[0], true);
624 dn->inode_page = npage[0];
625 dn->inode_page_locked = true;
626
627 /* get indirect or direct nodes */
628 for (i = 1; i <= level; i++) {
629 bool done = false;
630
631 if (!nids[i] && mode == ALLOC_NODE) {
632 /* alloc new node */
633 if (!alloc_nid(sbi, &(nids[i]))) {
634 err = -ENOSPC;
635 goto release_pages;
636 }
637
638 dn->nid = nids[i];
639 npage[i] = new_node_page(dn, noffset[i]);
640 if (IS_ERR(npage[i])) {
641 alloc_nid_failed(sbi, nids[i]);
642 err = PTR_ERR(npage[i]);
643 goto release_pages;
644 }
645
646 set_nid(parent, offset[i - 1], nids[i], i == 1);
647 alloc_nid_done(sbi, nids[i]);
648 done = true;
649 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
650 npage[i] = get_node_page_ra(parent, offset[i - 1]);
651 if (IS_ERR(npage[i])) {
652 err = PTR_ERR(npage[i]);
653 goto release_pages;
654 }
655 done = true;
656 }
657 if (i == 1) {
658 dn->inode_page_locked = false;
659 unlock_page(parent);
660 } else {
661 f2fs_put_page(parent, 1);
662 }
663
664 if (!done) {
665 npage[i] = get_node_page(sbi, nids[i]);
666 if (IS_ERR(npage[i])) {
667 err = PTR_ERR(npage[i]);
668 f2fs_put_page(npage[0], 0);
669 goto release_out;
670 }
671 }
672 if (i < level) {
673 parent = npage[i];
674 nids[i + 1] = get_nid(parent, offset[i], false);
675 }
676 }
677 dn->nid = nids[level];
678 dn->ofs_in_node = offset[level];
679 dn->node_page = npage[level];
680 dn->data_blkaddr = datablock_addr(dn->inode,
681 dn->node_page, dn->ofs_in_node);
682 return 0;
683
684 release_pages:
685 f2fs_put_page(parent, 1);
686 if (i > 1)
687 f2fs_put_page(npage[0], 0);
688 release_out:
689 dn->inode_page = NULL;
690 dn->node_page = NULL;
691 if (err == -ENOENT) {
692 dn->cur_level = i;
693 dn->max_level = level;
694 dn->ofs_in_node = offset[level];
695 }
696 return err;
697 }
698
699 static void truncate_node(struct dnode_of_data *dn)
700 {
701 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
702 struct node_info ni;
703
704 get_node_info(sbi, dn->nid, &ni);
705 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
706
707 /* Deallocate node address */
708 invalidate_blocks(sbi, ni.blk_addr);
709 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
710 set_node_addr(sbi, &ni, NULL_ADDR, false);
711
712 if (dn->nid == dn->inode->i_ino) {
713 remove_orphan_inode(sbi, dn->nid);
714 dec_valid_inode_count(sbi);
715 f2fs_inode_synced(dn->inode);
716 }
717
718 clear_node_page_dirty(dn->node_page);
719 set_sbi_flag(sbi, SBI_IS_DIRTY);
720
721 f2fs_put_page(dn->node_page, 1);
722
723 invalidate_mapping_pages(NODE_MAPPING(sbi),
724 dn->node_page->index, dn->node_page->index);
725
726 dn->node_page = NULL;
727 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
728 }
729
730 static int truncate_dnode(struct dnode_of_data *dn)
731 {
732 struct page *page;
733
734 if (dn->nid == 0)
735 return 1;
736
737 /* get direct node */
738 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
739 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
740 return 1;
741 else if (IS_ERR(page))
742 return PTR_ERR(page);
743
744 /* Make dnode_of_data for parameter */
745 dn->node_page = page;
746 dn->ofs_in_node = 0;
747 truncate_data_blocks(dn);
748 truncate_node(dn);
749 return 1;
750 }
751
752 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
753 int ofs, int depth)
754 {
755 struct dnode_of_data rdn = *dn;
756 struct page *page;
757 struct f2fs_node *rn;
758 nid_t child_nid;
759 unsigned int child_nofs;
760 int freed = 0;
761 int i, ret;
762
763 if (dn->nid == 0)
764 return NIDS_PER_BLOCK + 1;
765
766 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
767
768 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
769 if (IS_ERR(page)) {
770 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
771 return PTR_ERR(page);
772 }
773
774 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
775
776 rn = F2FS_NODE(page);
777 if (depth < 3) {
778 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
779 child_nid = le32_to_cpu(rn->in.nid[i]);
780 if (child_nid == 0)
781 continue;
782 rdn.nid = child_nid;
783 ret = truncate_dnode(&rdn);
784 if (ret < 0)
785 goto out_err;
786 if (set_nid(page, i, 0, false))
787 dn->node_changed = true;
788 }
789 } else {
790 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
791 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
792 child_nid = le32_to_cpu(rn->in.nid[i]);
793 if (child_nid == 0) {
794 child_nofs += NIDS_PER_BLOCK + 1;
795 continue;
796 }
797 rdn.nid = child_nid;
798 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
799 if (ret == (NIDS_PER_BLOCK + 1)) {
800 if (set_nid(page, i, 0, false))
801 dn->node_changed = true;
802 child_nofs += ret;
803 } else if (ret < 0 && ret != -ENOENT) {
804 goto out_err;
805 }
806 }
807 freed = child_nofs;
808 }
809
810 if (!ofs) {
811 /* remove current indirect node */
812 dn->node_page = page;
813 truncate_node(dn);
814 freed++;
815 } else {
816 f2fs_put_page(page, 1);
817 }
818 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
819 return freed;
820
821 out_err:
822 f2fs_put_page(page, 1);
823 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
824 return ret;
825 }
826
827 static int truncate_partial_nodes(struct dnode_of_data *dn,
828 struct f2fs_inode *ri, int *offset, int depth)
829 {
830 struct page *pages[2];
831 nid_t nid[3];
832 nid_t child_nid;
833 int err = 0;
834 int i;
835 int idx = depth - 2;
836
837 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
838 if (!nid[0])
839 return 0;
840
841 /* get indirect nodes in the path */
842 for (i = 0; i < idx + 1; i++) {
843 /* reference count'll be increased */
844 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
845 if (IS_ERR(pages[i])) {
846 err = PTR_ERR(pages[i]);
847 idx = i - 1;
848 goto fail;
849 }
850 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
851 }
852
853 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
854
855 /* free direct nodes linked to a partial indirect node */
856 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
857 child_nid = get_nid(pages[idx], i, false);
858 if (!child_nid)
859 continue;
860 dn->nid = child_nid;
861 err = truncate_dnode(dn);
862 if (err < 0)
863 goto fail;
864 if (set_nid(pages[idx], i, 0, false))
865 dn->node_changed = true;
866 }
867
868 if (offset[idx + 1] == 0) {
869 dn->node_page = pages[idx];
870 dn->nid = nid[idx];
871 truncate_node(dn);
872 } else {
873 f2fs_put_page(pages[idx], 1);
874 }
875 offset[idx]++;
876 offset[idx + 1] = 0;
877 idx--;
878 fail:
879 for (i = idx; i >= 0; i--)
880 f2fs_put_page(pages[i], 1);
881
882 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
883
884 return err;
885 }
886
887 /*
888 * All the block addresses of data and nodes should be nullified.
