]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/node.c
Merge tag '9p-for-5.15-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
48 struct sysinfo val;
49 unsigned long avail_ram;
50 unsigned long mem_size = 0;
51 bool res = false;
52
53 if (!nm_i)
54 return true;
55
56 si_meminfo(&val);
57
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
60
61 /*
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 */
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
70 sizeof(struct nat_entry)) >> PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
81
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == INMEM_PAGES) {
94 /* it allows 20% / total_ram for inmemory pages */
95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 res = mem_size < (val.totalram / 5);
97 } else if (type == DISCARD_CACHE) {
98 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
99 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
100 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
101 } else if (type == COMPRESS_PAGE) {
102 #ifdef CONFIG_F2FS_FS_COMPRESSION
103 unsigned long free_ram = val.freeram;
104
105 /*
106 * free memory is lower than watermark or cached page count
107 * exceed threshold, deny caching compress page.
108 */
109 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
110 (COMPRESS_MAPPING(sbi)->nrpages <
111 free_ram * sbi->compress_percent / 100);
112 #else
113 res = false;
114 #endif
115 } else {
116 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
117 return true;
118 }
119 return res;
120 }
121
122 static void clear_node_page_dirty(struct page *page)
123 {
124 if (PageDirty(page)) {
125 f2fs_clear_page_cache_dirty_tag(page);
126 clear_page_dirty_for_io(page);
127 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
128 }
129 ClearPageUptodate(page);
130 }
131
132 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
133 {
134 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
135 }
136
137 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
138 {
139 struct page *src_page;
140 struct page *dst_page;
141 pgoff_t dst_off;
142 void *src_addr;
143 void *dst_addr;
144 struct f2fs_nm_info *nm_i = NM_I(sbi);
145
146 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
147
148 /* get current nat block page with lock */
149 src_page = get_current_nat_page(sbi, nid);
150 if (IS_ERR(src_page))
151 return src_page;
152 dst_page = f2fs_grab_meta_page(sbi, dst_off);
153 f2fs_bug_on(sbi, PageDirty(src_page));
154
155 src_addr = page_address(src_page);
156 dst_addr = page_address(dst_page);
157 memcpy(dst_addr, src_addr, PAGE_SIZE);
158 set_page_dirty(dst_page);
159 f2fs_put_page(src_page, 1);
160
161 set_to_next_nat(nm_i, nid);
162
163 return dst_page;
164 }
165
166 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
167 nid_t nid, bool no_fail)
168 {
169 struct nat_entry *new;
170
171 new = f2fs_kmem_cache_alloc(nat_entry_slab,
172 GFP_F2FS_ZERO, no_fail, sbi);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178 }
179
180 static void __free_nat_entry(struct nat_entry *e)
181 {
182 kmem_cache_free(nat_entry_slab, e);
183 }
184
185 /* must be locked by nat_tree_lock */
186 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188 {
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204 }
205
206 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207 {
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221 }
222
223 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225 {
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227 }
228
229 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230 {
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235 }
236
237 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239 {
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
246 GFP_NOFS, true, NULL);
247
248 INIT_LIST_HEAD(&head->entry_list);
249 INIT_LIST_HEAD(&head->set_list);
250 head->set = set;
251 head->entry_cnt = 0;
252 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
253 }
254 return head;
255 }
256
257 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
258 struct nat_entry *ne)
259 {
260 struct nat_entry_set *head;
261 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
262
263 if (!new_ne)
264 head = __grab_nat_entry_set(nm_i, ne);
265
266 /*
267 * update entry_cnt in below condition:
268 * 1. update NEW_ADDR to valid block address;
269 * 2. update old block address to new one;
270 */
271 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
272 !get_nat_flag(ne, IS_DIRTY)))
273 head->entry_cnt++;
274
275 set_nat_flag(ne, IS_PREALLOC, new_ne);
276
277 if (get_nat_flag(ne, IS_DIRTY))
278 goto refresh_list;
279
280 nm_i->nat_cnt[DIRTY_NAT]++;
281 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
282 set_nat_flag(ne, IS_DIRTY, true);
283 refresh_list:
284 spin_lock(&nm_i->nat_list_lock);
285 if (new_ne)
286 list_del_init(&ne->list);
287 else
288 list_move_tail(&ne->list, &head->entry_list);
289 spin_unlock(&nm_i->nat_list_lock);
290 }
291
292 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
293 struct nat_entry_set *set, struct nat_entry *ne)
294 {
295 spin_lock(&nm_i->nat_list_lock);
296 list_move_tail(&ne->list, &nm_i->nat_entries);
297 spin_unlock(&nm_i->nat_list_lock);
298
299 set_nat_flag(ne, IS_DIRTY, false);
300 set->entry_cnt--;
301 nm_i->nat_cnt[DIRTY_NAT]--;
302 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
303 }
304
305 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
306 nid_t start, unsigned int nr, struct nat_entry_set **ep)
307 {
308 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
309 start, nr);
310 }
311
312 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
313 {
314 return NODE_MAPPING(sbi) == page->mapping &&
315 IS_DNODE(page) && is_cold_node(page);
316 }
317
318 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
319 {
320 spin_lock_init(&sbi->fsync_node_lock);
321 INIT_LIST_HEAD(&sbi->fsync_node_list);
322 sbi->fsync_seg_id = 0;
323 sbi->fsync_node_num = 0;
324 }
325
326 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
327 struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331 unsigned int seq_id;
332
333 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
334 GFP_NOFS, true, NULL);
335
336 get_page(page);
337 fn->page = page;
338 INIT_LIST_HEAD(&fn->list);
339
340 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
341 list_add_tail(&fn->list, &sbi->fsync_node_list);
342 fn->seq_id = sbi->fsync_seg_id++;
343 seq_id = fn->seq_id;
344 sbi->fsync_node_num++;
345 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
346
347 return seq_id;
348 }
349
350 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
351 {
352 struct fsync_node_entry *fn;
353 unsigned long flags;
354
355 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
356 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
357 if (fn->page == page) {
358 list_del(&fn->list);
359 sbi->fsync_node_num--;
360 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
361 kmem_cache_free(fsync_node_entry_slab, fn);
362 put_page(page);
363 return;
364 }
365 }
366 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
367 f2fs_bug_on(sbi, 1);
368 }
369
370 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
375 sbi->fsync_seg_id = 0;
376 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
377 }
378
379 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
380 {
381 struct f2fs_nm_info *nm_i = NM_I(sbi);
382 struct nat_entry *e;
383 bool need = false;
384
385 down_read(&nm_i->nat_tree_lock);
386 e = __lookup_nat_cache(nm_i, nid);
387 if (e) {
388 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
389 !get_nat_flag(e, HAS_FSYNCED_INODE))
390 need = true;
391 }
392 up_read(&nm_i->nat_tree_lock);
393 return need;
394 }
395
396 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
397 {
398 struct f2fs_nm_info *nm_i = NM_I(sbi);
399 struct nat_entry *e;
400 bool is_cp = true;
401
402 down_read(&nm_i->nat_tree_lock);
403 e = __lookup_nat_cache(nm_i, nid);
404 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
405 is_cp = false;
406 up_read(&nm_i->nat_tree_lock);
407 return is_cp;
408 }
409
410 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
411 {
412 struct f2fs_nm_info *nm_i = NM_I(sbi);
413 struct nat_entry *e;
414 bool need_update = true;
415
416 down_read(&nm_i->nat_tree_lock);
417 e = __lookup_nat_cache(nm_i, ino);
418 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
419 (get_nat_flag(e, IS_CHECKPOINTED) ||
420 get_nat_flag(e, HAS_FSYNCED_INODE)))
421 need_update = false;
422 up_read(&nm_i->nat_tree_lock);
423 return need_update;
424 }
425
426 /* must be locked by nat_tree_lock */
427 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
428 struct f2fs_nat_entry *ne)
429 {
430 struct f2fs_nm_info *nm_i = NM_I(sbi);
431 struct nat_entry *new, *e;
432
433 new = __alloc_nat_entry(sbi, nid, false);
434 if (!new)
435 return;
436
437 down_write(&nm_i->nat_tree_lock);
438 e = __lookup_nat_cache(nm_i, nid);
439 if (!e)
440 e = __init_nat_entry(nm_i, new, ne, false);
441 else
442 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
443 nat_get_blkaddr(e) !=
444 le32_to_cpu(ne->block_addr) ||
445 nat_get_version(e) != ne->version);
446 up_write(&nm_i->nat_tree_lock);
447 if (e != new)
448 __free_nat_entry(new);
449 }
450
451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
452 block_t new_blkaddr, bool fsync_done)
453 {
454 struct f2fs_nm_info *nm_i = NM_I(sbi);
455 struct nat_entry *e;
456 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
457
458 down_write(&nm_i->nat_tree_lock);
459 e = __lookup_nat_cache(nm_i, ni->nid);
460 if (!e) {
461 e = __init_nat_entry(nm_i, new, NULL, true);
462 copy_node_info(&e->ni, ni);
463 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
464 } else if (new_blkaddr == NEW_ADDR) {
465 /*
466 * when nid is reallocated,
467 * previous nat entry can be remained in nat cache.
468 * So, reinitialize it with new information.
469 */
470 copy_node_info(&e->ni, ni);
471 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
472 }
473 /* let's free early to reduce memory consumption */
474 if (e != new)
475 __free_nat_entry(new);
476
477 /* sanity check */
478 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
480 new_blkaddr == NULL_ADDR);
481 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
482 new_blkaddr == NEW_ADDR);
483 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
484 new_blkaddr == NEW_ADDR);
485
486 /* increment version no as node is removed */
487 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
488 unsigned char version = nat_get_version(e);
489
490 nat_set_version(e, inc_node_version(version));
491 }
492
493 /* change address */
494 nat_set_blkaddr(e, new_blkaddr);
495 if (!__is_valid_data_blkaddr(new_blkaddr))
496 set_nat_flag(e, IS_CHECKPOINTED, false);
497 __set_nat_cache_dirty(nm_i, e);
498
499 /* update fsync_mark if its inode nat entry is still alive */
500 if (ni->nid != ni->ino)
501 e = __lookup_nat_cache(nm_i, ni->ino);
502 if (e) {
503 if (fsync_done && ni->nid == ni->ino)
504 set_nat_flag(e, HAS_FSYNCED_INODE, true);
505 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
506 }
507 up_write(&nm_i->nat_tree_lock);
508 }
509
510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
511 {
512 struct f2fs_nm_info *nm_i = NM_I(sbi);
513 int nr = nr_shrink;
514
515 if (!down_write_trylock(&nm_i->nat_tree_lock))
516 return 0;
517
518 spin_lock(&nm_i->nat_list_lock);
519 while (nr_shrink) {
520 struct nat_entry *ne;
521
522 if (list_empty(&nm_i->nat_entries))
523 break;
524
525 ne = list_first_entry(&nm_i->nat_entries,
526 struct nat_entry, list);
527 list_del(&ne->list);
528 spin_unlock(&nm_i->nat_list_lock);
529
530 __del_from_nat_cache(nm_i, ne);
531 nr_shrink--;
532
533 spin_lock(&nm_i->nat_list_lock);
534 }
535 spin_unlock(&nm_i->nat_list_lock);
536
537 up_write(&nm_i->nat_tree_lock);
538 return nr - nr_shrink;
539 }
540
541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
542 struct node_info *ni)
543 {
544 struct f2fs_nm_info *nm_i = NM_I(sbi);
545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
546 struct f2fs_journal *journal = curseg->journal;
547 nid_t start_nid = START_NID(nid);
548 struct f2fs_nat_block *nat_blk;
549 struct page *page = NULL;
550 struct f2fs_nat_entry ne;
551 struct nat_entry *e;
552 pgoff_t index;
553 block_t blkaddr;
554 int i;
555
556 ni->nid = nid;
557 retry:
558 /* Check nat cache */
559 down_read(&nm_i->nat_tree_lock);
560 e = __lookup_nat_cache(nm_i, nid);
561 if (e) {
562 ni->ino = nat_get_ino(e);
563 ni->blk_addr = nat_get_blkaddr(e);
564 ni->version = nat_get_version(e);
565 up_read(&nm_i->nat_tree_lock);
566 return 0;
567 }
568
569 /*
570 * Check current segment summary by trying to grab journal_rwsem first.
