]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/node.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
30 {
31 struct sysinfo val;
32 unsigned long mem_size = 0;
33
34 si_meminfo(&val);
35 if (type == FREE_NIDS)
36 mem_size = nm_i->fcnt * sizeof(struct free_nid);
37 else if (type == NAT_ENTRIES)
38 mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
39 mem_size >>= 12;
40
41 /* give 50:50 memory for free nids and nat caches respectively */
42 return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
43 }
44
45 static void clear_node_page_dirty(struct page *page)
46 {
47 struct address_space *mapping = page->mapping;
48 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
49 unsigned int long flags;
50
51 if (PageDirty(page)) {
52 spin_lock_irqsave(&mapping->tree_lock, flags);
53 radix_tree_tag_clear(&mapping->page_tree,
54 page_index(page),
55 PAGECACHE_TAG_DIRTY);
56 spin_unlock_irqrestore(&mapping->tree_lock, flags);
57
58 clear_page_dirty_for_io(page);
59 dec_page_count(sbi, F2FS_DIRTY_NODES);
60 }
61 ClearPageUptodate(page);
62 }
63
64 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
65 {
66 pgoff_t index = current_nat_addr(sbi, nid);
67 return get_meta_page(sbi, index);
68 }
69
70 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72 struct page *src_page;
73 struct page *dst_page;
74 pgoff_t src_off;
75 pgoff_t dst_off;
76 void *src_addr;
77 void *dst_addr;
78 struct f2fs_nm_info *nm_i = NM_I(sbi);
79
80 src_off = current_nat_addr(sbi, nid);
81 dst_off = next_nat_addr(sbi, src_off);
82
83 /* get current nat block page with lock */
84 src_page = get_meta_page(sbi, src_off);
85
86 /* Dirty src_page means that it is already the new target NAT page. */
87 if (PageDirty(src_page))
88 return src_page;
89
90 dst_page = grab_meta_page(sbi, dst_off);
91
92 src_addr = page_address(src_page);
93 dst_addr = page_address(dst_page);
94 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
95 set_page_dirty(dst_page);
96 f2fs_put_page(src_page, 1);
97
98 set_to_next_nat(nm_i, nid);
99
100 return dst_page;
101 }
102
103 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
104 {
105 return radix_tree_lookup(&nm_i->nat_root, n);
106 }
107
108 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
109 nid_t start, unsigned int nr, struct nat_entry **ep)
110 {
111 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
112 }
113
114 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
115 {
116 list_del(&e->list);
117 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
118 nm_i->nat_cnt--;
119 kmem_cache_free(nat_entry_slab, e);
120 }
121
122 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124 struct f2fs_nm_info *nm_i = NM_I(sbi);
125 struct nat_entry *e;
126 int is_cp = 1;
127
128 read_lock(&nm_i->nat_tree_lock);
129 e = __lookup_nat_cache(nm_i, nid);
130 if (e && !e->checkpointed)
131 is_cp = 0;
132 read_unlock(&nm_i->nat_tree_lock);
133 return is_cp;
134 }
135
136 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138 struct f2fs_nm_info *nm_i = NM_I(sbi);
139 struct nat_entry *e;
140 bool fsync_done = false;
141
142 read_lock(&nm_i->nat_tree_lock);
143 e = __lookup_nat_cache(nm_i, nid);
144 if (e)
145 fsync_done = e->fsync_done;
146 read_unlock(&nm_i->nat_tree_lock);
147 return fsync_done;
148 }
149
150 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
151 {
152 struct nat_entry *new;
153
154 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
155 if (!new)
156 return NULL;
157 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
158 kmem_cache_free(nat_entry_slab, new);
159 return NULL;
160 }
161 memset(new, 0, sizeof(struct nat_entry));
162 nat_set_nid(new, nid);
163 new->checkpointed = true;
164 list_add_tail(&new->list, &nm_i->nat_entries);
165 nm_i->nat_cnt++;
166 return new;
167 }
168
169 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
170 struct f2fs_nat_entry *ne)
171 {
172 struct nat_entry *e;
173 retry:
174 write_lock(&nm_i->nat_tree_lock);
175 e = __lookup_nat_cache(nm_i, nid);
176 if (!e) {
177 e = grab_nat_entry(nm_i, nid);
178 if (!e) {
179 write_unlock(&nm_i->nat_tree_lock);
180 goto retry;
181 }
182 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
183 nat_set_ino(e, le32_to_cpu(ne->ino));
184 nat_set_version(e, ne->version);
185 }
186 write_unlock(&nm_i->nat_tree_lock);
187 }
188
189 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
190 block_t new_blkaddr, bool fsync_done)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 struct nat_entry *e;
194 retry:
195 write_lock(&nm_i->nat_tree_lock);
196 e = __lookup_nat_cache(nm_i, ni->nid);
197 if (!e) {
198 e = grab_nat_entry(nm_i, ni->nid);
199 if (!e) {
200 write_unlock(&nm_i->nat_tree_lock);
201 goto retry;
202 }
203 e->ni = *ni;
204 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205 } else if (new_blkaddr == NEW_ADDR) {
206 /*
207 * when nid is reallocated,
208 * previous nat entry can be remained in nat cache.
209 * So, reinitialize it with new information.
210 */
211 e->ni = *ni;
212 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213 }
214
215 /* sanity check */
216 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
217 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
218 new_blkaddr == NULL_ADDR);
219 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
220 new_blkaddr == NEW_ADDR);
221 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
222 nat_get_blkaddr(e) != NULL_ADDR &&
223 new_blkaddr == NEW_ADDR);
224
225 /* increament version no as node is removed */
226 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
227 unsigned char version = nat_get_version(e);
228 nat_set_version(e, inc_node_version(version));
229 }
230
231 /* change address */
232 nat_set_blkaddr(e, new_blkaddr);
233 __set_nat_cache_dirty(nm_i, e);
234
235 /* update fsync_mark if its inode nat entry is still alive */
236 e = __lookup_nat_cache(nm_i, ni->ino);
237 if (e)
238 e->fsync_done = fsync_done;
239 write_unlock(&nm_i->nat_tree_lock);
240 }
241
242 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
243 {
244 struct f2fs_nm_info *nm_i = NM_I(sbi);
245
246 if (available_free_memory(nm_i, NAT_ENTRIES))
247 return 0;
248
249 write_lock(&nm_i->nat_tree_lock);
250 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
251 struct nat_entry *ne;
252 ne = list_first_entry(&nm_i->nat_entries,
253 struct nat_entry, list);
254 __del_from_nat_cache(nm_i, ne);
255 nr_shrink--;
256 }
257 write_unlock(&nm_i->nat_tree_lock);
258 return nr_shrink;
259 }
260
261 /*
262 * This function returns always success
263 */
264 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
265 {
266 struct f2fs_nm_info *nm_i = NM_I(sbi);
267 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
268 struct f2fs_summary_block *sum = curseg->sum_blk;
269 nid_t start_nid = START_NID(nid);
270 struct f2fs_nat_block *nat_blk;
271 struct page *page = NULL;
272 struct f2fs_nat_entry ne;
273 struct nat_entry *e;
274 int i;
275
276 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
277 ni->nid = nid;
278
279 /* Check nat cache */
280 read_lock(&nm_i->nat_tree_lock);
281 e = __lookup_nat_cache(nm_i, nid);
282 if (e) {
283 ni->ino = nat_get_ino(e);
284 ni->blk_addr = nat_get_blkaddr(e);
285 ni->version = nat_get_version(e);
286 }
287 read_unlock(&nm_i->nat_tree_lock);
288 if (e)
289 return;
290
291 /* Check current segment summary */
292 mutex_lock(&curseg->curseg_mutex);
293 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
294 if (i >= 0) {
295 ne = nat_in_journal(sum, i);
296 node_info_from_raw_nat(ni, &ne);
297 }
298 mutex_unlock(&curseg->curseg_mutex);
299 if (i >= 0)
300 goto cache;
301
302 /* Fill node_info from nat page */
303 page = get_current_nat_page(sbi, start_nid);
304 nat_blk = (struct f2fs_nat_block *)page_address(page);
305 ne = nat_blk->entries[nid - start_nid];
306 node_info_from_raw_nat(ni, &ne);
307 f2fs_put_page(page, 1);
308 cache:
309 /* cache nat entry */
310 cache_nat_entry(NM_I(sbi), nid, &ne);
311 }
312
313 /*
314 * The maximum depth is four.
