]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/node.c
f2fs: skip unnecessary node writes during fsync
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
30 {
31 struct sysinfo val;
32 unsigned long mem_size = 0;
33
34 si_meminfo(&val);
35 if (type == FREE_NIDS)
36 mem_size = nm_i->fcnt * sizeof(struct free_nid);
37 else if (type == NAT_ENTRIES)
38 mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
39 mem_size >>= 12;
40
41 /* give 50:50 memory for free nids and nat caches respectively */
42 return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
43 }
44
45 static void clear_node_page_dirty(struct page *page)
46 {
47 struct address_space *mapping = page->mapping;
48 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
49 unsigned int long flags;
50
51 if (PageDirty(page)) {
52 spin_lock_irqsave(&mapping->tree_lock, flags);
53 radix_tree_tag_clear(&mapping->page_tree,
54 page_index(page),
55 PAGECACHE_TAG_DIRTY);
56 spin_unlock_irqrestore(&mapping->tree_lock, flags);
57
58 clear_page_dirty_for_io(page);
59 dec_page_count(sbi, F2FS_DIRTY_NODES);
60 }
61 ClearPageUptodate(page);
62 }
63
64 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
65 {
66 pgoff_t index = current_nat_addr(sbi, nid);
67 return get_meta_page(sbi, index);
68 }
69
70 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72 struct page *src_page;
73 struct page *dst_page;
74 pgoff_t src_off;
75 pgoff_t dst_off;
76 void *src_addr;
77 void *dst_addr;
78 struct f2fs_nm_info *nm_i = NM_I(sbi);
79
80 src_off = current_nat_addr(sbi, nid);
81 dst_off = next_nat_addr(sbi, src_off);
82
83 /* get current nat block page with lock */
84 src_page = get_meta_page(sbi, src_off);
85
86 /* Dirty src_page means that it is already the new target NAT page. */
87 if (PageDirty(src_page))
88 return src_page;
89
90 dst_page = grab_meta_page(sbi, dst_off);
91
92 src_addr = page_address(src_page);
93 dst_addr = page_address(dst_page);
94 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
95 set_page_dirty(dst_page);
96 f2fs_put_page(src_page, 1);
97
98 set_to_next_nat(nm_i, nid);
99
100 return dst_page;
101 }
102
103 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
104 {
105 return radix_tree_lookup(&nm_i->nat_root, n);
106 }
107
108 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
109 nid_t start, unsigned int nr, struct nat_entry **ep)
110 {
111 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
112 }
113
114 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
115 {
116 list_del(&e->list);
117 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
118 nm_i->nat_cnt--;
119 kmem_cache_free(nat_entry_slab, e);
120 }
121
122 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124 struct f2fs_nm_info *nm_i = NM_I(sbi);
125 struct nat_entry *e;
126 int is_cp = 1;
127
128 read_lock(&nm_i->nat_tree_lock);
129 e = __lookup_nat_cache(nm_i, nid);
130 if (e && !e->checkpointed)
131 is_cp = 0;
132 read_unlock(&nm_i->nat_tree_lock);
133 return is_cp;
134 }
135
136 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138 struct f2fs_nm_info *nm_i = NM_I(sbi);
139 struct nat_entry *e;
140 bool fsync_done = false;
141
142 read_lock(&nm_i->nat_tree_lock);
143 e = __lookup_nat_cache(nm_i, nid);
144 if (e)
145 fsync_done = e->fsync_done;
146 read_unlock(&nm_i->nat_tree_lock);
147 return fsync_done;
148 }
149
150 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
151 {
152 struct nat_entry *new;
153
154 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
155 if (!new)
156 return NULL;
157 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
158 kmem_cache_free(nat_entry_slab, new);
159 return NULL;
160 }
161 memset(new, 0, sizeof(struct nat_entry));
162 nat_set_nid(new, nid);
163 new->checkpointed = true;
164 list_add_tail(&new->list, &nm_i->nat_entries);
165 nm_i->nat_cnt++;
166 return new;
167 }
168
169 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
170 struct f2fs_nat_entry *ne)
171 {
172 struct nat_entry *e;
173 retry:
174 write_lock(&nm_i->nat_tree_lock);
175 e = __lookup_nat_cache(nm_i, nid);
176 if (!e) {
177 e = grab_nat_entry(nm_i, nid);
178 if (!e) {
179 write_unlock(&nm_i->nat_tree_lock);
180 goto retry;
181 }
182 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
183 nat_set_ino(e, le32_to_cpu(ne->ino));
184 nat_set_version(e, ne->version);
185 }
186 write_unlock(&nm_i->nat_tree_lock);
187 }
188
189 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
190 block_t new_blkaddr, bool fsync_done)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 struct nat_entry *e;
194 retry:
195 write_lock(&nm_i->nat_tree_lock);
196 e = __lookup_nat_cache(nm_i, ni->nid);
197 if (!e) {
198 e = grab_nat_entry(nm_i, ni->nid);
199 if (!e) {
200 write_unlock(&nm_i->nat_tree_lock);
201 goto retry;
202 }
203 e->ni = *ni;
204 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205 } else if (new_blkaddr == NEW_ADDR) {
206 /*
207 * when nid is reallocated,
208 * previous nat entry can be remained in nat cache.
209 * So, reinitialize it with new information.
210 */
211 e->ni = *ni;
212 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213 }
214
215 /* sanity check */
216 f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
217 f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
218 new_blkaddr == NULL_ADDR);
219 f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
220 new_blkaddr == NEW_ADDR);
221 f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
222 nat_get_blkaddr(e) != NULL_ADDR &&
223 new_blkaddr == NEW_ADDR);
224
225 /* increament version no as node is removed */
226 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
227 unsigned char version = nat_get_version(e);
228 nat_set_version(e, inc_node_version(version));
229 }
230
231 /* change address */
232 nat_set_blkaddr(e, new_blkaddr);
233 __set_nat_cache_dirty(nm_i, e);
234
235 /* update fsync_mark if its inode nat entry is still alive */
236 e = __lookup_nat_cache(nm_i, ni->ino);
237 if (e)
238 e->fsync_done = fsync_done;
239 write_unlock(&nm_i->nat_tree_lock);
240 }
241
242 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
243 {
244 struct f2fs_nm_info *nm_i = NM_I(sbi);
245
246 if (available_free_memory(nm_i, NAT_ENTRIES))
247 return 0;
248
249 write_lock(&nm_i->nat_tree_lock);
250 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
251 struct nat_entry *ne;
252 ne = list_first_entry(&nm_i->nat_entries,
253 struct nat_entry, list);
254 __del_from_nat_cache(nm_i, ne);
255 nr_shrink--;
256 }
257 write_unlock(&nm_i->nat_tree_lock);
258 return nr_shrink;
259 }
260
261 /*
262 * This function returns always success
263 */
264 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
265 {
266 struct f2fs_nm_info *nm_i = NM_I(sbi);
267 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
268 struct f2fs_summary_block *sum = curseg->sum_blk;
269 nid_t start_nid = START_NID(nid);
270 struct f2fs_nat_block *nat_blk;
271 struct page *page = NULL;
272 struct f2fs_nat_entry ne;
273 struct nat_entry *e;
274 int i;
275
276 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
277 ni->nid = nid;
278
279 /* Check nat cache */
280 read_lock(&nm_i->nat_tree_lock);
281 e = __lookup_nat_cache(nm_i, nid);
282 if (e) {
283 ni->ino = nat_get_ino(e);
284 ni->blk_addr = nat_get_blkaddr(e);
285 ni->version = nat_get_version(e);
286 }
287 read_unlock(&nm_i->nat_tree_lock);
288 if (e)
289 return;
290
291 /* Check current segment summary */
292 mutex_lock(&curseg->curseg_mutex);
293 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
294 if (i >= 0) {
295 ne = nat_in_journal(sum, i);
296 node_info_from_raw_nat(ni, &ne);
297 }
298 mutex_unlock(&curseg->curseg_mutex);
299 if (i >= 0)
300 goto cache;
301
302 /* Fill node_info from nat page */
303 page = get_current_nat_page(sbi, start_nid);
304 nat_blk = (struct f2fs_nat_block *)page_address(page);
305 ne = nat_blk->entries[nid - start_nid];
306 node_info_from_raw_nat(ni, &ne);
307 f2fs_put_page(page, 1);
308 cache:
309 /* cache nat entry */
310 cache_nat_entry(NM_I(sbi), nid, &ne);
311 }
312
313 /*
314 * The maximum depth is four.