571 * This sem is on the critical path on the checkpoint requiring the above
572 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
573 * while not bothering checkpoint.
574 */
575 if (!rwsem_is_locked(&sbi->cp_global_sem)) {
576 down_read(&curseg->journal_rwsem);
577 } else if (!down_read_trylock(&curseg->journal_rwsem)) {
578 up_read(&nm_i->nat_tree_lock);
579 goto retry;
580 }
581
582 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
583 if (i >= 0) {
584 ne = nat_in_journal(journal, i);
585 node_info_from_raw_nat(ni, &ne);
586 }
587 up_read(&curseg->journal_rwsem);
588 if (i >= 0) {
589 up_read(&nm_i->nat_tree_lock);
590 goto cache;
591 }
592
593 /* Fill node_info from nat page */
594 index = current_nat_addr(sbi, nid);
595 up_read(&nm_i->nat_tree_lock);
596
597 page = f2fs_get_meta_page(sbi, index);
598 if (IS_ERR(page))
599 return PTR_ERR(page);
600
601 nat_blk = (struct f2fs_nat_block *)page_address(page);
602 ne = nat_blk->entries[nid - start_nid];
603 node_info_from_raw_nat(ni, &ne);
604 f2fs_put_page(page, 1);
605 cache:
606 blkaddr = le32_to_cpu(ne.block_addr);
607 if (__is_valid_data_blkaddr(blkaddr) &&
608 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
609 return -EFAULT;
610
611 /* cache nat entry */
612 cache_nat_entry(sbi, nid, &ne);
613 return 0;
614 }
615
616 /*
617 * readahead MAX_RA_NODE number of node pages.
618 */
619 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
620 {
621 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
622 struct blk_plug plug;
623 int i, end;
624 nid_t nid;
625
626 blk_start_plug(&plug);
627
628 /* Then, try readahead for siblings of the desired node */
629 end = start + n;
630 end = min(end, NIDS_PER_BLOCK);
631 for (i = start; i < end; i++) {
632 nid = get_nid(parent, i, false);
633 f2fs_ra_node_page(sbi, nid);
634 }
635
636 blk_finish_plug(&plug);
637 }
638
639 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
640 {
641 const long direct_index = ADDRS_PER_INODE(dn->inode);
642 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
643 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
644 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
645 int cur_level = dn->cur_level;
646 int max_level = dn->max_level;
647 pgoff_t base = 0;
648
649 if (!dn->max_level)
650 return pgofs + 1;
651
652 while (max_level-- > cur_level)
653 skipped_unit *= NIDS_PER_BLOCK;
654
655 switch (dn->max_level) {
656 case 3:
657 base += 2 * indirect_blks;
658 fallthrough;
659 case 2:
660 base += 2 * direct_blks;
661 fallthrough;
662 case 1:
663 base += direct_index;
664 break;
665 default:
666 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
667 }
668
669 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
670 }
671
672 /*
673 * The maximum depth is four.
674 * Offset[0] will have raw inode offset.
675 */
676 static int get_node_path(struct inode *inode, long block,
677 int offset[4], unsigned int noffset[4])
678 {
679 const long direct_index = ADDRS_PER_INODE(inode);
680 const long direct_blks = ADDRS_PER_BLOCK(inode);
681 const long dptrs_per_blk = NIDS_PER_BLOCK;
682 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
683 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
684 int n = 0;
685 int level = 0;
686
687 noffset[0] = 0;
688
689 if (block < direct_index) {
690 offset[n] = block;
691 goto got;
692 }
693 block -= direct_index;
694 if (block < direct_blks) {
695 offset[n++] = NODE_DIR1_BLOCK;
696 noffset[n] = 1;
697 offset[n] = block;
698 level = 1;
699 goto got;
700 }
701 block -= direct_blks;
702 if (block < direct_blks) {
703 offset[n++] = NODE_DIR2_BLOCK;
704 noffset[n] = 2;
705 offset[n] = block;
706 level = 1;
707 goto got;
708 }
709 block -= direct_blks;
710 if (block < indirect_blks) {
711 offset[n++] = NODE_IND1_BLOCK;
712 noffset[n] = 3;
713 offset[n++] = block / direct_blks;
714 noffset[n] = 4 + offset[n - 1];
715 offset[n] = block % direct_blks;
716 level = 2;
717 goto got;
718 }
719 block -= indirect_blks;
720 if (block < indirect_blks) {
721 offset[n++] = NODE_IND2_BLOCK;
722 noffset[n] = 4 + dptrs_per_blk;
723 offset[n++] = block / direct_blks;
724 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
725 offset[n] = block % direct_blks;
726 level = 2;
727 goto got;
728 }
729 block -= indirect_blks;
730 if (block < dindirect_blks) {
731 offset[n++] = NODE_DIND_BLOCK;
732 noffset[n] = 5 + (dptrs_per_blk * 2);
733 offset[n++] = block / indirect_blks;
734 noffset[n] = 6 + (dptrs_per_blk * 2) +
735 offset[n - 1] * (dptrs_per_blk + 1);
736 offset[n++] = (block / direct_blks) % dptrs_per_blk;
737 noffset[n] = 7 + (dptrs_per_blk * 2) +
738 offset[n - 2] * (dptrs_per_blk + 1) +
739 offset[n - 1];
740 offset[n] = block % direct_blks;
741 level = 3;
742 goto got;
743 } else {
744 return -E2BIG;
745 }
746 got:
747 return level;
748 }
749
750 /*
751 * Caller should call f2fs_put_dnode(dn).
752 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
753 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
754 */
755 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
756 {
757 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
758 struct page *npage[4];
759 struct page *parent = NULL;
760 int offset[4];
761 unsigned int noffset[4];
762 nid_t nids[4];
763 int level, i = 0;
764 int err = 0;
765
766 level = get_node_path(dn->inode, index, offset, noffset);
767 if (level < 0)
768 return level;
769
770 nids[0] = dn->inode->i_ino;
771 npage[0] = dn->inode_page;
772
773 if (!npage[0]) {
774 npage[0] = f2fs_get_node_page(sbi, nids[0]);
775 if (IS_ERR(npage[0]))
776 return PTR_ERR(npage[0]);
777 }
778
779 /* if inline_data is set, should not report any block indices */
780 if (f2fs_has_inline_data(dn->inode) && index) {
781 err = -ENOENT;
782 f2fs_put_page(npage[0], 1);
783 goto release_out;
784 }
785
786 parent = npage[0];
787 if (level != 0)
788 nids[1] = get_nid(parent, offset[0], true);
789 dn->inode_page = npage[0];
790 dn->inode_page_locked = true;
791
792 /* get indirect or direct nodes */
793 for (i = 1; i <= level; i++) {
794 bool done = false;
795
796 if (!nids[i] && mode == ALLOC_NODE) {
797 /* alloc new node */
798 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
799 err = -ENOSPC;
800 goto release_pages;
801 }
802
803 dn->nid = nids[i];
804 npage[i] = f2fs_new_node_page(dn, noffset[i]);
805 if (IS_ERR(npage[i])) {
806 f2fs_alloc_nid_failed(sbi, nids[i]);
807 err = PTR_ERR(npage[i]);
808 goto release_pages;
809 }
810
811 set_nid(parent, offset[i - 1], nids[i], i == 1);
812 f2fs_alloc_nid_done(sbi, nids[i]);
813 done = true;
814 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
815 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
816 if (IS_ERR(npage[i])) {
817 err = PTR_ERR(npage[i]);
818 goto release_pages;
819 }
820 done = true;
821 }
822 if (i == 1) {
823 dn->inode_page_locked = false;
824 unlock_page(parent);
825 } else {
826 f2fs_put_page(parent, 1);
827 }
828
829 if (!done) {
830 npage[i] = f2fs_get_node_page(sbi, nids[i]);
831 if (IS_ERR(npage[i])) {
832 err = PTR_ERR(npage[i]);
833 f2fs_put_page(npage[0], 0);
834 goto release_out;
835 }
836 }
837 if (i < level) {
838 parent = npage[i];
839 nids[i + 1] = get_nid(parent, offset[i], false);
840 }
841 }
842 dn->nid = nids[level];
843 dn->ofs_in_node = offset[level];
844 dn->node_page = npage[level];
845 dn->data_blkaddr = f2fs_data_blkaddr(dn);
846
847 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
848 f2fs_sb_has_readonly(sbi)) {
849 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
850 block_t blkaddr;
851
852 if (!c_len)
853 goto out;
854
855 blkaddr = f2fs_data_blkaddr(dn);
856 if (blkaddr == COMPRESS_ADDR)
857 blkaddr = data_blkaddr(dn->inode, dn->node_page,
858 dn->ofs_in_node + 1);
859
860 f2fs_update_extent_tree_range_compressed(dn->inode,
861 index, blkaddr,
862 F2FS_I(dn->inode)->i_cluster_size,
863 c_len);
864 }
865 out:
866 return 0;
867
868 release_pages:
869 f2fs_put_page(parent, 1);
870 if (i > 1)
871 f2fs_put_page(npage[0], 0);
872 release_out:
873 dn->inode_page = NULL;
874 dn->node_page = NULL;
875 if (err == -ENOENT) {
876 dn->cur_level = i;
877 dn->max_level = level;
878 dn->ofs_in_node = offset[level];
879 }
880 return err;
881 }
882
883 static int truncate_node(struct dnode_of_data *dn)
884 {
885 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
886 struct node_info ni;
887 int err;
888 pgoff_t index;
889
890 err = f2fs_get_node_info(sbi, dn->nid, &ni);
891 if (err)
892 return err;
893
894 /* Deallocate node address */
895 f2fs_invalidate_blocks(sbi, ni.blk_addr);
896 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
897 set_node_addr(sbi, &ni, NULL_ADDR, false);
898
899 if (dn->nid == dn->inode->i_ino) {
900 f2fs_remove_orphan_inode(sbi, dn->nid);
901 dec_valid_inode_count(sbi);
902 f2fs_inode_synced(dn->inode);
903 }
904
905 clear_node_page_dirty(dn->node_page);
906 set_sbi_flag(sbi, SBI_IS_DIRTY);
907
908 index = dn->node_page->index;
909 f2fs_put_page(dn->node_page, 1);
910
911 invalidate_mapping_pages(NODE_MAPPING(sbi),
912 index, index);
913
914 dn->node_page = NULL;
915 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
916
917 return 0;
918 }
919
920 static int truncate_dnode(struct dnode_of_data *dn)
921 {
922 struct page *page;
923 int err;
924
925 if (dn->nid == 0)
926 return 1;
927
928 /* get direct node */
929 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
930 if (PTR_ERR(page) == -ENOENT)
931 return 1;
932 else if (IS_ERR(page))
933 return PTR_ERR(page);
934
935 /* Make dnode_of_data for parameter */
936 dn->node_page = page;
937 dn->ofs_in_node = 0;
938 f2fs_truncate_data_blocks(dn);
939 err = truncate_node(dn);
940 if (err)
941 return err;
942
943 return 1;
944 }
945
946 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
947 int ofs, int depth)