315 * Offset[0] will have raw inode offset.
316 */
317 static int get_node_path(struct f2fs_inode_info *fi, long block,
318 int offset[4], unsigned int noffset[4])
319 {
320 const long direct_index = ADDRS_PER_INODE(fi);
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
331 offset[n] = block;
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
338 offset[n] = block;
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
346 offset[n] = block;
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
356 offset[n] = block % direct_blks;
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 offset[n] = block % direct_blks;
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
381 offset[n] = block % direct_blks;
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387 got:
388 return level;
389 }
390
391 /*
392 * Caller should call f2fs_put_dnode(dn).
393 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
394 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
396 */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = dn->inode_page;
412
413 if (!npage[0]) {
414 npage[0] = get_node_page(sbi, nids[0]);
415 if (IS_ERR(npage[0]))
416 return PTR_ERR(npage[0]);
417 }
418 parent = npage[0];
419 if (level != 0)
420 nids[1] = get_nid(parent, offset[0], true);
421 dn->inode_page = npage[0];
422 dn->inode_page_locked = true;
423
424 /* get indirect or direct nodes */
425 for (i = 1; i <= level; i++) {
426 bool done = false;
427
428 if (!nids[i] && mode == ALLOC_NODE) {
429 /* alloc new node */
430 if (!alloc_nid(sbi, &(nids[i]))) {
431 err = -ENOSPC;
432 goto release_pages;
433 }
434
435 dn->nid = nids[i];
436 npage[i] = new_node_page(dn, noffset[i], NULL);
437 if (IS_ERR(npage[i])) {
438 alloc_nid_failed(sbi, nids[i]);
439 err = PTR_ERR(npage[i]);
440 goto release_pages;
441 }
442
443 set_nid(parent, offset[i - 1], nids[i], i == 1);
444 alloc_nid_done(sbi, nids[i]);
445 done = true;
446 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447 npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 if (IS_ERR(npage[i])) {
449 err = PTR_ERR(npage[i]);
450 goto release_pages;
451 }
452 done = true;
453 }
454 if (i == 1) {
455 dn->inode_page_locked = false;
456 unlock_page(parent);
457 } else {
458 f2fs_put_page(parent, 1);
459 }
460
461 if (!done) {
462 npage[i] = get_node_page(sbi, nids[i]);
463 if (IS_ERR(npage[i])) {
464 err = PTR_ERR(npage[i]);
465 f2fs_put_page(npage[0], 0);
466 goto release_out;
467 }
468 }
469 if (i < level) {
470 parent = npage[i];
471 nids[i + 1] = get_nid(parent, offset[i], false);
472 }
473 }
474 dn->nid = nids[level];
475 dn->ofs_in_node = offset[level];
476 dn->node_page = npage[level];
477 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 return 0;
479
480 release_pages:
481 f2fs_put_page(parent, 1);
482 if (i > 1)
483 f2fs_put_page(npage[0], 0);
484 release_out:
485 dn->inode_page = NULL;
486 dn->node_page = NULL;
487 return err;
488 }
489
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 struct node_info ni;
494
495 get_node_info(sbi, dn->nid, &ni);
496 if (dn->inode->i_blocks == 0) {
497 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
498 goto invalidate;
499 }
500 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
501
502 /* Deallocate node address */
503 invalidate_blocks(sbi, ni.blk_addr);
504 dec_valid_node_count(sbi, dn->inode);
505 set_node_addr(sbi, &ni, NULL_ADDR, false);
506
507 if (dn->nid == dn->inode->i_ino) {
508 remove_orphan_inode(sbi, dn->nid);
509 dec_valid_inode_count(sbi);
510 } else {
511 sync_inode_page(dn);
512 }
513 invalidate:
514 clear_node_page_dirty(dn->node_page);
515 F2FS_SET_SB_DIRT(sbi);
516
517 f2fs_put_page(dn->node_page, 1);
518
519 invalidate_mapping_pages(NODE_MAPPING(sbi),
520 dn->node_page->index, dn->node_page->index);
521
522 dn->node_page = NULL;
523 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
524 }
525
526 static int truncate_dnode(struct dnode_of_data *dn)
527 {
528 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
529 struct page *page;
530
531 if (dn->nid == 0)
532 return 1;
533
534 /* get direct node */
535 page = get_node_page(sbi, dn->nid);
536 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
537 return 1;
538 else if (IS_ERR(page))
539 return PTR_ERR(page);
540
541 /* Make dnode_of_data for parameter */
542 dn->node_page = page;
543 dn->ofs_in_node = 0;
544 truncate_data_blocks(dn);
545 truncate_node(dn);
546 return 1;
547 }
548
549 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
550 int ofs, int depth)
551 {
552 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
553 struct dnode_of_data rdn = *dn;
554 struct page *page;
555 struct f2fs_node *rn;
556 nid_t child_nid;
557 unsigned int child_nofs;
558 int freed = 0;
559 int i, ret;
560
561 if (dn->nid == 0)
562 return NIDS_PER_BLOCK + 1;
563
564 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
565
566 page = get_node_page(sbi, dn->nid);
567 if (IS_ERR(page)) {
568 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
569 return PTR_ERR(page);
570 }
571
572 rn = F2FS_NODE(page);
573 if (depth < 3) {
574 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
575 child_nid = le32_to_cpu(rn->in.nid[i]);
576 if (child_nid == 0)
577 continue;
578 rdn.nid = child_nid;
579 ret = truncate_dnode(&rdn);
580 if (ret < 0)
581 goto out_err;
582 set_nid(page, i, 0, false);
583 }
584 } else {
585 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