889 */
890 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
891 {
892 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
893 int err = 0, cont = 1;
894 int level, offset[4], noffset[4];
895 unsigned int nofs = 0;
896 struct f2fs_inode *ri;
897 struct dnode_of_data dn;
898 struct page *page;
899
900 trace_f2fs_truncate_inode_blocks_enter(inode, from);
901
902 level = get_node_path(inode, from, offset, noffset);
903 if (level < 0)
904 return level;
905
906 page = get_node_page(sbi, inode->i_ino);
907 if (IS_ERR(page)) {
908 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
909 return PTR_ERR(page);
910 }
911
912 set_new_dnode(&dn, inode, page, NULL, 0);
913 unlock_page(page);
914
915 ri = F2FS_INODE(page);
916 switch (level) {
917 case 0:
918 case 1:
919 nofs = noffset[1];
920 break;
921 case 2:
922 nofs = noffset[1];
923 if (!offset[level - 1])
924 goto skip_partial;
925 err = truncate_partial_nodes(&dn, ri, offset, level);
926 if (err < 0 && err != -ENOENT)
927 goto fail;
928 nofs += 1 + NIDS_PER_BLOCK;
929 break;
930 case 3:
931 nofs = 5 + 2 * NIDS_PER_BLOCK;
932 if (!offset[level - 1])
933 goto skip_partial;
934 err = truncate_partial_nodes(&dn, ri, offset, level);
935 if (err < 0 && err != -ENOENT)
936 goto fail;
937 break;
938 default:
939 BUG();
940 }
941
942 skip_partial:
943 while (cont) {
944 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
945 switch (offset[0]) {
946 case NODE_DIR1_BLOCK:
947 case NODE_DIR2_BLOCK:
948 err = truncate_dnode(&dn);
949 break;
950
951 case NODE_IND1_BLOCK:
952 case NODE_IND2_BLOCK:
953 err = truncate_nodes(&dn, nofs, offset[1], 2);
954 break;
955
956 case NODE_DIND_BLOCK:
957 err = truncate_nodes(&dn, nofs, offset[1], 3);
958 cont = 0;
959 break;
960
961 default:
962 BUG();
963 }
964 if (err < 0 && err != -ENOENT)
965 goto fail;
966 if (offset[1] == 0 &&
967 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
968 lock_page(page);
969 BUG_ON(page->mapping != NODE_MAPPING(sbi));
970 f2fs_wait_on_page_writeback(page, NODE, true);
971 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
972 set_page_dirty(page);
973 unlock_page(page);
974 }
975 offset[1] = 0;
976 offset[0]++;
977 nofs += err;
978 }
979 fail:
980 f2fs_put_page(page, 0);
981 trace_f2fs_truncate_inode_blocks_exit(inode, err);
982 return err > 0 ? 0 : err;
983 }
984
985 /* caller must lock inode page */
986 int truncate_xattr_node(struct inode *inode)
987 {
988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 nid_t nid = F2FS_I(inode)->i_xattr_nid;
990 struct dnode_of_data dn;
991 struct page *npage;
992
993 if (!nid)
994 return 0;
995
996 npage = get_node_page(sbi, nid);
997 if (IS_ERR(npage))
998 return PTR_ERR(npage);
999
1000 f2fs_i_xnid_write(inode, 0);
1001
1002 set_new_dnode(&dn, inode, NULL, npage, nid);
1003 truncate_node(&dn);
1004 return 0;
1005 }
1006
1007 /*
1008 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1009 * f2fs_unlock_op().
1010 */
1011 int remove_inode_page(struct inode *inode)
1012 {
1013 struct dnode_of_data dn;
1014 int err;
1015
1016 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1017 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1018 if (err)
1019 return err;
1020
1021 err = truncate_xattr_node(inode);
1022 if (err) {
1023 f2fs_put_dnode(&dn);
1024 return err;
1025 }
1026
1027 /* remove potential inline_data blocks */
1028 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1029 S_ISLNK(inode->i_mode))
1030 truncate_data_blocks_range(&dn, 1);
1031
1032 /* 0 is possible, after f2fs_new_inode() has failed */
1033 f2fs_bug_on(F2FS_I_SB(inode),
1034 inode->i_blocks != 0 && inode->i_blocks != 8);
1035
1036 /* will put inode & node pages */
1037 truncate_node(&dn);
1038 return 0;
1039 }
1040
1041 struct page *new_inode_page(struct inode *inode)
1042 {
1043 struct dnode_of_data dn;
1044
1045 /* allocate inode page for new inode */
1046 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1047
1048 /* caller should f2fs_put_page(page, 1); */
1049 return new_node_page(&dn, 0);
1050 }
1051
1052 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1053 {
1054 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1055 struct node_info new_ni;
1056 struct page *page;
1057 int err;
1058
1059 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1060 return ERR_PTR(-EPERM);
1061
1062 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1063 if (!page)
1064 return ERR_PTR(-ENOMEM);
1065
1066 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1067 goto fail;
1068
1069 #ifdef CONFIG_F2FS_CHECK_FS
1070 get_node_info(sbi, dn->nid, &new_ni);
1071 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1072 #endif
1073 new_ni.nid = dn->nid;
1074 new_ni.ino = dn->inode->i_ino;
1075 new_ni.blk_addr = NULL_ADDR;
1076 new_ni.flag = 0;
1077 new_ni.version = 0;
1078 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1079
1080 f2fs_wait_on_page_writeback(page, NODE, true);
1081 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1082 set_cold_node(dn->inode, page);
1083 if (!PageUptodate(page))
1084 SetPageUptodate(page);
1085 if (set_page_dirty(page))
1086 dn->node_changed = true;
1087
1088 if (f2fs_has_xattr_block(ofs))
1089 f2fs_i_xnid_write(dn->inode, dn->nid);
1090
1091 if (ofs == 0)
1092 inc_valid_inode_count(sbi);
1093 return page;
1094
1095 fail:
1096 clear_node_page_dirty(page);
1097 f2fs_put_page(page, 1);
1098 return ERR_PTR(err);
1099 }
1100
1101 /*
1102 * Caller should do after getting the following values.
1103 * 0: f2fs_put_page(page, 0)
1104 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1105 */
1106 static int read_node_page(struct page *page, int op_flags)
1107 {
1108 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1109 struct node_info ni;
1110 struct f2fs_io_info fio = {
1111 .sbi = sbi,
1112 .type = NODE,
1113 .op = REQ_OP_READ,
1114 .op_flags = op_flags,
1115 .page = page,
1116 .encrypted_page = NULL,
1117 };
1118
1119 if (PageUptodate(page))
1120 return LOCKED_PAGE;
1121
1122 get_node_info(sbi, page->index, &ni);
1123
1124 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1125 ClearPageUptodate(page);
1126 return -ENOENT;
1127 }
1128
1129 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1130 return f2fs_submit_page_bio(&fio);
1131 }
1132
1133 /*
1134 * Readahead a node page
1135 */
1136 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1137 {
1138 struct page *apage;
1139 int err;
1140
1141 if (!nid)
1142 return;
1143 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1144
1145 rcu_read_lock();
1146 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1147 rcu_read_unlock();
1148 if (apage)
1149 return;
1150
1151 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1152 if (!apage)
1153 return;
1154
1155 err = read_node_page(apage, REQ_RAHEAD);
1156 f2fs_put_page(apage, err ? 1 : 0);
1157 }
1158
1159 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1160 struct page *parent, int start)
1161 {
1162 struct page *page;
1163 int err;
1164
1165 if (!nid)
1166 return ERR_PTR(-ENOENT);
1167 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1168 repeat:
1169 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170 if (!page)
1171 return ERR_PTR(-ENOMEM);
1172
1173 err = read_node_page(page, 0);
1174 if (err < 0) {
1175 f2fs_put_page(page, 1);
1176 return ERR_PTR(err);
1177 } else if (err == LOCKED_PAGE) {
1178 err = 0;
1179 goto page_hit;
1180 }
1181
1182 if (parent)
1183 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1184
1185 lock_page(page);
1186