315 * Offset[0] will have raw inode offset.
316 */
317 static int get_node_path(struct f2fs_inode_info *fi, long block,
318 int offset[4], unsigned int noffset[4])
319 {
320 const long direct_index = ADDRS_PER_INODE(fi);
321 const long direct_blks = ADDRS_PER_BLOCK;
322 const long dptrs_per_blk = NIDS_PER_BLOCK;
323 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325 int n = 0;
326 int level = 0;
327
328 noffset[0] = 0;
329
330 if (block < direct_index) {
331 offset[n] = block;
332 goto got;
333 }
334 block -= direct_index;
335 if (block < direct_blks) {
336 offset[n++] = NODE_DIR1_BLOCK;
337 noffset[n] = 1;
338 offset[n] = block;
339 level = 1;
340 goto got;
341 }
342 block -= direct_blks;
343 if (block < direct_blks) {
344 offset[n++] = NODE_DIR2_BLOCK;
345 noffset[n] = 2;
346 offset[n] = block;
347 level = 1;
348 goto got;
349 }
350 block -= direct_blks;
351 if (block < indirect_blks) {
352 offset[n++] = NODE_IND1_BLOCK;
353 noffset[n] = 3;
354 offset[n++] = block / direct_blks;
355 noffset[n] = 4 + offset[n - 1];
356 offset[n] = block % direct_blks;
357 level = 2;
358 goto got;
359 }
360 block -= indirect_blks;
361 if (block < indirect_blks) {
362 offset[n++] = NODE_IND2_BLOCK;
363 noffset[n] = 4 + dptrs_per_blk;
364 offset[n++] = block / direct_blks;
365 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366 offset[n] = block % direct_blks;
367 level = 2;
368 goto got;
369 }
370 block -= indirect_blks;
371 if (block < dindirect_blks) {
372 offset[n++] = NODE_DIND_BLOCK;
373 noffset[n] = 5 + (dptrs_per_blk * 2);
374 offset[n++] = block / indirect_blks;
375 noffset[n] = 6 + (dptrs_per_blk * 2) +
376 offset[n - 1] * (dptrs_per_blk + 1);
377 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378 noffset[n] = 7 + (dptrs_per_blk * 2) +
379 offset[n - 2] * (dptrs_per_blk + 1) +
380 offset[n - 1];
381 offset[n] = block % direct_blks;
382 level = 3;
383 goto got;
384 } else {
385 BUG();
386 }
387 got:
388 return level;
389 }
390
391 /*
392 * Caller should call f2fs_put_dnode(dn).
393 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
394 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
395 * In the case of RDONLY_NODE, we don't need to care about mutex.
396 */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400 struct page *npage[4];
401 struct page *parent;
402 int offset[4];
403 unsigned int noffset[4];
404 nid_t nids[4];
405 int level, i;
406 int err = 0;
407
408 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
409
410 nids[0] = dn->inode->i_ino;
411 npage[0] = dn->inode_page;
412
413 if (!npage[0]) {
414 npage[0] = get_node_page(sbi, nids[0]);
415 if (IS_ERR(npage[0]))
416 return PTR_ERR(npage[0]);
417 }
418 parent = npage[0];
419 if (level != 0)
420 nids[1] = get_nid(parent, offset[0], true);
421 dn->inode_page = npage[0];
422 dn->inode_page_locked = true;
423
424 /* get indirect or direct nodes */
425 for (i = 1; i <= level; i++) {
426 bool done = false;
427
428 if (!nids[i] && mode == ALLOC_NODE) {
429 /* alloc new node */
430 if (!alloc_nid(sbi, &(nids[i]))) {
431 err = -ENOSPC;
432 goto release_pages;
433 }
434
435 dn->nid = nids[i];
436 npage[i] = new_node_page(dn, noffset[i], NULL);
437 if (IS_ERR(npage[i])) {
438 alloc_nid_failed(sbi, nids[i]);
439 err = PTR_ERR(npage[i]);
440 goto release_pages;
441 }
442
443 set_nid(parent, offset[i - 1], nids[i], i == 1);
444 alloc_nid_done(sbi, nids[i]);
445 done = true;
446 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447 npage[i] = get_node_page_ra(parent, offset[i - 1]);
448 if (IS_ERR(npage[i])) {
449 err = PTR_ERR(npage[i]);
450 goto release_pages;
451 }
452 done = true;
453 }
454 if (i == 1) {
455 dn->inode_page_locked = false;
456 unlock_page(parent);
457 } else {
458 f2fs_put_page(parent, 1);
459 }
460
461 if (!done) {
462 npage[i] = get_node_page(sbi, nids[i]);
463 if (IS_ERR(npage[i])) {
464 err = PTR_ERR(npage[i]);
465 f2fs_put_page(npage[0], 0);
466 goto release_out;
467 }
468 }
469 if (i < level) {
470 parent = npage[i];
471 nids[i + 1] = get_nid(parent, offset[i], false);
472 }
473 }
474 dn->nid = nids[level];
475 dn->ofs_in_node = offset[level];
476 dn->node_page = npage[level];
477 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478 return 0;
479
480 release_pages:
481 f2fs_put_page(parent, 1);
482 if (i > 1)
483 f2fs_put_page(npage[0], 0);
484 release_out:
485 dn->inode_page = NULL;
486 dn->node_page = NULL;
487 return err;
488 }
489
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493 struct node_info ni;
494
495 get_node_info(sbi, dn->nid, &ni);
496 if (dn->inode->i_blocks == 0) {
497 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
498 goto invalidate;
499 }
500 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
501
502 /* Deallocate node address */
503 invalidate_blocks(sbi, ni.blk_addr);
504 dec_valid_node_count(sbi, dn->inode);
505 set_node_addr(sbi, &ni, NULL_ADDR, false);
506
507 if (dn->nid == dn->inode->i_ino) {
508 remove_orphan_inode(sbi, dn->nid);
509 dec_valid_inode_count(sbi);
510 } else {
511 sync_inode_page(dn);
512 }
513 invalidate:
514 clear_node_page_dirty(dn->node_page);
515 F2FS_SET_SB_DIRT(sbi);
516
517 f2fs_put_page(dn->node_page, 1);
518
519 invalidate_mapping_pages(NODE_MAPPING(sbi),
520 dn->node_page->index, dn->node_page->index);
521
522 dn->node_page = NULL;
523 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
524 }
525
526 static int truncate_dnode(struct dnode_of_data *dn)
527 {
528 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
529 struct page *page;
530
531 if (dn->nid == 0)
532 return 1;
533
534 /* get direct node */
535 page = get_node_page(sbi, dn->nid);
536 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
537 return 1;
538 else if (IS_ERR(page))
539 return PTR_ERR(page);
540
541 /* Make dnode_of_data for parameter */
542 dn->node_page = page;
543 dn->ofs_in_node = 0;
544 truncate_data_blocks(dn);
545 truncate_node(dn);
546 return 1;
547 }
548
549 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
550 int ofs, int depth)
551 {
552 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
553 struct dnode_of_data rdn = *dn;
554 struct page *page;
555 struct f2fs_node *rn;
556 nid_t child_nid;