586 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
587 child_nid = le32_to_cpu(rn->in.nid[i]);
588 if (child_nid == 0) {
589 child_nofs += NIDS_PER_BLOCK + 1;
590 continue;
591 }
592 rdn.nid = child_nid;
593 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
594 if (ret == (NIDS_PER_BLOCK + 1)) {
595 set_nid(page, i, 0, false);
596 child_nofs += ret;
597 } else if (ret < 0 && ret != -ENOENT) {
598 goto out_err;
599 }
600 }
601 freed = child_nofs;
602 }
603
604 if (!ofs) {
605 /* remove current indirect node */
606 dn->node_page = page;
607 truncate_node(dn);
608 freed++;
609 } else {
610 f2fs_put_page(page, 1);
611 }
612 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613 return freed;
614
615 out_err:
616 f2fs_put_page(page, 1);
617 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618 return ret;
619 }
620
621 static int truncate_partial_nodes(struct dnode_of_data *dn,
622 struct f2fs_inode *ri, int *offset, int depth)
623 {
624 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
625 struct page *pages[2];
626 nid_t nid[3];
627 nid_t child_nid;
628 int err = 0;
629 int i;
630 int idx = depth - 2;
631
632 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633 if (!nid[0])
634 return 0;
635
636 /* get indirect nodes in the path */
637 for (i = 0; i < idx + 1; i++) {
638 /* refernece count'll be increased */
639 pages[i] = get_node_page(sbi, nid[i]);
640 if (IS_ERR(pages[i])) {
641 err = PTR_ERR(pages[i]);
642 idx = i - 1;
643 goto fail;
644 }
645 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
646 }
647
648 /* free direct nodes linked to a partial indirect node */
649 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
650 child_nid = get_nid(pages[idx], i, false);
651 if (!child_nid)
652 continue;
653 dn->nid = child_nid;
654 err = truncate_dnode(dn);
655 if (err < 0)
656 goto fail;
657 set_nid(pages[idx], i, 0, false);
658 }
659
660 if (offset[idx + 1] == 0) {
661 dn->node_page = pages[idx];
662 dn->nid = nid[idx];
663 truncate_node(dn);
664 } else {
665 f2fs_put_page(pages[idx], 1);
666 }
667 offset[idx]++;
668 offset[idx + 1] = 0;
669 idx--;
670 fail:
671 for (i = idx; i >= 0; i--)
672 f2fs_put_page(pages[i], 1);
673
674 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
675
676 return err;
677 }
678
679 /*
680 * All the block addresses of data and nodes should be nullified.
681 */
682 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
683 {
684 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
685 int err = 0, cont = 1;
686 int level, offset[4], noffset[4];
687 unsigned int nofs = 0;
688 struct f2fs_inode *ri;
689 struct dnode_of_data dn;
690 struct page *page;
691
692 trace_f2fs_truncate_inode_blocks_enter(inode, from);
693
694 level = get_node_path(F2FS_I(inode), from, offset, noffset);
695 restart:
696 page = get_node_page(sbi, inode->i_ino);
697 if (IS_ERR(page)) {
698 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
699 return PTR_ERR(page);
700 }
701
702 set_new_dnode(&dn, inode, page, NULL, 0);
703 unlock_page(page);
704
705 ri = F2FS_INODE(page);
706 switch (level) {
707 case 0:
708 case 1:
709 nofs = noffset[1];
710 break;
711 case 2:
712 nofs = noffset[1];
713 if (!offset[level - 1])
714 goto skip_partial;
715 err = truncate_partial_nodes(&dn, ri, offset, level);
716 if (err < 0 && err != -ENOENT)
717 goto fail;
718 nofs += 1 + NIDS_PER_BLOCK;
719 break;
720 case 3:
721 nofs = 5 + 2 * NIDS_PER_BLOCK;
722 if (!offset[level - 1])
723 goto skip_partial;
724 err = truncate_partial_nodes(&dn, ri, offset, level);
725 if (err < 0 && err != -ENOENT)
726 goto fail;
727 break;
728 default:
729 BUG();
730 }
731
732 skip_partial:
733 while (cont) {
734 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
735 switch (offset[0]) {
736 case NODE_DIR1_BLOCK:
737 case NODE_DIR2_BLOCK:
738 err = truncate_dnode(&dn);
739 break;
740
741 case NODE_IND1_BLOCK:
742 case NODE_IND2_BLOCK:
743 err = truncate_nodes(&dn, nofs, offset[1], 2);
744 break;
745
746 case NODE_DIND_BLOCK:
747 err = truncate_nodes(&dn, nofs, offset[1], 3);
748 cont = 0;
749 break;
750
751 default:
752 BUG();
753 }
754 if (err < 0 && err != -ENOENT)
755 goto fail;
756 if (offset[1] == 0 &&
757 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
758 lock_page(page);
759 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
760 f2fs_put_page(page, 1);
761 goto restart;
762 }
763 f2fs_wait_on_page_writeback(page, NODE);
764 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
765 set_page_dirty(page);
766 unlock_page(page);
767 }
768 offset[1] = 0;
769 offset[0]++;
770 nofs += err;
771 }
772 fail:
773 f2fs_put_page(page, 0);
774 trace_f2fs_truncate_inode_blocks_exit(inode, err);
775 return err > 0 ? 0 : err;
776 }
777
778 int truncate_xattr_node(struct inode *inode, struct page *page)
779 {
780 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 nid_t nid = F2FS_I(inode)->i_xattr_nid;
782 struct dnode_of_data dn;
783 struct page *npage;
784
785 if (!nid)
786 return 0;
787
788 npage = get_node_page(sbi, nid);
789 if (IS_ERR(npage))
790 return PTR_ERR(npage);
791
792 F2FS_I(inode)->i_xattr_nid = 0;
793
794 /* need to do checkpoint during fsync */
795 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
796
797 set_new_dnode(&dn, inode, page, npage, nid);
798
799 if (page)
800 dn.inode_page_locked = true;
801 truncate_node(&dn);
802 return 0;
803 }
804
805 /*
806 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
807 * f2fs_unlock_op().
