]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/node.c
f2fs: skip ->writepages for {mete,node}_inode during recovery
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24
25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
26
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
38
39 si_meminfo(&val);
40
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
43
44 /*
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 */
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
64
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += sbi->im[i].ino_num *
67 sizeof(struct ino_entry);
68 mem_size >>= PAGE_SHIFT;
69 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
70 } else if (type == EXTENT_CACHE) {
71 mem_size = (atomic_read(&sbi->total_ext_tree) *
72 sizeof(struct extent_tree) +
73 atomic_read(&sbi->total_ext_node) *
74 sizeof(struct extent_node)) >> PAGE_SHIFT;
75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 } else {
77 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
78 return true;
79 }
80 return res;
81 }
82
83 static void clear_node_page_dirty(struct page *page)
84 {
85 struct address_space *mapping = page->mapping;
86 unsigned int long flags;
87
88 if (PageDirty(page)) {
89 spin_lock_irqsave(&mapping->tree_lock, flags);
90 radix_tree_tag_clear(&mapping->page_tree,
91 page_index(page),
92 PAGECACHE_TAG_DIRTY);
93 spin_unlock_irqrestore(&mapping->tree_lock, flags);
94
95 clear_page_dirty_for_io(page);
96 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 }
98 ClearPageUptodate(page);
99 }
100
101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 {
103 pgoff_t index = current_nat_addr(sbi, nid);
104 return get_meta_page(sbi, index);
105 }
106
107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 {
109 struct page *src_page;
110 struct page *dst_page;
111 pgoff_t src_off;
112 pgoff_t dst_off;
113 void *src_addr;
114 void *dst_addr;
115 struct f2fs_nm_info *nm_i = NM_I(sbi);
116
117 src_off = current_nat_addr(sbi, nid);
118 dst_off = next_nat_addr(sbi, src_off);
119
120 /* get current nat block page with lock */
121 src_page = get_meta_page(sbi, src_off);
122 dst_page = grab_meta_page(sbi, dst_off);
123 f2fs_bug_on(sbi, PageDirty(src_page));
124
125 src_addr = page_address(src_page);
126 dst_addr = page_address(dst_page);
127 memcpy(dst_addr, src_addr, PAGE_SIZE);
128 set_page_dirty(dst_page);
129 f2fs_put_page(src_page, 1);
130
131 set_to_next_nat(nm_i, nid);
132
133 return dst_page;
134 }
135
136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 {
138 return radix_tree_lookup(&nm_i->nat_root, n);
139 }
140
141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
142 nid_t start, unsigned int nr, struct nat_entry **ep)
143 {
144 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
145 }
146
147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 {
149 list_del(&e->list);
150 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
151 nm_i->nat_cnt--;
152 kmem_cache_free(nat_entry_slab, e);
153 }
154
155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
156 struct nat_entry *ne)
157 {
158 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
159 struct nat_entry_set *head;
160
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 }
171
172 if (get_nat_flag(ne, IS_DIRTY))
173 goto refresh_list;
174
175 nm_i->dirty_nat_cnt++;
176 head->entry_cnt++;
177 set_nat_flag(ne, IS_DIRTY, true);
178 refresh_list:
179 if (nat_get_blkaddr(ne) == NEW_ADDR)
180 list_del_init(&ne->list);
181 else
182 list_move_tail(&ne->list, &head->entry_list);
183 }
184
185 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
186 struct nat_entry_set *set, struct nat_entry *ne)
187 {
188 list_move_tail(&ne->list, &nm_i->nat_entries);
189 set_nat_flag(ne, IS_DIRTY, false);
190 set->entry_cnt--;
191 nm_i->dirty_nat_cnt--;
192 }
193
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
196 {
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
199 }
200
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
202 {
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
206
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
213 }
214 up_read(&nm_i->nat_tree_lock);
215 return need;
216 }
217
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
219 {
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
223
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
230 }
231
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
233 {
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
237
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
246 }
247
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 bool no_fail)
250 {
251 struct nat_entry *new;
252
253 if (no_fail) {
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 } else {
257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 if (!new)
259 return NULL;
260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 kmem_cache_free(nat_entry_slab, new);
262 return NULL;
263 }
264 }
265
266 memset(new, 0, sizeof(struct nat_entry));
267 nat_set_nid(new, nid);
268 nat_reset_flag(new);
269 list_add_tail(&new->list, &nm_i->nat_entries);
270 nm_i->nat_cnt++;
271 return new;
272 }
273
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 struct f2fs_nat_entry *ne)
276 {
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
279
280 e = __lookup_nat_cache(nm_i, nid);
281 if (!e) {
282 e = grab_nat_entry(nm_i, nid, false);
283 if (e)
284 node_info_from_raw_nat(&e->ni, ne);
285 } else {
286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 nat_get_blkaddr(e) !=
288 le32_to_cpu(ne->block_addr) ||
289 nat_get_version(e) != ne->version);
290 }
291 }
292
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 block_t new_blkaddr, bool fsync_done)
295 {
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
298
299 down_write(&nm_i->nat_tree_lock);
300 e = __lookup_nat_cache(nm_i, ni->nid);
301 if (!e) {
302 e = grab_nat_entry(nm_i, ni->nid, true);
303 copy_node_info(&e->ni, ni);
304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 } else if (new_blkaddr == NEW_ADDR) {
306 /*
307 * when nid is reallocated,
308 * previous nat entry can be remained in nat cache.
309 * So, reinitialize it with new information.
310 */
311 copy_node_info(&e->ni, ni);
312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
313 }
314
315 /* sanity check */
316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 new_blkaddr == NULL_ADDR);
319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 new_blkaddr == NEW_ADDR);
321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 nat_get_blkaddr(e) != NULL_ADDR &&
323 new_blkaddr == NEW_ADDR);
324
325 /* increment version no as node is removed */
326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 unsigned char version = nat_get_version(e);
328 nat_set_version(e, inc_node_version(version));
329
330 /* in order to reuse the nid */
331 if (nm_i->next_scan_nid > ni->nid)
332 nm_i->next_scan_nid = ni->nid;
333 }
334
335 /* change address */
336 nat_set_blkaddr(e, new_blkaddr);
337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 set_nat_flag(e, IS_CHECKPOINTED, false);
339 __set_nat_cache_dirty(nm_i, e);
340
341 /* update fsync_mark if its inode nat entry is still alive */
342 if (ni->nid != ni->ino)
343 e = __lookup_nat_cache(nm_i, ni->ino);
344 if (e) {
345 if (fsync_done && ni->nid == ni->ino)
346 set_nat_flag(e, HAS_FSYNCED_INODE, true);
347 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
348 }
349 up_write(&nm_i->nat_tree_lock);
350 }
351
352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
353 {
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 int nr = nr_shrink;
356
357 if (!down_write_trylock(&nm_i->nat_tree_lock))
358 return 0;
359
360 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
361 struct nat_entry *ne;
362 ne = list_first_entry(&nm_i->nat_entries,
363 struct nat_entry, list);
364 __del_from_nat_cache(nm_i, ne);
365 nr_shrink--;
366 }
367 up_write(&nm_i->nat_tree_lock);
368 return nr - nr_shrink;
369 }
370
371 /*
372 * This function always returns success
373 */
374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
375 {
376 struct f2fs_nm_info *nm_i = NM_I(sbi);
377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
378 struct f2fs_journal *journal = curseg->journal;
379 nid_t start_nid = START_NID(nid);
380 struct f2fs_nat_block *nat_blk;
381 struct page *page = NULL;
382 struct f2fs_nat_entry ne;
383 struct nat_entry *e;
384 pgoff_t index;
385 int i;
386
387 ni->nid = nid;
388
389 /* Check nat cache */
390 down_read(&nm_i->nat_tree_lock);
391 e = __lookup_nat_cache(nm_i, nid);
392 if (e) {
393 ni->ino = nat_get_ino(e);
394 ni->blk_addr = nat_get_blkaddr(e);
395 ni->version = nat_get_version(e);
396 up_read(&nm_i->nat_tree_lock);
397 return;
398 }
399
400 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
401
402 /* Check current segment summary */
403 down_read(&curseg->journal_rwsem);
404 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
405 if (i >= 0) {
406 ne = nat_in_journal(journal, i);
407 node_info_from_raw_nat(ni, &ne);
408 }
409 up_read(&curseg->journal_rwsem);
410 if (i >= 0) {
411 up_read(&nm_i->nat_tree_lock);
412 goto cache;
413 }
414
415 /* Fill node_info from nat page */
416 index = current_nat_addr(sbi, nid);
417 up_read(&nm_i->nat_tree_lock);
418
419 page = get_meta_page(sbi, index);
420 nat_blk = (struct f2fs_nat_block *)page_address(page);
421 ne = nat_blk->entries[nid - start_nid];
422 node_info_from_raw_nat(ni, &ne);
423 f2fs_put_page(page, 1);
424 cache:
425 /* cache nat entry */
426 down_write(&nm_i->nat_tree_lock);
427 cache_nat_entry(sbi, nid, &ne);
428 up_write(&nm_i->nat_tree_lock);
429 }
430
431 /*
432 * readahead MAX_RA_NODE number of node pages.