557 unsigned int child_nofs;
558 int freed = 0;
559 int i, ret;
560
561 if (dn->nid == 0)
562 return NIDS_PER_BLOCK + 1;
563
564 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
565
566 page = get_node_page(sbi, dn->nid);
567 if (IS_ERR(page)) {
568 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
569 return PTR_ERR(page);
570 }
571
572 rn = F2FS_NODE(page);
573 if (depth < 3) {
574 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
575 child_nid = le32_to_cpu(rn->in.nid[i]);
576 if (child_nid == 0)
577 continue;
578 rdn.nid = child_nid;
579 ret = truncate_dnode(&rdn);
580 if (ret < 0)
581 goto out_err;
582 set_nid(page, i, 0, false);
583 }
584 } else {
585 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
586 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
587 child_nid = le32_to_cpu(rn->in.nid[i]);
588 if (child_nid == 0) {
589 child_nofs += NIDS_PER_BLOCK + 1;
590 continue;
591 }
592 rdn.nid = child_nid;
593 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
594 if (ret == (NIDS_PER_BLOCK + 1)) {
595 set_nid(page, i, 0, false);
596 child_nofs += ret;
597 } else if (ret < 0 && ret != -ENOENT) {
598 goto out_err;
599 }
600 }
601 freed = child_nofs;
602 }
603
604 if (!ofs) {
605 /* remove current indirect node */
606 dn->node_page = page;
607 truncate_node(dn);
608 freed++;
609 } else {
610 f2fs_put_page(page, 1);
611 }
612 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613 return freed;
614
615 out_err:
616 f2fs_put_page(page, 1);
617 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618 return ret;
619 }
620
621 static int truncate_partial_nodes(struct dnode_of_data *dn,
622 struct f2fs_inode *ri, int *offset, int depth)
623 {
624 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
625 struct page *pages[2];
626 nid_t nid[3];
627 nid_t child_nid;
628 int err = 0;
629 int i;
630 int idx = depth - 2;
631
632 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633 if (!nid[0])
634 return 0;
635
636 /* get indirect nodes in the path */
637 for (i = 0; i < idx + 1; i++) {
638 /* refernece count'll be increased */
639 pages[i] = get_node_page(sbi, nid[i]);
640 if (IS_ERR(pages[i])) {
641 err = PTR_ERR(pages[i]);
642 idx = i - 1;
643 goto fail;
644 }
645 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
646 }
647
648 /* free direct nodes linked to a partial indirect node */
649 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
650 child_nid = get_nid(pages[idx], i, false);
651 if (!child_nid)
652 continue;
653 dn->nid = child_nid;
654 err = truncate_dnode(dn);
655 if (err < 0)
656 goto fail;
657 set_nid(pages[idx], i, 0, false);
658 }
659
660 if (offset[idx + 1] == 0) {
661 dn->node_page = pages[idx];
662 dn->nid = nid[idx];
663 truncate_node(dn);
664 } else {
665 f2fs_put_page(pages[idx], 1);
666 }
667 offset[idx]++;
668 offset[idx + 1] = 0;
669 idx--;
670 fail:
671 for (i = idx; i >= 0; i--)
672 f2fs_put_page(pages[i], 1);
673
674 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
675
676 return err;
677 }
678
679 /*
680 * All the block addresses of data and nodes should be nullified.
681 */
682 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
683 {
684 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
685 int err = 0, cont = 1;
686 int level, offset[4], noffset[4];
687 unsigned int nofs = 0;
688 struct f2fs_inode *ri;
689 struct dnode_of_data dn;
690 struct page *page;
691
692 trace_f2fs_truncate_inode_blocks_enter(inode, from);
693
694 level = get_node_path(F2FS_I(inode), from, offset, noffset);
695 restart:
696 page = get_node_page(sbi, inode->i_ino);
697 if (IS_ERR(page)) {
698 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
699 return PTR_ERR(page);
700 }
701
702 set_new_dnode(&dn, inode, page, NULL, 0);
703 unlock_page(page);
704
705 ri = F2FS_INODE(page);
706 switch (level) {
707 case 0:
708 case 1:
709 nofs = noffset[1];
710 break;
711 case 2:
712 nofs = noffset[1];
713 if (!offset[level - 1])
714 goto skip_partial;
715 err = truncate_partial_nodes(&dn, ri, offset, level);
716 if (err < 0 && err != -ENOENT)
717 goto fail;
718 nofs += 1 + NIDS_PER_BLOCK;
719 break;
720 case 3:
721 nofs = 5 + 2 * NIDS_PER_BLOCK;
722 if (!offset[level - 1])
723 goto skip_partial;
724 err = truncate_partial_nodes(&dn, ri, offset, level);
725 if (err < 0 && err != -ENOENT)
726 goto fail;
727 break;
728 default:
729 BUG();
730 }
731
732 skip_partial:
733 while (cont) {
734 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
735 switch (offset[0]) {
736 case NODE_DIR1_BLOCK:
737 case NODE_DIR2_BLOCK:
738 err = truncate_dnode(&dn);
739 break;
740
741 case NODE_IND1_BLOCK:
742 case NODE_IND2_BLOCK:
743 err = truncate_nodes(&dn, nofs, offset[1], 2);
744 break;
745
746 case NODE_DIND_BLOCK:
747 err = truncate_nodes(&dn, nofs, offset[1], 3);
748 cont = 0;
749 break;
750
751 default:
752 BUG();
753 }
754 if (err < 0 && err != -ENOENT)
755 goto fail;
756 if (offset[1] == 0 &&
757 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
758 lock_page(page);
759 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
760 f2fs_put_page(page, 1);
761 goto restart;
762 }
763 f2fs_wait_on_page_writeback(page, NODE);
764 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
765 set_page_dirty(page);
766 unlock_page(page);
767 }
768 offset[1] = 0;
769 offset[0]++;
770 nofs += err;
771 }
772 fail:
773 f2fs_put_page(page, 0);
774 trace_f2fs_truncate_inode_blocks_exit(inode, err);
775 return err > 0 ? 0 : err;
776 }
777
778 int truncate_xattr_node(struct inode *inode, struct page *page)
779 {
780 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781 nid_t nid = F2FS_I(inode)->i_xattr_nid;
782 struct dnode_of_data dn;
783 struct page *npage;
784
785 if (!nid)
786 return 0;
787
788 npage = get_node_page(sbi, nid);
789 if (IS_ERR(npage))
790 return PTR_ERR(npage);
791
792 F2FS_I(inode)->i_xattr_nid = 0;
793
794 /* need to do checkpoint during fsync */
795 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
796
797 set_new_dnode(&dn, inode, page, npage, nid);
798
799 if (page)
800 dn.inode_page_locked = true;
801 truncate_node(&dn);
802 return 0;
803 }
804
805 /*
806 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
807 * f2fs_unlock_op().