808 */
809 void remove_inode_page(struct inode *inode)
810 {
811 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
812 struct page *page;
813 nid_t ino = inode->i_ino;
814 struct dnode_of_data dn;
815
816 page = get_node_page(sbi, ino);
817 if (IS_ERR(page))
818 return;
819
820 if (truncate_xattr_node(inode, page)) {
821 f2fs_put_page(page, 1);
822 return;
823 }
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
827 truncate_node(&dn);
828 }
829
830 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
831 {
832 struct dnode_of_data dn;
833
834 /* allocate inode page for new inode */
835 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
836
837 /* caller should f2fs_put_page(page, 1); */
838 return new_node_page(&dn, 0, NULL);
839 }
840
841 struct page *new_node_page(struct dnode_of_data *dn,
842 unsigned int ofs, struct page *ipage)
843 {
844 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
845 struct node_info old_ni, new_ni;
846 struct page *page;
847 int err;
848
849 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850 return ERR_PTR(-EPERM);
851
852 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
853 dn->nid, AOP_FLAG_NOFS);
854 if (!page)
855 return ERR_PTR(-ENOMEM);
856
857 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
858 err = -ENOSPC;
859 goto fail;
860 }
861
862 get_node_info(sbi, dn->nid, &old_ni);
863
864 /* Reinitialize old_ni with new node page */
865 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
866 new_ni = old_ni;
867 new_ni.ino = dn->inode->i_ino;
868 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
869
870 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
871 set_cold_node(dn->inode, page);
872 SetPageUptodate(page);
873 set_page_dirty(page);
874
875 if (f2fs_has_xattr_block(ofs))
876 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
877
878 dn->node_page = page;
879 if (ipage)
880 update_inode(dn->inode, ipage);
881 else
882 sync_inode_page(dn);
883 if (ofs == 0)
884 inc_valid_inode_count(sbi);
885
886 return page;
887
888 fail:
889 clear_node_page_dirty(page);
890 f2fs_put_page(page, 1);
891 return ERR_PTR(err);
892 }
893
894 /*
895 * Caller should do after getting the following values.
896 * 0: f2fs_put_page(page, 0)
897 * LOCKED_PAGE: f2fs_put_page(page, 1)
898 * error: nothing
899 */
900 static int read_node_page(struct page *page, int rw)
901 {
902 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
903 struct node_info ni;
904
905 get_node_info(sbi, page->index, &ni);
906
907 if (unlikely(ni.blk_addr == NULL_ADDR)) {
908 f2fs_put_page(page, 1);
909 return -ENOENT;
910 }
911
912 if (PageUptodate(page))
913 return LOCKED_PAGE;
914
915 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
916 }
917
918 /*
919 * Readahead a node page
920 */
921 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
922 {
923 struct page *apage;
924 int err;
925
926 apage = find_get_page(NODE_MAPPING(sbi), nid);
927 if (apage && PageUptodate(apage)) {
928 f2fs_put_page(apage, 0);
929 return;
930 }
931 f2fs_put_page(apage, 0);
932
933 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
934 if (!apage)
935 return;
936
937 err = read_node_page(apage, READA);
938 if (err == 0)
939 f2fs_put_page(apage, 0);
940 else if (err == LOCKED_PAGE)
941 f2fs_put_page(apage, 1);
942 }
943
944 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945 {
946 struct page *page;
947 int err;
948 repeat:
949 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
950 nid, AOP_FLAG_NOFS);
951 if (!page)
952 return ERR_PTR(-ENOMEM);
953
954 err = read_node_page(page, READ_SYNC);
955 if (err < 0)
956 return ERR_PTR(err);
957 else if (err == LOCKED_PAGE)
958 goto got_it;
959
960 lock_page(page);
961 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
962 f2fs_put_page(page, 1);
963 return ERR_PTR(-EIO);
964 }
965 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
966 f2fs_put_page(page, 1);
967 goto repeat;
968 }
969 got_it:
970 mark_page_accessed(page);
971 return page;
972 }
973
974 /*
975 * Return a locked page for the desired node page.
976 * And, readahead MAX_RA_NODE number of node pages.
977 */
978 struct page *get_node_page_ra(struct page *parent, int start)
979 {
980 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
981 struct blk_plug plug;
982 struct page *page;
983 int err, i, end;
984 nid_t nid;
985
986 /* First, try getting the desired direct node. */
987 nid = get_nid(parent, start, false);
988 if (!nid)
989 return ERR_PTR(-ENOENT);
990 repeat:
991 page = grab_cache_page(NODE_MAPPING(sbi), nid);
992 if (!page)
993 return ERR_PTR(-ENOMEM);
994
995 err = read_node_page(page, READ_SYNC);
996 if (err < 0)
997 return ERR_PTR(err);
998 else if (err == LOCKED_PAGE)
999 goto page_hit;
1000
1001 blk_start_plug(&plug);
1002
1003 /* Then, try readahead for siblings of the desired node */
1004 end = start + MAX_RA_NODE;
1005 end = min(end, NIDS_PER_BLOCK);
1006 for (i = start + 1; i < end; i++) {
1007 nid = get_nid(parent, i, false);
1008 if (!nid)
1009 continue;
1010 ra_node_page(sbi, nid);
1011 }
1012
1013 blk_finish_plug(&plug);
1014
1015 lock_page(page);
1016 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1017 f2fs_put_page(page, 1);
1018 goto repeat;
1019 }
1020 page_hit:
1021 if (unlikely(!PageUptodate(page))) {
1022 f2fs_put_page(page, 1);
1023 return ERR_PTR(-EIO);
1024 }
1025 mark_page_accessed(page);
1026 return page;
1027 }
1028
1029 void sync_inode_page(struct dnode_of_data *dn)
1030 {
1031 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032 update_inode(dn->inode, dn->node_page);
1033 } else if (dn->inode_page) {
1034 if (!dn->inode_page_locked)
1035 lock_page(dn->inode_page);
1036 update_inode(dn->inode, dn->inode_page);
1037 if (!dn->inode_page_locked)
1038 unlock_page(dn->inode_page);
1039 } else {
1040 update_inode_page(dn->inode);
1041 }
1042 }
1043
1044 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045 struct writeback_control *wbc)
1046 {
1047 pgoff_t index, end;
1048 struct pagevec pvec;
1049 int step = ino ? 2 : 0;
1050 int nwritten = 0, wrote = 0;
1051
1052 pagevec_init(&pvec, 0);
1053
1054 next_step:
1055 index = 0;
1056 end = LONG_MAX;
1057
1058 while (index <= end) {
1059 int i, nr_pages;
1060 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1061 PAGECACHE_TAG_DIRTY,
1062 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1063 if (nr_pages == 0)
1064 break;
1065
1066 for (i = 0; i < nr_pages; i++) {
1067 struct page *page = pvec.pages[i];
1068
1069 /*
1070 * flushing sequence with step:
1071 * 0. indirect nodes
1072 * 1. dentry dnodes
1073 * 2. file dnodes
1074 */
1075 if (step == 0 && IS_DNODE(page))
1076 continue;
1077 if (step == 1 && (!IS_DNODE(page) ||
1078 is_cold_node(page)))
1079 continue;
1080 if (step == 2 && (!IS_DNODE(page) ||
1081 !is_cold_node(page)))
1082 continue;
1083
1084 /*
1085 * If an fsync mode,
1086 * we should not skip writing node pages.