433 */
434 static void ra_node_pages(struct page *parent, int start, int n)
435 {
436 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
437 struct blk_plug plug;
438 int i, end;
439 nid_t nid;
440
441 blk_start_plug(&plug);
442
443 /* Then, try readahead for siblings of the desired node */
444 end = start + n;
445 end = min(end, NIDS_PER_BLOCK);
446 for (i = start; i < end; i++) {
447 nid = get_nid(parent, i, false);
448 ra_node_page(sbi, nid);
449 }
450
451 blk_finish_plug(&plug);
452 }
453
454 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
455 {
456 const long direct_index = ADDRS_PER_INODE(dn->inode);
457 const long direct_blks = ADDRS_PER_BLOCK;
458 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
459 unsigned int skipped_unit = ADDRS_PER_BLOCK;
460 int cur_level = dn->cur_level;
461 int max_level = dn->max_level;
462 pgoff_t base = 0;
463
464 if (!dn->max_level)
465 return pgofs + 1;
466
467 while (max_level-- > cur_level)
468 skipped_unit *= NIDS_PER_BLOCK;
469
470 switch (dn->max_level) {
471 case 3:
472 base += 2 * indirect_blks;
473 case 2:
474 base += 2 * direct_blks;
475 case 1:
476 base += direct_index;
477 break;
478 default:
479 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
480 }
481
482 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
483 }
484
485 /*
486 * The maximum depth is four.
487 * Offset[0] will have raw inode offset.
488 */
489 static int get_node_path(struct inode *inode, long block,
490 int offset[4], unsigned int noffset[4])
491 {
492 const long direct_index = ADDRS_PER_INODE(inode);
493 const long direct_blks = ADDRS_PER_BLOCK;
494 const long dptrs_per_blk = NIDS_PER_BLOCK;
495 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
496 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
497 int n = 0;
498 int level = 0;
499
500 noffset[0] = 0;
501
502 if (block < direct_index) {
503 offset[n] = block;
504 goto got;
505 }
506 block -= direct_index;
507 if (block < direct_blks) {
508 offset[n++] = NODE_DIR1_BLOCK;
509 noffset[n] = 1;
510 offset[n] = block;
511 level = 1;
512 goto got;
513 }
514 block -= direct_blks;
515 if (block < direct_blks) {
516 offset[n++] = NODE_DIR2_BLOCK;
517 noffset[n] = 2;
518 offset[n] = block;
519 level = 1;
520 goto got;
521 }
522 block -= direct_blks;
523 if (block < indirect_blks) {
524 offset[n++] = NODE_IND1_BLOCK;
525 noffset[n] = 3;
526 offset[n++] = block / direct_blks;
527 noffset[n] = 4 + offset[n - 1];
528 offset[n] = block % direct_blks;
529 level = 2;
530 goto got;
531 }
532 block -= indirect_blks;
533 if (block < indirect_blks) {
534 offset[n++] = NODE_IND2_BLOCK;
535 noffset[n] = 4 + dptrs_per_blk;
536 offset[n++] = block / direct_blks;
537 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
538 offset[n] = block % direct_blks;
539 level = 2;
540 goto got;
541 }
542 block -= indirect_blks;
543 if (block < dindirect_blks) {
544 offset[n++] = NODE_DIND_BLOCK;
545 noffset[n] = 5 + (dptrs_per_blk * 2);
546 offset[n++] = block / indirect_blks;
547 noffset[n] = 6 + (dptrs_per_blk * 2) +
548 offset[n - 1] * (dptrs_per_blk + 1);
549 offset[n++] = (block / direct_blks) % dptrs_per_blk;
550 noffset[n] = 7 + (dptrs_per_blk * 2) +
551 offset[n - 2] * (dptrs_per_blk + 1) +
552 offset[n - 1];
553 offset[n] = block % direct_blks;
554 level = 3;
555 goto got;
556 } else {
557 BUG();
558 }
559 got:
560 return level;
561 }
562
563 /*
564 * Caller should call f2fs_put_dnode(dn).
565 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
566 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
567 * In the case of RDONLY_NODE, we don't need to care about mutex.
568 */
569 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
570 {
571 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
572 struct page *npage[4];
573 struct page *parent = NULL;
574 int offset[4];
575 unsigned int noffset[4];
576 nid_t nids[4];
577 int level, i = 0;
578 int err = 0;
579
580 level = get_node_path(dn->inode, index, offset, noffset);
581
582 nids[0] = dn->inode->i_ino;
583 npage[0] = dn->inode_page;
584
585 if (!npage[0]) {
586 npage[0] = get_node_page(sbi, nids[0]);
587 if (IS_ERR(npage[0]))
588 return PTR_ERR(npage[0]);
589 }
590
591 /* if inline_data is set, should not report any block indices */
592 if (f2fs_has_inline_data(dn->inode) && index) {
593 err = -ENOENT;
594 f2fs_put_page(npage[0], 1);
595 goto release_out;
596 }
597
598 parent = npage[0];
599 if (level != 0)
600 nids[1] = get_nid(parent, offset[0], true);
601 dn->inode_page = npage[0];
602 dn->inode_page_locked = true;
603
604 /* get indirect or direct nodes */
605 for (i = 1; i <= level; i++) {
606 bool done = false;
607
608 if (!nids[i] && mode == ALLOC_NODE) {
609 /* alloc new node */
610 if (!alloc_nid(sbi, &(nids[i]))) {
611 err = -ENOSPC;
612 goto release_pages;
613 }
614
615 dn->nid = nids[i];
616 npage[i] = new_node_page(dn, noffset[i], NULL);
617 if (IS_ERR(npage[i])) {
618 alloc_nid_failed(sbi, nids[i]);
619 err = PTR_ERR(npage[i]);
620 goto release_pages;
621 }
622
623 set_nid(parent, offset[i - 1], nids[i], i == 1);
624 alloc_nid_done(sbi, nids[i]);
625 done = true;
626 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
627 npage[i] = get_node_page_ra(parent, offset[i - 1]);
628 if (IS_ERR(npage[i])) {
629 err = PTR_ERR(npage[i]);
630 goto release_pages;
631 }
632 done = true;
633 }
634 if (i == 1) {
635 dn->inode_page_locked = false;
636 unlock_page(parent);
637 } else {
638 f2fs_put_page(parent, 1);
639 }
640
641 if (!done) {
642 npage[i] = get_node_page(sbi, nids[i]);
643 if (IS_ERR(npage[i])) {
644 err = PTR_ERR(npage[i]);
645 f2fs_put_page(npage[0], 0);
646 goto release_out;
647 }
648 }
649 if (i < level) {
650 parent = npage[i];
651 nids[i + 1] = get_nid(parent, offset[i], false);
652 }
653 }
654 dn->nid = nids[level];
655 dn->ofs_in_node = offset[level];
656 dn->node_page = npage[level];
657 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
658 return 0;
659
660 release_pages:
661 f2fs_put_page(parent, 1);
662 if (i > 1)
663 f2fs_put_page(npage[0], 0);
664 release_out:
665 dn->inode_page = NULL;
666 dn->node_page = NULL;
667 if (err == -ENOENT) {
668 dn->cur_level = i;
669 dn->max_level = level;
670 dn->ofs_in_node = offset[level];
671 }
672 return err;
673 }
674
675 static void truncate_node(struct dnode_of_data *dn)
676 {
677 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
678 struct node_info ni;
679
680 get_node_info(sbi, dn->nid, &ni);
681 if (dn->inode->i_blocks == 0) {
682 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
683 goto invalidate;
684 }
685 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
686
687 /* Deallocate node address */
688 invalidate_blocks(sbi, ni.blk_addr);
689 dec_valid_node_count(sbi, dn->inode);
690 set_node_addr(sbi, &ni, NULL_ADDR, false);
691
692 if (dn->nid == dn->inode->i_ino) {
693 remove_orphan_inode(sbi, dn->nid);
694 dec_valid_inode_count(sbi);
695 f2fs_inode_synced(dn->inode);
696 }
697 invalidate:
698 clear_node_page_dirty(dn->node_page);
699 set_sbi_flag(sbi, SBI_IS_DIRTY);
700
701 f2fs_put_page(dn->node_page, 1);
702
703 invalidate_mapping_pages(NODE_MAPPING(sbi),
704 dn->node_page->index, dn->node_page->index);
705
706 dn->node_page = NULL;
707 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
708 }
709
710 static int truncate_dnode(struct dnode_of_data *dn)
711 {
712 struct page *page;
713
714 if (dn->nid == 0)
715 return 1;
716
717 /* get direct node */
718 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
719 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
720 return 1;
721 else if (IS_ERR(page))
722 return PTR_ERR(page);
723
724 /* Make dnode_of_data for parameter */
725 dn->node_page = page;
726 dn->ofs_in_node = 0;
727 truncate_data_blocks(dn);
728 truncate_node(dn);
729 return 1;
730 }
731
732 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
733 int ofs, int depth)
734 {
735 struct dnode_of_data rdn = *dn;
736 struct page *page;
737 struct f2fs_node *rn;
738 nid_t child_nid;
739 unsigned int child_nofs;
740 int freed = 0;
741 int i, ret;
742
743 if (dn->nid == 0)
744 return NIDS_PER_BLOCK + 1;
745
746 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
747
748 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
749 if (IS_ERR(page)) {
750 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
751 return PTR_ERR(page);
752 }
753
754 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
755
756 rn = F2FS_NODE(page);
757 if (depth < 3) {
758 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
759 child_nid = le32_to_cpu(rn->in.nid[i]);
760 if (child_nid == 0)
761 continue;
762 rdn.nid = child_nid;
763 ret = truncate_dnode(&rdn);
764 if (ret < 0)
765 goto out_err;
766 if (set_nid(page, i, 0, false))
767 dn->node_changed = true;
768 }
769 } else {
770 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
771 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
772 child_nid = le32_to_cpu(rn->in.nid[i]);
773 if (child_nid == 0) {
774 child_nofs += NIDS_PER_BLOCK + 1;
775 continue;
776 }
777 rdn.nid = child_nid;
778 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
779 if (ret == (NIDS_PER_BLOCK + 1)) {
780 if (set_nid(page, i, 0, false))
781 dn->node_changed = true;
782 child_nofs += ret;
783 } else if (ret < 0 && ret != -ENOENT) {
784 goto out_err;
785 }
786 }
787 freed = child_nofs;
788 }
789
790 if (!ofs) {
791 /* remove current indirect node */
792 dn->node_page = page;
793 truncate_node(dn);
794 freed++;
795 } else {
796 f2fs_put_page(page, 1);
797 }
798 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
799 return freed;
800
801 out_err:
802 f2fs_put_page(page, 1);
803 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
804 return ret;
805 }
806
807 static int truncate_partial_nodes(struct dnode_of_data *dn,
808 struct f2fs_inode *ri, int *offset, int depth)
809 {
810 struct page *pages[2];
811 nid_t nid[3];
812 nid_t child_nid;
813 int err = 0;
814 int i;
815 int idx = depth - 2;
816
817 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
818 if (!nid[0])
819 return 0;
820
821 /* get indirect nodes in the path */
822 for (i = 0; i < idx + 1; i++) {
823 /* reference count'll be increased */
824 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
825 if (IS_ERR(pages[i])) {
826 err = PTR_ERR(pages[i]);
827 idx = i - 1;
828 goto fail;
829 }
830 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
831 }
832
833 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
834
835 /* free direct nodes linked to a partial indirect node */
836 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
837 child_nid = get_nid(pages[idx], i, false);
838 if (!child_nid)
839 continue;
840 dn->nid = child_nid;
841 err = truncate_dnode(dn);
842 if (err < 0)
843 goto fail;
844 if (set_nid(pages[idx], i, 0, false))
845 dn->node_changed = true;
846 }
847
848 if (offset[idx + 1] == 0) {
849 dn->node_page = pages[idx];
850 dn->nid = nid[idx];
851 truncate_node(dn);
852 } else {
853 f2fs_put_page(pages[idx], 1);
854 }
855 offset[idx]++;
856 offset[idx + 1] = 0;
857 idx--;
858 fail:
859 for (i = idx; i >= 0; i--)
860 f2fs_put_page(pages[i], 1);
861
862 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
863
864 return err;
865 }
866
867 /*
868 * All the block addresses of data and nodes should be nullified.