948 {
949 struct dnode_of_data rdn = *dn;
950 struct page *page;
951 struct f2fs_node *rn;
952 nid_t child_nid;
953 unsigned int child_nofs;
954 int freed = 0;
955 int i, ret;
956
957 if (dn->nid == 0)
958 return NIDS_PER_BLOCK + 1;
959
960 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
961
962 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
963 if (IS_ERR(page)) {
964 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
965 return PTR_ERR(page);
966 }
967
968 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
969
970 rn = F2FS_NODE(page);
971 if (depth < 3) {
972 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
973 child_nid = le32_to_cpu(rn->in.nid[i]);
974 if (child_nid == 0)
975 continue;
976 rdn.nid = child_nid;
977 ret = truncate_dnode(&rdn);
978 if (ret < 0)
979 goto out_err;
980 if (set_nid(page, i, 0, false))
981 dn->node_changed = true;
982 }
983 } else {
984 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
985 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
986 child_nid = le32_to_cpu(rn->in.nid[i]);
987 if (child_nid == 0) {
988 child_nofs += NIDS_PER_BLOCK + 1;
989 continue;
990 }
991 rdn.nid = child_nid;
992 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
993 if (ret == (NIDS_PER_BLOCK + 1)) {
994 if (set_nid(page, i, 0, false))
995 dn->node_changed = true;
996 child_nofs += ret;
997 } else if (ret < 0 && ret != -ENOENT) {
998 goto out_err;
999 }
1000 }
1001 freed = child_nofs;
1002 }
1003
1004 if (!ofs) {
1005 /* remove current indirect node */
1006 dn->node_page = page;
1007 ret = truncate_node(dn);
1008 if (ret)
1009 goto out_err;
1010 freed++;
1011 } else {
1012 f2fs_put_page(page, 1);
1013 }
1014 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1015 return freed;
1016
1017 out_err:
1018 f2fs_put_page(page, 1);
1019 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1020 return ret;
1021 }
1022
1023 static int truncate_partial_nodes(struct dnode_of_data *dn,
1024 struct f2fs_inode *ri, int *offset, int depth)
1025 {
1026 struct page *pages[2];
1027 nid_t nid[3];
1028 nid_t child_nid;
1029 int err = 0;
1030 int i;
1031 int idx = depth - 2;
1032
1033 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1034 if (!nid[0])
1035 return 0;
1036
1037 /* get indirect nodes in the path */
1038 for (i = 0; i < idx + 1; i++) {
1039 /* reference count'll be increased */
1040 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1041 if (IS_ERR(pages[i])) {
1042 err = PTR_ERR(pages[i]);
1043 idx = i - 1;
1044 goto fail;
1045 }
1046 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1047 }
1048
1049 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1050
1051 /* free direct nodes linked to a partial indirect node */
1052 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1053 child_nid = get_nid(pages[idx], i, false);
1054 if (!child_nid)
1055 continue;
1056 dn->nid = child_nid;
1057 err = truncate_dnode(dn);
1058 if (err < 0)
1059 goto fail;
1060 if (set_nid(pages[idx], i, 0, false))
1061 dn->node_changed = true;
1062 }
1063
1064 if (offset[idx + 1] == 0) {
1065 dn->node_page = pages[idx];
1066 dn->nid = nid[idx];
1067 err = truncate_node(dn);
1068 if (err)
1069 goto fail;
1070 } else {
1071 f2fs_put_page(pages[idx], 1);
1072 }
1073 offset[idx]++;
1074 offset[idx + 1] = 0;
1075 idx--;
1076 fail:
1077 for (i = idx; i >= 0; i--)
1078 f2fs_put_page(pages[i], 1);
1079
1080 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1081
1082 return err;
1083 }
1084
1085 /*
1086 * All the block addresses of data and nodes should be nullified.
1087 */
1088 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1089 {
1090 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1091 int err = 0, cont = 1;
1092 int level, offset[4], noffset[4];
1093 unsigned int nofs = 0;
1094 struct f2fs_inode *ri;
1095 struct dnode_of_data dn;
1096 struct page *page;
1097
1098 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1099
1100 level = get_node_path(inode, from, offset, noffset);
1101 if (level < 0) {
1102 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1103 return level;
1104 }
1105
1106 page = f2fs_get_node_page(sbi, inode->i_ino);
1107 if (IS_ERR(page)) {
1108 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1109 return PTR_ERR(page);
1110 }
1111
1112 set_new_dnode(&dn, inode, page, NULL, 0);
1113 unlock_page(page);
1114
1115 ri = F2FS_INODE(page);
1116 switch (level) {
1117 case 0:
1118 case 1:
1119 nofs = noffset[1];
1120 break;
1121 case 2:
1122 nofs = noffset[1];
1123 if (!offset[level - 1])
1124 goto skip_partial;
1125 err = truncate_partial_nodes(&dn, ri, offset, level);
1126 if (err < 0 && err != -ENOENT)
1127 goto fail;
1128 nofs += 1 + NIDS_PER_BLOCK;
1129 break;
1130 case 3:
1131 nofs = 5 + 2 * NIDS_PER_BLOCK;
1132 if (!offset[level - 1])
1133 goto skip_partial;
1134 err = truncate_partial_nodes(&dn, ri, offset, level);
1135 if (err < 0 && err != -ENOENT)
1136 goto fail;
1137 break;
1138 default:
1139 BUG();
1140 }
1141
1142 skip_partial:
1143 while (cont) {
1144 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1145 switch (offset[0]) {
1146 case NODE_DIR1_BLOCK:
1147 case NODE_DIR2_BLOCK:
1148 err = truncate_dnode(&dn);
1149 break;
1150
1151 case NODE_IND1_BLOCK:
1152 case NODE_IND2_BLOCK:
1153 err = truncate_nodes(&dn, nofs, offset[1], 2);
1154 break;
1155
1156 case NODE_DIND_BLOCK:
1157 err = truncate_nodes(&dn, nofs, offset[1], 3);
1158 cont = 0;
1159 break;
1160
1161 default:
1162 BUG();
1163 }
1164 if (err < 0 && err != -ENOENT)
1165 goto fail;
1166 if (offset[1] == 0 &&
1167 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1168 lock_page(page);
1169 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1170 f2fs_wait_on_page_writeback(page, NODE, true, true);
1171 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1172 set_page_dirty(page);
1173 unlock_page(page);
1174 }
1175 offset[1] = 0;
1176 offset[0]++;
1177 nofs += err;
1178 }
1179 fail:
1180 f2fs_put_page(page, 0);
1181 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1182 return err > 0 ? 0 : err;
1183 }
1184
1185 /* caller must lock inode page */
1186 int f2fs_truncate_xattr_node(struct inode *inode)
1187 {
1188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1190 struct dnode_of_data dn;
1191 struct page *npage;
1192 int err;
1193
1194 if (!nid)
1195 return 0;
1196
1197 npage = f2fs_get_node_page(sbi, nid);
1198 if (IS_ERR(npage))
1199 return PTR_ERR(npage);
1200
1201 set_new_dnode(&dn, inode, NULL, npage, nid);
1202 err = truncate_node(&dn);
1203 if (err) {
1204 f2fs_put_page(npage, 1);
1205 return err;
1206 }
1207
1208 f2fs_i_xnid_write(inode, 0);
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1215 * f2fs_unlock_op().
1216 */
1217 int f2fs_remove_inode_page(struct inode *inode)
1218 {
1219 struct dnode_of_data dn;
1220 int err;
1221
1222 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1223 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1224 if (err)
1225 return err;
1226
1227 err = f2fs_truncate_xattr_node(inode);
1228 if (err) {
1229 f2fs_put_dnode(&dn);
1230 return err;
1231 }
1232
1233 /* remove potential inline_data blocks */
1234 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1235 S_ISLNK(inode->i_mode))
1236 f2fs_truncate_data_blocks_range(&dn, 1);
1237
1238 /* 0 is possible, after f2fs_new_inode() has failed */
1239 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1240 f2fs_put_dnode(&dn);
1241 return -EIO;
1242 }
1243
1244 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1245 f2fs_warn(F2FS_I_SB(inode),
1246 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1247 inode->i_ino, (unsigned long long)inode->i_blocks);
1248 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1249 }
1250
1251 /* will put inode & node pages */
1252 err = truncate_node(&dn);
1253 if (err) {
1254 f2fs_put_dnode(&dn);
1255 return err;
1256 }
1257 return 0;
1258 }
1259
1260 struct page *f2fs_new_inode_page(struct inode *inode)
1261 {
1262 struct dnode_of_data dn;
1263
1264 /* allocate inode page for new inode */
1265 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1266
1267 /* caller should f2fs_put_page(page, 1); */
1268 return f2fs_new_node_page(&dn, 0);
1269 }
1270
1271 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1272 {
1273 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1274 struct node_info new_ni;
1275 struct page *page;
1276 int err;
1277
1278 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1279 return ERR_PTR(-EPERM);
1280
1281 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1282 if (!page)
1283 return ERR_PTR(-ENOMEM);
1284
1285 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1286 goto fail;
1287
1288 #ifdef CONFIG_F2FS_CHECK_FS
1289 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1290 if (err) {
1291 dec_valid_node_count(sbi, dn->inode, !ofs);
1292 goto fail;
1293 }
1294 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1295 #endif
1296 new_ni.nid = dn->nid;
1297 new_ni.ino = dn->inode->i_ino;
1298 new_ni.blk_addr = NULL_ADDR;
1299 new_ni.flag = 0;
1300 new_ni.version = 0;
1301 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1302
1303 f2fs_wait_on_page_writeback(page, NODE, true, true);
1304 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1305 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1306 if (!PageUptodate(page))
1307 SetPageUptodate(page);
1308 if (set_page_dirty(page))
1309 dn->node_changed = true;
1310
1311 if (f2fs_has_xattr_block(ofs))
1312 f2fs_i_xnid_write(dn->inode, dn->nid);
1313
1314 if (ofs == 0)
1315 inc_valid_inode_count(sbi);
1316 return page;
1317
1318 fail:
1319 clear_node_page_dirty(page);
1320 f2fs_put_page(page, 1);
1321 return ERR_PTR(err);
1322 }
1323
1324 /*
1325 * Caller should do after getting the following values.