1187 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1188 f2fs_put_page(page, 1);
1189 goto repeat;
1190 }
1191
1192 if (unlikely(!PageUptodate(page))) {
1193 err = -EIO;
1194 goto out_err;
1195 }
1196
1197 if (!f2fs_inode_chksum_verify(sbi, page)) {
1198 err = -EBADMSG;
1199 goto out_err;
1200 }
1201 page_hit:
1202 if(unlikely(nid != nid_of_node(page))) {
1203 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1204 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1205 nid, nid_of_node(page), ino_of_node(page),
1206 ofs_of_node(page), cpver_of_node(page),
1207 next_blkaddr_of_node(page));
1208 err = -EINVAL;
1209 out_err:
1210 ClearPageUptodate(page);
1211 f2fs_put_page(page, 1);
1212 return ERR_PTR(err);
1213 }
1214 return page;
1215 }
1216
1217 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1218 {
1219 return __get_node_page(sbi, nid, NULL, 0);
1220 }
1221
1222 struct page *get_node_page_ra(struct page *parent, int start)
1223 {
1224 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1225 nid_t nid = get_nid(parent, start, false);
1226
1227 return __get_node_page(sbi, nid, parent, start);
1228 }
1229
1230 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1231 {
1232 struct inode *inode;
1233 struct page *page;
1234 int ret;
1235
1236 /* should flush inline_data before evict_inode */
1237 inode = ilookup(sbi->sb, ino);
1238 if (!inode)
1239 return;
1240
1241 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1242 FGP_LOCK|FGP_NOWAIT, 0);
1243 if (!page)
1244 goto iput_out;
1245
1246 if (!PageUptodate(page))
1247 goto page_out;
1248
1249 if (!PageDirty(page))
1250 goto page_out;
1251
1252 if (!clear_page_dirty_for_io(page))
1253 goto page_out;
1254
1255 ret = f2fs_write_inline_data(inode, page);
1256 inode_dec_dirty_pages(inode);
1257 remove_dirty_inode(inode);
1258 if (ret)
1259 set_page_dirty(page);
1260 page_out:
1261 f2fs_put_page(page, 1);
1262 iput_out:
1263 iput(inode);
1264 }
1265
1266 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1267 {
1268 pgoff_t index;
1269 struct pagevec pvec;
1270 struct page *last_page = NULL;
1271 int nr_pages;
1272
1273 pagevec_init(&pvec);
1274 index = 0;
1275
1276 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1277 PAGECACHE_TAG_DIRTY))) {
1278 int i;
1279
1280 for (i = 0; i < nr_pages; i++) {
1281 struct page *page = pvec.pages[i];
1282
1283 if (unlikely(f2fs_cp_error(sbi))) {
1284 f2fs_put_page(last_page, 0);
1285 pagevec_release(&pvec);
1286 return ERR_PTR(-EIO);
1287 }
1288
1289 if (!IS_DNODE(page) || !is_cold_node(page))
1290 continue;
1291 if (ino_of_node(page) != ino)
1292 continue;
1293
1294 lock_page(page);
1295
1296 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1297 continue_unlock:
1298 unlock_page(page);
1299 continue;
1300 }
1301 if (ino_of_node(page) != ino)
1302 goto continue_unlock;
1303
1304 if (!PageDirty(page)) {
1305 /* someone wrote it for us */
1306 goto continue_unlock;
1307 }
1308
1309 if (last_page)
1310 f2fs_put_page(last_page, 0);
1311
1312 get_page(page);
1313 last_page = page;
1314 unlock_page(page);
1315 }
1316 pagevec_release(&pvec);
1317 cond_resched();
1318 }
1319 return last_page;
1320 }
1321
1322 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1323 struct writeback_control *wbc, bool do_balance,
1324 enum iostat_type io_type)
1325 {
1326 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1327 nid_t nid;
1328 struct node_info ni;
1329 struct f2fs_io_info fio = {
1330 .sbi = sbi,
1331 .ino = ino_of_node(page),
1332 .type = NODE,
1333 .op = REQ_OP_WRITE,
1334 .op_flags = wbc_to_write_flags(wbc),
1335 .page = page,
1336 .encrypted_page = NULL,
1337 .submitted = false,
1338 .io_type = io_type,
1339 };
1340
1341 trace_f2fs_writepage(page, NODE);
1342
1343 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1344 goto redirty_out;
1345 if (unlikely(f2fs_cp_error(sbi)))
1346 goto redirty_out;
1347
1348 /* get old block addr of this node page */
1349 nid = nid_of_node(page);
1350 f2fs_bug_on(sbi, page->index != nid);
1351
1352 if (wbc->for_reclaim) {
1353 if (!down_read_trylock(&sbi->node_write))
1354 goto redirty_out;
1355 } else {
1356 down_read(&sbi->node_write);
1357 }
1358
1359 get_node_info(sbi, nid, &ni);
1360
1361 /* This page is already truncated */
1362 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1363 ClearPageUptodate(page);
1364 dec_page_count(sbi, F2FS_DIRTY_NODES);
1365 up_read(&sbi->node_write);
1366 unlock_page(page);
1367 return 0;
1368 }
1369
1370 if (atomic && !test_opt(sbi, NOBARRIER))
1371 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1372
1373 set_page_writeback(page);
1374 fio.old_blkaddr = ni.blk_addr;
1375 write_node_page(nid, &fio);
1376 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1377 dec_page_count(sbi, F2FS_DIRTY_NODES);
1378 up_read(&sbi->node_write);
1379
1380 if (wbc->for_reclaim) {
1381 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1382 page->index, NODE);
1383 submitted = NULL;
1384 }
1385
1386 unlock_page(page);
1387
1388 if (unlikely(f2fs_cp_error(sbi))) {
1389 f2fs_submit_merged_write(sbi, NODE);
1390 submitted = NULL;
1391 }
1392 if (submitted)
1393 *submitted = fio.submitted;
1394
1395 if (do_balance)
1396 f2fs_balance_fs(sbi, false);
1397 return 0;
1398
1399 redirty_out:
1400 redirty_page_for_writepage(wbc, page);
1401 return AOP_WRITEPAGE_ACTIVATE;
1402 }
1403
1404 void move_node_page(struct page *node_page, int gc_type)
1405 {
1406 if (gc_type == FG_GC) {
1407 struct writeback_control wbc = {
1408 .sync_mode = WB_SYNC_ALL,
1409 .nr_to_write = 1,
1410 .for_reclaim = 0,
1411 };
1412
1413 set_page_dirty(node_page);
1414 f2fs_wait_on_page_writeback(node_page, NODE, true);
1415
1416 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1417 if (!clear_page_dirty_for_io(node_page))
1418 goto out_page;
1419
1420 if (__write_node_page(node_page, false, NULL,
1421 &wbc, false, FS_GC_NODE_IO))
1422 unlock_page(node_page);
1423 goto release_page;
1424 } else {
1425 /* set page dirty and write it */
1426 if (!PageWriteback(node_page))
1427 set_page_dirty(node_page);
1428 }
1429 out_page:
1430 unlock_page(node_page);
1431 release_page:
1432 f2fs_put_page(node_page, 0);
1433 }
1434
1435 static int f2fs_write_node_page(struct page *page,
1436 struct writeback_control *wbc)
1437 {
1438 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1439 }
1440
1441 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1442 struct writeback_control *wbc, bool atomic)
1443 {
1444 pgoff_t index;
1445 pgoff_t last_idx = ULONG_MAX;
1446 struct pagevec pvec;
1447 int ret = 0;
1448 struct page *last_page = NULL;
1449 bool marked = false;
1450 nid_t ino = inode->i_ino;
1451 int nr_pages;
1452
1453 if (atomic) {
1454 last_page = last_fsync_dnode(sbi, ino);
1455 if (IS_ERR_OR_NULL(last_page))
1456 return PTR_ERR_OR_ZERO(last_page);
1457 }
1458 retry:
1459 pagevec_init(&pvec);
1460 index = 0;
1461
1462 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1463 PAGECACHE_TAG_DIRTY))) {
1464 int i;
1465
1466 for (i = 0; i < nr_pages; i++) {
1467 struct page *page = pvec.pages[i];
1468 bool submitted = false;
1469
1470 if (unlikely(f2fs_cp_error(sbi))) {
1471 f2fs_put_page(last_page, 0);
1472 pagevec_release(&pvec);
1473 ret = -EIO;
1474 goto out;
1475 }
1476
1477 if (!IS_DNODE(page) || !is_cold_node(page))
1478 continue;
1479 if (ino_of_node(page) != ino)
1480 continue;
1481
1482 lock_page(page);
1483
1484 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1485 continue_unlock:
1486 unlock_page(page);
1487 continue;
1488 }
1489 if (ino_of_node(page) != ino)
1490 goto continue_unlock;