869 */
870 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
871 {
872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
873 int err = 0, cont = 1;
874 int level, offset[4], noffset[4];
875 unsigned int nofs = 0;
876 struct f2fs_inode *ri;
877 struct dnode_of_data dn;
878 struct page *page;
879
880 trace_f2fs_truncate_inode_blocks_enter(inode, from);
881
882 level = get_node_path(inode, from, offset, noffset);
883
884 page = get_node_page(sbi, inode->i_ino);
885 if (IS_ERR(page)) {
886 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
887 return PTR_ERR(page);
888 }
889
890 set_new_dnode(&dn, inode, page, NULL, 0);
891 unlock_page(page);
892
893 ri = F2FS_INODE(page);
894 switch (level) {
895 case 0:
896 case 1:
897 nofs = noffset[1];
898 break;
899 case 2:
900 nofs = noffset[1];
901 if (!offset[level - 1])
902 goto skip_partial;
903 err = truncate_partial_nodes(&dn, ri, offset, level);
904 if (err < 0 && err != -ENOENT)
905 goto fail;
906 nofs += 1 + NIDS_PER_BLOCK;
907 break;
908 case 3:
909 nofs = 5 + 2 * NIDS_PER_BLOCK;
910 if (!offset[level - 1])
911 goto skip_partial;
912 err = truncate_partial_nodes(&dn, ri, offset, level);
913 if (err < 0 && err != -ENOENT)
914 goto fail;
915 break;
916 default:
917 BUG();
918 }
919
920 skip_partial:
921 while (cont) {
922 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
923 switch (offset[0]) {
924 case NODE_DIR1_BLOCK:
925 case NODE_DIR2_BLOCK:
926 err = truncate_dnode(&dn);
927 break;
928
929 case NODE_IND1_BLOCK:
930 case NODE_IND2_BLOCK:
931 err = truncate_nodes(&dn, nofs, offset[1], 2);
932 break;
933
934 case NODE_DIND_BLOCK:
935 err = truncate_nodes(&dn, nofs, offset[1], 3);
936 cont = 0;
937 break;
938
939 default:
940 BUG();
941 }
942 if (err < 0 && err != -ENOENT)
943 goto fail;
944 if (offset[1] == 0 &&
945 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
946 lock_page(page);
947 BUG_ON(page->mapping != NODE_MAPPING(sbi));
948 f2fs_wait_on_page_writeback(page, NODE, true);
949 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
950 set_page_dirty(page);
951 unlock_page(page);
952 }
953 offset[1] = 0;
954 offset[0]++;
955 nofs += err;
956 }
957 fail:
958 f2fs_put_page(page, 0);
959 trace_f2fs_truncate_inode_blocks_exit(inode, err);
960 return err > 0 ? 0 : err;
961 }
962
963 int truncate_xattr_node(struct inode *inode, struct page *page)
964 {
965 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
966 nid_t nid = F2FS_I(inode)->i_xattr_nid;
967 struct dnode_of_data dn;
968 struct page *npage;
969
970 if (!nid)
971 return 0;
972
973 npage = get_node_page(sbi, nid);
974 if (IS_ERR(npage))
975 return PTR_ERR(npage);
976
977 f2fs_i_xnid_write(inode, 0);
978
979 set_new_dnode(&dn, inode, page, npage, nid);
980
981 if (page)
982 dn.inode_page_locked = true;
983 truncate_node(&dn);
984 return 0;
985 }
986
987 /*
988 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
989 * f2fs_unlock_op().
990 */
991 int remove_inode_page(struct inode *inode)
992 {
993 struct dnode_of_data dn;
994 int err;
995
996 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
997 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
998 if (err)
999 return err;
1000
1001 err = truncate_xattr_node(inode, dn.inode_page);
1002 if (err) {
1003 f2fs_put_dnode(&dn);
1004 return err;
1005 }
1006
1007 /* remove potential inline_data blocks */
1008 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1009 S_ISLNK(inode->i_mode))
1010 truncate_data_blocks_range(&dn, 1);
1011
1012 /* 0 is possible, after f2fs_new_inode() has failed */
1013 f2fs_bug_on(F2FS_I_SB(inode),
1014 inode->i_blocks != 0 && inode->i_blocks != 8);
1015
1016 /* will put inode & node pages */
1017 truncate_node(&dn);
1018 return 0;
1019 }
1020
1021 struct page *new_inode_page(struct inode *inode)
1022 {
1023 struct dnode_of_data dn;
1024
1025 /* allocate inode page for new inode */
1026 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1027
1028 /* caller should f2fs_put_page(page, 1); */
1029 return new_node_page(&dn, 0, NULL);
1030 }
1031
1032 struct page *new_node_page(struct dnode_of_data *dn,
1033 unsigned int ofs, struct page *ipage)
1034 {
1035 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1036 struct node_info new_ni;
1037 struct page *page;
1038 int err;
1039
1040 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1041 return ERR_PTR(-EPERM);
1042
1043 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1044 if (!page)
1045 return ERR_PTR(-ENOMEM);
1046
1047 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1048 err = -ENOSPC;
1049 goto fail;
1050 }
1051 #ifdef CONFIG_F2FS_CHECK_FS
1052 get_node_info(sbi, dn->nid, &new_ni);
1053 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1054 #endif
1055 new_ni.nid = dn->nid;
1056 new_ni.ino = dn->inode->i_ino;
1057 new_ni.blk_addr = NULL_ADDR;
1058 new_ni.flag = 0;
1059 new_ni.version = 0;
1060 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1061
1062 f2fs_wait_on_page_writeback(page, NODE, true);
1063 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1064 set_cold_node(dn->inode, page);
1065 if (!PageUptodate(page))
1066 SetPageUptodate(page);
1067 if (set_page_dirty(page))
1068 dn->node_changed = true;
1069
1070 if (f2fs_has_xattr_block(ofs))
1071 f2fs_i_xnid_write(dn->inode, dn->nid);
1072
1073 if (ofs == 0)
1074 inc_valid_inode_count(sbi);
1075 return page;
1076
1077 fail:
1078 clear_node_page_dirty(page);
1079 f2fs_put_page(page, 1);
1080 return ERR_PTR(err);
1081 }
1082
1083 /*
1084 * Caller should do after getting the following values.