808 */
809 void remove_inode_page(struct inode *inode)
810 {
811 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
812 struct page *page;
813 nid_t ino = inode->i_ino;
814 struct dnode_of_data dn;
815
816 page = get_node_page(sbi, ino);
817 if (IS_ERR(page))
818 return;
819
820 if (truncate_xattr_node(inode, page)) {
821 f2fs_put_page(page, 1);
822 return;
823 }
824 /* 0 is possible, after f2fs_new_inode() is failed */
825 f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826 set_new_dnode(&dn, inode, page, page, ino);
827 truncate_node(&dn);
828 }
829
830 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
831 {
832 struct dnode_of_data dn;
833
834 /* allocate inode page for new inode */
835 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
836
837 /* caller should f2fs_put_page(page, 1); */
838 return new_node_page(&dn, 0, NULL);
839 }
840
841 struct page *new_node_page(struct dnode_of_data *dn,
842 unsigned int ofs, struct page *ipage)
843 {
844 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
845 struct node_info old_ni, new_ni;
846 struct page *page;
847 int err;
848
849 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850 return ERR_PTR(-EPERM);
851
852 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
853 dn->nid, AOP_FLAG_NOFS);
854 if (!page)
855 return ERR_PTR(-ENOMEM);
856
857 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
858 err = -ENOSPC;
859 goto fail;
860 }
861
862 get_node_info(sbi, dn->nid, &old_ni);
863
864 /* Reinitialize old_ni with new node page */
865 f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
866 new_ni = old_ni;
867 new_ni.ino = dn->inode->i_ino;
868 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
869
870 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
871 set_cold_node(dn->inode, page);
872 SetPageUptodate(page);
873 set_page_dirty(page);
874
875 if (f2fs_has_xattr_block(ofs))
876 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
877
878 dn->node_page = page;
879 if (ipage)
880 update_inode(dn->inode, ipage);
881 else
882 sync_inode_page(dn);
883 if (ofs == 0)
884 inc_valid_inode_count(sbi);
885
886 return page;
887
888 fail:
889 clear_node_page_dirty(page);
890 f2fs_put_page(page, 1);
891 return ERR_PTR(err);
892 }
893
894 /*
895 * Caller should do after getting the following values.
896 * 0: f2fs_put_page(page, 0)
897 * LOCKED_PAGE: f2fs_put_page(page, 1)
898 * error: nothing
899 */
900 static int read_node_page(struct page *page, int rw)
901 {
902 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
903 struct node_info ni;
904
905 get_node_info(sbi, page->index, &ni);
906
907 if (unlikely(ni.blk_addr == NULL_ADDR)) {
908 f2fs_put_page(page, 1);
909 return -ENOENT;
910 }
911
912 if (PageUptodate(page))
913 return LOCKED_PAGE;
914
915 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
916 }
917
918 /*
919 * Readahead a node page
920 */
921 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
922 {
923 struct page *apage;
924 int err;
925
926 apage = find_get_page(NODE_MAPPING(sbi), nid);
927 if (apage && PageUptodate(apage)) {
928 f2fs_put_page(apage, 0);
929 return;
930 }
931 f2fs_put_page(apage, 0);
932
933 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
934 if (!apage)
935 return;
936
937 err = read_node_page(apage, READA);
938 if (err == 0)
939 f2fs_put_page(apage, 0);
940 else if (err == LOCKED_PAGE)
941 f2fs_put_page(apage, 1);
942 }
943
944 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945 {
946 struct page *page;
947 int err;
948 repeat:
949 page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
950 nid, AOP_FLAG_NOFS);
951 if (!page)
952 return ERR_PTR(-ENOMEM);
953
954 err = read_node_page(page, READ_SYNC);
955 if (err < 0)
956 return ERR_PTR(err);
957 else if (err == LOCKED_PAGE)
958 goto got_it;
959
960 lock_page(page);
961 if (unlikely(!PageUptodate(page))) {
962 f2fs_put_page(page, 1);
963 return ERR_PTR(-EIO);
964 }
965 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
966 f2fs_put_page(page, 1);
967 goto repeat;
968 }
969 got_it:
970 f2fs_bug_on(nid != nid_of_node(page));
971 mark_page_accessed(page);
972 return page;
973 }
974
975 /*
976 * Return a locked page for the desired node page.
977 * And, readahead MAX_RA_NODE number of node pages.
978 */
979 struct page *get_node_page_ra(struct page *parent, int start)
980 {
981 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
982 struct blk_plug plug;
983 struct page *page;
984 int err, i, end;
985 nid_t nid;
986
987 /* First, try getting the desired direct node. */
988 nid = get_nid(parent, start, false);
989 if (!nid)
990 return ERR_PTR(-ENOENT);
991 repeat:
992 page = grab_cache_page(NODE_MAPPING(sbi), nid);
993 if (!page)
994 return ERR_PTR(-ENOMEM);
995
996 err = read_node_page(page, READ_SYNC);
997 if (err < 0)
998 return ERR_PTR(err);
999 else if (err == LOCKED_PAGE)
1000 goto page_hit;
1001
1002 blk_start_plug(&plug);
1003
1004 /* Then, try readahead for siblings of the desired node */
1005 end = start + MAX_RA_NODE;
1006 end = min(end, NIDS_PER_BLOCK);
1007 for (i = start + 1; i < end; i++) {
1008 nid = get_nid(parent, i, false);
1009 if (!nid)
1010 continue;
1011 ra_node_page(sbi, nid);
1012 }
1013
1014 blk_finish_plug(&plug);
1015
1016 lock_page(page);
1017 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1018 f2fs_put_page(page, 1);
1019 goto repeat;
1020 }
1021 page_hit:
1022 if (unlikely(!PageUptodate(page))) {
1023 f2fs_put_page(page, 1);
1024 return ERR_PTR(-EIO);
1025 }
1026 mark_page_accessed(page);
1027 return page;
1028 }
1029
1030 void sync_inode_page(struct dnode_of_data *dn)
1031 {
1032 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1033 update_inode(dn->inode, dn->node_page);
1034 } else if (dn->inode_page) {
1035 if (!dn->inode_page_locked)
1036 lock_page(dn->inode_page);
1037 update_inode(dn->inode, dn->inode_page);
1038 if (!dn->inode_page_locked)
1039 unlock_page(dn->inode_page);
1040 } else {
1041 update_inode_page(dn->inode);
1042 }
1043 }
1044
1045 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1046 struct writeback_control *wbc)
1047 {
1048 pgoff_t index, end;
1049 struct pagevec pvec;
1050 int step = ino ? 2 : 0;
1051 int nwritten = 0, wrote = 0;
1052
1053 pagevec_init(&pvec, 0);
1054
1055 next_step:
1056 index = 0;
1057 end = LONG_MAX;
1058
1059 while (index <= end) {
1060 int i, nr_pages;
1061 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1062 PAGECACHE_TAG_DIRTY,
1063 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1064 if (nr_pages == 0)
1065 break;
1066
1067 for (i = 0; i < nr_pages; i++) {
1068 struct page *page = pvec.pages[i];
1069
1070 /*
1071 * flushing sequence with step:
1072 * 0. indirect nodes
1073 * 1. dentry dnodes
1074 * 2. file dnodes
1075 */
1076 if (step == 0 && IS_DNODE(page))
1077 continue;
1078 if (step == 1 && (!IS_DNODE(page) ||
1079 is_cold_node(page)))
1080 continue;
1081 if (step == 2 && (!IS_DNODE(page) ||
1082 !is_cold_node(page)))
1083 continue;
1084
1085 /*
1086 * If an fsync mode,
1087 * we should not skip writing node pages.