1491
1492 if (!PageDirty(page) && page != last_page) {
1493 /* someone wrote it for us */
1494 goto continue_unlock;
1495 }
1496
1497 f2fs_wait_on_page_writeback(page, NODE, true);
1498 BUG_ON(PageWriteback(page));
1499
1500 set_fsync_mark(page, 0);
1501 set_dentry_mark(page, 0);
1502
1503 if (!atomic || page == last_page) {
1504 set_fsync_mark(page, 1);
1505 if (IS_INODE(page)) {
1506 if (is_inode_flag_set(inode,
1507 FI_DIRTY_INODE))
1508 update_inode(inode, page);
1509 set_dentry_mark(page,
1510 need_dentry_mark(sbi, ino));
1511 }
1512 /* may be written by other thread */
1513 if (!PageDirty(page))
1514 set_page_dirty(page);
1515 }
1516
1517 if (!clear_page_dirty_for_io(page))
1518 goto continue_unlock;
1519
1520 ret = __write_node_page(page, atomic &&
1521 page == last_page,
1522 &submitted, wbc, true,
1523 FS_NODE_IO);
1524 if (ret) {
1525 unlock_page(page);
1526 f2fs_put_page(last_page, 0);
1527 break;
1528 } else if (submitted) {
1529 last_idx = page->index;
1530 }
1531
1532 if (page == last_page) {
1533 f2fs_put_page(page, 0);
1534 marked = true;
1535 break;
1536 }
1537 }
1538 pagevec_release(&pvec);
1539 cond_resched();
1540
1541 if (ret || marked)
1542 break;
1543 }
1544 if (!ret && atomic && !marked) {
1545 f2fs_msg(sbi->sb, KERN_DEBUG,
1546 "Retry to write fsync mark: ino=%u, idx=%lx",
1547 ino, last_page->index);
1548 lock_page(last_page);
1549 f2fs_wait_on_page_writeback(last_page, NODE, true);
1550 set_page_dirty(last_page);
1551 unlock_page(last_page);
1552 goto retry;
1553 }
1554 out:
1555 if (last_idx != ULONG_MAX)
1556 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1557 return ret ? -EIO: 0;
1558 }
1559
1560 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1561 bool do_balance, enum iostat_type io_type)
1562 {
1563 pgoff_t index;
1564 struct pagevec pvec;
1565 int step = 0;
1566 int nwritten = 0;
1567 int ret = 0;
1568 int nr_pages;
1569
1570 pagevec_init(&pvec);
1571
1572 next_step:
1573 index = 0;
1574
1575 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1576 PAGECACHE_TAG_DIRTY))) {
1577 int i;
1578
1579 for (i = 0; i < nr_pages; i++) {
1580 struct page *page = pvec.pages[i];
1581 bool submitted = false;
1582
1583 if (unlikely(f2fs_cp_error(sbi))) {
1584 pagevec_release(&pvec);
1585 ret = -EIO;
1586 goto out;
1587 }
1588
1589 /*
1590 * flushing sequence with step:
1591 * 0. indirect nodes
1592 * 1. dentry dnodes
1593 * 2. file dnodes
1594 */
1595 if (step == 0 && IS_DNODE(page))
1596 continue;
1597 if (step == 1 && (!IS_DNODE(page) ||
1598 is_cold_node(page)))
1599 continue;
1600 if (step == 2 && (!IS_DNODE(page) ||
1601 !is_cold_node(page)))
1602 continue;
1603 lock_node:
1604 if (!trylock_page(page))
1605 continue;
1606
1607 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1608 continue_unlock:
1609 unlock_page(page);
1610 continue;
1611 }
1612
1613 if (!PageDirty(page)) {
1614 /* someone wrote it for us */
1615 goto continue_unlock;
1616 }
1617
1618 /* flush inline_data */
1619 if (is_inline_node(page)) {
1620 clear_inline_node(page);
1621 unlock_page(page);
1622 flush_inline_data(sbi, ino_of_node(page));
1623 goto lock_node;
1624 }
1625
1626 f2fs_wait_on_page_writeback(page, NODE, true);
1627
1628 BUG_ON(PageWriteback(page));
1629 if (!clear_page_dirty_for_io(page))
1630 goto continue_unlock;
1631
1632 set_fsync_mark(page, 0);
1633 set_dentry_mark(page, 0);
1634
1635 ret = __write_node_page(page, false, &submitted,
1636 wbc, do_balance, io_type);
1637 if (ret)
1638 unlock_page(page);
1639 else if (submitted)
1640 nwritten++;
1641
1642 if (--wbc->nr_to_write == 0)
1643 break;
1644 }
1645 pagevec_release(&pvec);
1646 cond_resched();
1647
1648 if (wbc->nr_to_write == 0) {
1649 step = 2;
1650 break;
1651 }
1652 }
1653
1654 if (step < 2) {
1655 step++;
1656 goto next_step;
1657 }
1658 out:
1659 if (nwritten)
1660 f2fs_submit_merged_write(sbi, NODE);
1661 return ret;
1662 }
1663
1664 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1665 {
1666 pgoff_t index = 0;
1667 struct pagevec pvec;
1668 int ret2, ret = 0;
1669 int nr_pages;
1670
1671 pagevec_init(&pvec);
1672
1673 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1674 PAGECACHE_TAG_WRITEBACK))) {
1675 int i;
1676
1677 for (i = 0; i < nr_pages; i++) {
1678 struct page *page = pvec.pages[i];
1679
1680 if (ino && ino_of_node(page) == ino) {
1681 f2fs_wait_on_page_writeback(page, NODE, true);
1682 if (TestClearPageError(page))
1683 ret = -EIO;
1684 }
1685 }
1686 pagevec_release(&pvec);
1687 cond_resched();
1688 }
1689
1690 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1691 if (!ret)
1692 ret = ret2;
1693 return ret;
1694 }
1695
1696 static int f2fs_write_node_pages(struct address_space *mapping,
1697 struct writeback_control *wbc)
1698 {
1699 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1700 struct blk_plug plug;
1701 long diff;
1702
1703 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1704 goto skip_write;
1705
1706 /* balancing f2fs's metadata in background */
1707 f2fs_balance_fs_bg(sbi);
1708
1709 /* collect a number of dirty node pages and write together */
1710 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1711 goto skip_write;
1712
1713 trace_f2fs_writepages(mapping->host, wbc, NODE);
1714
1715 diff = nr_pages_to_write(sbi, NODE, wbc);
1716 wbc->sync_mode = WB_SYNC_NONE;
1717 blk_start_plug(&plug);
1718 sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1719 blk_finish_plug(&plug);
1720 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1721 return 0;
1722
1723 skip_write:
1724 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1725 trace_f2fs_writepages(mapping->host, wbc, NODE);
1726 return 0;
1727 }
1728
1729 static int f2fs_set_node_page_dirty(struct page *page)
1730 {
1731 trace_f2fs_set_page_dirty(page, NODE);
1732
1733 if (!PageUptodate(page))
1734 SetPageUptodate(page);
1735 if (!PageDirty(page)) {
1736 f2fs_set_page_dirty_nobuffers(page);
1737 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1738 SetPagePrivate(page);
1739 f2fs_trace_pid(page);
1740 return 1;
1741 }
1742 return 0;
1743 }
1744
1745 /*
1746 * Structure of the f2fs node operations
1747 */
1748 const struct address_space_operations f2fs_node_aops = {
1749 .writepage = f2fs_write_node_page,
1750 .writepages = f2fs_write_node_pages,
1751 .set_page_dirty = f2fs_set_node_page_dirty,
1752 .invalidatepage = f2fs_invalidate_page,
1753 .releasepage = f2fs_release_page,
1754 #ifdef CONFIG_MIGRATION
1755 .migratepage = f2fs_migrate_page,
1756 #endif
1757 };
1758
1759 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1760 nid_t n)
1761 {
1762 return radix_tree_lookup(&nm_i->free_nid_root, n);
1763 }
1764
1765 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1766 struct free_nid *i, enum nid_state state)
1767 {
1768 struct f2fs_nm_info *nm_i = NM_I(sbi);
1769
1770 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1771 if (err)
1772 return err;
1773
1774 f2fs_bug_on(sbi, state != i->state);
1775 nm_i->nid_cnt[state]++;
1776 if (state == FREE_NID)
1777 list_add_tail(&i->list, &nm_i->free_nid_list);
1778 return 0;
1779 }
1780
1781 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1782 struct free_nid *i, enum nid_state state)
1783 {
1784 struct f2fs_nm_info *nm_i = NM_I(sbi);
1785
1786 f2fs_bug_on(sbi, state != i->state);
1787 nm_i->nid_cnt[state]--;
1788 if (state == FREE_NID)
1789 list_del(&i->list);
1790 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1791 }
1792
1793 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1794 enum nid_state org_state, enum nid_state dst_state)