1085 * 0: f2fs_put_page(page, 0)
1086 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1087 */
1088 static int read_node_page(struct page *page, int op_flags)
1089 {
1090 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1091 struct node_info ni;
1092 struct f2fs_io_info fio = {
1093 .sbi = sbi,
1094 .type = NODE,
1095 .op = REQ_OP_READ,
1096 .op_flags = op_flags,
1097 .page = page,
1098 .encrypted_page = NULL,
1099 };
1100
1101 if (PageUptodate(page))
1102 return LOCKED_PAGE;
1103
1104 get_node_info(sbi, page->index, &ni);
1105
1106 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1107 ClearPageUptodate(page);
1108 return -ENOENT;
1109 }
1110
1111 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1112 return f2fs_submit_page_bio(&fio);
1113 }
1114
1115 /*
1116 * Readahead a node page
1117 */
1118 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1119 {
1120 struct page *apage;
1121 int err;
1122
1123 if (!nid)
1124 return;
1125 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1126
1127 rcu_read_lock();
1128 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1129 rcu_read_unlock();
1130 if (apage)
1131 return;
1132
1133 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1134 if (!apage)
1135 return;
1136
1137 err = read_node_page(apage, REQ_RAHEAD);
1138 f2fs_put_page(apage, err ? 1 : 0);
1139 }
1140
1141 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1142 struct page *parent, int start)
1143 {
1144 struct page *page;
1145 int err;
1146
1147 if (!nid)
1148 return ERR_PTR(-ENOENT);
1149 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1150 repeat:
1151 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1152 if (!page)
1153 return ERR_PTR(-ENOMEM);
1154
1155 err = read_node_page(page, 0);
1156 if (err < 0) {
1157 f2fs_put_page(page, 1);
1158 return ERR_PTR(err);
1159 } else if (err == LOCKED_PAGE) {
1160 err = 0;
1161 goto page_hit;
1162 }
1163
1164 if (parent)
1165 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1166
1167 lock_page(page);
1168
1169 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1170 f2fs_put_page(page, 1);
1171 goto repeat;
1172 }
1173
1174 if (unlikely(!PageUptodate(page))) {
1175 err = -EIO;
1176 goto out_err;
1177 }
1178 page_hit:
1179 if(unlikely(nid != nid_of_node(page))) {
1180 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1181 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1182 nid, nid_of_node(page), ino_of_node(page),
1183 ofs_of_node(page), cpver_of_node(page),
1184 next_blkaddr_of_node(page));
1185 ClearPageUptodate(page);
1186 err = -EINVAL;
1187 out_err:
1188 f2fs_put_page(page, 1);
1189 return ERR_PTR(err);
1190 }
1191 return page;
1192 }
1193
1194 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1195 {
1196 return __get_node_page(sbi, nid, NULL, 0);
1197 }
1198
1199 struct page *get_node_page_ra(struct page *parent, int start)
1200 {
1201 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1202 nid_t nid = get_nid(parent, start, false);
1203
1204 return __get_node_page(sbi, nid, parent, start);
1205 }
1206
1207 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1208 {
1209 struct inode *inode;
1210 struct page *page;
1211 int ret;
1212
1213 /* should flush inline_data before evict_inode */
1214 inode = ilookup(sbi->sb, ino);
1215 if (!inode)
1216 return;
1217
1218 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1219 if (!page)
1220 goto iput_out;
1221
1222 if (!PageUptodate(page))
1223 goto page_out;
1224
1225 if (!PageDirty(page))
1226 goto page_out;
1227
1228 if (!clear_page_dirty_for_io(page))
1229 goto page_out;
1230
1231 ret = f2fs_write_inline_data(inode, page);
1232 inode_dec_dirty_pages(inode);
1233 remove_dirty_inode(inode);
1234 if (ret)
1235 set_page_dirty(page);
1236 page_out:
1237 f2fs_put_page(page, 1);
1238 iput_out:
1239 iput(inode);
1240 }
1241
1242 void move_node_page(struct page *node_page, int gc_type)
1243 {
1244 if (gc_type == FG_GC) {
1245 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1246 struct writeback_control wbc = {
1247 .sync_mode = WB_SYNC_ALL,
1248 .nr_to_write = 1,
1249 .for_reclaim = 0,
1250 };
1251
1252 set_page_dirty(node_page);
1253 f2fs_wait_on_page_writeback(node_page, NODE, true);
1254
1255 f2fs_bug_on(sbi, PageWriteback(node_page));
1256 if (!clear_page_dirty_for_io(node_page))
1257 goto out_page;
1258
1259 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1260 unlock_page(node_page);
1261 goto release_page;
1262 } else {
1263 /* set page dirty and write it */
1264 if (!PageWriteback(node_page))
1265 set_page_dirty(node_page);
1266 }
1267 out_page:
1268 unlock_page(node_page);
1269 release_page:
1270 f2fs_put_page(node_page, 0);
1271 }
1272
1273 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1274 {
1275 pgoff_t index, end;
1276 struct pagevec pvec;
1277 struct page *last_page = NULL;
1278
1279 pagevec_init(&pvec, 0);
1280 index = 0;
1281 end = ULONG_MAX;
1282
1283 while (index <= end) {
1284 int i, nr_pages;
1285 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1286 PAGECACHE_TAG_DIRTY,
1287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1288 if (nr_pages == 0)
1289 break;
1290
1291 for (i = 0; i < nr_pages; i++) {
1292 struct page *page = pvec.pages[i];
1293
1294 if (unlikely(f2fs_cp_error(sbi))) {
1295 f2fs_put_page(last_page, 0);
1296 pagevec_release(&pvec);
1297 return ERR_PTR(-EIO);
1298 }
1299
1300 if (!IS_DNODE(page) || !is_cold_node(page))
1301 continue;
1302 if (ino_of_node(page) != ino)
1303 continue;
1304
1305 lock_page(page);
1306
1307 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1308 continue_unlock:
1309 unlock_page(page);
1310 continue;
1311 }
1312 if (ino_of_node(page) != ino)
1313 goto continue_unlock;
1314
1315 if (!PageDirty(page)) {
1316 /* someone wrote it for us */
1317 goto continue_unlock;
1318 }
1319
1320 if (last_page)
1321 f2fs_put_page(last_page, 0);
1322
1323 get_page(page);
1324 last_page = page;
1325 unlock_page(page);
1326 }
1327 pagevec_release(&pvec);
1328 cond_resched();
1329 }
1330 return last_page;
1331 }
1332
1333 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1334 struct writeback_control *wbc)
1335 {
1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1337 nid_t nid;
1338 struct node_info ni;
1339 struct f2fs_io_info fio = {
1340 .sbi = sbi,
1341 .type = NODE,
1342 .op = REQ_OP_WRITE,
1343 .op_flags = wbc_to_write_flags(wbc),
1344 .page = page,
1345 .encrypted_page = NULL,
1346 .submitted = false,
1347 };
1348
1349 trace_f2fs_writepage(page, NODE);
1350
1351 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1352 goto redirty_out;
1353 if (unlikely(f2fs_cp_error(sbi)))
1354 goto redirty_out;
1355
1356 /* get old block addr of this node page */
1357 nid = nid_of_node(page);
1358 f2fs_bug_on(sbi, page->index != nid);
1359
1360 if (wbc->for_reclaim) {
1361 if (!down_read_trylock(&sbi->node_write))
1362 goto redirty_out;
1363 } else {
1364 down_read(&sbi->node_write);
1365 }
1366
1367 get_node_info(sbi, nid, &ni);
1368
1369 /* This page is already truncated */
1370 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1371 ClearPageUptodate(page);
1372 dec_page_count(sbi, F2FS_DIRTY_NODES);
1373 up_read(&sbi->node_write);
1374 unlock_page(page);
1375 return 0;
1376 }
1377
1378 if (atomic && !test_opt(sbi, NOBARRIER))
1379 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1380
1381 set_page_writeback(page);
1382 fio.old_blkaddr = ni.blk_addr;
1383 write_node_page(nid, &fio);
1384 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1385 dec_page_count(sbi, F2FS_DIRTY_NODES);
1386 up_read(&sbi->node_write);
1387
1388 if (wbc->for_reclaim) {
1389 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1390 page->index, NODE);
1391 submitted = NULL;
1392 }
1393
1394 unlock_page(page);
1395
1396 if (unlikely(f2fs_cp_error(sbi))) {
1397 f2fs_submit_merged_write(sbi, NODE);
1398 submitted = NULL;
1399 }
1400 if (submitted)
1401 *submitted = fio.submitted;
1402
1403 return 0;
1404
1405 redirty_out:
1406 redirty_page_for_writepage(wbc, page);
1407 return AOP_WRITEPAGE_ACTIVATE;
1408 }
1409
1410 static int f2fs_write_node_page(struct page *page,
1411 struct writeback_control *wbc)
1412 {
1413 return __write_node_page(page, false, NULL, wbc);
1414 }
1415
1416 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1417 struct writeback_control *wbc, bool atomic)
1418 {
1419 pgoff_t index, end;
1420 pgoff_t last_idx = ULONG_MAX;
1421 struct pagevec pvec;
1422 int ret = 0;
1423 struct page *last_page = NULL;
1424 bool marked = false;
1425 nid_t ino = inode->i_ino;
1426
1427 if (atomic) {
1428 last_page = last_fsync_dnode(sbi, ino);
1429 if (IS_ERR_OR_NULL(last_page))
1430 return PTR_ERR_OR_ZERO(last_page);
1431 }
1432 retry:
1433 pagevec_init(&pvec, 0);
1434 index = 0;
1435 end = ULONG_MAX;
1436
1437 while (index <= end) {
1438 int i, nr_pages;