1088 */
1089 if (ino && ino_of_node(page) == ino)
1090 lock_page(page);
1091 else if (!trylock_page(page))
1092 continue;
1093
1094 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1095 continue_unlock:
1096 unlock_page(page);
1097 continue;
1098 }
1099 if (ino && ino_of_node(page) != ino)
1100 goto continue_unlock;
1101
1102 if (!PageDirty(page)) {
1103 /* someone wrote it for us */
1104 goto continue_unlock;
1105 }
1106
1107 if (!clear_page_dirty_for_io(page))
1108 goto continue_unlock;
1109
1110 /* called by fsync() */
1111 if (ino && IS_DNODE(page)) {
1112 int mark = !is_checkpointed_node(sbi, ino);
1113 set_fsync_mark(page, 1);
1114 if (IS_INODE(page))
1115 set_dentry_mark(page, mark);
1116 nwritten++;
1117 } else {
1118 set_fsync_mark(page, 0);
1119 set_dentry_mark(page, 0);
1120 }
1121 NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1122 wrote++;
1123
1124 if (--wbc->nr_to_write == 0)
1125 break;
1126 }
1127 pagevec_release(&pvec);
1128 cond_resched();
1129
1130 if (wbc->nr_to_write == 0) {
1131 step = 2;
1132 break;
1133 }
1134 }
1135
1136 if (step < 2) {
1137 step++;
1138 goto next_step;
1139 }
1140
1141 if (wrote)
1142 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1143 return nwritten;
1144 }
1145
1146 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1147 {
1148 pgoff_t index = 0, end = LONG_MAX;
1149 struct pagevec pvec;
1150 int ret2 = 0, ret = 0;
1151
1152 pagevec_init(&pvec, 0);
1153
1154 while (index <= end) {
1155 int i, nr_pages;
1156 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1157 PAGECACHE_TAG_WRITEBACK,
1158 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1159 if (nr_pages == 0)
1160 break;
1161
1162 for (i = 0; i < nr_pages; i++) {
1163 struct page *page = pvec.pages[i];
1164
1165 /* until radix tree lookup accepts end_index */
1166 if (unlikely(page->index > end))
1167 continue;
1168
1169 if (ino && ino_of_node(page) == ino) {
1170 f2fs_wait_on_page_writeback(page, NODE);
1171 if (TestClearPageError(page))
1172 ret = -EIO;
1173 }
1174 }
1175 pagevec_release(&pvec);
1176 cond_resched();
1177 }
1178
1179 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1180 ret2 = -ENOSPC;
1181 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1182 ret2 = -EIO;
1183 if (!ret)
1184 ret = ret2;
1185 return ret;
1186 }
1187
1188 static int f2fs_write_node_page(struct page *page,
1189 struct writeback_control *wbc)
1190 {
1191 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1192 nid_t nid;
1193 block_t new_addr;
1194 struct node_info ni;
1195 struct f2fs_io_info fio = {
1196 .type = NODE,
1197 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1198 };
1199
1200 if (unlikely(sbi->por_doing))
1201 goto redirty_out;
1202
1203 f2fs_wait_on_page_writeback(page, NODE);
1204
1205 /* get old block addr of this node page */
1206 nid = nid_of_node(page);
1207 f2fs_bug_on(page->index != nid);
1208
1209 get_node_info(sbi, nid, &ni);
1210
1211 /* This page is already truncated */
1212 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1213 dec_page_count(sbi, F2FS_DIRTY_NODES);
1214 unlock_page(page);
1215 return 0;
1216 }
1217
1218 if (wbc->for_reclaim)
1219 goto redirty_out;
1220
1221 mutex_lock(&sbi->node_write);
1222 set_page_writeback(page);
1223 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1224 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1225 dec_page_count(sbi, F2FS_DIRTY_NODES);
1226 mutex_unlock(&sbi->node_write);
1227 unlock_page(page);
1228 return 0;
1229
1230 redirty_out:
1231 dec_page_count(sbi, F2FS_DIRTY_NODES);
1232 wbc->pages_skipped++;
1233 account_page_redirty(page);
1234 set_page_dirty(page);
1235 return AOP_WRITEPAGE_ACTIVATE;
1236 }
1237
1238 static int f2fs_write_node_pages(struct address_space *mapping,
1239 struct writeback_control *wbc)
1240 {
1241 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1242 long diff;
1243
1244 /* balancing f2fs's metadata in background */
1245 f2fs_balance_fs_bg(sbi);
1246
1247 /* collect a number of dirty node pages and write together */
1248 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1249 goto skip_write;
1250
1251 diff = nr_pages_to_write(sbi, NODE, wbc);
1252 wbc->sync_mode = WB_SYNC_NONE;
1253 sync_node_pages(sbi, 0, wbc);
1254 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1255 return 0;
1256
1257 skip_write:
1258 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1259 return 0;
1260 }
1261
1262 static int f2fs_set_node_page_dirty(struct page *page)
1263 {
1264 struct address_space *mapping = page->mapping;
1265 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1266
1267 trace_f2fs_set_page_dirty(page, NODE);
1268
1269 SetPageUptodate(page);
1270 if (!PageDirty(page)) {
1271 __set_page_dirty_nobuffers(page);
1272 inc_page_count(sbi, F2FS_DIRTY_NODES);
1273 SetPagePrivate(page);
1274 return 1;
1275 }
1276 return 0;
1277 }
1278
1279 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1280 unsigned int length)
1281 {
1282 struct inode *inode = page->mapping->host;
1283 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1284 if (PageDirty(page))
1285 dec_page_count(sbi, F2FS_DIRTY_NODES);
1286 ClearPagePrivate(page);
1287 }
1288
1289 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1290 {
1291 ClearPagePrivate(page);
1292 return 1;
1293 }
1294
1295 /*
1296 * Structure of the f2fs node operations
1297 */
1298 const struct address_space_operations f2fs_node_aops = {
1299 .writepage = f2fs_write_node_page,
1300 .writepages = f2fs_write_node_pages,
1301 .set_page_dirty = f2fs_set_node_page_dirty,
1302 .invalidatepage = f2fs_invalidate_node_page,