1795 {
1796 struct f2fs_nm_info *nm_i = NM_I(sbi);
1797
1798 f2fs_bug_on(sbi, org_state != i->state);
1799 i->state = dst_state;
1800 nm_i->nid_cnt[org_state]--;
1801 nm_i->nid_cnt[dst_state]++;
1802
1803 switch (dst_state) {
1804 case PREALLOC_NID:
1805 list_del(&i->list);
1806 break;
1807 case FREE_NID:
1808 list_add_tail(&i->list, &nm_i->free_nid_list);
1809 break;
1810 default:
1811 BUG_ON(1);
1812 }
1813 }
1814
1815 /* return if the nid is recognized as free */
1816 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1817 {
1818 struct f2fs_nm_info *nm_i = NM_I(sbi);
1819 struct free_nid *i, *e;
1820 struct nat_entry *ne;
1821 int err = -EINVAL;
1822 bool ret = false;
1823
1824 /* 0 nid should not be used */
1825 if (unlikely(nid == 0))
1826 return false;
1827
1828 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1829 i->nid = nid;
1830 i->state = FREE_NID;
1831
1832 if (radix_tree_preload(GFP_NOFS))
1833 goto err;
1834
1835 spin_lock(&nm_i->nid_list_lock);
1836
1837 if (build) {
1838 /*
1839 * Thread A Thread B
1840 * - f2fs_create
1841 * - f2fs_new_inode
1842 * - alloc_nid
1843 * - __insert_nid_to_list(PREALLOC_NID)
1844 * - f2fs_balance_fs_bg
1845 * - build_free_nids
1846 * - __build_free_nids
1847 * - scan_nat_page
1848 * - add_free_nid
1849 * - __lookup_nat_cache
1850 * - f2fs_add_link
1851 * - init_inode_metadata
1852 * - new_inode_page
1853 * - new_node_page
1854 * - set_node_addr
1855 * - alloc_nid_done
1856 * - __remove_nid_from_list(PREALLOC_NID)
1857 * - __insert_nid_to_list(FREE_NID)
1858 */
1859 ne = __lookup_nat_cache(nm_i, nid);
1860 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1861 nat_get_blkaddr(ne) != NULL_ADDR))
1862 goto err_out;
1863
1864 e = __lookup_free_nid_list(nm_i, nid);
1865 if (e) {
1866 if (e->state == FREE_NID)
1867 ret = true;
1868 goto err_out;
1869 }
1870 }
1871 ret = true;
1872 err = __insert_free_nid(sbi, i, FREE_NID);
1873 err_out:
1874 spin_unlock(&nm_i->nid_list_lock);
1875 radix_tree_preload_end();
1876 err:
1877 if (err)
1878 kmem_cache_free(free_nid_slab, i);
1879 return ret;
1880 }
1881
1882 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1883 {
1884 struct f2fs_nm_info *nm_i = NM_I(sbi);
1885 struct free_nid *i;
1886 bool need_free = false;
1887
1888 spin_lock(&nm_i->nid_list_lock);
1889 i = __lookup_free_nid_list(nm_i, nid);
1890 if (i && i->state == FREE_NID) {
1891 __remove_free_nid(sbi, i, FREE_NID);
1892 need_free = true;
1893 }
1894 spin_unlock(&nm_i->nid_list_lock);
1895
1896 if (need_free)
1897 kmem_cache_free(free_nid_slab, i);
1898 }
1899
1900 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1901 bool set, bool build)
1902 {
1903 struct f2fs_nm_info *nm_i = NM_I(sbi);
1904 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1905 unsigned int nid_ofs = nid - START_NID(nid);
1906
1907 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1908 return;
1909
1910 if (set) {
1911 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1912 return;
1913 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1914 nm_i->free_nid_count[nat_ofs]++;
1915 } else {
1916 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1917 return;
1918 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1919 if (!build)
1920 nm_i->free_nid_count[nat_ofs]--;
1921 }
1922 }
1923
1924 static void scan_nat_page(struct f2fs_sb_info *sbi,
1925 struct page *nat_page, nid_t start_nid)
1926 {
1927 struct f2fs_nm_info *nm_i = NM_I(sbi);
1928 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1929 block_t blk_addr;
1930 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1931 int i;
1932
1933 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1934 return;
1935
1936 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1937
1938 i = start_nid % NAT_ENTRY_PER_BLOCK;
1939
1940 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1941 bool freed = false;
1942
1943 if (unlikely(start_nid >= nm_i->max_nid))
1944 break;
1945
1946 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1947 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1948 if (blk_addr == NULL_ADDR)
1949 freed = add_free_nid(sbi, start_nid, true);
1950 spin_lock(&NM_I(sbi)->nid_list_lock);
1951 update_free_nid_bitmap(sbi, start_nid, freed, true);
1952 spin_unlock(&NM_I(sbi)->nid_list_lock);
1953 }
1954 }
1955
1956 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1957 {
1958 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1959 struct f2fs_journal *journal = curseg->journal;
1960 int i;
1961
1962 down_read(&curseg->journal_rwsem);
1963 for (i = 0; i < nats_in_cursum(journal); i++) {
1964 block_t addr;
1965 nid_t nid;
1966
1967 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1968 nid = le32_to_cpu(nid_in_journal(journal, i));
1969 if (addr == NULL_ADDR)
1970 add_free_nid(sbi, nid, true);
1971 else
1972 remove_free_nid(sbi, nid);
1973 }
1974 up_read(&curseg->journal_rwsem);
1975 }
1976
1977 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1978 {
1979 struct f2fs_nm_info *nm_i = NM_I(sbi);
1980 unsigned int i, idx;
1981 nid_t nid;
1982
1983 down_read(&nm_i->nat_tree_lock);
1984
1985 for (i = 0; i < nm_i->nat_blocks; i++) {
1986 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1987 continue;
1988 if (!nm_i->free_nid_count[i])
1989 continue;
1990 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1991 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
1992 NAT_ENTRY_PER_BLOCK, idx);
1993 if (idx >= NAT_ENTRY_PER_BLOCK)
1994 break;
1995
1996 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1997 add_free_nid(sbi, nid, true);
1998
1999 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2000 goto out;
2001 }
2002 }
2003 out:
2004 scan_curseg_cache(sbi);
2005
2006 up_read(&nm_i->nat_tree_lock);
2007 }
2008
2009 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2010 {
2011 struct f2fs_nm_info *nm_i = NM_I(sbi);
2012 int i = 0;
2013 nid_t nid = nm_i->next_scan_nid;
2014
2015 if (unlikely(nid >= nm_i->max_nid))
2016 nid = 0;
2017
2018 /* Enough entries */
2019 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2020 return;
2021
2022 if (!sync && !available_free_memory(sbi, FREE_NIDS))
2023 return;
2024
2025 if (!mount) {
2026 /* try to find free nids in free_nid_bitmap */
2027 scan_free_nid_bits(sbi);
2028
2029 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2030 return;
2031 }
2032
2033 /* readahead nat pages to be scanned */
2034 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2035 META_NAT, true);
2036
2037 down_read(&nm_i->nat_tree_lock);
2038
2039 while (1) {
2040 struct page *page = get_current_nat_page(sbi, nid);
2041
2042 scan_nat_page(sbi, page, nid);
2043 f2fs_put_page(page, 1);
2044
2045 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2046 if (unlikely(nid >= nm_i->max_nid))
2047 nid = 0;
2048
2049 if (++i >= FREE_NID_PAGES)
2050 break;
2051 }
2052
2053 /* go to the next free nat pages to find free nids abundantly */
2054 nm_i->next_scan_nid = nid;
2055
2056 /* find free nids from current sum_pages */
2057 scan_curseg_cache(sbi);
2058
2059 up_read(&nm_i->nat_tree_lock);
2060
2061 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2062 nm_i->ra_nid_pages, META_NAT, false);
2063 }
2064
2065 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2066 {
2067 mutex_lock(&NM_I(sbi)->build_lock);
2068 __build_free_nids(sbi, sync, mount);
2069 mutex_unlock(&NM_I(sbi)->build_lock);
2070 }
2071
2072 /*
2073 * If this function returns success, caller can obtain a new nid
2074 * from second parameter of this function.