1439 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1440 PAGECACHE_TAG_DIRTY,
1441 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1442 if (nr_pages == 0)
1443 break;
1444
1445 for (i = 0; i < nr_pages; i++) {
1446 struct page *page = pvec.pages[i];
1447 bool submitted = false;
1448
1449 if (unlikely(f2fs_cp_error(sbi))) {
1450 f2fs_put_page(last_page, 0);
1451 pagevec_release(&pvec);
1452 ret = -EIO;
1453 goto out;
1454 }
1455
1456 if (!IS_DNODE(page) || !is_cold_node(page))
1457 continue;
1458 if (ino_of_node(page) != ino)
1459 continue;
1460
1461 lock_page(page);
1462
1463 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1464 continue_unlock:
1465 unlock_page(page);
1466 continue;
1467 }
1468 if (ino_of_node(page) != ino)
1469 goto continue_unlock;
1470
1471 if (!PageDirty(page) && page != last_page) {
1472 /* someone wrote it for us */
1473 goto continue_unlock;
1474 }
1475
1476 f2fs_wait_on_page_writeback(page, NODE, true);
1477 BUG_ON(PageWriteback(page));
1478
1479 set_fsync_mark(page, 0);
1480 set_dentry_mark(page, 0);
1481
1482 if (!atomic || page == last_page) {
1483 set_fsync_mark(page, 1);
1484 if (IS_INODE(page)) {
1485 if (is_inode_flag_set(inode,
1486 FI_DIRTY_INODE))
1487 update_inode(inode, page);
1488 set_dentry_mark(page,
1489 need_dentry_mark(sbi, ino));
1490 }
1491 /* may be written by other thread */
1492 if (!PageDirty(page))
1493 set_page_dirty(page);
1494 }
1495
1496 if (!clear_page_dirty_for_io(page))
1497 goto continue_unlock;
1498
1499 ret = __write_node_page(page, atomic &&
1500 page == last_page,
1501 &submitted, wbc);
1502 if (ret) {
1503 unlock_page(page);
1504 f2fs_put_page(last_page, 0);
1505 break;
1506 } else if (submitted) {
1507 last_idx = page->index;
1508 }
1509
1510 if (page == last_page) {
1511 f2fs_put_page(page, 0);
1512 marked = true;
1513 break;
1514 }
1515 }
1516 pagevec_release(&pvec);
1517 cond_resched();
1518
1519 if (ret || marked)
1520 break;
1521 }
1522 if (!ret && atomic && !marked) {
1523 f2fs_msg(sbi->sb, KERN_DEBUG,
1524 "Retry to write fsync mark: ino=%u, idx=%lx",
1525 ino, last_page->index);
1526 lock_page(last_page);
1527 f2fs_wait_on_page_writeback(last_page, NODE, true);
1528 set_page_dirty(last_page);
1529 unlock_page(last_page);
1530 goto retry;
1531 }
1532 out:
1533 if (last_idx != ULONG_MAX)
1534 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1535 return ret ? -EIO: 0;
1536 }
1537
1538 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1539 {
1540 pgoff_t index, end;
1541 struct pagevec pvec;
1542 int step = 0;
1543 int nwritten = 0;
1544 int ret = 0;
1545
1546 pagevec_init(&pvec, 0);
1547
1548 next_step:
1549 index = 0;
1550 end = ULONG_MAX;
1551
1552 while (index <= end) {
1553 int i, nr_pages;
1554 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1555 PAGECACHE_TAG_DIRTY,
1556 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1557 if (nr_pages == 0)
1558 break;
1559
1560 for (i = 0; i < nr_pages; i++) {
1561 struct page *page = pvec.pages[i];
1562 bool submitted = false;
1563
1564 if (unlikely(f2fs_cp_error(sbi))) {
1565 pagevec_release(&pvec);
1566 ret = -EIO;
1567 goto out;
1568 }
1569
1570 /*
1571 * flushing sequence with step:
1572 * 0. indirect nodes
1573 * 1. dentry dnodes
1574 * 2. file dnodes
1575 */
1576 if (step == 0 && IS_DNODE(page))
1577 continue;
1578 if (step == 1 && (!IS_DNODE(page) ||
1579 is_cold_node(page)))
1580 continue;
1581 if (step == 2 && (!IS_DNODE(page) ||
1582 !is_cold_node(page)))
1583 continue;
1584 lock_node:
1585 if (!trylock_page(page))
1586 continue;
1587
1588 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1589 continue_unlock:
1590 unlock_page(page);
1591 continue;
1592 }
1593
1594 if (!PageDirty(page)) {
1595 /* someone wrote it for us */
1596 goto continue_unlock;
1597 }
1598
1599 /* flush inline_data */
1600 if (is_inline_node(page)) {
1601 clear_inline_node(page);
1602 unlock_page(page);
1603 flush_inline_data(sbi, ino_of_node(page));
1604 goto lock_node;
1605 }
1606
1607 f2fs_wait_on_page_writeback(page, NODE, true);
1608
1609 BUG_ON(PageWriteback(page));
1610 if (!clear_page_dirty_for_io(page))
1611 goto continue_unlock;
1612
1613 set_fsync_mark(page, 0);
1614 set_dentry_mark(page, 0);
1615
1616 ret = __write_node_page(page, false, &submitted, wbc);
1617 if (ret)
1618 unlock_page(page);
1619 else if (submitted)
1620 nwritten++;
1621
1622 if (--wbc->nr_to_write == 0)
1623 break;
1624 }
1625 pagevec_release(&pvec);
1626 cond_resched();
1627
1628 if (wbc->nr_to_write == 0) {
1629 step = 2;
1630 break;
1631 }
1632 }
1633
1634 if (step < 2) {
1635 step++;
1636 goto next_step;
1637 }
1638 out:
1639 if (nwritten)
1640 f2fs_submit_merged_write(sbi, NODE);
1641 return ret;
1642 }
1643
1644 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1645 {
1646 pgoff_t index = 0, end = ULONG_MAX;
1647 struct pagevec pvec;
1648 int ret2, ret = 0;
1649
1650 pagevec_init(&pvec, 0);
1651
1652 while (index <= end) {
1653 int i, nr_pages;
1654 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1655 PAGECACHE_TAG_WRITEBACK,
1656 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1657 if (nr_pages == 0)
1658 break;
1659
1660 for (i = 0; i < nr_pages; i++) {
1661 struct page *page = pvec.pages[i];
1662
1663 /* until radix tree lookup accepts end_index */
1664 if (unlikely(page->index > end))
1665 continue;
1666
1667 if (ino && ino_of_node(page) == ino) {
1668 f2fs_wait_on_page_writeback(page, NODE, true);
1669 if (TestClearPageError(page))
1670 ret = -EIO;
1671 }
1672 }
1673 pagevec_release(&pvec);
1674 cond_resched();
1675 }
1676
1677 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1678 if (!ret)
1679 ret = ret2;
1680 return ret;
1681 }
1682
1683 static int f2fs_write_node_pages(struct address_space *mapping,
1684 struct writeback_control *wbc)
1685 {
1686 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1687 struct blk_plug plug;
1688 long diff;
1689
1690 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1691 goto skip_write;
1692
1693 /* balancing f2fs's metadata in background */
1694 f2fs_balance_fs_bg(sbi);
1695
1696 /* collect a number of dirty node pages and write together */
1697 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1698 goto skip_write;
1699
1700 trace_f2fs_writepages(mapping->host, wbc, NODE);
1701
1702 diff = nr_pages_to_write(sbi, NODE, wbc);
1703 wbc->sync_mode = WB_SYNC_NONE;
1704 blk_start_plug(&plug);
1705 sync_node_pages(sbi, wbc);
1706 blk_finish_plug(&plug);
1707 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1708 return 0;
1709
1710 skip_write:
1711 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1712 trace_f2fs_writepages(mapping->host, wbc, NODE);
1713 return 0;
1714 }
1715
1716 static int f2fs_set_node_page_dirty(struct page *page)
1717 {
1718 trace_f2fs_set_page_dirty(page, NODE);
1719
1720 if (!PageUptodate(page))
1721 SetPageUptodate(page);
1722 if (!PageDirty(page)) {
1723 f2fs_set_page_dirty_nobuffers(page);
1724 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1725 SetPagePrivate(page);
1726 f2fs_trace_pid(page);
1727 return 1;
1728 }
1729 return 0;
1730 }
1731
1732 /*
1733 * Structure of the f2fs node operations
1734 */
1735 const struct address_space_operations f2fs_node_aops = {
1736 .writepage = f2fs_write_node_page,
1737 .writepages = f2fs_write_node_pages,
1738 .set_page_dirty = f2fs_set_node_page_dirty,
1739 .invalidatepage = f2fs_invalidate_page,
1740 .releasepage = f2fs_release_page,
1741 #ifdef CONFIG_MIGRATION
1742 .migratepage = f2fs_migrate_page,
1743 #endif
1744 };
1745
1746 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1747 nid_t n)
1748 {
1749 return radix_tree_lookup(&nm_i->free_nid_root, n);
1750 }
1751
1752 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1753 struct free_nid *i, enum nid_list list, bool new)
1754 {
1755 struct f2fs_nm_info *nm_i = NM_I(sbi);
1756
1757 if (new) {
1758 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1759 if (err)
1760 return err;
1761 }
1762
1763 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1764 i->state != NID_ALLOC);
1765 nm_i->nid_cnt[list]++;
1766 list_add_tail(&i->list, &nm_i->nid_list[list]);
1767 return 0;
1768 }
1769
1770 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1771 struct free_nid *i, enum nid_list list, bool reuse)
1772 {
1773 struct f2fs_nm_info *nm_i = NM_I(sbi);
1774
1775 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1776 i->state != NID_ALLOC);
1777 nm_i->nid_cnt[list]--;
1778 list_del(&i->list);
1779 if (!reuse)
1780 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1781 }
1782
1783 /* return if the nid is recognized as free */
1784 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1785 {
1786 struct f2fs_nm_info *nm_i = NM_I(sbi);
1787 struct free_nid *i, *e;
1788 struct nat_entry *ne;
1789 int err = -EINVAL;
1790 bool ret = false;
1791
1792 /* 0 nid should not be used */