1303 .releasepage = f2fs_release_node_page,
1304 };
1305
1306 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1307 nid_t n)
1308 {
1309 return radix_tree_lookup(&nm_i->free_nid_root, n);
1310 }
1311
1312 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1313 struct free_nid *i)
1314 {
1315 list_del(&i->list);
1316 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1317 kmem_cache_free(free_nid_slab, i);
1318 }
1319
1320 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1321 {
1322 struct free_nid *i;
1323 struct nat_entry *ne;
1324 bool allocated = false;
1325
1326 if (!available_free_memory(nm_i, FREE_NIDS))
1327 return -1;
1328
1329 /* 0 nid should not be used */
1330 if (unlikely(nid == 0))
1331 return 0;
1332
1333 if (build) {
1334 /* do not add allocated nids */
1335 read_lock(&nm_i->nat_tree_lock);
1336 ne = __lookup_nat_cache(nm_i, nid);
1337 if (ne &&
1338 (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1339 allocated = true;
1340 read_unlock(&nm_i->nat_tree_lock);
1341 if (allocated)
1342 return 0;
1343 }
1344
1345 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1346 i->nid = nid;
1347 i->state = NID_NEW;
1348
1349 spin_lock(&nm_i->free_nid_list_lock);
1350 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1351 spin_unlock(&nm_i->free_nid_list_lock);
1352 kmem_cache_free(free_nid_slab, i);
1353 return 0;
1354 }
1355 list_add_tail(&i->list, &nm_i->free_nid_list);
1356 nm_i->fcnt++;
1357 spin_unlock(&nm_i->free_nid_list_lock);
1358 return 1;
1359 }
1360
1361 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1362 {
1363 struct free_nid *i;
1364 spin_lock(&nm_i->free_nid_list_lock);
1365 i = __lookup_free_nid_list(nm_i, nid);
1366 if (i && i->state == NID_NEW) {
1367 __del_from_free_nid_list(nm_i, i);
1368 nm_i->fcnt--;
1369 }
1370 spin_unlock(&nm_i->free_nid_list_lock);
1371 }
1372
1373 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1374 struct page *nat_page, nid_t start_nid)
1375 {
1376 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1377 block_t blk_addr;
1378 int i;
1379
1380 i = start_nid % NAT_ENTRY_PER_BLOCK;
1381
1382 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1383
1384 if (unlikely(start_nid >= nm_i->max_nid))
1385 break;
1386
1387 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1388 f2fs_bug_on(blk_addr == NEW_ADDR);
1389 if (blk_addr == NULL_ADDR) {
1390 if (add_free_nid(nm_i, start_nid, true) < 0)
1391 break;
1392 }
1393 }
1394 }
1395
1396 static void build_free_nids(struct f2fs_sb_info *sbi)
1397 {
1398 struct f2fs_nm_info *nm_i = NM_I(sbi);
1399 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1400 struct f2fs_summary_block *sum = curseg->sum_blk;
1401 int i = 0;
1402 nid_t nid = nm_i->next_scan_nid;
1403
1404 /* Enough entries */
1405 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1406 return;
1407
1408 /* readahead nat pages to be scanned */
1409 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1410
1411 while (1) {
1412 struct page *page = get_current_nat_page(sbi, nid);
1413
1414 scan_nat_page(nm_i, page, nid);
1415 f2fs_put_page(page, 1);
1416
1417 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1418 if (unlikely(nid >= nm_i->max_nid))
1419 nid = 0;
1420
1421 if (i++ == FREE_NID_PAGES)
1422 break;
1423 }
1424
1425 /* go to the next free nat pages to find free nids abundantly */
1426 nm_i->next_scan_nid = nid;
1427
1428 /* find free nids from current sum_pages */
1429 mutex_lock(&curseg->curseg_mutex);
1430 for (i = 0; i < nats_in_cursum(sum); i++) {
1431 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1432 nid = le32_to_cpu(nid_in_journal(sum, i));
1433 if (addr == NULL_ADDR)
1434 add_free_nid(nm_i, nid, true);
1435 else
1436 remove_free_nid(nm_i, nid);
1437 }
1438 mutex_unlock(&curseg->curseg_mutex);
1439 }
1440
1441 /*
1442 * If this function returns success, caller can obtain a new nid
1443 * from second parameter of this function.
1444 * The returned nid could be used ino as well as nid when inode is created.
1445 */
1446 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1447 {
1448 struct f2fs_nm_info *nm_i = NM_I(sbi);
1449 struct free_nid *i = NULL;
1450 struct list_head *this;
1451 retry:
1452 if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1453 return false;
1454
1455 spin_lock(&nm_i->free_nid_list_lock);
1456
1457 /* We should not use stale free nids created by build_free_nids */
1458 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1459 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1460 list_for_each(this, &nm_i->free_nid_list) {
1461 i = list_entry(this, struct free_nid, list);
1462 if (i->state == NID_NEW)
1463 break;
1464 }
1465
1466 f2fs_bug_on(i->state != NID_NEW);
1467 *nid = i->nid;
1468 i->state = NID_ALLOC;
1469 nm_i->fcnt--;
1470 spin_unlock(&nm_i->free_nid_list_lock);
1471 return true;
1472 }
1473 spin_unlock(&nm_i->free_nid_list_lock);
1474
1475 /* Let's scan nat pages and its caches to get free nids */
1476 mutex_lock(&nm_i->build_lock);
1477 build_free_nids(sbi);
1478 mutex_unlock(&nm_i->build_lock);
1479 goto retry;
1480 }
1481
1482 /*
1483 * alloc_nid() should be called prior to this function.
1484 */
1485 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1486 {
1487 struct f2fs_nm_info *nm_i = NM_I(sbi);
1488 struct free_nid *i;
1489
1490 spin_lock(&nm_i->free_nid_list_lock);
1491 i = __lookup_free_nid_list(nm_i, nid);
1492 f2fs_bug_on(!i || i->state != NID_ALLOC);
1493 __del_from_free_nid_list(nm_i, i);
1494 spin_unlock(&nm_i->free_nid_list_lock);
1495 }
1496
1497 /*
1498 * alloc_nid() should be called prior to this function.