1087 */
1088 if (ino && ino_of_node(page) == ino)
1089 lock_page(page);
1090 else if (!trylock_page(page))
1091 continue;
1092
1093 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1094 continue_unlock:
1095 unlock_page(page);
1096 continue;
1097 }
1098 if (ino && ino_of_node(page) != ino)
1099 goto continue_unlock;
1100
1101 if (!PageDirty(page)) {
1102 /* someone wrote it for us */
1103 goto continue_unlock;
1104 }
1105
1106 if (!clear_page_dirty_for_io(page))
1107 goto continue_unlock;
1108
1109 /* called by fsync() */
1110 if (ino && IS_DNODE(page)) {
1111 int mark = !is_checkpointed_node(sbi, ino);
1112 set_fsync_mark(page, 1);
1113 if (IS_INODE(page))
1114 set_dentry_mark(page, mark);
1115 nwritten++;
1116 } else {
1117 set_fsync_mark(page, 0);
1118 set_dentry_mark(page, 0);
1119 }
1120 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1121 wrote++;
1122
1123 if (--wbc->nr_to_write == 0)
1124 break;
1125 }
1126 pagevec_release(&pvec);
1127 cond_resched();
1128
1129 if (wbc->nr_to_write == 0) {
1130 step = 2;
1131 break;
1132 }
1133 }
1134
1135 if (step < 2) {
1136 step++;
1137 goto next_step;
1138 }
1139
1140 if (wrote)
1141 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1142 return nwritten;
1143 }
1144
1145 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1146 {
1147 pgoff_t index = 0, end = LONG_MAX;
1148 struct pagevec pvec;
1149 int ret2 = 0, ret = 0;
1150
1151 pagevec_init(&pvec, 0);
1152
1153 while (index <= end) {
1154 int i, nr_pages;
1155 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156 PAGECACHE_TAG_WRITEBACK,
1157 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158 if (nr_pages == 0)
1159 break;
1160
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1163
1164 /* until radix tree lookup accepts end_index */
1165 if (unlikely(page->index > end))
1166 continue;
1167
1168 if (ino && ino_of_node(page) == ino) {
1169 f2fs_wait_on_page_writeback(page, NODE);
1170 if (TestClearPageError(page))
1171 ret = -EIO;
1172 }
1173 }
1174 pagevec_release(&pvec);
1175 cond_resched();
1176 }
1177
1178 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1179 ret2 = -ENOSPC;
1180 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1181 ret2 = -EIO;
1182 if (!ret)
1183 ret = ret2;
1184 return ret;
1185 }
1186
1187 static int f2fs_write_node_page(struct page *page,
1188 struct writeback_control *wbc)
1189 {
1190 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191 nid_t nid;
1192 block_t new_addr;
1193 struct node_info ni;
1194 struct f2fs_io_info fio = {
1195 .type = NODE,
1196 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1197 };
1198
1199 if (unlikely(sbi->por_doing))
1200 goto redirty_out;
1201
1202 f2fs_wait_on_page_writeback(page, NODE);
1203
1204 /* get old block addr of this node page */
1205 nid = nid_of_node(page);
1206 f2fs_bug_on(page->index != nid);
1207
1208 get_node_info(sbi, nid, &ni);
1209
1210 /* This page is already truncated */
1211 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1212 dec_page_count(sbi, F2FS_DIRTY_NODES);
1213 unlock_page(page);
1214 return 0;
1215 }
1216
1217 if (wbc->for_reclaim)
1218 goto redirty_out;
1219
1220 mutex_lock(&sbi->node_write);
1221 set_page_writeback(page);
1222 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1223 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1224 dec_page_count(sbi, F2FS_DIRTY_NODES);
1225 mutex_unlock(&sbi->node_write);
1226 unlock_page(page);
1227 return 0;
1228
1229 redirty_out:
1230 dec_page_count(sbi, F2FS_DIRTY_NODES);
1231 wbc->pages_skipped++;
1232 account_page_redirty(page);
1233 set_page_dirty(page);
1234 return AOP_WRITEPAGE_ACTIVATE;
1235 }
1236
1237 static int f2fs_write_node_pages(struct address_space *mapping,
1238 struct writeback_control *wbc)
1239 {
1240 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1241 long diff;
1242
1243 /* balancing f2fs's metadata in background */
1244 f2fs_balance_fs_bg(sbi);
1245
1246 /* collect a number of dirty node pages and write together */
1247 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1248 goto skip_write;
1249
1250 diff = nr_pages_to_write(sbi, NODE, wbc);
1251 wbc->sync_mode = WB_SYNC_NONE;
1252 sync_node_pages(sbi, 0, wbc);
1253 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1254 return 0;
1255
1256 skip_write:
1257 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1258 return 0;
1259 }
1260
1261 static int f2fs_set_node_page_dirty(struct page *page)
1262 {
1263 struct address_space *mapping = page->mapping;
1264 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266 trace_f2fs_set_page_dirty(page, NODE);
1267
1268 SetPageUptodate(page);
1269 if (!PageDirty(page)) {
1270 __set_page_dirty_nobuffers(page);
1271 inc_page_count(sbi, F2FS_DIRTY_NODES);
1272 SetPagePrivate(page);
1273 return 1;
1274 }
1275 return 0;
1276 }
1277
1278 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279 unsigned int length)
1280 {
1281 struct inode *inode = page->mapping->host;
1282 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283 if (PageDirty(page))
1284 dec_page_count(sbi, F2FS_DIRTY_NODES);
1285 ClearPagePrivate(page);
1286 }
1287
1288 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289 {
1290 ClearPagePrivate(page);
1291 return 1;
1292 }
1293
1294 /*
1295 * Structure of the f2fs node operations
1296 */
1297 const struct address_space_operations f2fs_node_aops = {
1298 .writepage = f2fs_write_node_page,
1299 .writepages = f2fs_write_node_pages,
1300 .set_page_dirty = f2fs_set_node_page_dirty,
1301 .invalidatepage = f2fs_invalidate_node_page,
1302 .releasepage = f2fs_release_node_page,