1793 if (unlikely(nid == 0))
1794 return false;
1795
1796 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1797 i->nid = nid;
1798 i->state = NID_NEW;
1799
1800 if (radix_tree_preload(GFP_NOFS))
1801 goto err;
1802
1803 spin_lock(&nm_i->nid_list_lock);
1804
1805 if (build) {
1806 /*
1807 * Thread A Thread B
1808 * - f2fs_create
1809 * - f2fs_new_inode
1810 * - alloc_nid
1811 * - __insert_nid_to_list(ALLOC_NID_LIST)
1812 * - f2fs_balance_fs_bg
1813 * - build_free_nids
1814 * - __build_free_nids
1815 * - scan_nat_page
1816 * - add_free_nid
1817 * - __lookup_nat_cache
1818 * - f2fs_add_link
1819 * - init_inode_metadata
1820 * - new_inode_page
1821 * - new_node_page
1822 * - set_node_addr
1823 * - alloc_nid_done
1824 * - __remove_nid_from_list(ALLOC_NID_LIST)
1825 * - __insert_nid_to_list(FREE_NID_LIST)
1826 */
1827 ne = __lookup_nat_cache(nm_i, nid);
1828 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1829 nat_get_blkaddr(ne) != NULL_ADDR))
1830 goto err_out;
1831
1832 e = __lookup_free_nid_list(nm_i, nid);
1833 if (e) {
1834 if (e->state == NID_NEW)
1835 ret = true;
1836 goto err_out;
1837 }
1838 }
1839 ret = true;
1840 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1841 err_out:
1842 spin_unlock(&nm_i->nid_list_lock);
1843 radix_tree_preload_end();
1844 err:
1845 if (err)
1846 kmem_cache_free(free_nid_slab, i);
1847 return ret;
1848 }
1849
1850 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1851 {
1852 struct f2fs_nm_info *nm_i = NM_I(sbi);
1853 struct free_nid *i;
1854 bool need_free = false;
1855
1856 spin_lock(&nm_i->nid_list_lock);
1857 i = __lookup_free_nid_list(nm_i, nid);
1858 if (i && i->state == NID_NEW) {
1859 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1860 need_free = true;
1861 }
1862 spin_unlock(&nm_i->nid_list_lock);
1863
1864 if (need_free)
1865 kmem_cache_free(free_nid_slab, i);
1866 }
1867
1868 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1869 bool set, bool build)
1870 {
1871 struct f2fs_nm_info *nm_i = NM_I(sbi);
1872 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1873 unsigned int nid_ofs = nid - START_NID(nid);
1874
1875 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1876 return;
1877
1878 if (set)
1879 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1880 else
1881 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1882
1883 if (set)
1884 nm_i->free_nid_count[nat_ofs]++;
1885 else if (!build)
1886 nm_i->free_nid_count[nat_ofs]--;
1887 }
1888
1889 static void scan_nat_page(struct f2fs_sb_info *sbi,
1890 struct page *nat_page, nid_t start_nid)
1891 {
1892 struct f2fs_nm_info *nm_i = NM_I(sbi);
1893 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1894 block_t blk_addr;
1895 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1896 int i;
1897
1898 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1899 return;
1900
1901 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1902
1903 i = start_nid % NAT_ENTRY_PER_BLOCK;
1904
1905 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1906 bool freed = false;
1907
1908 if (unlikely(start_nid >= nm_i->max_nid))
1909 break;
1910
1911 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1912 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1913 if (blk_addr == NULL_ADDR)
1914 freed = add_free_nid(sbi, start_nid, true);
1915 spin_lock(&NM_I(sbi)->nid_list_lock);
1916 update_free_nid_bitmap(sbi, start_nid, freed, true);
1917 spin_unlock(&NM_I(sbi)->nid_list_lock);
1918 }
1919 }
1920
1921 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1922 {
1923 struct f2fs_nm_info *nm_i = NM_I(sbi);
1924 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1925 struct f2fs_journal *journal = curseg->journal;
1926 unsigned int i, idx;
1927
1928 down_read(&nm_i->nat_tree_lock);
1929
1930 for (i = 0; i < nm_i->nat_blocks; i++) {
1931 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1932 continue;
1933 if (!nm_i->free_nid_count[i])
1934 continue;
1935 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1936 nid_t nid;
1937
1938 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1939 continue;
1940
1941 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1942 add_free_nid(sbi, nid, true);
1943
1944 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1945 goto out;
1946 }
1947 }
1948 out:
1949 down_read(&curseg->journal_rwsem);
1950 for (i = 0; i < nats_in_cursum(journal); i++) {
1951 block_t addr;
1952 nid_t nid;
1953
1954 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1955 nid = le32_to_cpu(nid_in_journal(journal, i));
1956 if (addr == NULL_ADDR)
1957 add_free_nid(sbi, nid, true);
1958 else
1959 remove_free_nid(sbi, nid);
1960 }
1961 up_read(&curseg->journal_rwsem);
1962 up_read(&nm_i->nat_tree_lock);
1963 }
1964
1965 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1966 {
1967 struct f2fs_nm_info *nm_i = NM_I(sbi);
1968 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1969 struct f2fs_journal *journal = curseg->journal;
1970 int i = 0;
1971 nid_t nid = nm_i->next_scan_nid;
1972
1973 if (unlikely(nid >= nm_i->max_nid))
1974 nid = 0;
1975
1976 /* Enough entries */
1977 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1978 return;
1979
1980 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1981 return;
1982
1983 if (!mount) {
1984 /* try to find free nids in free_nid_bitmap */
1985 scan_free_nid_bits(sbi);
1986
1987 if (nm_i->nid_cnt[FREE_NID_LIST])
1988 return;
1989 }
1990
1991 /* readahead nat pages to be scanned */
1992 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1993 META_NAT, true);
1994
1995 down_read(&nm_i->nat_tree_lock);
1996
1997 while (1) {
1998 struct page *page = get_current_nat_page(sbi, nid);
1999
2000 scan_nat_page(sbi, page, nid);
2001 f2fs_put_page(page, 1);
2002
2003 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2004 if (unlikely(nid >= nm_i->max_nid))
2005 nid = 0;
2006
2007 if (++i >= FREE_NID_PAGES)
2008 break;
2009 }
2010
2011 /* go to the next free nat pages to find free nids abundantly */
2012 nm_i->next_scan_nid = nid;
2013
2014 /* find free nids from current sum_pages */
2015 down_read(&curseg->journal_rwsem);
2016 for (i = 0; i < nats_in_cursum(journal); i++) {
2017 block_t addr;
2018
2019 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2020 nid = le32_to_cpu(nid_in_journal(journal, i));
2021 if (addr == NULL_ADDR)
2022 add_free_nid(sbi, nid, true);
2023 else
2024 remove_free_nid(sbi, nid);
2025 }
2026 up_read(&curseg->journal_rwsem);
2027 up_read(&nm_i->nat_tree_lock);
2028
2029 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2030 nm_i->ra_nid_pages, META_NAT, false);
2031 }
2032
2033 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2034 {
2035 mutex_lock(&NM_I(sbi)->build_lock);
2036 __build_free_nids(sbi, sync, mount);
2037 mutex_unlock(&NM_I(sbi)->build_lock);
2038 }
2039
2040 /*
2041 * If this function returns success, caller can obtain a new nid
2042 * from second parameter of this function.
2043 * The returned nid could be used ino as well as nid when inode is created.
2044 */
2045 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2046 {
2047 struct f2fs_nm_info *nm_i = NM_I(sbi);
2048 struct free_nid *i = NULL;
2049 retry:
2050 #ifdef CONFIG_F2FS_FAULT_INJECTION
2051 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2052 f2fs_show_injection_info(FAULT_ALLOC_NID);
2053 return false;
2054 }
2055 #endif
2056 spin_lock(&nm_i->nid_list_lock);
2057
2058 if (unlikely(nm_i->available_nids == 0)) {
2059 spin_unlock(&nm_i->nid_list_lock);
2060 return false;
2061 }
2062
2063 /* We should not use stale free nids created by build_free_nids */
2064 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2065 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2066 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2067 struct free_nid, list);
2068 *nid = i->nid;
2069
2070 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2071 i->state = NID_ALLOC;
2072 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2073 nm_i->available_nids--;
2074
2075 update_free_nid_bitmap(sbi, *nid, false, false);
2076
2077 spin_unlock(&nm_i->nid_list_lock);
2078 return true;
2079 }
2080 spin_unlock(&nm_i->nid_list_lock);
2081
2082 /* Let's scan nat pages and its caches to get free nids */
2083 build_free_nids(sbi, true, false);
2084 goto retry;
2085 }
2086
2087 /*
2088 * alloc_nid() should be called prior to this function.
2089 */
2090 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2091 {
2092 struct f2fs_nm_info *nm_i = NM_I(sbi);
2093 struct free_nid *i;
2094
2095 spin_lock(&nm_i->nid_list_lock);
2096 i = __lookup_free_nid_list(nm_i, nid);
2097 f2fs_bug_on(sbi, !i);
2098 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2099 spin_unlock(&nm_i->nid_list_lock);
2100
2101 kmem_cache_free(free_nid_slab, i);
2102 }
2103
2104 /*
2105 * alloc_nid() should be called prior to this function.