2075 * The returned nid could be used ino as well as nid when inode is created.
2076 */
2077 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2078 {
2079 struct f2fs_nm_info *nm_i = NM_I(sbi);
2080 struct free_nid *i = NULL;
2081 retry:
2082 #ifdef CONFIG_F2FS_FAULT_INJECTION
2083 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2084 f2fs_show_injection_info(FAULT_ALLOC_NID);
2085 return false;
2086 }
2087 #endif
2088 spin_lock(&nm_i->nid_list_lock);
2089
2090 if (unlikely(nm_i->available_nids == 0)) {
2091 spin_unlock(&nm_i->nid_list_lock);
2092 return false;
2093 }
2094
2095 /* We should not use stale free nids created by build_free_nids */
2096 if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2097 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2098 i = list_first_entry(&nm_i->free_nid_list,
2099 struct free_nid, list);
2100 *nid = i->nid;
2101
2102 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2103 nm_i->available_nids--;
2104
2105 update_free_nid_bitmap(sbi, *nid, false, false);
2106
2107 spin_unlock(&nm_i->nid_list_lock);
2108 return true;
2109 }
2110 spin_unlock(&nm_i->nid_list_lock);
2111
2112 /* Let's scan nat pages and its caches to get free nids */
2113 build_free_nids(sbi, true, false);
2114 goto retry;
2115 }
2116
2117 /*
2118 * alloc_nid() should be called prior to this function.
2119 */
2120 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2121 {
2122 struct f2fs_nm_info *nm_i = NM_I(sbi);
2123 struct free_nid *i;
2124
2125 spin_lock(&nm_i->nid_list_lock);
2126 i = __lookup_free_nid_list(nm_i, nid);
2127 f2fs_bug_on(sbi, !i);
2128 __remove_free_nid(sbi, i, PREALLOC_NID);
2129 spin_unlock(&nm_i->nid_list_lock);
2130
2131 kmem_cache_free(free_nid_slab, i);
2132 }
2133
2134 /*
2135 * alloc_nid() should be called prior to this function.
2136 */
2137 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2138 {
2139 struct f2fs_nm_info *nm_i = NM_I(sbi);
2140 struct free_nid *i;
2141 bool need_free = false;
2142
2143 if (!nid)
2144 return;
2145
2146 spin_lock(&nm_i->nid_list_lock);
2147 i = __lookup_free_nid_list(nm_i, nid);
2148 f2fs_bug_on(sbi, !i);
2149
2150 if (!available_free_memory(sbi, FREE_NIDS)) {
2151 __remove_free_nid(sbi, i, PREALLOC_NID);
2152 need_free = true;
2153 } else {
2154 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2155 }
2156
2157 nm_i->available_nids++;
2158
2159 update_free_nid_bitmap(sbi, nid, true, false);
2160
2161 spin_unlock(&nm_i->nid_list_lock);
2162
2163 if (need_free)
2164 kmem_cache_free(free_nid_slab, i);
2165 }
2166
2167 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2168 {
2169 struct f2fs_nm_info *nm_i = NM_I(sbi);
2170 struct free_nid *i, *next;
2171 int nr = nr_shrink;
2172
2173 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2174 return 0;
2175
2176 if (!mutex_trylock(&nm_i->build_lock))
2177 return 0;
2178
2179 spin_lock(&nm_i->nid_list_lock);
2180 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2181 if (nr_shrink <= 0 ||
2182 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2183 break;
2184
2185 __remove_free_nid(sbi, i, FREE_NID);
2186 kmem_cache_free(free_nid_slab, i);
2187 nr_shrink--;
2188 }
2189 spin_unlock(&nm_i->nid_list_lock);
2190 mutex_unlock(&nm_i->build_lock);
2191
2192 return nr - nr_shrink;
2193 }
2194
2195 void recover_inline_xattr(struct inode *inode, struct page *page)
2196 {
2197 void *src_addr, *dst_addr;
2198 size_t inline_size;
2199 struct page *ipage;
2200 struct f2fs_inode *ri;
2201
2202 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2203 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2204
2205 ri = F2FS_INODE(page);
2206 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2207 clear_inode_flag(inode, FI_INLINE_XATTR);
2208 goto update_inode;
2209 }
2210
2211 dst_addr = inline_xattr_addr(inode, ipage);
2212 src_addr = inline_xattr_addr(inode, page);
2213 inline_size = inline_xattr_size(inode);
2214
2215 f2fs_wait_on_page_writeback(ipage, NODE, true);
2216 memcpy(dst_addr, src_addr, inline_size);
2217 update_inode:
2218 update_inode(inode, ipage);
2219 f2fs_put_page(ipage, 1);
2220 }
2221
2222 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2223 {
2224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2225 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2226 nid_t new_xnid;
2227 struct dnode_of_data dn;
2228 struct node_info ni;
2229 struct page *xpage;
2230
2231 if (!prev_xnid)
2232 goto recover_xnid;
2233
2234 /* 1: invalidate the previous xattr nid */
2235 get_node_info(sbi, prev_xnid, &ni);
2236 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2237 invalidate_blocks(sbi, ni.blk_addr);
2238 dec_valid_node_count(sbi, inode, false);
2239 set_node_addr(sbi, &ni, NULL_ADDR, false);
2240
2241 recover_xnid:
2242 /* 2: update xattr nid in inode */
2243 if (!alloc_nid(sbi, &new_xnid))
2244 return -ENOSPC;
2245
2246 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2247 xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2248 if (IS_ERR(xpage)) {
2249 alloc_nid_failed(sbi, new_xnid);
2250 return PTR_ERR(xpage);
2251 }
2252
2253 alloc_nid_done(sbi, new_xnid);
2254 update_inode_page(inode);
2255
2256 /* 3: update and set xattr node page dirty */
2257 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2258
2259 set_page_dirty(xpage);
2260 f2fs_put_page(xpage, 1);
2261
2262 return 0;
2263 }
2264
2265 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2266 {
2267 struct f2fs_inode *src, *dst;
2268 nid_t ino = ino_of_node(page);
2269 struct node_info old_ni, new_ni;
2270 struct page *ipage;
2271
2272 get_node_info(sbi, ino, &old_ni);
2273
2274 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2275 return -EINVAL;
2276 retry:
2277 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2278 if (!ipage) {
2279 congestion_wait(BLK_RW_ASYNC, HZ/50);
2280 goto retry;
2281 }
2282
2283 /* Should not use this inode from free nid list */
2284 remove_free_nid(sbi, ino);
2285
2286 if (!PageUptodate(ipage))
2287 SetPageUptodate(ipage);
2288 fill_node_footer(ipage, ino, ino, 0, true);
2289
2290 src = F2FS_INODE(page);
2291 dst = F2FS_INODE(ipage);
2292
2293 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2294 dst->i_size = 0;
2295 dst->i_blocks = cpu_to_le64(1);
2296 dst->i_links = cpu_to_le32(1);
2297 dst->i_xattr_nid = 0;
2298 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2299 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2300 dst->i_extra_isize = src->i_extra_isize;
2301
2302 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2303 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2304 i_inline_xattr_size))
2305 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2306
2307 if (f2fs_sb_has_project_quota(sbi->sb) &&
2308 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2309 i_projid))
2310 dst->i_projid = src->i_projid;
2311 }
2312
2313 new_ni = old_ni;
2314 new_ni.ino = ino;
2315
2316 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2317 WARN_ON(1);
2318 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2319 inc_valid_inode_count(sbi);
2320 set_page_dirty(ipage);
2321 f2fs_put_page(ipage, 1);
2322 return 0;
2323 }
2324
2325 int restore_node_summary(struct f2fs_sb_info *sbi,
2326 unsigned int segno, struct f2fs_summary_block *sum)
2327 {
2328 struct f2fs_node *rn;
2329 struct f2fs_summary *sum_entry;
2330 block_t addr;
2331 int i, idx, last_offset, nrpages;
2332
2333 /* scan the node segment */
2334 last_offset = sbi->blocks_per_seg;
2335 addr = START_BLOCK(sbi, segno);
2336 sum_entry = &sum->entries[0];
2337
2338 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2339 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2340
2341 /* readahead node pages */
2342 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2343
2344 for (idx = addr; idx < addr + nrpages; idx++) {
2345 struct page *page = get_tmp_page(sbi, idx);
2346
2347 rn = F2FS_NODE(page);
2348 sum_entry->nid = rn->footer.nid;
2349 sum_entry->version = 0;
2350 sum_entry->ofs_in_node = 0;
2351 sum_entry++;
2352 f2fs_put_page(page, 1);
2353 }
2354
2355 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2356 addr + nrpages);
2357 }
2358 return 0;
2359 }
2360
2361 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2362 {
2363 struct f2fs_nm_info *nm_i = NM_I(sbi);
2364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2365 struct f2fs_journal *journal = curseg->journal;
2366 int i;
2367
2368 down_write(&curseg->journal_rwsem);
2369 for (i = 0; i < nats_in_cursum(journal); i++) {
2370 struct nat_entry *ne;
2371 struct f2fs_nat_entry raw_ne;
2372 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2373
2374 raw_ne = nat_in_journal(journal, i);
2375
2376 ne = __lookup_nat_cache(nm_i, nid);
2377 if (!ne) {
2378 ne = __alloc_nat_entry(nid, true);
2379 __init_nat_entry(nm_i, ne, &raw_ne, true);
2380 }
2381
2382 /*
2383 * if a free nat in journal has not been used after last
2384 * checkpoint, we should remove it from available nids,
2385 * since later we will add it again.