1303 };
1304
1305 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1306 nid_t n)
1307 {
1308 return radix_tree_lookup(&nm_i->free_nid_root, n);
1309 }
1310
1311 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1312 struct free_nid *i)
1313 {
1314 list_del(&i->list);
1315 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1316 }
1317
1318 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1319 {
1320 struct free_nid *i;
1321 struct nat_entry *ne;
1322 bool allocated = false;
1323
1324 if (!available_free_memory(nm_i, FREE_NIDS))
1325 return -1;
1326
1327 /* 0 nid should not be used */
1328 if (unlikely(nid == 0))
1329 return 0;
1330
1331 if (build) {
1332 /* do not add allocated nids */
1333 read_lock(&nm_i->nat_tree_lock);
1334 ne = __lookup_nat_cache(nm_i, nid);
1335 if (ne &&
1336 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1337 allocated = true;
1338 read_unlock(&nm_i->nat_tree_lock);
1339 if (allocated)
1340 return 0;
1341 }
1342
1343 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344 i->nid = nid;
1345 i->state = NID_NEW;
1346
1347 spin_lock(&nm_i->free_nid_list_lock);
1348 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1349 spin_unlock(&nm_i->free_nid_list_lock);
1350 kmem_cache_free(free_nid_slab, i);
1351 return 0;
1352 }
1353 list_add_tail(&i->list, &nm_i->free_nid_list);
1354 nm_i->fcnt++;
1355 spin_unlock(&nm_i->free_nid_list_lock);
1356 return 1;
1357 }
1358
1359 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360 {
1361 struct free_nid *i;
1362 bool need_free = false;
1363
1364 spin_lock(&nm_i->free_nid_list_lock);
1365 i = __lookup_free_nid_list(nm_i, nid);
1366 if (i && i->state == NID_NEW) {
1367 __del_from_free_nid_list(nm_i, i);
1368 nm_i->fcnt--;
1369 need_free = true;
1370 }
1371 spin_unlock(&nm_i->free_nid_list_lock);
1372
1373 if (need_free)
1374 kmem_cache_free(free_nid_slab, i);
1375 }
1376
1377 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1378 struct page *nat_page, nid_t start_nid)
1379 {
1380 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1381 block_t blk_addr;
1382 int i;
1383
1384 i = start_nid % NAT_ENTRY_PER_BLOCK;
1385
1386 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1387
1388 if (unlikely(start_nid >= nm_i->max_nid))
1389 break;
1390
1391 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1392 f2fs_bug_on(blk_addr == NEW_ADDR);
1393 if (blk_addr == NULL_ADDR) {
1394 if (add_free_nid(nm_i, start_nid, true) < 0)
1395 break;
1396 }
1397 }
1398 }
1399
1400 static void build_free_nids(struct f2fs_sb_info *sbi)
1401 {
1402 struct f2fs_nm_info *nm_i = NM_I(sbi);
1403 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1404 struct f2fs_summary_block *sum = curseg->sum_blk;
1405 int i = 0;
1406 nid_t nid = nm_i->next_scan_nid;
1407
1408 /* Enough entries */
1409 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1410 return;
1411
1412 /* readahead nat pages to be scanned */
1413 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1414
1415 while (1) {
1416 struct page *page = get_current_nat_page(sbi, nid);
1417
1418 scan_nat_page(nm_i, page, nid);
1419 f2fs_put_page(page, 1);
1420
1421 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1422 if (unlikely(nid >= nm_i->max_nid))
1423 nid = 0;
1424
1425 if (i++ == FREE_NID_PAGES)
1426 break;
1427 }
1428
1429 /* go to the next free nat pages to find free nids abundantly */
1430 nm_i->next_scan_nid = nid;
1431
1432 /* find free nids from current sum_pages */
1433 mutex_lock(&curseg->curseg_mutex);
1434 for (i = 0; i < nats_in_cursum(sum); i++) {
1435 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1436 nid = le32_to_cpu(nid_in_journal(sum, i));
1437 if (addr == NULL_ADDR)
1438 add_free_nid(nm_i, nid, true);
1439 else
1440 remove_free_nid(nm_i, nid);
1441 }
1442 mutex_unlock(&curseg->curseg_mutex);
1443 }
1444
1445 /*
1446 * If this function returns success, caller can obtain a new nid
1447 * from second parameter of this function.
1448 * The returned nid could be used ino as well as nid when inode is created.
1449 */
1450 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1451 {
1452 struct f2fs_nm_info *nm_i = NM_I(sbi);
1453 struct free_nid *i = NULL;
1454 retry:
1455 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1456 return false;
1457
1458 spin_lock(&nm_i->free_nid_list_lock);
1459
1460 /* We should not use stale free nids created by build_free_nids */
1461 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1462 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1463 list_for_each_entry(i, &nm_i->free_nid_list, list)
1464 if (i->state == NID_NEW)
1465 break;
1466
1467 f2fs_bug_on(i->state != NID_NEW);
1468 *nid = i->nid;
1469 i->state = NID_ALLOC;
1470 nm_i->fcnt--;
1471 spin_unlock(&nm_i->free_nid_list_lock);
1472 return true;
1473 }
1474 spin_unlock(&nm_i->free_nid_list_lock);
1475
1476 /* Let's scan nat pages and its caches to get free nids */
1477 mutex_lock(&nm_i->build_lock);
1478 build_free_nids(sbi);
1479 mutex_unlock(&nm_i->build_lock);
1480 goto retry;
1481 }
1482
1483 /*
1484 * alloc_nid() should be called prior to this function.
1485 */
1486 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1487 {
1488 struct f2fs_nm_info *nm_i = NM_I(sbi);
1489 struct free_nid *i;
1490
1491 spin_lock(&nm_i->free_nid_list_lock);
1492 i = __lookup_free_nid_list(nm_i, nid);
1493 f2fs_bug_on(!i || i->state != NID_ALLOC);
1494 __del_from_free_nid_list(nm_i, i);
1495 spin_unlock(&nm_i->free_nid_list_lock);
1496
1497 kmem_cache_free(free_nid_slab, i);
1498 }
1499
1500 /*
1501 * alloc_nid() should be called prior to this function.