1326 * 0: f2fs_put_page(page, 0)
1327 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1328 */
1329 static int read_node_page(struct page *page, int op_flags)
1330 {
1331 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1332 struct node_info ni;
1333 struct f2fs_io_info fio = {
1334 .sbi = sbi,
1335 .type = NODE,
1336 .op = REQ_OP_READ,
1337 .op_flags = op_flags,
1338 .page = page,
1339 .encrypted_page = NULL,
1340 };
1341 int err;
1342
1343 if (PageUptodate(page)) {
1344 if (!f2fs_inode_chksum_verify(sbi, page)) {
1345 ClearPageUptodate(page);
1346 return -EFSBADCRC;
1347 }
1348 return LOCKED_PAGE;
1349 }
1350
1351 err = f2fs_get_node_info(sbi, page->index, &ni);
1352 if (err)
1353 return err;
1354
1355 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1356 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1357 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1358 ClearPageUptodate(page);
1359 return -ENOENT;
1360 }
1361
1362 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1363
1364 err = f2fs_submit_page_bio(&fio);
1365
1366 if (!err)
1367 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1368
1369 return err;
1370 }
1371
1372 /*
1373 * Readahead a node page
1374 */
1375 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1376 {
1377 struct page *apage;
1378 int err;
1379
1380 if (!nid)
1381 return;
1382 if (f2fs_check_nid_range(sbi, nid))
1383 return;
1384
1385 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1386 if (apage)
1387 return;
1388
1389 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1390 if (!apage)
1391 return;
1392
1393 err = read_node_page(apage, REQ_RAHEAD);
1394 f2fs_put_page(apage, err ? 1 : 0);
1395 }
1396
1397 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1398 struct page *parent, int start)
1399 {
1400 struct page *page;
1401 int err;
1402
1403 if (!nid)
1404 return ERR_PTR(-ENOENT);
1405 if (f2fs_check_nid_range(sbi, nid))
1406 return ERR_PTR(-EINVAL);
1407 repeat:
1408 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1409 if (!page)
1410 return ERR_PTR(-ENOMEM);
1411
1412 err = read_node_page(page, 0);
1413 if (err < 0) {
1414 f2fs_put_page(page, 1);
1415 return ERR_PTR(err);
1416 } else if (err == LOCKED_PAGE) {
1417 err = 0;
1418 goto page_hit;
1419 }
1420
1421 if (parent)
1422 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1423
1424 lock_page(page);
1425
1426 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1427 f2fs_put_page(page, 1);
1428 goto repeat;
1429 }
1430
1431 if (unlikely(!PageUptodate(page))) {
1432 err = -EIO;
1433 goto out_err;
1434 }
1435
1436 if (!f2fs_inode_chksum_verify(sbi, page)) {
1437 err = -EFSBADCRC;
1438 goto out_err;
1439 }
1440 page_hit:
1441 if (unlikely(nid != nid_of_node(page))) {
1442 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1443 nid, nid_of_node(page), ino_of_node(page),
1444 ofs_of_node(page), cpver_of_node(page),
1445 next_blkaddr_of_node(page));
1446 err = -EINVAL;
1447 out_err:
1448 ClearPageUptodate(page);
1449 f2fs_put_page(page, 1);
1450 return ERR_PTR(err);
1451 }
1452 return page;
1453 }
1454
1455 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1456 {
1457 return __get_node_page(sbi, nid, NULL, 0);
1458 }
1459
1460 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1461 {
1462 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1463 nid_t nid = get_nid(parent, start, false);
1464
1465 return __get_node_page(sbi, nid, parent, start);
1466 }
1467
1468 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1469 {
1470 struct inode *inode;
1471 struct page *page;
1472 int ret;
1473
1474 /* should flush inline_data before evict_inode */
1475 inode = ilookup(sbi->sb, ino);
1476 if (!inode)
1477 return;
1478
1479 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1480 FGP_LOCK|FGP_NOWAIT, 0);
1481 if (!page)
1482 goto iput_out;
1483
1484 if (!PageUptodate(page))
1485 goto page_out;
1486
1487 if (!PageDirty(page))
1488 goto page_out;
1489
1490 if (!clear_page_dirty_for_io(page))
1491 goto page_out;
1492
1493 ret = f2fs_write_inline_data(inode, page);
1494 inode_dec_dirty_pages(inode);
1495 f2fs_remove_dirty_inode(inode);
1496 if (ret)
1497 set_page_dirty(page);
1498 page_out:
1499 f2fs_put_page(page, 1);
1500 iput_out:
1501 iput(inode);
1502 }
1503
1504 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1505 {
1506 pgoff_t index;
1507 struct pagevec pvec;
1508 struct page *last_page = NULL;
1509 int nr_pages;
1510
1511 pagevec_init(&pvec);
1512 index = 0;
1513
1514 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1515 PAGECACHE_TAG_DIRTY))) {
1516 int i;
1517
1518 for (i = 0; i < nr_pages; i++) {
1519 struct page *page = pvec.pages[i];
1520
1521 if (unlikely(f2fs_cp_error(sbi))) {
1522 f2fs_put_page(last_page, 0);
1523 pagevec_release(&pvec);
1524 return ERR_PTR(-EIO);
1525 }
1526
1527 if (!IS_DNODE(page) || !is_cold_node(page))
1528 continue;
1529 if (ino_of_node(page) != ino)
1530 continue;
1531
1532 lock_page(page);
1533
1534 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1535 continue_unlock:
1536 unlock_page(page);
1537 continue;
1538 }
1539 if (ino_of_node(page) != ino)
1540 goto continue_unlock;
1541
1542 if (!PageDirty(page)) {
1543 /* someone wrote it for us */
1544 goto continue_unlock;
1545 }
1546
1547 if (last_page)
1548 f2fs_put_page(last_page, 0);
1549
1550 get_page(page);
1551 last_page = page;
1552 unlock_page(page);
1553 }
1554 pagevec_release(&pvec);
1555 cond_resched();
1556 }
1557 return last_page;
1558 }
1559
1560 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1561 struct writeback_control *wbc, bool do_balance,
1562 enum iostat_type io_type, unsigned int *seq_id)
1563 {
1564 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1565 nid_t nid;
1566 struct node_info ni;
1567 struct f2fs_io_info fio = {
1568 .sbi = sbi,
1569 .ino = ino_of_node(page),
1570 .type = NODE,
1571 .op = REQ_OP_WRITE,
1572 .op_flags = wbc_to_write_flags(wbc),
1573 .page = page,
1574 .encrypted_page = NULL,
1575 .submitted = false,
1576 .io_type = io_type,
1577 .io_wbc = wbc,
1578 };
1579 unsigned int seq;
1580
1581 trace_f2fs_writepage(page, NODE);
1582
1583 if (unlikely(f2fs_cp_error(sbi))) {
1584 ClearPageUptodate(page);
1585 dec_page_count(sbi, F2FS_DIRTY_NODES);
1586 unlock_page(page);
1587 return 0;
1588 }
1589
1590 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1591 goto redirty_out;
1592
1593 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1594 wbc->sync_mode == WB_SYNC_NONE &&
1595 IS_DNODE(page) && is_cold_node(page))
1596 goto redirty_out;
1597
1598 /* get old block addr of this node page */
1599 nid = nid_of_node(page);
1600 f2fs_bug_on(sbi, page->index != nid);
1601
1602 if (f2fs_get_node_info(sbi, nid, &ni))
1603 goto redirty_out;
1604
1605 if (wbc->for_reclaim) {
1606 if (!down_read_trylock(&sbi->node_write))
1607 goto redirty_out;
1608 } else {
1609 down_read(&sbi->node_write);
1610 }
1611
1612 /* This page is already truncated */
1613 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1614 ClearPageUptodate(page);
1615 dec_page_count(sbi, F2FS_DIRTY_NODES);
1616 up_read(&sbi->node_write);
1617 unlock_page(page);
1618 return 0;
1619 }
1620
1621 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1622 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1623 DATA_GENERIC_ENHANCE)) {
1624 up_read(&sbi->node_write);
1625 goto redirty_out;
1626 }
1627
1628 if (atomic && !test_opt(sbi, NOBARRIER))
1629 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1630
1631 /* should add to global list before clearing PAGECACHE status */
1632 if (f2fs_in_warm_node_list(sbi, page)) {
1633 seq = f2fs_add_fsync_node_entry(sbi, page);
1634 if (seq_id)
1635 *seq_id = seq;
1636 }
1637
1638 set_page_writeback(page);
1639 ClearPageError(page);
1640
1641 fio.old_blkaddr = ni.blk_addr;
1642 f2fs_do_write_node_page(nid, &fio);
1643 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1644 dec_page_count(sbi, F2FS_DIRTY_NODES);
1645 up_read(&sbi->node_write);
1646
1647 if (wbc->for_reclaim) {
1648 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1649 submitted = NULL;
1650 }
1651
1652 unlock_page(page);
1653
1654 if (unlikely(f2fs_cp_error(sbi))) {
1655 f2fs_submit_merged_write(sbi, NODE);
1656 submitted = NULL;
1657 }
1658 if (submitted)
1659 *submitted = fio.submitted;
1660
1661 if (do_balance)
1662 f2fs_balance_fs(sbi, false);
1663 return 0;
1664
1665 redirty_out:
1666 redirty_page_for_writepage(wbc, page);
1667 return AOP_WRITEPAGE_ACTIVATE;
1668 }
1669
1670 int f2fs_move_node_page(struct page *node_page, int gc_type)
1671 {
1672 int err = 0;
1673
1674 if (gc_type == FG_GC) {
1675 struct writeback_control wbc = {
1676 .sync_mode = WB_SYNC_ALL,
1677 .nr_to_write = 1,
1678 .for_reclaim = 0,
1679 };
1680
1681 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1682
1683 set_page_dirty(node_page);
1684
1685 if (!clear_page_dirty_for_io(node_page)) {
1686 err = -EAGAIN;
1687 goto out_page;
1688 }
1689
1690 if (__write_node_page(node_page, false, NULL,
1691 &wbc, false, FS_GC_NODE_IO, NULL)) {
1692 err = -EAGAIN;
1693 unlock_page(node_page);
1694 }
1695 goto release_page;
1696 } else {
1697 /* set page dirty and write it */
1698 if (!PageWriteback(node_page))
1699 set_page_dirty(node_page);
1700 }
1701 out_page:
1702 unlock_page(node_page);
1703 release_page:
1704 f2fs_put_page(node_page, 0);
1705 return err;
1706 }
1707
1708 static int f2fs_write_node_page(struct page *page,
1709 struct writeback_control *wbc)
1710 {
1711 return __write_node_page(page, false, NULL, wbc, false,
1712 FS_NODE_IO, NULL);
1713 }
1714
1715 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1716 struct writeback_control *wbc, bool atomic,
1717 unsigned int *seq_id)
1718 {
1719 pgoff_t index;
1720 struct pagevec pvec;
1721 int ret = 0;
1722 struct page *last_page = NULL;
1723 bool marked = false;
1724 nid_t ino = inode->i_ino;
1725 int nr_pages;
1726 int nwritten = 0;
1727
1728 if (atomic) {
1729 last_page = last_fsync_dnode(sbi, ino);
1730 if (IS_ERR_OR_NULL(last_page))
1731 return PTR_ERR_OR_ZERO(last_page);
1732 }
1733 retry:
1734 pagevec_init(&pvec);
1735 index = 0;
1736
1737 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1738 PAGECACHE_TAG_DIRTY))) {
1739 int i;
1740
1741 for (i = 0; i < nr_pages; i++) {
1742 struct page *page = pvec.pages[i];
1743 bool submitted = false;
1744
1745 if (unlikely(f2fs_cp_error(sbi))) {
1746 f2fs_put_page(last_page, 0);
1747 pagevec_release(&pvec);
1748 ret = -EIO;
1749 goto out;
1750 }
1751
1752 if (!IS_DNODE(page) || !is_cold_node(page))
1753 continue;
1754 if (ino_of_node(page) != ino)
1755 continue;
1756
1757 lock_page(page);
1758
1759 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1760 continue_unlock:
1761 unlock_page(page);
1762 continue;
1763 }
1764 if (ino_of_node(page) != ino)
1765 goto continue_unlock;
1766
1767 if (!PageDirty(page) && page != last_page) {
1768 /* someone wrote it for us */
1769 goto continue_unlock;
1770 }
1771
1772 f2fs_wait_on_page_writeback(page, NODE, true, true);
1773
1774 set_fsync_mark(page, 0);
1775 set_dentry_mark(page, 0);
1776
1777 if (!atomic || page == last_page) {
1778 set_fsync_mark(page, 1);
1779 if (IS_INODE(page)) {
1780 if (is_inode_flag_set(inode,
1781 FI_DIRTY_INODE))
1782 f2fs_update_inode(inode, page);
1783 set_dentry_mark(page,
1784 f2fs_need_dentry_mark(sbi, ino));
1785 }
1786 /* may be written by other thread */
1787 if (!PageDirty(page))
1788 set_page_dirty(page);
1789 }
1790
1791 if (!clear_page_dirty_for_io(page))
1792 goto continue_unlock;
1793
1794 ret = __write_node_page(page, atomic &&
1795 page == last_page,
1796 &submitted, wbc, true,
1797 FS_NODE_IO, seq_id);
1798 if (ret) {
1799 unlock_page(page);
1800 f2fs_put_page(last_page, 0);
1801 break;
1802 } else if (submitted) {
1803 nwritten++;
1804 }
1805
1806 if (page == last_page) {
1807 f2fs_put_page(page, 0);
1808 marked = true;
1809 break;
1810 }
1811 }
1812 pagevec_release(&pvec);
1813 cond_resched();
1814
1815 if (ret || marked)
1816 break;
1817 }
1818 if (!ret && atomic && !marked) {
1819 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1820 ino, last_page->index);
1821 lock_page(last_page);
1822 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1823 set_page_dirty(last_page);
1824 unlock_page(last_page);
1825 goto retry;
1826 }
1827 out:
1828 if (nwritten)
1829 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1830 return ret ? -EIO : 0;
1831 }
1832
1833 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1834 {
1835 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1836 bool clean;
1837
1838 if (inode->i_ino != ino)
1839 return 0;
1840
1841 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1842 return 0;
1843
1844 spin_lock(&sbi->inode_lock[DIRTY_META]);
1845 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1846 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1847
1848 if (clean)
1849 return 0;
1850
1851 inode = igrab(inode);
1852 if (!inode)
1853 return 0;
1854 return 1;
1855 }
1856
1857 static bool flush_dirty_inode(struct page *page)
1858 {
1859 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1860 struct inode *inode;
1861 nid_t ino = ino_of_node(page);
1862
1863 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1864 if (!inode)
1865 return false;
1866
1867 f2fs_update_inode(inode, page);
1868 unlock_page(page);
1869
1870 iput(inode);
1871 return true;
1872 }
1873
1874 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1875 {
1876 pgoff_t index = 0;
1877 struct pagevec pvec;
1878 int nr_pages;
1879
1880 pagevec_init(&pvec);
1881
1882 while ((nr_pages = pagevec_lookup_tag(&pvec,
1883 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1884 int i;
1885
1886 for (i = 0; i < nr_pages; i++) {
1887 struct page *page = pvec.pages[i];
1888
1889 if (!IS_DNODE(page))
1890 continue;
1891
1892 lock_page(page);
1893
1894 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1895 continue_unlock:
1896 unlock_page(page);
1897 continue;
1898 }
1899
1900 if (!PageDirty(page)) {
1901 /* someone wrote it for us */
1902 goto continue_unlock;
1903 }
1904
1905 /* flush inline_data, if it's async context. */
1906 if (page_private_inline(page)) {
1907 clear_page_private_inline(page);
1908 unlock_page(page);
1909 flush_inline_data(sbi, ino_of_node(page));
1910 continue;
1911 }
1912 unlock_page(page);
1913 }
1914 pagevec_release(&pvec);
1915 cond_resched();
1916 }
1917 }
1918
1919 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1920 struct writeback_control *wbc,
1921 bool do_balance, enum iostat_type io_type)
1922 {
1923 pgoff_t index;
1924 struct pagevec pvec;
1925 int step = 0;
1926 int nwritten = 0;
1927 int ret = 0;
1928 int nr_pages, done = 0;
1929
1930 pagevec_init(&pvec);
1931
1932 next_step:
1933 index = 0;
1934
1935 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1936 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1937 int i;
1938
1939 for (i = 0; i < nr_pages; i++) {
1940 struct page *page = pvec.pages[i];
1941 bool submitted = false;
1942 bool may_dirty = true;
1943
1944 /* give a priority to WB_SYNC threads */
1945 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1946 wbc->sync_mode == WB_SYNC_NONE) {
1947 done = 1;
1948 break;
1949 }
1950
1951 /*
1952 * flushing sequence with step:
1953 * 0. indirect nodes
1954 * 1. dentry dnodes
1955 * 2. file dnodes
1956 */
1957 if (step == 0 && IS_DNODE(page))
1958 continue;
1959 if (step == 1 && (!IS_DNODE(page) ||
1960 is_cold_node(page)))
1961 continue;
1962 if (step == 2 && (!IS_DNODE(page) ||
1963 !is_cold_node(page)))
1964 continue;
1965 lock_node:
1966 if (wbc->sync_mode == WB_SYNC_ALL)
1967 lock_page(page);
1968 else if (!trylock_page(page))
1969 continue;
1970
1971 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1972 continue_unlock:
1973 unlock_page(page);
1974 continue;
1975 }
1976
1977 if (!PageDirty(page)) {
1978 /* someone wrote it for us */
1979 goto continue_unlock;
1980 }
1981
1982 /* flush inline_data/inode, if it's async context. */
1983 if (!do_balance)
1984 goto write_node;
1985
1986 /* flush inline_data */
1987 if (page_private_inline(page)) {
1988 clear_page_private_inline(page);
1989 unlock_page(page);
1990 flush_inline_data(sbi, ino_of_node(page));
1991 goto lock_node;
1992 }
1993
1994 /* flush dirty inode */
1995 if (IS_INODE(page) && may_dirty) {
1996 may_dirty = false;
1997 if (flush_dirty_inode(page))
1998 goto lock_node;
1999 }
2000 write_node:
2001 f2fs_wait_on_page_writeback(page, NODE, true, true);
2002
2003 if (!clear_page_dirty_for_io(page))
2004 goto continue_unlock;
2005
2006 set_fsync_mark(page, 0);
2007 set_dentry_mark(page, 0);
2008
2009 ret = __write_node_page(page, false, &submitted,
2010 wbc, do_balance, io_type, NULL);
2011 if (ret)
2012 unlock_page(page);
2013 else if (submitted)
2014 nwritten++;
2015
2016 if (--wbc->nr_to_write == 0)
2017 break;
2018 }
2019 pagevec_release(&pvec);
2020 cond_resched();
2021
2022 if (wbc->nr_to_write == 0) {
2023 step = 2;
2024 break;
2025 }
2026 }
2027
2028 if (step < 2) {
2029 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2030 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2031 goto out;
2032 step++;
2033 goto next_step;
2034 }
2035 out:
2036 if (nwritten)
2037 f2fs_submit_merged_write(sbi, NODE);
2038
2039 if (unlikely(f2fs_cp_error(sbi)))
2040 return -EIO;
2041 return ret;
2042 }
2043
2044 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2045 unsigned int seq_id)
2046 {
2047 struct fsync_node_entry *fn;
2048 struct page *page;
2049 struct list_head *head = &sbi->fsync_node_list;
2050 unsigned long flags;
2051 unsigned int cur_seq_id = 0;
2052 int ret2, ret = 0;
2053
2054 while (seq_id && cur_seq_id < seq_id) {
2055 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2056 if (list_empty(head)) {
2057 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2058 break;
2059 }
2060 fn = list_first_entry(head, struct fsync_node_entry, list);
2061 if (fn->seq_id > seq_id) {
2062 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2063 break;
2064 }
2065 cur_seq_id = fn->seq_id;
2066 page = fn->page;
2067 get_page(page);
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069
2070 f2fs_wait_on_page_writeback(page, NODE, true, false);
2071 if (TestClearPageError(page))
2072 ret = -EIO;
2073
2074 put_page(page);
2075
2076 if (ret)
2077 break;
2078 }
2079
2080 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2081 if (!ret)
2082 ret = ret2;
2083
2084 return ret;
2085 }
2086
2087 static int f2fs_write_node_pages(struct address_space *mapping,
2088 struct writeback_control *wbc)
2089 {
2090 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2091 struct blk_plug plug;
2092 long diff;
2093
2094 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2095 goto skip_write;
2096
2097 /* balancing f2fs's metadata in background */
2098 f2fs_balance_fs_bg(sbi, true);
2099
2100 /* collect a number of dirty node pages and write together */
2101 if (wbc->sync_mode != WB_SYNC_ALL &&
2102 get_pages(sbi, F2FS_DIRTY_NODES) <
2103 nr_pages_to_skip(sbi, NODE))
2104 goto skip_write;
2105
2106 if (wbc->sync_mode == WB_SYNC_ALL)
2107 atomic_inc(&sbi->wb_sync_req[NODE]);
2108 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2109 goto skip_write;
2110
2111 trace_f2fs_writepages(mapping->host, wbc, NODE);
2112
2113 diff = nr_pages_to_write(sbi, NODE, wbc);
2114 blk_start_plug(&plug);
2115 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2116 blk_finish_plug(&plug);
2117 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2118
2119 if (wbc->sync_mode == WB_SYNC_ALL)
2120 atomic_dec(&sbi->wb_sync_req[NODE]);
2121 return 0;
2122
2123 skip_write:
2124 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2125 trace_f2fs_writepages(mapping->host, wbc, NODE);
2126 return 0;
2127 }
2128
2129 static int f2fs_set_node_page_dirty(struct page *page)
2130 {
2131 trace_f2fs_set_page_dirty(page, NODE);
2132
2133 if (!PageUptodate(page))
2134 SetPageUptodate(page);
2135 #ifdef CONFIG_F2FS_CHECK_FS
2136 if (IS_INODE(page))
2137 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2138 #endif
2139 if (!PageDirty(page)) {
2140 __set_page_dirty_nobuffers(page);
2141 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2142 set_page_private_reference(page);
2143 return 1;
2144 }
2145 return 0;
2146 }
2147
2148 /*
2149 * Structure of the f2fs node operations
2150 */
2151 const struct address_space_operations f2fs_node_aops = {
2152 .writepage = f2fs_write_node_page,
2153 .writepages = f2fs_write_node_pages,
2154 .set_page_dirty = f2fs_set_node_page_dirty,
2155 .invalidatepage = f2fs_invalidate_page,
2156 .releasepage = f2fs_release_page,
2157 #ifdef CONFIG_MIGRATION
2158 .migratepage = f2fs_migrate_page,
2159 #endif
2160 };
2161
2162 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2163 nid_t n)
2164 {
2165 return radix_tree_lookup(&nm_i->free_nid_root, n);
2166 }
2167
2168 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2169 struct free_nid *i)
2170 {
2171 struct f2fs_nm_info *nm_i = NM_I(sbi);
2172 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2173
2174 if (err)
2175 return err;
2176
2177 nm_i->nid_cnt[FREE_NID]++;
2178 list_add_tail(&i->list, &nm_i->free_nid_list);
2179 return 0;
2180 }
2181
2182 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2183 struct free_nid *i, enum nid_state state)
2184 {
2185 struct f2fs_nm_info *nm_i = NM_I(sbi);
2186
2187 f2fs_bug_on(sbi, state != i->state);
2188 nm_i->nid_cnt[state]--;