2106 */
2107 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2108 {
2109 struct f2fs_nm_info *nm_i = NM_I(sbi);
2110 struct free_nid *i;
2111 bool need_free = false;
2112
2113 if (!nid)
2114 return;
2115
2116 spin_lock(&nm_i->nid_list_lock);
2117 i = __lookup_free_nid_list(nm_i, nid);
2118 f2fs_bug_on(sbi, !i);
2119
2120 if (!available_free_memory(sbi, FREE_NIDS)) {
2121 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2122 need_free = true;
2123 } else {
2124 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2125 i->state = NID_NEW;
2126 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2127 }
2128
2129 nm_i->available_nids++;
2130
2131 update_free_nid_bitmap(sbi, nid, true, false);
2132
2133 spin_unlock(&nm_i->nid_list_lock);
2134
2135 if (need_free)
2136 kmem_cache_free(free_nid_slab, i);
2137 }
2138
2139 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2140 {
2141 struct f2fs_nm_info *nm_i = NM_I(sbi);
2142 struct free_nid *i, *next;
2143 int nr = nr_shrink;
2144
2145 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2146 return 0;
2147
2148 if (!mutex_trylock(&nm_i->build_lock))
2149 return 0;
2150
2151 spin_lock(&nm_i->nid_list_lock);
2152 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2153 list) {
2154 if (nr_shrink <= 0 ||
2155 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2156 break;
2157
2158 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2159 kmem_cache_free(free_nid_slab, i);
2160 nr_shrink--;
2161 }
2162 spin_unlock(&nm_i->nid_list_lock);
2163 mutex_unlock(&nm_i->build_lock);
2164
2165 return nr - nr_shrink;
2166 }
2167
2168 void recover_inline_xattr(struct inode *inode, struct page *page)
2169 {
2170 void *src_addr, *dst_addr;
2171 size_t inline_size;
2172 struct page *ipage;
2173 struct f2fs_inode *ri;
2174
2175 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2176 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2177
2178 ri = F2FS_INODE(page);
2179 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2180 clear_inode_flag(inode, FI_INLINE_XATTR);
2181 goto update_inode;
2182 }
2183
2184 dst_addr = inline_xattr_addr(ipage);
2185 src_addr = inline_xattr_addr(page);
2186 inline_size = inline_xattr_size(inode);
2187
2188 f2fs_wait_on_page_writeback(ipage, NODE, true);
2189 memcpy(dst_addr, src_addr, inline_size);
2190 update_inode:
2191 update_inode(inode, ipage);
2192 f2fs_put_page(ipage, 1);
2193 }
2194
2195 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2196 {
2197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2198 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2199 nid_t new_xnid = nid_of_node(page);
2200 struct node_info ni;
2201 struct page *xpage;
2202
2203 if (!prev_xnid)
2204 goto recover_xnid;
2205
2206 /* 1: invalidate the previous xattr nid */
2207 get_node_info(sbi, prev_xnid, &ni);
2208 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2209 invalidate_blocks(sbi, ni.blk_addr);
2210 dec_valid_node_count(sbi, inode);
2211 set_node_addr(sbi, &ni, NULL_ADDR, false);
2212
2213 recover_xnid:
2214 /* 2: update xattr nid in inode */
2215 remove_free_nid(sbi, new_xnid);
2216 f2fs_i_xnid_write(inode, new_xnid);
2217 if (unlikely(!inc_valid_node_count(sbi, inode)))
2218 f2fs_bug_on(sbi, 1);
2219 update_inode_page(inode);
2220
2221 /* 3: update and set xattr node page dirty */
2222 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2223 if (!xpage)
2224 return -ENOMEM;
2225
2226 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2227
2228 get_node_info(sbi, new_xnid, &ni);
2229 ni.ino = inode->i_ino;
2230 set_node_addr(sbi, &ni, NEW_ADDR, false);
2231 set_page_dirty(xpage);
2232 f2fs_put_page(xpage, 1);
2233
2234 return 0;
2235 }
2236
2237 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2238 {
2239 struct f2fs_inode *src, *dst;
2240 nid_t ino = ino_of_node(page);
2241 struct node_info old_ni, new_ni;
2242 struct page *ipage;
2243
2244 get_node_info(sbi, ino, &old_ni);
2245
2246 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2247 return -EINVAL;
2248 retry:
2249 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2250 if (!ipage) {
2251 congestion_wait(BLK_RW_ASYNC, HZ/50);
2252 goto retry;
2253 }
2254
2255 /* Should not use this inode from free nid list */
2256 remove_free_nid(sbi, ino);
2257
2258 if (!PageUptodate(ipage))
2259 SetPageUptodate(ipage);
2260 fill_node_footer(ipage, ino, ino, 0, true);
2261
2262 src = F2FS_INODE(page);
2263 dst = F2FS_INODE(ipage);
2264
2265 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2266 dst->i_size = 0;
2267 dst->i_blocks = cpu_to_le64(1);
2268 dst->i_links = cpu_to_le32(1);
2269 dst->i_xattr_nid = 0;
2270 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2271
2272 new_ni = old_ni;
2273 new_ni.ino = ino;
2274
2275 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2276 WARN_ON(1);
2277 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2278 inc_valid_inode_count(sbi);
2279 set_page_dirty(ipage);
2280 f2fs_put_page(ipage, 1);
2281 return 0;
2282 }
2283
2284 int restore_node_summary(struct f2fs_sb_info *sbi,
2285 unsigned int segno, struct f2fs_summary_block *sum)
2286 {
2287 struct f2fs_node *rn;
2288 struct f2fs_summary *sum_entry;
2289 block_t addr;
2290 int i, idx, last_offset, nrpages;
2291
2292 /* scan the node segment */
2293 last_offset = sbi->blocks_per_seg;
2294 addr = START_BLOCK(sbi, segno);
2295 sum_entry = &sum->entries[0];
2296
2297 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2298 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2299
2300 /* readahead node pages */
2301 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2302
2303 for (idx = addr; idx < addr + nrpages; idx++) {
2304 struct page *page = get_tmp_page(sbi, idx);
2305
2306 rn = F2FS_NODE(page);
2307 sum_entry->nid = rn->footer.nid;
2308 sum_entry->version = 0;
2309 sum_entry->ofs_in_node = 0;
2310 sum_entry++;
2311 f2fs_put_page(page, 1);
2312 }
2313
2314 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2315 addr + nrpages);
2316 }
2317 return 0;
2318 }
2319
2320 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2321 {
2322 struct f2fs_nm_info *nm_i = NM_I(sbi);
2323 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2324 struct f2fs_journal *journal = curseg->journal;
2325 int i;
2326
2327 down_write(&curseg->journal_rwsem);
2328 for (i = 0; i < nats_in_cursum(journal); i++) {
2329 struct nat_entry *ne;
2330 struct f2fs_nat_entry raw_ne;
2331 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2332
2333 raw_ne = nat_in_journal(journal, i);
2334
2335 ne = __lookup_nat_cache(nm_i, nid);
2336 if (!ne) {
2337 ne = grab_nat_entry(nm_i, nid, true);
2338 node_info_from_raw_nat(&ne->ni, &raw_ne);
2339 }
2340
2341 /*
2342 * if a free nat in journal has not been used after last
2343 * checkpoint, we should remove it from available nids,
2344 * since later we will add it again.
2345 */
2346 if (!get_nat_flag(ne, IS_DIRTY) &&
2347 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2348 spin_lock(&nm_i->nid_list_lock);
2349 nm_i->available_nids--;
2350 spin_unlock(&nm_i->nid_list_lock);
2351 }
2352
2353 __set_nat_cache_dirty(nm_i, ne);
2354 }
2355 update_nats_in_cursum(journal, -i);
2356 up_write(&curseg->journal_rwsem);
2357 }
2358
2359 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2360 struct list_head *head, int max)
2361 {
2362 struct nat_entry_set *cur;
2363
2364 if (nes->entry_cnt >= max)
2365 goto add_out;
2366
2367 list_for_each_entry(cur, head, set_list) {
2368 if (cur->entry_cnt >= nes->entry_cnt) {
2369 list_add(&nes->set_list, cur->set_list.prev);
2370 return;
2371 }
2372 }
2373 add_out:
2374 list_add_tail(&nes->set_list, head);
2375 }
2376
2377 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2378 struct page *page)
2379 {
2380 struct f2fs_nm_info *nm_i = NM_I(sbi);
2381 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2382 struct f2fs_nat_block *nat_blk = page_address(page);
2383 int valid = 0;
2384 int i;
2385
2386 if (!enabled_nat_bits(sbi, NULL))
2387 return;
2388
2389 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2390 if (start_nid == 0 && i == 0)
2391 valid++;
2392 if (nat_blk->entries[i].block_addr)
2393 valid++;
2394 }
2395 if (valid == 0) {
2396 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2397 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2398 return;
2399 }
2400
2401 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2402 if (valid == NAT_ENTRY_PER_BLOCK)
2403 __set_bit_le(nat_index, nm_i->full_nat_bits);
2404 else
2405 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2406 }
2407
2408 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2409 struct nat_entry_set *set, struct cp_control *cpc)
2410 {
2411 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2412 struct f2fs_journal *journal = curseg->journal;
2413 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2414 bool to_journal = true;
2415 struct f2fs_nat_block *nat_blk;
2416 struct nat_entry *ne, *cur;
2417 struct page *page = NULL;
2418
2419 /*
2420 * there are two steps to flush nat entries:
2421 * #1, flush nat entries to journal in current hot data summary block.
2422 * #2, flush nat entries to nat page.
2423 */
2424 if (enabled_nat_bits(sbi, cpc) ||
2425 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2426 to_journal = false;
2427
2428 if (to_journal) {
2429 down_write(&curseg->journal_rwsem);
2430 } else {
2431 page = get_next_nat_page(sbi, start_nid);
2432 nat_blk = page_address(page);
2433 f2fs_bug_on(sbi, !nat_blk);
2434 }
2435
2436 /* flush dirty nats in nat entry set */
2437 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2438 struct f2fs_nat_entry *raw_ne;
2439 nid_t nid = nat_get_nid(ne);
2440 int offset;
2441
2442 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2443
2444 if (to_journal) {
2445 offset = lookup_journal_in_cursum(journal,
2446 NAT_JOURNAL, nid, 1);
2447 f2fs_bug_on(sbi, offset < 0);
2448 raw_ne = &nat_in_journal(journal, offset);
2449 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2450 } else {
2451 raw_ne = &nat_blk->entries[nid - start_nid];
2452 }
2453 raw_nat_from_node_info(raw_ne, &ne->ni);
2454 nat_reset_flag(ne);
2455 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2456 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2457 add_free_nid(sbi, nid, false);
2458 spin_lock(&NM_I(sbi)->nid_list_lock);
2459 NM_I(sbi)->available_nids++;
2460 update_free_nid_bitmap(sbi, nid, true, false);
2461 spin_unlock(&NM_I(sbi)->nid_list_lock);
2462 } else {
2463 spin_lock(&NM_I(sbi)->nid_list_lock);
2464 update_free_nid_bitmap(sbi, nid, false, false);
2465 spin_unlock(&NM_I(sbi)->nid_list_lock);
2466 }
2467 }
2468
2469 if (to_journal) {
2470 up_write(&curseg->journal_rwsem);
2471 } else {
2472 __update_nat_bits(sbi, start_nid, page);
2473 f2fs_put_page(page, 1);
2474 }
2475
2476 /* Allow dirty nats by node block allocation in write_begin */
2477 if (!set->entry_cnt) {
2478 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2479 kmem_cache_free(nat_entry_set_slab, set);
2480 }
2481 }
2482
2483 /*
2484 * This function is called during the checkpointing process.