1502 */
1503 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504 {
1505 struct f2fs_nm_info *nm_i = NM_I(sbi);
1506 struct free_nid *i;
1507 bool need_free = false;
1508
1509 if (!nid)
1510 return;
1511
1512 spin_lock(&nm_i->free_nid_list_lock);
1513 i = __lookup_free_nid_list(nm_i, nid);
1514 f2fs_bug_on(!i || i->state != NID_ALLOC);
1515 if (!available_free_memory(nm_i, FREE_NIDS)) {
1516 __del_from_free_nid_list(nm_i, i);
1517 need_free = true;
1518 } else {
1519 i->state = NID_NEW;
1520 nm_i->fcnt++;
1521 }
1522 spin_unlock(&nm_i->free_nid_list_lock);
1523
1524 if (need_free)
1525 kmem_cache_free(free_nid_slab, i);
1526 }
1527
1528 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1529 struct f2fs_summary *sum, struct node_info *ni,
1530 block_t new_blkaddr)
1531 {
1532 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1533 set_node_addr(sbi, ni, new_blkaddr, false);
1534 clear_node_page_dirty(page);
1535 }
1536
1537 void recover_inline_xattr(struct inode *inode, struct page *page)
1538 {
1539 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1540 void *src_addr, *dst_addr;
1541 size_t inline_size;
1542 struct page *ipage;
1543 struct f2fs_inode *ri;
1544
1545 if (!f2fs_has_inline_xattr(inode))
1546 return;
1547
1548 if (!IS_INODE(page))
1549 return;
1550
1551 ri = F2FS_INODE(page);
1552 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1553 return;
1554
1555 ipage = get_node_page(sbi, inode->i_ino);
1556 f2fs_bug_on(IS_ERR(ipage));
1557
1558 dst_addr = inline_xattr_addr(ipage);
1559 src_addr = inline_xattr_addr(page);
1560 inline_size = inline_xattr_size(inode);
1561
1562 memcpy(dst_addr, src_addr, inline_size);
1563
1564 update_inode(inode, ipage);
1565 f2fs_put_page(ipage, 1);
1566 }
1567
1568 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1569 {
1570 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1571 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1572 nid_t new_xnid = nid_of_node(page);
1573 struct node_info ni;
1574
1575 recover_inline_xattr(inode, page);
1576
1577 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1578 return false;
1579
1580 /* 1: invalidate the previous xattr nid */
1581 if (!prev_xnid)
1582 goto recover_xnid;
1583
1584 /* Deallocate node address */
1585 get_node_info(sbi, prev_xnid, &ni);
1586 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1587 invalidate_blocks(sbi, ni.blk_addr);
1588 dec_valid_node_count(sbi, inode);
1589 set_node_addr(sbi, &ni, NULL_ADDR, false);
1590
1591 recover_xnid:
1592 /* 2: allocate new xattr nid */
1593 if (unlikely(!inc_valid_node_count(sbi, inode)))
1594 f2fs_bug_on(1);
1595
1596 remove_free_nid(NM_I(sbi), new_xnid);
1597 get_node_info(sbi, new_xnid, &ni);
1598 ni.ino = inode->i_ino;
1599 set_node_addr(sbi, &ni, NEW_ADDR, false);
1600 F2FS_I(inode)->i_xattr_nid = new_xnid;
1601
1602 /* 3: update xattr blkaddr */
1603 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1604 set_node_addr(sbi, &ni, blkaddr, false);
1605
1606 update_inode_page(inode);
1607 return true;
1608 }
1609
1610 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1611 {
1612 struct f2fs_inode *src, *dst;
1613 nid_t ino = ino_of_node(page);
1614 struct node_info old_ni, new_ni;
1615 struct page *ipage;
1616
1617 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1618 if (!ipage)
1619 return -ENOMEM;
1620
1621 /* Should not use this inode from free nid list */
1622 remove_free_nid(NM_I(sbi), ino);
1623
1624 get_node_info(sbi, ino, &old_ni);
1625 SetPageUptodate(ipage);
1626 fill_node_footer(ipage, ino, ino, 0, true);
1627
1628 src = F2FS_INODE(page);
1629 dst = F2FS_INODE(ipage);
1630
1631 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1632 dst->i_size = 0;
1633 dst->i_blocks = cpu_to_le64(1);
1634 dst->i_links = cpu_to_le32(1);
1635 dst->i_xattr_nid = 0;
1636
1637 new_ni = old_ni;
1638 new_ni.ino = ino;
1639
1640 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1641 WARN_ON(1);
1642 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1643 inc_valid_inode_count(sbi);
1644 f2fs_put_page(ipage, 1);
1645 return 0;
1646 }
1647
1648 /*
1649 * ra_sum_pages() merge contiguous pages into one bio and submit.
1650 * these pre-readed pages are linked in pages list.
1651 */
1652 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1653 int start, int nrpages)
1654 {
1655 struct page *page;
1656 int page_idx = start;
1657 struct f2fs_io_info fio = {
1658 .type = META,
1659 .rw = READ_SYNC | REQ_META | REQ_PRIO
1660 };
1661
1662 for (; page_idx < start + nrpages; page_idx++) {
1663 /* alloc temporal page for read node summary info*/
1664 page = alloc_page(GFP_F2FS_ZERO);
1665 if (!page)
1666 break;
1667
1668 lock_page(page);
1669 page->index = page_idx;
1670 list_add_tail(&page->lru, pages);
1671 }
1672
1673 list_for_each_entry(page, pages, lru)
1674 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1675
1676 f2fs_submit_merged_bio(sbi, META, READ);
1677
1678 return page_idx - start;
1679 }
1680
1681 int restore_node_summary(struct f2fs_sb_info *sbi,
1682 unsigned int segno, struct f2fs_summary_block *sum)
1683 {
1684 struct f2fs_node *rn;
1685 struct f2fs_summary *sum_entry;
1686 struct page *page, *tmp;
1687 block_t addr;
1688 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1689 int i, last_offset, nrpages, err = 0;
1690 LIST_HEAD(page_list);
1691
1692 /* scan the node segment */
1693 last_offset = sbi->blocks_per_seg;
1694 addr = START_BLOCK(sbi, segno);
1695 sum_entry = &sum->entries[0];
1696
1697 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1698 nrpages = min(last_offset - i, bio_blocks);
1699
1700 /* read ahead node pages */
1701 nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1702 if (!nrpages)
1703 return -ENOMEM;
1704
1705 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1706 if (err)
1707 goto skip;
1708
1709 lock_page(page);
1710 if (unlikely(!PageUptodate(page))) {
1711 err = -EIO;
1712 } else {
1713 rn = F2FS_NODE(page);
1714 sum_entry->nid = rn->footer.nid;
1715 sum_entry->version = 0;
1716 sum_entry->ofs_in_node = 0;
1717 sum_entry++;
1718 }
1719 unlock_page(page);
1720 skip:
1721 list_del(&page->lru);
1722 __free_pages(page, 0);
1723 }
1724 }
1725 return err;
1726 }
1727
1728 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1729 {
1730 struct f2fs_nm_info *nm_i = NM_I(sbi);
1731 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1732 struct f2fs_summary_block *sum = curseg->sum_blk;
1733 int i;
1734
1735 mutex_lock(&curseg->curseg_mutex);
1736
1737 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1738 mutex_unlock(&curseg->curseg_mutex);
1739 return false;
1740 }
1741
1742 for (i = 0; i < nats_in_cursum(sum); i++) {
1743 struct nat_entry *ne;
1744 struct f2fs_nat_entry raw_ne;
1745 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1746
1747 raw_ne = nat_in_journal(sum, i);
1748 retry:
1749 write_lock(&nm_i->nat_tree_lock);
1750 ne = __lookup_nat_cache(nm_i, nid);
1751 if (ne) {
1752 __set_nat_cache_dirty(nm_i, ne);
1753 write_unlock(&nm_i->nat_tree_lock);
1754 continue;
1755 }
1756 ne = grab_nat_entry(nm_i, nid);
1757 if (!ne) {
1758 write_unlock(&nm_i->nat_tree_lock);
1759 goto retry;
1760 }
1761 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1762 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1763 nat_set_version(ne, raw_ne.version);
1764 __set_nat_cache_dirty(nm_i, ne);
1765 write_unlock(&nm_i->nat_tree_lock);
1766 }
1767 update_nats_in_cursum(sum, -i);
1768 mutex_unlock(&curseg->curseg_mutex);
1769 return true;
1770 }
1771
1772 /*
1773 * This function is called during the checkpointing process.