1499 */
1500 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1501 {
1502 struct f2fs_nm_info *nm_i = NM_I(sbi);
1503 struct free_nid *i;
1504
1505 if (!nid)
1506 return;
1507
1508 spin_lock(&nm_i->free_nid_list_lock);
1509 i = __lookup_free_nid_list(nm_i, nid);
1510 f2fs_bug_on(!i || i->state != NID_ALLOC);
1511 if (!available_free_memory(nm_i, FREE_NIDS)) {
1512 __del_from_free_nid_list(nm_i, i);
1513 } else {
1514 i->state = NID_NEW;
1515 nm_i->fcnt++;
1516 }
1517 spin_unlock(&nm_i->free_nid_list_lock);
1518 }
1519
1520 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1521 struct f2fs_summary *sum, struct node_info *ni,
1522 block_t new_blkaddr)
1523 {
1524 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1525 set_node_addr(sbi, ni, new_blkaddr, false);
1526 clear_node_page_dirty(page);
1527 }
1528
1529 void recover_inline_xattr(struct inode *inode, struct page *page)
1530 {
1531 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1532 void *src_addr, *dst_addr;
1533 size_t inline_size;
1534 struct page *ipage;
1535 struct f2fs_inode *ri;
1536
1537 if (!f2fs_has_inline_xattr(inode))
1538 return;
1539
1540 if (!IS_INODE(page))
1541 return;
1542
1543 ri = F2FS_INODE(page);
1544 if (!(ri->i_inline & F2FS_INLINE_XATTR))
1545 return;
1546
1547 ipage = get_node_page(sbi, inode->i_ino);
1548 f2fs_bug_on(IS_ERR(ipage));
1549
1550 dst_addr = inline_xattr_addr(ipage);
1551 src_addr = inline_xattr_addr(page);
1552 inline_size = inline_xattr_size(inode);
1553
1554 memcpy(dst_addr, src_addr, inline_size);
1555
1556 update_inode(inode, ipage);
1557 f2fs_put_page(ipage, 1);
1558 }
1559
1560 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1561 {
1562 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1563 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1564 nid_t new_xnid = nid_of_node(page);
1565 struct node_info ni;
1566
1567 recover_inline_xattr(inode, page);
1568
1569 if (!f2fs_has_xattr_block(ofs_of_node(page)))
1570 return false;
1571
1572 /* 1: invalidate the previous xattr nid */
1573 if (!prev_xnid)
1574 goto recover_xnid;
1575
1576 /* Deallocate node address */
1577 get_node_info(sbi, prev_xnid, &ni);
1578 f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1579 invalidate_blocks(sbi, ni.blk_addr);
1580 dec_valid_node_count(sbi, inode);
1581 set_node_addr(sbi, &ni, NULL_ADDR, false);
1582
1583 recover_xnid:
1584 /* 2: allocate new xattr nid */
1585 if (unlikely(!inc_valid_node_count(sbi, inode)))
1586 f2fs_bug_on(1);
1587
1588 remove_free_nid(NM_I(sbi), new_xnid);
1589 get_node_info(sbi, new_xnid, &ni);
1590 ni.ino = inode->i_ino;
1591 set_node_addr(sbi, &ni, NEW_ADDR, false);
1592 F2FS_I(inode)->i_xattr_nid = new_xnid;
1593
1594 /* 3: update xattr blkaddr */
1595 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1596 set_node_addr(sbi, &ni, blkaddr, false);
1597
1598 update_inode_page(inode);
1599 return true;
1600 }
1601
1602 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1603 {
1604 struct f2fs_inode *src, *dst;
1605 nid_t ino = ino_of_node(page);
1606 struct node_info old_ni, new_ni;
1607 struct page *ipage;
1608
1609 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1610 if (!ipage)
1611 return -ENOMEM;
1612
1613 /* Should not use this inode from free nid list */
1614 remove_free_nid(NM_I(sbi), ino);
1615
1616 get_node_info(sbi, ino, &old_ni);
1617 SetPageUptodate(ipage);
1618 fill_node_footer(ipage, ino, ino, 0, true);
1619
1620 src = F2FS_INODE(page);
1621 dst = F2FS_INODE(ipage);
1622
1623 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1624 dst->i_size = 0;
1625 dst->i_blocks = cpu_to_le64(1);
1626 dst->i_links = cpu_to_le32(1);
1627 dst->i_xattr_nid = 0;
1628
1629 new_ni = old_ni;
1630 new_ni.ino = ino;
1631
1632 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1633 WARN_ON(1);
1634 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1635 inc_valid_inode_count(sbi);
1636 f2fs_put_page(ipage, 1);
1637 return 0;
1638 }
1639
1640 /*
1641 * ra_sum_pages() merge contiguous pages into one bio and submit.
1642 * these pre-readed pages are linked in pages list.
1643 */
1644 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1645 int start, int nrpages)
1646 {
1647 struct page *page;
1648 int page_idx = start;
1649 struct f2fs_io_info fio = {
1650 .type = META,
1651 .rw = READ_SYNC | REQ_META | REQ_PRIO
1652 };
1653
1654 for (; page_idx < start + nrpages; page_idx++) {
1655 /* alloc temporal page for read node summary info*/
1656 page = alloc_page(GFP_F2FS_ZERO);
1657 if (!page)
1658 break;
1659
1660 lock_page(page);
1661 page->index = page_idx;
1662 list_add_tail(&page->lru, pages);
1663 }
1664
1665 list_for_each_entry(page, pages, lru)
1666 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1667
1668 f2fs_submit_merged_bio(sbi, META, READ);
1669
1670 return page_idx - start;
1671 }
1672
1673 int restore_node_summary(struct f2fs_sb_info *sbi,
1674 unsigned int segno, struct f2fs_summary_block *sum)
1675 {
1676 struct f2fs_node *rn;
1677 struct f2fs_summary *sum_entry;
1678 struct page *page, *tmp;
1679 block_t addr;
1680 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1681 int i, last_offset, nrpages, err = 0;
1682 LIST_HEAD(page_list);
1683
1684 /* scan the node segment */
1685 last_offset = sbi->blocks_per_seg;
1686 addr = START_BLOCK(sbi, segno);
1687 sum_entry = &sum->entries[0];
1688
1689 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1690 nrpages = min(last_offset - i, bio_blocks);
1691
1692 /* read ahead node pages */
1693 nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1694 if (!nrpages)
1695 return -ENOMEM;
1696
1697 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1698 if (err)
1699 goto skip;
1700
1701 lock_page(page);
1702 if (unlikely(!PageUptodate(page))) {
1703 err = -EIO;
1704 } else {
1705 rn = F2FS_NODE(page);
1706 sum_entry->nid = rn->footer.nid;
1707 sum_entry->version = 0;
1708 sum_entry->ofs_in_node = 0;
1709 sum_entry++;
1710 }
1711 unlock_page(page);
1712 skip:
1713 list_del(&page->lru);
1714 __free_pages(page, 0);
1715 }
1716 }
1717 return err;
1718 }
1719
1720 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1721 {
1722 struct f2fs_nm_info *nm_i = NM_I(sbi);
1723 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1724 struct f2fs_summary_block *sum = curseg->sum_blk;
1725 int i;
1726
1727 mutex_lock(&curseg->curseg_mutex);
1728
1729 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1730 mutex_unlock(&curseg->curseg_mutex);
1731 return false;
1732 }
1733
1734 for (i = 0; i < nats_in_cursum(sum); i++) {
1735 struct nat_entry *ne;
1736 struct f2fs_nat_entry raw_ne;
1737 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1738
1739 raw_ne = nat_in_journal(sum, i);
1740 retry:
1741 write_lock(&nm_i->nat_tree_lock);
1742 ne = __lookup_nat_cache(nm_i, nid);
1743 if (ne) {
1744 __set_nat_cache_dirty(nm_i, ne);
1745 write_unlock(&nm_i->nat_tree_lock);
1746 continue;
1747 }
1748 ne = grab_nat_entry(nm_i, nid);
1749 if (!ne) {
1750 write_unlock(&nm_i->nat_tree_lock);
1751 goto retry;
1752 }
1753 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1754 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1755 nat_set_version(ne, raw_ne.version);
1756 __set_nat_cache_dirty(nm_i, ne);
1757 write_unlock(&nm_i->nat_tree_lock);
1758 }
1759 update_nats_in_cursum(sum, -i);
1760 mutex_unlock(&curseg->curseg_mutex);
1761 return true;
1762 }
1763
1764 /*
1765 * This function is called during the checkpointing process.