2189 if (state == FREE_NID)
2190 list_del(&i->list);
2191 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2192 }
2193
2194 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2195 enum nid_state org_state, enum nid_state dst_state)
2196 {
2197 struct f2fs_nm_info *nm_i = NM_I(sbi);
2198
2199 f2fs_bug_on(sbi, org_state != i->state);
2200 i->state = dst_state;
2201 nm_i->nid_cnt[org_state]--;
2202 nm_i->nid_cnt[dst_state]++;
2203
2204 switch (dst_state) {
2205 case PREALLOC_NID:
2206 list_del(&i->list);
2207 break;
2208 case FREE_NID:
2209 list_add_tail(&i->list, &nm_i->free_nid_list);
2210 break;
2211 default:
2212 BUG_ON(1);
2213 }
2214 }
2215
2216 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2217 {
2218 struct f2fs_nm_info *nm_i = NM_I(sbi);
2219 unsigned int i;
2220 bool ret = true;
2221
2222 down_read(&nm_i->nat_tree_lock);
2223 for (i = 0; i < nm_i->nat_blocks; i++) {
2224 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2225 ret = false;
2226 break;
2227 }
2228 }
2229 up_read(&nm_i->nat_tree_lock);
2230
2231 return ret;
2232 }
2233
2234 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2235 bool set, bool build)
2236 {
2237 struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2239 unsigned int nid_ofs = nid - START_NID(nid);
2240
2241 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2242 return;
2243
2244 if (set) {
2245 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2246 return;
2247 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2248 nm_i->free_nid_count[nat_ofs]++;
2249 } else {
2250 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2251 return;
2252 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2253 if (!build)
2254 nm_i->free_nid_count[nat_ofs]--;
2255 }
2256 }
2257
2258 /* return if the nid is recognized as free */
2259 static bool add_free_nid(struct f2fs_sb_info *sbi,
2260 nid_t nid, bool build, bool update)
2261 {
2262 struct f2fs_nm_info *nm_i = NM_I(sbi);
2263 struct free_nid *i, *e;
2264 struct nat_entry *ne;
2265 int err = -EINVAL;
2266 bool ret = false;
2267
2268 /* 0 nid should not be used */
2269 if (unlikely(nid == 0))
2270 return false;
2271
2272 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2273 return false;
2274
2275 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2276 i->nid = nid;
2277 i->state = FREE_NID;
2278
2279 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2280
2281 spin_lock(&nm_i->nid_list_lock);
2282
2283 if (build) {
2284 /*
2285 * Thread A Thread B
2286 * - f2fs_create
2287 * - f2fs_new_inode
2288 * - f2fs_alloc_nid
2289 * - __insert_nid_to_list(PREALLOC_NID)
2290 * - f2fs_balance_fs_bg
2291 * - f2fs_build_free_nids
2292 * - __f2fs_build_free_nids
2293 * - scan_nat_page
2294 * - add_free_nid
2295 * - __lookup_nat_cache
2296 * - f2fs_add_link
2297 * - f2fs_init_inode_metadata
2298 * - f2fs_new_inode_page
2299 * - f2fs_new_node_page
2300 * - set_node_addr
2301 * - f2fs_alloc_nid_done
2302 * - __remove_nid_from_list(PREALLOC_NID)
2303 * - __insert_nid_to_list(FREE_NID)
2304 */
2305 ne = __lookup_nat_cache(nm_i, nid);
2306 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2307 nat_get_blkaddr(ne) != NULL_ADDR))
2308 goto err_out;
2309
2310 e = __lookup_free_nid_list(nm_i, nid);
2311 if (e) {
2312 if (e->state == FREE_NID)
2313 ret = true;
2314 goto err_out;
2315 }
2316 }
2317 ret = true;
2318 err = __insert_free_nid(sbi, i);
2319 err_out:
2320 if (update) {
2321 update_free_nid_bitmap(sbi, nid, ret, build);
2322 if (!build)
2323 nm_i->available_nids++;
2324 }
2325 spin_unlock(&nm_i->nid_list_lock);
2326 radix_tree_preload_end();
2327
2328 if (err)
2329 kmem_cache_free(free_nid_slab, i);
2330 return ret;
2331 }
2332
2333 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2334 {
2335 struct f2fs_nm_info *nm_i = NM_I(sbi);
2336 struct free_nid *i;
2337 bool need_free = false;
2338
2339 spin_lock(&nm_i->nid_list_lock);
2340 i = __lookup_free_nid_list(nm_i, nid);
2341 if (i && i->state == FREE_NID) {
2342 __remove_free_nid(sbi, i, FREE_NID);
2343 need_free = true;
2344 }
2345 spin_unlock(&nm_i->nid_list_lock);
2346
2347 if (need_free)
2348 kmem_cache_free(free_nid_slab, i);
2349 }
2350
2351 static int scan_nat_page(struct f2fs_sb_info *sbi,
2352 struct page *nat_page, nid_t start_nid)
2353 {
2354 struct f2fs_nm_info *nm_i = NM_I(sbi);
2355 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2356 block_t blk_addr;
2357 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2358 int i;
2359
2360 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2361
2362 i = start_nid % NAT_ENTRY_PER_BLOCK;
2363
2364 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2365 if (unlikely(start_nid >= nm_i->max_nid))
2366 break;
2367
2368 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2369
2370 if (blk_addr == NEW_ADDR)
2371 return -EINVAL;
2372
2373 if (blk_addr == NULL_ADDR) {
2374 add_free_nid(sbi, start_nid, true, true);
2375 } else {
2376 spin_lock(&NM_I(sbi)->nid_list_lock);
2377 update_free_nid_bitmap(sbi, start_nid, false, true);
2378 spin_unlock(&NM_I(sbi)->nid_list_lock);
2379 }
2380 }
2381
2382 return 0;
2383 }
2384
2385 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2386 {
2387 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2388 struct f2fs_journal *journal = curseg->journal;
2389 int i;
2390
2391 down_read(&curseg->journal_rwsem);
2392 for (i = 0; i < nats_in_cursum(journal); i++) {
2393 block_t addr;
2394 nid_t nid;
2395
2396 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2397 nid = le32_to_cpu(nid_in_journal(journal, i));
2398 if (addr == NULL_ADDR)
2399 add_free_nid(sbi, nid, true, false);
2400 else
2401 remove_free_nid(sbi, nid);
2402 }
2403 up_read(&curseg->journal_rwsem);
2404 }
2405
2406 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2407 {
2408 struct f2fs_nm_info *nm_i = NM_I(sbi);
2409 unsigned int i, idx;
2410 nid_t nid;
2411
2412 down_read(&nm_i->nat_tree_lock);
2413
2414 for (i = 0; i < nm_i->nat_blocks; i++) {
2415 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2416 continue;
2417 if (!nm_i->free_nid_count[i])
2418 continue;
2419 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2420 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2421 NAT_ENTRY_PER_BLOCK, idx);
2422 if (idx >= NAT_ENTRY_PER_BLOCK)
2423 break;
2424
2425 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2426 add_free_nid(sbi, nid, true, false);
2427
2428 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2429 goto out;
2430 }
2431 }
2432 out:
2433 scan_curseg_cache(sbi);
2434
2435 up_read(&nm_i->nat_tree_lock);
2436 }
2437
2438 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2439 bool sync, bool mount)
2440 {
2441 struct f2fs_nm_info *nm_i = NM_I(sbi);
2442 int i = 0, ret;
2443 nid_t nid = nm_i->next_scan_nid;
2444
2445 if (unlikely(nid >= nm_i->max_nid))
2446 nid = 0;
2447
2448 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2449 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2450
2451 /* Enough entries */
2452 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2453 return 0;
2454
2455 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2456 return 0;
2457
2458 if (!mount) {
2459 /* try to find free nids in free_nid_bitmap */
2460 scan_free_nid_bits(sbi);
2461
2462 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2463 return 0;
2464 }
2465
2466 /* readahead nat pages to be scanned */
2467 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2468 META_NAT, true);
2469
2470 down_read(&nm_i->nat_tree_lock);
2471
2472 while (1) {
2473 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2474 nm_i->nat_block_bitmap)) {
2475 struct page *page = get_current_nat_page(sbi, nid);
2476
2477 if (IS_ERR(page)) {
2478 ret = PTR_ERR(page);
2479 } else {
2480 ret = scan_nat_page(sbi, page, nid);
2481 f2fs_put_page(page, 1);
2482 }
2483
2484 if (ret) {
2485 up_read(&nm_i->nat_tree_lock);
2486 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2487 return ret;
2488 }
2489 }
2490
2491 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2492 if (unlikely(nid >= nm_i->max_nid))
2493 nid = 0;
2494
2495 if (++i >= FREE_NID_PAGES)
2496 break;
2497 }
2498
2499 /* go to the next free nat pages to find free nids abundantly */
2500 nm_i->next_scan_nid = nid;
2501
2502 /* find free nids from current sum_pages */
2503 scan_curseg_cache(sbi);
2504
2505 up_read(&nm_i->nat_tree_lock);
2506
2507 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2508 nm_i->ra_nid_pages, META_NAT, false);
2509
2510 return 0;
2511 }
2512
2513 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2514 {
2515 int ret;
2516
2517 mutex_lock(&NM_I(sbi)->build_lock);
2518 ret = __f2fs_build_free_nids(sbi, sync, mount);
2519 mutex_unlock(&NM_I(sbi)->build_lock);
2520
2521 return ret;
2522 }
2523
2524 /*
2525 * If this function returns success, caller can obtain a new nid
2526 * from second parameter of this function.
2527 * The returned nid could be used ino as well as nid when inode is created.
2528 */
2529 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2530 {
2531 struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 struct free_nid *i = NULL;
2533 retry:
2534 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2535 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2536 return false;
2537 }
2538
2539 spin_lock(&nm_i->nid_list_lock);
2540
2541 if (unlikely(nm_i->available_nids == 0)) {
2542 spin_unlock(&nm_i->nid_list_lock);
2543 return false;
2544 }
2545
2546 /* We should not use stale free nids created by f2fs_build_free_nids */
2547 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2548 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2549 i = list_first_entry(&nm_i->free_nid_list,
2550 struct free_nid, list);
2551 *nid = i->nid;
2552
2553 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2554 nm_i->available_nids--;
2555
2556 update_free_nid_bitmap(sbi, *nid, false, false);
2557
2558 spin_unlock(&nm_i->nid_list_lock);
2559 return true;
2560 }
2561 spin_unlock(&nm_i->nid_list_lock);
2562
2563 /* Let's scan nat pages and its caches to get free nids */
2564 if (!f2fs_build_free_nids(sbi, true, false))
2565 goto retry;
2566 return false;
2567 }
2568
2569 /*
2570 * f2fs_alloc_nid() should be called prior to this function.
2571 */
2572 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2573 {
2574 struct f2fs_nm_info *nm_i = NM_I(sbi);
2575 struct free_nid *i;
2576
2577 spin_lock(&nm_i->nid_list_lock);
2578 i = __lookup_free_nid_list(nm_i, nid);
2579 f2fs_bug_on(sbi, !i);
2580 __remove_free_nid(sbi, i, PREALLOC_NID);
2581 spin_unlock(&nm_i->nid_list_lock);
2582
2583 kmem_cache_free(free_nid_slab, i);
2584 }
2585
2586 /*
2587 * f2fs_alloc_nid() should be called prior to this function.