2485 */
2486 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2487 {
2488 struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2490 struct f2fs_journal *journal = curseg->journal;
2491 struct nat_entry_set *setvec[SETVEC_SIZE];
2492 struct nat_entry_set *set, *tmp;
2493 unsigned int found;
2494 nid_t set_idx = 0;
2495 LIST_HEAD(sets);
2496
2497 if (!nm_i->dirty_nat_cnt)
2498 return;
2499
2500 down_write(&nm_i->nat_tree_lock);
2501
2502 /*
2503 * if there are no enough space in journal to store dirty nat
2504 * entries, remove all entries from journal and merge them
2505 * into nat entry set.
2506 */
2507 if (enabled_nat_bits(sbi, cpc) ||
2508 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2509 remove_nats_in_journal(sbi);
2510
2511 while ((found = __gang_lookup_nat_set(nm_i,
2512 set_idx, SETVEC_SIZE, setvec))) {
2513 unsigned idx;
2514 set_idx = setvec[found - 1]->set + 1;
2515 for (idx = 0; idx < found; idx++)
2516 __adjust_nat_entry_set(setvec[idx], &sets,
2517 MAX_NAT_JENTRIES(journal));
2518 }
2519
2520 /* flush dirty nats in nat entry set */
2521 list_for_each_entry_safe(set, tmp, &sets, set_list)
2522 __flush_nat_entry_set(sbi, set, cpc);
2523
2524 up_write(&nm_i->nat_tree_lock);
2525 /* Allow dirty nats by node block allocation in write_begin */
2526 }
2527
2528 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2529 {
2530 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2531 struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2533 unsigned int i;
2534 __u64 cp_ver = cur_cp_version(ckpt);
2535 block_t nat_bits_addr;
2536
2537 if (!enabled_nat_bits(sbi, NULL))
2538 return 0;
2539
2540 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2541 F2FS_BLKSIZE - 1);
2542 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2543 GFP_KERNEL);
2544 if (!nm_i->nat_bits)
2545 return -ENOMEM;
2546
2547 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2548 nm_i->nat_bits_blocks;
2549 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2550 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2551
2552 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2553 page_address(page), F2FS_BLKSIZE);
2554 f2fs_put_page(page, 1);
2555 }
2556
2557 cp_ver |= (cur_cp_crc(ckpt) << 32);
2558 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2559 disable_nat_bits(sbi, true);
2560 return 0;
2561 }
2562
2563 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2564 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2565
2566 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2567 return 0;
2568 }
2569
2570 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2571 {
2572 struct f2fs_nm_info *nm_i = NM_I(sbi);
2573 unsigned int i = 0;
2574 nid_t nid, last_nid;
2575
2576 if (!enabled_nat_bits(sbi, NULL))
2577 return;
2578
2579 for (i = 0; i < nm_i->nat_blocks; i++) {
2580 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2581 if (i >= nm_i->nat_blocks)
2582 break;
2583
2584 __set_bit_le(i, nm_i->nat_block_bitmap);
2585
2586 nid = i * NAT_ENTRY_PER_BLOCK;
2587 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2588
2589 spin_lock(&NM_I(sbi)->nid_list_lock);
2590 for (; nid < last_nid; nid++)
2591 update_free_nid_bitmap(sbi, nid, true, true);
2592 spin_unlock(&NM_I(sbi)->nid_list_lock);
2593 }
2594
2595 for (i = 0; i < nm_i->nat_blocks; i++) {
2596 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2597 if (i >= nm_i->nat_blocks)
2598 break;
2599
2600 __set_bit_le(i, nm_i->nat_block_bitmap);
2601 }
2602 }
2603
2604 static int init_node_manager(struct f2fs_sb_info *sbi)
2605 {
2606 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2607 struct f2fs_nm_info *nm_i = NM_I(sbi);
2608 unsigned char *version_bitmap;
2609 unsigned int nat_segs;
2610 int err;
2611
2612 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2613
2614 /* segment_count_nat includes pair segment so divide to 2. */
2615 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2616 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2617 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2618
2619 /* not used nids: 0, node, meta, (and root counted as valid node) */
2620 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2621 F2FS_RESERVED_NODE_NUM;
2622 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2623 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2624 nm_i->nat_cnt = 0;
2625 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2626 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2627 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2628
2629 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2630 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2631 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2632 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2633 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2634 INIT_LIST_HEAD(&nm_i->nat_entries);
2635
2636 mutex_init(&nm_i->build_lock);
2637 spin_lock_init(&nm_i->nid_list_lock);
2638 init_rwsem(&nm_i->nat_tree_lock);
2639
2640 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2641 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2642 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2643 if (!version_bitmap)
2644 return -EFAULT;
2645
2646 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2647 GFP_KERNEL);
2648 if (!nm_i->nat_bitmap)
2649 return -ENOMEM;
2650
2651 err = __get_nat_bitmaps(sbi);
2652 if (err)
2653 return err;
2654
2655 #ifdef CONFIG_F2FS_CHECK_FS
2656 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2657 GFP_KERNEL);
2658 if (!nm_i->nat_bitmap_mir)
2659 return -ENOMEM;
2660 #endif
2661
2662 return 0;
2663 }
2664
2665 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2666 {
2667 struct f2fs_nm_info *nm_i = NM_I(sbi);
2668
2669 nm_i->free_nid_bitmap = f2fs_kvzalloc(nm_i->nat_blocks *
2670 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2671 if (!nm_i->free_nid_bitmap)
2672 return -ENOMEM;
2673
2674 nm_i->nat_block_bitmap = f2fs_kvzalloc(nm_i->nat_blocks / 8,
2675 GFP_KERNEL);
2676 if (!nm_i->nat_block_bitmap)
2677 return -ENOMEM;
2678
2679 nm_i->free_nid_count = f2fs_kvzalloc(nm_i->nat_blocks *
2680 sizeof(unsigned short), GFP_KERNEL);
2681 if (!nm_i->free_nid_count)
2682 return -ENOMEM;
2683 return 0;
2684 }
2685
2686 int build_node_manager(struct f2fs_sb_info *sbi)
2687 {
2688 int err;
2689
2690 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2691 if (!sbi->nm_info)
2692 return -ENOMEM;
2693
2694 err = init_node_manager(sbi);
2695 if (err)
2696 return err;
2697
2698 err = init_free_nid_cache(sbi);
2699 if (err)
2700 return err;
2701
2702 /* load free nid status from nat_bits table */
2703 load_free_nid_bitmap(sbi);
2704
2705 build_free_nids(sbi, true, true);
2706 return 0;
2707 }
2708
2709 void destroy_node_manager(struct f2fs_sb_info *sbi)
2710 {
2711 struct f2fs_nm_info *nm_i = NM_I(sbi);
2712 struct free_nid *i, *next_i;
2713 struct nat_entry *natvec[NATVEC_SIZE];
2714 struct nat_entry_set *setvec[SETVEC_SIZE];
2715 nid_t nid = 0;
2716 unsigned int found;
2717
2718 if (!nm_i)
2719 return;
2720
2721 /* destroy free nid list */
2722 spin_lock(&nm_i->nid_list_lock);
2723 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2724 list) {
2725 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2726 spin_unlock(&nm_i->nid_list_lock);
2727 kmem_cache_free(free_nid_slab, i);
2728 spin_lock(&nm_i->nid_list_lock);
2729 }
2730 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2731 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2732 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2733 spin_unlock(&nm_i->nid_list_lock);
2734
2735 /* destroy nat cache */
2736 down_write(&nm_i->nat_tree_lock);
2737 while ((found = __gang_lookup_nat_cache(nm_i,
2738 nid, NATVEC_SIZE, natvec))) {
2739 unsigned idx;
2740
2741 nid = nat_get_nid(natvec[found - 1]) + 1;
2742 for (idx = 0; idx < found; idx++)
2743 __del_from_nat_cache(nm_i, natvec[idx]);
2744 }
2745 f2fs_bug_on(sbi, nm_i->nat_cnt);
2746
2747 /* destroy nat set cache */
2748 nid = 0;
2749 while ((found = __gang_lookup_nat_set(nm_i,
2750 nid, SETVEC_SIZE, setvec))) {
2751 unsigned idx;
2752
2753 nid = setvec[found - 1]->set + 1;
2754 for (idx = 0; idx < found; idx++) {
2755 /* entry_cnt is not zero, when cp_error was occurred */
2756 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2757 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2758 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2759 }
2760 }
2761 up_write(&nm_i->nat_tree_lock);
2762
2763 kvfree(nm_i->nat_block_bitmap);
2764 kvfree(nm_i->free_nid_bitmap);
2765 kvfree(nm_i->free_nid_count);
2766
2767 kfree(nm_i->nat_bitmap);
2768 kfree(nm_i->nat_bits);
2769 #ifdef CONFIG_F2FS_CHECK_FS
2770 kfree(nm_i->nat_bitmap_mir);
2771 #endif
2772 sbi->nm_info = NULL;
2773 kfree(nm_i);
2774 }
2775
2776 int __init create_node_manager_caches(void)
2777 {
2778 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2779 sizeof(struct nat_entry));
2780 if (!nat_entry_slab)
2781 goto fail;
2782
2783 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2784 sizeof(struct free_nid));
2785 if (!free_nid_slab)
2786 goto destroy_nat_entry;
2787
2788 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2789 sizeof(struct nat_entry_set));
2790 if (!nat_entry_set_slab)
2791 goto destroy_free_nid;
2792 return 0;
2793
2794 destroy_free_nid:
2795 kmem_cache_destroy(free_nid_slab);
2796 destroy_nat_entry:
2797 kmem_cache_destroy(nat_entry_slab);
2798 fail:
2799 return -ENOMEM;
2800 }
2801
2802 void destroy_node_manager_caches(void)
2803 {
2804 kmem_cache_destroy(nat_entry_set_slab);
2805 kmem_cache_destroy(free_nid_slab);
2806 kmem_cache_destroy(nat_entry_slab);
2807 }