2386 */
2387 if (!get_nat_flag(ne, IS_DIRTY) &&
2388 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2389 spin_lock(&nm_i->nid_list_lock);
2390 nm_i->available_nids--;
2391 spin_unlock(&nm_i->nid_list_lock);
2392 }
2393
2394 __set_nat_cache_dirty(nm_i, ne);
2395 }
2396 update_nats_in_cursum(journal, -i);
2397 up_write(&curseg->journal_rwsem);
2398 }
2399
2400 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2401 struct list_head *head, int max)
2402 {
2403 struct nat_entry_set *cur;
2404
2405 if (nes->entry_cnt >= max)
2406 goto add_out;
2407
2408 list_for_each_entry(cur, head, set_list) {
2409 if (cur->entry_cnt >= nes->entry_cnt) {
2410 list_add(&nes->set_list, cur->set_list.prev);
2411 return;
2412 }
2413 }
2414 add_out:
2415 list_add_tail(&nes->set_list, head);
2416 }
2417
2418 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2419 struct page *page)
2420 {
2421 struct f2fs_nm_info *nm_i = NM_I(sbi);
2422 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2423 struct f2fs_nat_block *nat_blk = page_address(page);
2424 int valid = 0;
2425 int i = 0;
2426
2427 if (!enabled_nat_bits(sbi, NULL))
2428 return;
2429
2430 if (nat_index == 0) {
2431 valid = 1;
2432 i = 1;
2433 }
2434 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2435 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2436 valid++;
2437 }
2438 if (valid == 0) {
2439 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2440 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2441 return;
2442 }
2443
2444 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2445 if (valid == NAT_ENTRY_PER_BLOCK)
2446 __set_bit_le(nat_index, nm_i->full_nat_bits);
2447 else
2448 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2449 }
2450
2451 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2452 struct nat_entry_set *set, struct cp_control *cpc)
2453 {
2454 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2455 struct f2fs_journal *journal = curseg->journal;
2456 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2457 bool to_journal = true;
2458 struct f2fs_nat_block *nat_blk;
2459 struct nat_entry *ne, *cur;
2460 struct page *page = NULL;
2461
2462 /*
2463 * there are two steps to flush nat entries:
2464 * #1, flush nat entries to journal in current hot data summary block.
2465 * #2, flush nat entries to nat page.
2466 */
2467 if (enabled_nat_bits(sbi, cpc) ||
2468 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2469 to_journal = false;
2470
2471 if (to_journal) {
2472 down_write(&curseg->journal_rwsem);
2473 } else {
2474 page = get_next_nat_page(sbi, start_nid);
2475 nat_blk = page_address(page);
2476 f2fs_bug_on(sbi, !nat_blk);
2477 }
2478
2479 /* flush dirty nats in nat entry set */
2480 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2481 struct f2fs_nat_entry *raw_ne;
2482 nid_t nid = nat_get_nid(ne);
2483 int offset;
2484
2485 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2486
2487 if (to_journal) {
2488 offset = lookup_journal_in_cursum(journal,
2489 NAT_JOURNAL, nid, 1);
2490 f2fs_bug_on(sbi, offset < 0);
2491 raw_ne = &nat_in_journal(journal, offset);
2492 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2493 } else {
2494 raw_ne = &nat_blk->entries[nid - start_nid];
2495 }
2496 raw_nat_from_node_info(raw_ne, &ne->ni);
2497 nat_reset_flag(ne);
2498 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2499 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2500 add_free_nid(sbi, nid, false);
2501 spin_lock(&NM_I(sbi)->nid_list_lock);
2502 NM_I(sbi)->available_nids++;
2503 update_free_nid_bitmap(sbi, nid, true, false);
2504 spin_unlock(&NM_I(sbi)->nid_list_lock);
2505 } else {
2506 spin_lock(&NM_I(sbi)->nid_list_lock);
2507 update_free_nid_bitmap(sbi, nid, false, false);
2508 spin_unlock(&NM_I(sbi)->nid_list_lock);
2509 }
2510 }
2511
2512 if (to_journal) {
2513 up_write(&curseg->journal_rwsem);
2514 } else {
2515 __update_nat_bits(sbi, start_nid, page);
2516 f2fs_put_page(page, 1);
2517 }
2518
2519 /* Allow dirty nats by node block allocation in write_begin */
2520 if (!set->entry_cnt) {
2521 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2522 kmem_cache_free(nat_entry_set_slab, set);
2523 }
2524 }
2525
2526 /*
2527 * This function is called during the checkpointing process.
2528 */
2529 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2530 {
2531 struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2533 struct f2fs_journal *journal = curseg->journal;
2534 struct nat_entry_set *setvec[SETVEC_SIZE];
2535 struct nat_entry_set *set, *tmp;
2536 unsigned int found;
2537 nid_t set_idx = 0;
2538 LIST_HEAD(sets);
2539
2540 if (!nm_i->dirty_nat_cnt)
2541 return;
2542
2543 down_write(&nm_i->nat_tree_lock);
2544
2545 /*
2546 * if there are no enough space in journal to store dirty nat
2547 * entries, remove all entries from journal and merge them
2548 * into nat entry set.