2588 */
2589 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2590 {
2591 struct f2fs_nm_info *nm_i = NM_I(sbi);
2592 struct free_nid *i;
2593 bool need_free = false;
2594
2595 if (!nid)
2596 return;
2597
2598 spin_lock(&nm_i->nid_list_lock);
2599 i = __lookup_free_nid_list(nm_i, nid);
2600 f2fs_bug_on(sbi, !i);
2601
2602 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2603 __remove_free_nid(sbi, i, PREALLOC_NID);
2604 need_free = true;
2605 } else {
2606 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2607 }
2608
2609 nm_i->available_nids++;
2610
2611 update_free_nid_bitmap(sbi, nid, true, false);
2612
2613 spin_unlock(&nm_i->nid_list_lock);
2614
2615 if (need_free)
2616 kmem_cache_free(free_nid_slab, i);
2617 }
2618
2619 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2620 {
2621 struct f2fs_nm_info *nm_i = NM_I(sbi);
2622 int nr = nr_shrink;
2623
2624 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2625 return 0;
2626
2627 if (!mutex_trylock(&nm_i->build_lock))
2628 return 0;
2629
2630 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2631 struct free_nid *i, *next;
2632 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2633
2634 spin_lock(&nm_i->nid_list_lock);
2635 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2636 if (!nr_shrink || !batch ||
2637 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638 break;
2639 __remove_free_nid(sbi, i, FREE_NID);
2640 kmem_cache_free(free_nid_slab, i);
2641 nr_shrink--;
2642 batch--;
2643 }
2644 spin_unlock(&nm_i->nid_list_lock);
2645 }
2646
2647 mutex_unlock(&nm_i->build_lock);
2648
2649 return nr - nr_shrink;
2650 }
2651
2652 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2653 {
2654 void *src_addr, *dst_addr;
2655 size_t inline_size;
2656 struct page *ipage;
2657 struct f2fs_inode *ri;
2658
2659 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2660 if (IS_ERR(ipage))
2661 return PTR_ERR(ipage);
2662
2663 ri = F2FS_INODE(page);
2664 if (ri->i_inline & F2FS_INLINE_XATTR) {
2665 if (!f2fs_has_inline_xattr(inode)) {
2666 set_inode_flag(inode, FI_INLINE_XATTR);
2667 stat_inc_inline_xattr(inode);
2668 }
2669 } else {
2670 if (f2fs_has_inline_xattr(inode)) {
2671 stat_dec_inline_xattr(inode);
2672 clear_inode_flag(inode, FI_INLINE_XATTR);
2673 }
2674 goto update_inode;
2675 }
2676
2677 dst_addr = inline_xattr_addr(inode, ipage);
2678 src_addr = inline_xattr_addr(inode, page);
2679 inline_size = inline_xattr_size(inode);
2680
2681 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2682 memcpy(dst_addr, src_addr, inline_size);
2683 update_inode:
2684 f2fs_update_inode(inode, ipage);
2685 f2fs_put_page(ipage, 1);
2686 return 0;
2687 }
2688
2689 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2690 {
2691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2693 nid_t new_xnid;
2694 struct dnode_of_data dn;
2695 struct node_info ni;
2696 struct page *xpage;
2697 int err;
2698
2699 if (!prev_xnid)
2700 goto recover_xnid;
2701
2702 /* 1: invalidate the previous xattr nid */
2703 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2704 if (err)
2705 return err;
2706
2707 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2708 dec_valid_node_count(sbi, inode, false);
2709 set_node_addr(sbi, &ni, NULL_ADDR, false);
2710
2711 recover_xnid:
2712 /* 2: update xattr nid in inode */
2713 if (!f2fs_alloc_nid(sbi, &new_xnid))
2714 return -ENOSPC;
2715
2716 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2717 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2718 if (IS_ERR(xpage)) {
2719 f2fs_alloc_nid_failed(sbi, new_xnid);
2720 return PTR_ERR(xpage);
2721 }
2722
2723 f2fs_alloc_nid_done(sbi, new_xnid);
2724 f2fs_update_inode_page(inode);
2725
2726 /* 3: update and set xattr node page dirty */
2727 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2728
2729 set_page_dirty(xpage);
2730 f2fs_put_page(xpage, 1);
2731
2732 return 0;
2733 }
2734
2735 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2736 {
2737 struct f2fs_inode *src, *dst;
2738 nid_t ino = ino_of_node(page);
2739 struct node_info old_ni, new_ni;
2740 struct page *ipage;
2741 int err;
2742
2743 err = f2fs_get_node_info(sbi, ino, &old_ni);
2744 if (err)
2745 return err;
2746
2747 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2748 return -EINVAL;
2749 retry:
2750 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2751 if (!ipage) {
2752 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2753 goto retry;
2754 }
2755
2756 /* Should not use this inode from free nid list */
2757 remove_free_nid(sbi, ino);
2758
2759 if (!PageUptodate(ipage))
2760 SetPageUptodate(ipage);
2761 fill_node_footer(ipage, ino, ino, 0, true);
2762 set_cold_node(ipage, false);
2763
2764 src = F2FS_INODE(page);
2765 dst = F2FS_INODE(ipage);
2766
2767 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2768 dst->i_size = 0;
2769 dst->i_blocks = cpu_to_le64(1);
2770 dst->i_links = cpu_to_le32(1);
2771 dst->i_xattr_nid = 0;
2772 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2773 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2774 dst->i_extra_isize = src->i_extra_isize;
2775
2776 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2777 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2778 i_inline_xattr_size))
2779 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2780
2781 if (f2fs_sb_has_project_quota(sbi) &&
2782 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2783 i_projid))
2784 dst->i_projid = src->i_projid;
2785
2786 if (f2fs_sb_has_inode_crtime(sbi) &&
2787 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2788 i_crtime_nsec)) {
2789 dst->i_crtime = src->i_crtime;
2790 dst->i_crtime_nsec = src->i_crtime_nsec;
2791 }
2792 }
2793
2794 new_ni = old_ni;
2795 new_ni.ino = ino;
2796
2797 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2798 WARN_ON(1);
2799 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2800 inc_valid_inode_count(sbi);
2801 set_page_dirty(ipage);
2802 f2fs_put_page(ipage, 1);
2803 return 0;
2804 }
2805
2806 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2807 unsigned int segno, struct f2fs_summary_block *sum)
2808 {
2809 struct f2fs_node *rn;
2810 struct f2fs_summary *sum_entry;
2811 block_t addr;
2812 int i, idx, last_offset, nrpages;
2813
2814 /* scan the node segment */
2815 last_offset = sbi->blocks_per_seg;
2816 addr = START_BLOCK(sbi, segno);
2817 sum_entry = &sum->entries[0];
2818
2819 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2820 nrpages = bio_max_segs(last_offset - i);
2821
2822 /* readahead node pages */
2823 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2824
2825 for (idx = addr; idx < addr + nrpages; idx++) {
2826 struct page *page = f2fs_get_tmp_page(sbi, idx);
2827
2828 if (IS_ERR(page))
2829 return PTR_ERR(page);
2830
2831 rn = F2FS_NODE(page);
2832 sum_entry->nid = rn->footer.nid;
2833 sum_entry->version = 0;
2834 sum_entry->ofs_in_node = 0;
2835 sum_entry++;
2836 f2fs_put_page(page, 1);
2837 }
2838
2839 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2840 addr + nrpages);
2841 }
2842 return 0;
2843 }
2844
2845 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2846 {
2847 struct f2fs_nm_info *nm_i = NM_I(sbi);
2848 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2849 struct f2fs_journal *journal = curseg->journal;
2850 int i;
2851
2852 down_write(&curseg->journal_rwsem);
2853 for (i = 0; i < nats_in_cursum(journal); i++) {
2854 struct nat_entry *ne;
2855 struct f2fs_nat_entry raw_ne;
2856 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2857
2858 if (f2fs_check_nid_range(sbi, nid))
2859 continue;
2860
2861 raw_ne = nat_in_journal(journal, i);
2862
2863 ne = __lookup_nat_cache(nm_i, nid);
2864 if (!ne) {
2865 ne = __alloc_nat_entry(sbi, nid, true);
2866 __init_nat_entry(nm_i, ne, &raw_ne, true);
2867 }
2868
2869 /*
2870 * if a free nat in journal has not been used after last
2871 * checkpoint, we should remove it from available nids,
2872 * since later we will add it again.
2873 */
2874 if (!get_nat_flag(ne, IS_DIRTY) &&
2875 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2876 spin_lock(&nm_i->nid_list_lock);
2877 nm_i->available_nids--;
2878 spin_unlock(&nm_i->nid_list_lock);
2879 }
2880
2881 __set_nat_cache_dirty(nm_i, ne);
2882 }
2883 update_nats_in_cursum(journal, -i);
2884 up_write(&curseg->journal_rwsem);
2885 }
2886
2887 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2888 struct list_head *head, int max)
2889 {
2890 struct nat_entry_set *cur;
2891
2892 if (nes->entry_cnt >= max)
2893 goto add_out;
2894
2895 list_for_each_entry(cur, head, set_list) {
2896 if (cur->entry_cnt >= nes->entry_cnt) {
2897 list_add(&nes->set_list, cur->set_list.prev);
2898 return;
2899 }
2900 }
2901 add_out:
2902 list_add_tail(&nes->set_list, head);
2903 }
2904
2905 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2906 unsigned int valid)
2907 {
2908 if (valid == 0) {
2909 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2910 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2911 return;
2912 }
2913
2914 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2915 if (valid == NAT_ENTRY_PER_BLOCK)
2916 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2917 else
2918 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2919 }
2920
2921 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2922 struct page *page)
2923 {
2924 struct f2fs_nm_info *nm_i = NM_I(sbi);
2925 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2926 struct f2fs_nat_block *nat_blk = page_address(page);
2927 int valid = 0;
2928 int i = 0;
2929
2930 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2931 return;
2932
2933 if (nat_index == 0) {
2934 valid = 1;
2935 i = 1;
2936 }
2937 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2938 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2939 valid++;
2940 }
2941
2942 __update_nat_bits(nm_i, nat_index, valid);
2943 }
2944
2945 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2946 {
2947 struct f2fs_nm_info *nm_i = NM_I(sbi);
2948 unsigned int nat_ofs;
2949
2950 down_read(&nm_i->nat_tree_lock);
2951
2952 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2953 unsigned int valid = 0, nid_ofs = 0;
2954
2955 /* handle nid zero due to it should never be used */
2956 if (unlikely(nat_ofs == 0)) {
2957 valid = 1;
2958 nid_ofs = 1;
2959 }
2960
2961 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2962 if (!test_bit_le(nid_ofs,
2963 nm_i->free_nid_bitmap[nat_ofs]))
2964 valid++;
2965 }
2966
2967 __update_nat_bits(nm_i, nat_ofs, valid);
2968 }
2969
2970 up_read(&nm_i->nat_tree_lock);
2971 }
2972
2973 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2974 struct nat_entry_set *set, struct cp_control *cpc)
2975 {
2976 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2977 struct f2fs_journal *journal = curseg->journal;
2978 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2979 bool to_journal = true;
2980 struct f2fs_nat_block *nat_blk;
2981 struct nat_entry *ne, *cur;
2982 struct page *page = NULL;
2983
2984 /*
2985 * there are two steps to flush nat entries:
2986 * #1, flush nat entries to journal in current hot data summary block.
2987 * #2, flush nat entries to nat page.
2988 */
2989 if ((cpc->reason & CP_UMOUNT) ||
2990 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2991 to_journal = false;
2992
2993 if (to_journal) {
2994 down_write(&curseg->journal_rwsem);
2995 } else {
2996 page = get_next_nat_page(sbi, start_nid);
2997 if (IS_ERR(page))
2998 return PTR_ERR(page);
2999
3000 nat_blk = page_address(page);
3001 f2fs_bug_on(sbi, !nat_blk);
3002 }
3003
3004 /* flush dirty nats in nat entry set */
3005 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3006 struct f2fs_nat_entry *raw_ne;
3007 nid_t nid = nat_get_nid(ne);
3008 int offset;
3009
3010 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3011
3012 if (to_journal) {
3013 offset = f2fs_lookup_journal_in_cursum(journal,
3014 NAT_JOURNAL, nid, 1);
3015 f2fs_bug_on(sbi, offset < 0);
3016 raw_ne = &nat_in_journal(journal, offset);
3017 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3018 } else {
3019 raw_ne = &nat_blk->entries[nid - start_nid];
3020 }
3021 raw_nat_from_node_info(raw_ne, &ne->ni);
3022 nat_reset_flag(ne);
3023 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3024 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3025 add_free_nid(sbi, nid, false, true);
3026 } else {
3027 spin_lock(&NM_I(sbi)->nid_list_lock);
3028 update_free_nid_bitmap(sbi, nid, false, false);
3029 spin_unlock(&NM_I(sbi)->nid_list_lock);
3030 }
3031 }
3032
3033 if (to_journal) {
3034 up_write(&curseg->journal_rwsem);
3035 } else {
3036 update_nat_bits(sbi, start_nid, page);
3037 f2fs_put_page(page, 1);
3038 }
3039
3040 /* Allow dirty nats by node block allocation in write_begin */
3041 if (!set->entry_cnt) {
3042 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3043 kmem_cache_free(nat_entry_set_slab, set);
3044 }
3045 return 0;
3046 }
3047
3048 /*
3049 * This function is called during the checkpointing process.