1766 */
1767 void flush_nat_entries(struct f2fs_sb_info *sbi)
1768 {
1769 struct f2fs_nm_info *nm_i = NM_I(sbi);
1770 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1771 struct f2fs_summary_block *sum = curseg->sum_blk;
1772 struct list_head *cur, *n;
1773 struct page *page = NULL;
1774 struct f2fs_nat_block *nat_blk = NULL;
1775 nid_t start_nid = 0, end_nid = 0;
1776 bool flushed;
1777
1778 flushed = flush_nats_in_journal(sbi);
1779
1780 if (!flushed)
1781 mutex_lock(&curseg->curseg_mutex);
1782
1783 /* 1) flush dirty nat caches */
1784 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1785 struct nat_entry *ne;
1786 nid_t nid;
1787 struct f2fs_nat_entry raw_ne;
1788 int offset = -1;
1789 block_t new_blkaddr;
1790
1791 ne = list_entry(cur, struct nat_entry, list);
1792 nid = nat_get_nid(ne);
1793
1794 if (nat_get_blkaddr(ne) == NEW_ADDR)
1795 continue;
1796 if (flushed)
1797 goto to_nat_page;
1798
1799 /* if there is room for nat enries in curseg->sumpage */
1800 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1801 if (offset >= 0) {
1802 raw_ne = nat_in_journal(sum, offset);
1803 goto flush_now;
1804 }
1805 to_nat_page:
1806 if (!page || (start_nid > nid || nid > end_nid)) {
1807 if (page) {
1808 f2fs_put_page(page, 1);
1809 page = NULL;
1810 }
1811 start_nid = START_NID(nid);
1812 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1813
1814 /*
1815 * get nat block with dirty flag, increased reference
1816 * count, mapped and lock
1817 */
1818 page = get_next_nat_page(sbi, start_nid);
1819 nat_blk = page_address(page);
1820 }
1821
1822 f2fs_bug_on(!nat_blk);
1823 raw_ne = nat_blk->entries[nid - start_nid];
1824 flush_now:
1825 new_blkaddr = nat_get_blkaddr(ne);
1826
1827 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1828 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1829 raw_ne.version = nat_get_version(ne);
1830
1831 if (offset < 0) {
1832 nat_blk->entries[nid - start_nid] = raw_ne;
1833 } else {
1834 nat_in_journal(sum, offset) = raw_ne;
1835 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1836 }
1837
1838 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1839 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1840 write_lock(&nm_i->nat_tree_lock);
1841 __del_from_nat_cache(nm_i, ne);
1842 write_unlock(&nm_i->nat_tree_lock);
1843 } else {
1844 write_lock(&nm_i->nat_tree_lock);
1845 __clear_nat_cache_dirty(nm_i, ne);
1846 write_unlock(&nm_i->nat_tree_lock);
1847 }
1848 }
1849 if (!flushed)
1850 mutex_unlock(&curseg->curseg_mutex);
1851 f2fs_put_page(page, 1);
1852 }
1853
1854 static int init_node_manager(struct f2fs_sb_info *sbi)
1855 {
1856 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1857 struct f2fs_nm_info *nm_i = NM_I(sbi);
1858 unsigned char *version_bitmap;
1859 unsigned int nat_segs, nat_blocks;
1860
1861 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1862
1863 /* segment_count_nat includes pair segment so divide to 2. */
1864 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1865 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1866
1867 /* not used nids: 0, node, meta, (and root counted as valid node) */
1868 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1869 nm_i->fcnt = 0;
1870 nm_i->nat_cnt = 0;
1871 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1872
1873 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1874 INIT_LIST_HEAD(&nm_i->free_nid_list);
1875 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1876 INIT_LIST_HEAD(&nm_i->nat_entries);
1877 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1878
1879 mutex_init(&nm_i->build_lock);
1880 spin_lock_init(&nm_i->free_nid_list_lock);
1881 rwlock_init(&nm_i->nat_tree_lock);
1882
1883 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1884 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1885 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1886 if (!version_bitmap)
1887 return -EFAULT;
1888
1889 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1890 GFP_KERNEL);
1891 if (!nm_i->nat_bitmap)
1892 return -ENOMEM;
1893 return 0;
1894 }
1895
1896 int build_node_manager(struct f2fs_sb_info *sbi)
1897 {
1898 int err;
1899
1900 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1901 if (!sbi->nm_info)
1902 return -ENOMEM;
1903
1904 err = init_node_manager(sbi);
1905 if (err)
1906 return err;
1907
1908 build_free_nids(sbi);
1909 return 0;
1910 }
1911
1912 void destroy_node_manager(struct f2fs_sb_info *sbi)
1913 {
1914 struct f2fs_nm_info *nm_i = NM_I(sbi);
1915 struct free_nid *i, *next_i;
1916 struct nat_entry *natvec[NATVEC_SIZE];
1917 nid_t nid = 0;
1918 unsigned int found;
1919
1920 if (!nm_i)
1921 return;
1922
1923 /* destroy free nid list */
1924 spin_lock(&nm_i->free_nid_list_lock);
1925 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1926 f2fs_bug_on(i->state == NID_ALLOC);
1927 __del_from_free_nid_list(nm_i, i);
1928 nm_i->fcnt--;
1929 }
1930 f2fs_bug_on(nm_i->fcnt);
1931 spin_unlock(&nm_i->free_nid_list_lock);
1932
1933 /* destroy nat cache */
1934 write_lock(&nm_i->nat_tree_lock);
1935 while ((found = __gang_lookup_nat_cache(nm_i,
1936 nid, NATVEC_SIZE, natvec))) {
1937 unsigned idx;
1938 nid = nat_get_nid(natvec[found - 1]) + 1;
1939 for (idx = 0; idx < found; idx++)
1940 __del_from_nat_cache(nm_i, natvec[idx]);
1941 }
1942 f2fs_bug_on(nm_i->nat_cnt);
1943 write_unlock(&nm_i->nat_tree_lock);
1944
1945 kfree(nm_i->nat_bitmap);
1946 sbi->nm_info = NULL;
1947 kfree(nm_i);
1948 }
1949
1950 int __init create_node_manager_caches(void)
1951 {
1952 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1953 sizeof(struct nat_entry));
1954 if (!nat_entry_slab)
1955 return -ENOMEM;
1956
1957 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1958 sizeof(struct free_nid));
1959 if (!free_nid_slab) {
1960 kmem_cache_destroy(nat_entry_slab);
1961 return -ENOMEM;
1962 }
1963 return 0;
1964 }
1965
1966 void destroy_node_manager_caches(void)
1967 {
1968 kmem_cache_destroy(free_nid_slab);
1969 kmem_cache_destroy(nat_entry_slab);
1970 }