2549 */
2550 if (enabled_nat_bits(sbi, cpc) ||
2551 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2552 remove_nats_in_journal(sbi);
2553
2554 while ((found = __gang_lookup_nat_set(nm_i,
2555 set_idx, SETVEC_SIZE, setvec))) {
2556 unsigned idx;
2557 set_idx = setvec[found - 1]->set + 1;
2558 for (idx = 0; idx < found; idx++)
2559 __adjust_nat_entry_set(setvec[idx], &sets,
2560 MAX_NAT_JENTRIES(journal));
2561 }
2562
2563 /* flush dirty nats in nat entry set */
2564 list_for_each_entry_safe(set, tmp, &sets, set_list)
2565 __flush_nat_entry_set(sbi, set, cpc);
2566
2567 up_write(&nm_i->nat_tree_lock);
2568 /* Allow dirty nats by node block allocation in write_begin */
2569 }
2570
2571 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2572 {
2573 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2574 struct f2fs_nm_info *nm_i = NM_I(sbi);
2575 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2576 unsigned int i;
2577 __u64 cp_ver = cur_cp_version(ckpt);
2578 block_t nat_bits_addr;
2579
2580 if (!enabled_nat_bits(sbi, NULL))
2581 return 0;
2582
2583 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2584 F2FS_BLKSIZE - 1);
2585 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2586 GFP_KERNEL);
2587 if (!nm_i->nat_bits)
2588 return -ENOMEM;
2589
2590 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2591 nm_i->nat_bits_blocks;
2592 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2593 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2594
2595 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2596 page_address(page), F2FS_BLKSIZE);
2597 f2fs_put_page(page, 1);
2598 }
2599
2600 cp_ver |= (cur_cp_crc(ckpt) << 32);
2601 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2602 disable_nat_bits(sbi, true);
2603 return 0;
2604 }
2605
2606 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2607 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2608
2609 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2610 return 0;
2611 }
2612
2613 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2614 {
2615 struct f2fs_nm_info *nm_i = NM_I(sbi);
2616 unsigned int i = 0;
2617 nid_t nid, last_nid;
2618
2619 if (!enabled_nat_bits(sbi, NULL))
2620 return;
2621
2622 for (i = 0; i < nm_i->nat_blocks; i++) {
2623 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2624 if (i >= nm_i->nat_blocks)
2625 break;
2626
2627 __set_bit_le(i, nm_i->nat_block_bitmap);
2628
2629 nid = i * NAT_ENTRY_PER_BLOCK;
2630 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2631
2632 spin_lock(&NM_I(sbi)->nid_list_lock);
2633 for (; nid < last_nid; nid++)
2634 update_free_nid_bitmap(sbi, nid, true, true);
2635 spin_unlock(&NM_I(sbi)->nid_list_lock);
2636 }
2637
2638 for (i = 0; i < nm_i->nat_blocks; i++) {
2639 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2640 if (i >= nm_i->nat_blocks)
2641 break;
2642
2643 __set_bit_le(i, nm_i->nat_block_bitmap);
2644 }
2645 }
2646
2647 static int init_node_manager(struct f2fs_sb_info *sbi)
2648 {
2649 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2650 struct f2fs_nm_info *nm_i = NM_I(sbi);
2651 unsigned char *version_bitmap;
2652 unsigned int nat_segs;
2653 int err;
2654
2655 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2656
2657 /* segment_count_nat includes pair segment so divide to 2. */
2658 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2659 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2660 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2661
2662 /* not used nids: 0, node, meta, (and root counted as valid node) */
2663 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2664 F2FS_RESERVED_NODE_NUM;
2665 nm_i->nid_cnt[FREE_NID] = 0;
2666 nm_i->nid_cnt[PREALLOC_NID] = 0;
2667 nm_i->nat_cnt = 0;
2668 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2669 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2670 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2671
2672 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2673 INIT_LIST_HEAD(&nm_i->free_nid_list);
2674 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2675 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2676 INIT_LIST_HEAD(&nm_i->nat_entries);
2677
2678 mutex_init(&nm_i->build_lock);
2679 spin_lock_init(&nm_i->nid_list_lock);
2680 init_rwsem(&nm_i->nat_tree_lock);
2681
2682 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2683 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2684 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2685 if (!version_bitmap)
2686 return -EFAULT;
2687
2688 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2689 GFP_KERNEL);
2690 if (!nm_i->nat_bitmap)
2691 return -ENOMEM;
2692
2693 err = __get_nat_bitmaps(sbi);
2694 if (err)
2695 return err;
2696
2697 #ifdef CONFIG_F2FS_CHECK_FS
2698 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2699 GFP_KERNEL);
2700 if (!nm_i->nat_bitmap_mir)
2701 return -ENOMEM;
2702 #endif
2703
2704 return 0;
2705 }
2706
2707 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2708 {
2709 struct f2fs_nm_info *nm_i = NM_I(sbi);
2710
2711 nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2712 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2713 if (!nm_i->free_nid_bitmap)
2714 return -ENOMEM;
2715
2716 nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2717 GFP_KERNEL);
2718 if (!nm_i->nat_block_bitmap)
2719 return -ENOMEM;
2720
2721 nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2722 sizeof(unsigned short), GFP_KERNEL);
2723 if (!nm_i->free_nid_count)
2724 return -ENOMEM;
2725 return 0;
2726 }
2727
2728 int build_node_manager(struct f2fs_sb_info *sbi)
2729 {
2730 int err;
2731
2732 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2733 if (!sbi->nm_info)
2734 return -ENOMEM;
2735
2736 err = init_node_manager(sbi);
2737 if (err)
2738 return err;
2739
2740 err = init_free_nid_cache(sbi);
2741 if (err)
2742 return err;
2743
2744 /* load free nid status from nat_bits table */
2745 load_free_nid_bitmap(sbi);
2746
2747 build_free_nids(sbi, true, true);
2748 return 0;
2749 }
2750
2751 void destroy_node_manager(struct f2fs_sb_info *sbi)
2752 {
2753 struct f2fs_nm_info *nm_i = NM_I(sbi);
2754 struct free_nid *i, *next_i;
2755 struct nat_entry *natvec[NATVEC_SIZE];
2756 struct nat_entry_set *setvec[SETVEC_SIZE];
2757 nid_t nid = 0;
2758 unsigned int found;
2759
2760 if (!nm_i)
2761 return;
2762
2763 /* destroy free nid list */
2764 spin_lock(&nm_i->nid_list_lock);
2765 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2766 __remove_free_nid(sbi, i, FREE_NID);
2767 spin_unlock(&nm_i->nid_list_lock);
2768 kmem_cache_free(free_nid_slab, i);
2769 spin_lock(&nm_i->nid_list_lock);
2770 }
2771 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2772 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2773 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2774 spin_unlock(&nm_i->nid_list_lock);
2775
2776 /* destroy nat cache */
2777 down_write(&nm_i->nat_tree_lock);
2778 while ((found = __gang_lookup_nat_cache(nm_i,
2779 nid, NATVEC_SIZE, natvec))) {
2780 unsigned idx;
2781
2782 nid = nat_get_nid(natvec[found - 1]) + 1;
2783 for (idx = 0; idx < found; idx++)
2784 __del_from_nat_cache(nm_i, natvec[idx]);
2785 }
2786 f2fs_bug_on(sbi, nm_i->nat_cnt);
2787
2788 /* destroy nat set cache */
2789 nid = 0;
2790 while ((found = __gang_lookup_nat_set(nm_i,
2791 nid, SETVEC_SIZE, setvec))) {
2792 unsigned idx;
2793
2794 nid = setvec[found - 1]->set + 1;
2795 for (idx = 0; idx < found; idx++) {
2796 /* entry_cnt is not zero, when cp_error was occurred */
2797 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2798 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2799 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2800 }
2801 }
2802 up_write(&nm_i->nat_tree_lock);
2803
2804 kvfree(nm_i->nat_block_bitmap);
2805 kvfree(nm_i->free_nid_bitmap);
2806 kvfree(nm_i->free_nid_count);
2807
2808 kfree(nm_i->nat_bitmap);
2809 kfree(nm_i->nat_bits);
2810 #ifdef CONFIG_F2FS_CHECK_FS
2811 kfree(nm_i->nat_bitmap_mir);
2812 #endif
2813 sbi->nm_info = NULL;
2814 kfree(nm_i);
2815 }
2816
2817 int __init create_node_manager_caches(void)
2818 {
2819 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2820 sizeof(struct nat_entry));
2821 if (!nat_entry_slab)
2822 goto fail;
2823
2824 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2825 sizeof(struct free_nid));
2826 if (!free_nid_slab)
2827 goto destroy_nat_entry;
2828
2829 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2830 sizeof(struct nat_entry_set));
2831 if (!nat_entry_set_slab)
2832 goto destroy_free_nid;
2833 return 0;
2834
2835 destroy_free_nid:
2836 kmem_cache_destroy(free_nid_slab);
2837 destroy_nat_entry:
2838 kmem_cache_destroy(nat_entry_slab);
2839 fail:
2840 return -ENOMEM;
2841 }
2842
2843 void destroy_node_manager_caches(void)
2844 {
2845 kmem_cache_destroy(nat_entry_set_slab);
2846 kmem_cache_destroy(free_nid_slab);
2847 kmem_cache_destroy(nat_entry_slab);
2848 }