3050 */
3051 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3052 {
3053 struct f2fs_nm_info *nm_i = NM_I(sbi);
3054 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3055 struct f2fs_journal *journal = curseg->journal;
3056 struct nat_entry_set *setvec[SETVEC_SIZE];
3057 struct nat_entry_set *set, *tmp;
3058 unsigned int found;
3059 nid_t set_idx = 0;
3060 LIST_HEAD(sets);
3061 int err = 0;
3062
3063 /*
3064 * during unmount, let's flush nat_bits before checking
3065 * nat_cnt[DIRTY_NAT].
3066 */
3067 if (cpc->reason & CP_UMOUNT) {
3068 down_write(&nm_i->nat_tree_lock);
3069 remove_nats_in_journal(sbi);
3070 up_write(&nm_i->nat_tree_lock);
3071 }
3072
3073 if (!nm_i->nat_cnt[DIRTY_NAT])
3074 return 0;
3075
3076 down_write(&nm_i->nat_tree_lock);
3077
3078 /*
3079 * if there are no enough space in journal to store dirty nat
3080 * entries, remove all entries from journal and merge them
3081 * into nat entry set.
3082 */
3083 if (cpc->reason & CP_UMOUNT ||
3084 !__has_cursum_space(journal,
3085 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3086 remove_nats_in_journal(sbi);
3087
3088 while ((found = __gang_lookup_nat_set(nm_i,
3089 set_idx, SETVEC_SIZE, setvec))) {
3090 unsigned idx;
3091
3092 set_idx = setvec[found - 1]->set + 1;
3093 for (idx = 0; idx < found; idx++)
3094 __adjust_nat_entry_set(setvec[idx], &sets,
3095 MAX_NAT_JENTRIES(journal));
3096 }
3097
3098 /* flush dirty nats in nat entry set */
3099 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3100 err = __flush_nat_entry_set(sbi, set, cpc);
3101 if (err)
3102 break;
3103 }
3104
3105 up_write(&nm_i->nat_tree_lock);
3106 /* Allow dirty nats by node block allocation in write_begin */
3107
3108 return err;
3109 }
3110
3111 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3112 {
3113 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3114 struct f2fs_nm_info *nm_i = NM_I(sbi);
3115 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3116 unsigned int i;
3117 __u64 cp_ver = cur_cp_version(ckpt);
3118 block_t nat_bits_addr;
3119
3120 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3121 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3122 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3123 if (!nm_i->nat_bits)
3124 return -ENOMEM;
3125
3126 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3127 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3128
3129 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3130 return 0;
3131
3132 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3133 nm_i->nat_bits_blocks;
3134 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3135 struct page *page;
3136
3137 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3138 if (IS_ERR(page))
3139 return PTR_ERR(page);
3140
3141 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3142 page_address(page), F2FS_BLKSIZE);
3143 f2fs_put_page(page, 1);
3144 }
3145
3146 cp_ver |= (cur_cp_crc(ckpt) << 32);
3147 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3148 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3149 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3150 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3151 return 0;
3152 }
3153
3154 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3155 return 0;
3156 }
3157
3158 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3159 {
3160 struct f2fs_nm_info *nm_i = NM_I(sbi);
3161 unsigned int i = 0;
3162 nid_t nid, last_nid;
3163
3164 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3165 return;
3166
3167 for (i = 0; i < nm_i->nat_blocks; i++) {
3168 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3169 if (i >= nm_i->nat_blocks)
3170 break;
3171
3172 __set_bit_le(i, nm_i->nat_block_bitmap);
3173
3174 nid = i * NAT_ENTRY_PER_BLOCK;
3175 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3176
3177 spin_lock(&NM_I(sbi)->nid_list_lock);
3178 for (; nid < last_nid; nid++)
3179 update_free_nid_bitmap(sbi, nid, true, true);
3180 spin_unlock(&NM_I(sbi)->nid_list_lock);
3181 }
3182
3183 for (i = 0; i < nm_i->nat_blocks; i++) {
3184 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3185 if (i >= nm_i->nat_blocks)
3186 break;
3187
3188 __set_bit_le(i, nm_i->nat_block_bitmap);
3189 }
3190 }
3191
3192 static int init_node_manager(struct f2fs_sb_info *sbi)
3193 {
3194 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3195 struct f2fs_nm_info *nm_i = NM_I(sbi);
3196 unsigned char *version_bitmap;
3197 unsigned int nat_segs;
3198 int err;
3199
3200 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3201
3202 /* segment_count_nat includes pair segment so divide to 2. */
3203 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3204 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3205 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3206
3207 /* not used nids: 0, node, meta, (and root counted as valid node) */
3208 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3209 F2FS_RESERVED_NODE_NUM;
3210 nm_i->nid_cnt[FREE_NID] = 0;
3211 nm_i->nid_cnt[PREALLOC_NID] = 0;
3212 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3213 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3214 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3215
3216 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3217 INIT_LIST_HEAD(&nm_i->free_nid_list);
3218 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3219 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3220 INIT_LIST_HEAD(&nm_i->nat_entries);
3221 spin_lock_init(&nm_i->nat_list_lock);
3222
3223 mutex_init(&nm_i->build_lock);
3224 spin_lock_init(&nm_i->nid_list_lock);
3225 init_rwsem(&nm_i->nat_tree_lock);
3226
3227 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3228 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3229 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3230 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3231 GFP_KERNEL);
3232 if (!nm_i->nat_bitmap)
3233 return -ENOMEM;
3234
3235 err = __get_nat_bitmaps(sbi);
3236 if (err)
3237 return err;
3238
3239 #ifdef CONFIG_F2FS_CHECK_FS
3240 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3241 GFP_KERNEL);
3242 if (!nm_i->nat_bitmap_mir)
3243 return -ENOMEM;
3244 #endif
3245
3246 return 0;
3247 }
3248
3249 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3250 {
3251 struct f2fs_nm_info *nm_i = NM_I(sbi);
3252 int i;
3253
3254 nm_i->free_nid_bitmap =
3255 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3256 nm_i->nat_blocks),
3257 GFP_KERNEL);
3258 if (!nm_i->free_nid_bitmap)
3259 return -ENOMEM;
3260
3261 for (i = 0; i < nm_i->nat_blocks; i++) {
3262 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3263 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3264 if (!nm_i->free_nid_bitmap[i])
3265 return -ENOMEM;
3266 }
3267
3268 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3269 GFP_KERNEL);
3270 if (!nm_i->nat_block_bitmap)
3271 return -ENOMEM;
3272
3273 nm_i->free_nid_count =
3274 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3275 nm_i->nat_blocks),
3276 GFP_KERNEL);
3277 if (!nm_i->free_nid_count)
3278 return -ENOMEM;
3279 return 0;
3280 }
3281
3282 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3283 {
3284 int err;
3285
3286 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3287 GFP_KERNEL);
3288 if (!sbi->nm_info)
3289 return -ENOMEM;
3290
3291 err = init_node_manager(sbi);
3292 if (err)
3293 return err;
3294
3295 err = init_free_nid_cache(sbi);
3296 if (err)
3297 return err;
3298
3299 /* load free nid status from nat_bits table */
3300 load_free_nid_bitmap(sbi);
3301
3302 return f2fs_build_free_nids(sbi, true, true);
3303 }
3304
3305 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3306 {
3307 struct f2fs_nm_info *nm_i = NM_I(sbi);
3308 struct free_nid *i, *next_i;
3309 struct nat_entry *natvec[NATVEC_SIZE];
3310 struct nat_entry_set *setvec[SETVEC_SIZE];
3311 nid_t nid = 0;
3312 unsigned int found;
3313
3314 if (!nm_i)
3315 return;
3316
3317 /* destroy free nid list */
3318 spin_lock(&nm_i->nid_list_lock);
3319 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3320 __remove_free_nid(sbi, i, FREE_NID);
3321 spin_unlock(&nm_i->nid_list_lock);
3322 kmem_cache_free(free_nid_slab, i);
3323 spin_lock(&nm_i->nid_list_lock);
3324 }
3325 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3326 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3327 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3328 spin_unlock(&nm_i->nid_list_lock);
3329
3330 /* destroy nat cache */
3331 down_write(&nm_i->nat_tree_lock);
3332 while ((found = __gang_lookup_nat_cache(nm_i,
3333 nid, NATVEC_SIZE, natvec))) {
3334 unsigned idx;
3335
3336 nid = nat_get_nid(natvec[found - 1]) + 1;
3337 for (idx = 0; idx < found; idx++) {
3338 spin_lock(&nm_i->nat_list_lock);
3339 list_del(&natvec[idx]->list);
3340 spin_unlock(&nm_i->nat_list_lock);
3341
3342 __del_from_nat_cache(nm_i, natvec[idx]);
3343 }
3344 }
3345 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3346
3347 /* destroy nat set cache */
3348 nid = 0;
3349 while ((found = __gang_lookup_nat_set(nm_i,
3350 nid, SETVEC_SIZE, setvec))) {
3351 unsigned idx;
3352
3353 nid = setvec[found - 1]->set + 1;
3354 for (idx = 0; idx < found; idx++) {
3355 /* entry_cnt is not zero, when cp_error was occurred */
3356 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3357 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3358 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3359 }
3360 }
3361 up_write(&nm_i->nat_tree_lock);
3362
3363 kvfree(nm_i->nat_block_bitmap);
3364 if (nm_i->free_nid_bitmap) {
3365 int i;
3366
3367 for (i = 0; i < nm_i->nat_blocks; i++)
3368 kvfree(nm_i->free_nid_bitmap[i]);
3369 kvfree(nm_i->free_nid_bitmap);
3370 }
3371 kvfree(nm_i->free_nid_count);
3372
3373 kvfree(nm_i->nat_bitmap);
3374 kvfree(nm_i->nat_bits);
3375 #ifdef CONFIG_F2FS_CHECK_FS
3376 kvfree(nm_i->nat_bitmap_mir);
3377 #endif
3378 sbi->nm_info = NULL;
3379 kfree(nm_i);
3380 }
3381
3382 int __init f2fs_create_node_manager_caches(void)
3383 {
3384 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3385 sizeof(struct nat_entry));
3386 if (!nat_entry_slab)
3387 goto fail;
3388
3389 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3390 sizeof(struct free_nid));
3391 if (!free_nid_slab)
3392 goto destroy_nat_entry;
3393
3394 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3395 sizeof(struct nat_entry_set));
3396 if (!nat_entry_set_slab)
3397 goto destroy_free_nid;
3398
3399 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3400 sizeof(struct fsync_node_entry));
3401 if (!fsync_node_entry_slab)
3402 goto destroy_nat_entry_set;
3403 return 0;
3404
3405 destroy_nat_entry_set:
3406 kmem_cache_destroy(nat_entry_set_slab);
3407 destroy_free_nid:
3408 kmem_cache_destroy(free_nid_slab);
3409 destroy_nat_entry:
3410 kmem_cache_destroy(nat_entry_slab);
3411 fail:
3412 return -ENOMEM;
3413 }
3414
3415 void f2fs_destroy_node_manager_caches(void)
3416 {
3417 kmem_cache_destroy(fsync_node_entry_slab);
3418 kmem_cache_destroy(nat_entry_set_slab);
3419 kmem_cache_destroy(free_nid_slab);
3420 kmem_cache_destroy(nat_entry_slab);
3421 }