1774 */
1775 void flush_nat_entries(struct f2fs_sb_info *sbi)
1776 {
1777 struct f2fs_nm_info *nm_i = NM_I(sbi);
1778 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779 struct f2fs_summary_block *sum = curseg->sum_blk;
1780 struct nat_entry *ne, *cur;
1781 struct page *page = NULL;
1782 struct f2fs_nat_block *nat_blk = NULL;
1783 nid_t start_nid = 0, end_nid = 0;
1784 bool flushed;
1785
1786 flushed = flush_nats_in_journal(sbi);
1787
1788 if (!flushed)
1789 mutex_lock(&curseg->curseg_mutex);
1790
1791 /* 1) flush dirty nat caches */
1792 list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1793 nid_t nid;
1794 struct f2fs_nat_entry raw_ne;
1795 int offset = -1;
1796 block_t new_blkaddr;
1797
1798 if (nat_get_blkaddr(ne) == NEW_ADDR)
1799 continue;
1800
1801 nid = nat_get_nid(ne);
1802
1803 if (flushed)
1804 goto to_nat_page;
1805
1806 /* if there is room for nat enries in curseg->sumpage */
1807 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1808 if (offset >= 0) {
1809 raw_ne = nat_in_journal(sum, offset);
1810 goto flush_now;
1811 }
1812 to_nat_page:
1813 if (!page || (start_nid > nid || nid > end_nid)) {
1814 if (page) {
1815 f2fs_put_page(page, 1);
1816 page = NULL;
1817 }
1818 start_nid = START_NID(nid);
1819 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1820
1821 /*
1822 * get nat block with dirty flag, increased reference
1823 * count, mapped and lock
1824 */
1825 page = get_next_nat_page(sbi, start_nid);
1826 nat_blk = page_address(page);
1827 }
1828
1829 f2fs_bug_on(!nat_blk);
1830 raw_ne = nat_blk->entries[nid - start_nid];
1831 flush_now:
1832 new_blkaddr = nat_get_blkaddr(ne);
1833
1834 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1835 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1836 raw_ne.version = nat_get_version(ne);
1837
1838 if (offset < 0) {
1839 nat_blk->entries[nid - start_nid] = raw_ne;
1840 } else {
1841 nat_in_journal(sum, offset) = raw_ne;
1842 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1843 }
1844
1845 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1846 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1847 write_lock(&nm_i->nat_tree_lock);
1848 __del_from_nat_cache(nm_i, ne);
1849 write_unlock(&nm_i->nat_tree_lock);
1850 } else {
1851 write_lock(&nm_i->nat_tree_lock);
1852 __clear_nat_cache_dirty(nm_i, ne);
1853 write_unlock(&nm_i->nat_tree_lock);
1854 }
1855 }
1856 if (!flushed)
1857 mutex_unlock(&curseg->curseg_mutex);
1858 f2fs_put_page(page, 1);
1859 }
1860
1861 static int init_node_manager(struct f2fs_sb_info *sbi)
1862 {
1863 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1864 struct f2fs_nm_info *nm_i = NM_I(sbi);
1865 unsigned char *version_bitmap;
1866 unsigned int nat_segs, nat_blocks;
1867
1868 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1869
1870 /* segment_count_nat includes pair segment so divide to 2. */
1871 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1872 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1873
1874 /* not used nids: 0, node, meta, (and root counted as valid node) */
1875 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1876 nm_i->fcnt = 0;
1877 nm_i->nat_cnt = 0;
1878 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1879
1880 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1881 INIT_LIST_HEAD(&nm_i->free_nid_list);
1882 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1883 INIT_LIST_HEAD(&nm_i->nat_entries);
1884 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1885
1886 mutex_init(&nm_i->build_lock);
1887 spin_lock_init(&nm_i->free_nid_list_lock);
1888 rwlock_init(&nm_i->nat_tree_lock);
1889
1890 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1891 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1892 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1893 if (!version_bitmap)
1894 return -EFAULT;
1895
1896 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1897 GFP_KERNEL);
1898 if (!nm_i->nat_bitmap)
1899 return -ENOMEM;
1900 return 0;
1901 }
1902
1903 int build_node_manager(struct f2fs_sb_info *sbi)
1904 {
1905 int err;
1906
1907 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1908 if (!sbi->nm_info)
1909 return -ENOMEM;
1910
1911 err = init_node_manager(sbi);
1912 if (err)
1913 return err;
1914
1915 build_free_nids(sbi);
1916 return 0;
1917 }
1918
1919 void destroy_node_manager(struct f2fs_sb_info *sbi)
1920 {
1921 struct f2fs_nm_info *nm_i = NM_I(sbi);
1922 struct free_nid *i, *next_i;
1923 struct nat_entry *natvec[NATVEC_SIZE];
1924 nid_t nid = 0;
1925 unsigned int found;
1926
1927 if (!nm_i)
1928 return;
1929
1930 /* destroy free nid list */
1931 spin_lock(&nm_i->free_nid_list_lock);
1932 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1933 f2fs_bug_on(i->state == NID_ALLOC);
1934 __del_from_free_nid_list(nm_i, i);
1935 nm_i->fcnt--;
1936 spin_unlock(&nm_i->free_nid_list_lock);
1937 kmem_cache_free(free_nid_slab, i);
1938 spin_lock(&nm_i->free_nid_list_lock);
1939 }
1940 f2fs_bug_on(nm_i->fcnt);
1941 spin_unlock(&nm_i->free_nid_list_lock);
1942
1943 /* destroy nat cache */
1944 write_lock(&nm_i->nat_tree_lock);
1945 while ((found = __gang_lookup_nat_cache(nm_i,
1946 nid, NATVEC_SIZE, natvec))) {
1947 unsigned idx;
1948 nid = nat_get_nid(natvec[found - 1]) + 1;
1949 for (idx = 0; idx < found; idx++)
1950 __del_from_nat_cache(nm_i, natvec[idx]);
1951 }
1952 f2fs_bug_on(nm_i->nat_cnt);
1953 write_unlock(&nm_i->nat_tree_lock);
1954
1955 kfree(nm_i->nat_bitmap);
1956 sbi->nm_info = NULL;
1957 kfree(nm_i);
1958 }
1959
1960 int __init create_node_manager_caches(void)
1961 {
1962 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1963 sizeof(struct nat_entry));
1964 if (!nat_entry_slab)
1965 return -ENOMEM;
1966
1967 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1968 sizeof(struct free_nid));
1969 if (!free_nid_slab) {
1970 kmem_cache_destroy(nat_entry_slab);
1971 return -ENOMEM;
1972 }
1973 return 0;
1974 }
1975
1976 void destroy_node_manager_caches(void)
1977 {
1978 kmem_cache_destroy(free_nid_slab);
1979 kmem_cache_destroy(nat_entry_slab);
1980 }