]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/node.c
Merge tag 'irqchip-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm...
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 struct f2fs_nm_info *nm_i = NM_I(sbi);
35 struct sysinfo val;
36 unsigned long avail_ram;
37 unsigned long mem_size = 0;
38 bool res = false;
39
40 si_meminfo(&val);
41
42 /* only uses low memory */
43 avail_ram = val.totalram - val.totalhigh;
44
45 /*
46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 */
48 if (type == FREE_NIDS) {
49 mem_size = (nm_i->nid_cnt[FREE_NID] *
50 sizeof(struct free_nid)) >> PAGE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == NAT_ENTRIES) {
53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 PAGE_SHIFT;
55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 if (excess_cached_nats(sbi))
57 res = false;
58 } else if (type == DIRTY_DENTS) {
59 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 return false;
61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 } else if (type == INO_ENTRIES) {
64 int i;
65
66 for (i = 0; i < MAX_INO_ENTRY; i++)
67 mem_size += sbi->im[i].ino_num *
68 sizeof(struct ino_entry);
69 mem_size >>= PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 } else if (type == INMEM_PAGES) {
78 /* it allows 20% / total_ram for inmemory pages */
79 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 res = mem_size < (val.totalram / 5);
81 } else {
82 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 return true;
84 }
85 return res;
86 }
87
88 static void clear_node_page_dirty(struct page *page)
89 {
90 struct address_space *mapping = page->mapping;
91 unsigned int long flags;
92
93 if (PageDirty(page)) {
94 spin_lock_irqsave(&mapping->tree_lock, flags);
95 radix_tree_tag_clear(&mapping->page_tree,
96 page_index(page),
97 PAGECACHE_TAG_DIRTY);
98 spin_unlock_irqrestore(&mapping->tree_lock, flags);
99
100 clear_page_dirty_for_io(page);
101 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 }
103 ClearPageUptodate(page);
104 }
105
106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 pgoff_t index = current_nat_addr(sbi, nid);
109 return get_meta_page(sbi, index);
110 }
111
112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114 struct page *src_page;
115 struct page *dst_page;
116 pgoff_t src_off;
117 pgoff_t dst_off;
118 void *src_addr;
119 void *dst_addr;
120 struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122 src_off = current_nat_addr(sbi, nid);
123 dst_off = next_nat_addr(sbi, src_off);
124
125 /* get current nat block page with lock */
126 src_page = get_meta_page(sbi, src_off);
127 dst_page = grab_meta_page(sbi, dst_off);
128 f2fs_bug_on(sbi, PageDirty(src_page));
129
130 src_addr = page_address(src_page);
131 dst_addr = page_address(dst_page);
132 memcpy(dst_addr, src_addr, PAGE_SIZE);
133 set_page_dirty(dst_page);
134 f2fs_put_page(src_page, 1);
135
136 set_to_next_nat(nm_i, nid);
137
138 return dst_page;
139 }
140
141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143 struct nat_entry *new;
144
145 if (no_fail)
146 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147 else
148 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 if (new) {
150 nat_set_nid(new, nid);
151 nat_reset_flag(new);
152 }
153 return new;
154 }
155
156 static void __free_nat_entry(struct nat_entry *e)
157 {
158 kmem_cache_free(nat_entry_slab, e);
159 }
160
161 /* must be locked by nat_tree_lock */
162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164 {
165 if (no_fail)
166 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168 return NULL;
169
170 if (raw_ne)
171 node_info_from_raw_nat(&ne->ni, raw_ne);
172 list_add_tail(&ne->list, &nm_i->nat_entries);
173 nm_i->nat_cnt++;
174 return ne;
175 }
176
177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178 {
179 return radix_tree_lookup(&nm_i->nat_root, n);
180 }
181
182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183 nid_t start, unsigned int nr, struct nat_entry **ep)
184 {
185 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186 }
187
188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189 {
190 list_del(&e->list);
191 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192 nm_i->nat_cnt--;
193 __free_nat_entry(e);
194 }
195
196 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
197 struct nat_entry *ne)
198 {
199 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200 struct nat_entry_set *head;
201
202 head = radix_tree_lookup(&nm_i->nat_set_root, set);
203 if (!head) {
204 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205
206 INIT_LIST_HEAD(&head->entry_list);
207 INIT_LIST_HEAD(&head->set_list);
208 head->set = set;
209 head->entry_cnt = 0;
210 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211 }
212
213 if (get_nat_flag(ne, IS_DIRTY))
214 goto refresh_list;
215
216 nm_i->dirty_nat_cnt++;
217 head->entry_cnt++;
218 set_nat_flag(ne, IS_DIRTY, true);
219 refresh_list:
220 if (nat_get_blkaddr(ne) == NEW_ADDR)
221 list_del_init(&ne->list);
222 else
223 list_move_tail(&ne->list, &head->entry_list);
224 }
225
226 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
227 struct nat_entry_set *set, struct nat_entry *ne)
228 {
229 list_move_tail(&ne->list, &nm_i->nat_entries);
230 set_nat_flag(ne, IS_DIRTY, false);
231 set->entry_cnt--;
232 nm_i->dirty_nat_cnt--;
233 }
234
235 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
236 nid_t start, unsigned int nr, struct nat_entry_set **ep)
237 {
238 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
239 start, nr);
240 }
241
242 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
243 {
244 struct f2fs_nm_info *nm_i = NM_I(sbi);
245 struct nat_entry *e;
246 bool need = false;
247
248 down_read(&nm_i->nat_tree_lock);
249 e = __lookup_nat_cache(nm_i, nid);
250 if (e) {
251 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
252 !get_nat_flag(e, HAS_FSYNCED_INODE))
253 need = true;
254 }
255 up_read(&nm_i->nat_tree_lock);
256 return need;
257 }
258
259 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
260 {
261 struct f2fs_nm_info *nm_i = NM_I(sbi);
262 struct nat_entry *e;
263 bool is_cp = true;
264
265 down_read(&nm_i->nat_tree_lock);
266 e = __lookup_nat_cache(nm_i, nid);
267 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
268 is_cp = false;
269 up_read(&nm_i->nat_tree_lock);
270 return is_cp;
271 }
272
273 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
274 {
275 struct f2fs_nm_info *nm_i = NM_I(sbi);
276 struct nat_entry *e;
277 bool need_update = true;
278
279 down_read(&nm_i->nat_tree_lock);
280 e = __lookup_nat_cache(nm_i, ino);
281 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
282 (get_nat_flag(e, IS_CHECKPOINTED) ||
283 get_nat_flag(e, HAS_FSYNCED_INODE)))
284 need_update = false;
285 up_read(&nm_i->nat_tree_lock);
286 return need_update;
287 }
288
289 /* must be locked by nat_tree_lock */
290 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
291 struct f2fs_nat_entry *ne)
292 {
293 struct f2fs_nm_info *nm_i = NM_I(sbi);
294 struct nat_entry *new, *e;
295
296 new = __alloc_nat_entry(nid, false);
297 if (!new)
298 return;
299
300 down_write(&nm_i->nat_tree_lock);
301 e = __lookup_nat_cache(nm_i, nid);
302 if (!e)
303 e = __init_nat_entry(nm_i, new, ne, false);
304 else
305 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
306 nat_get_blkaddr(e) !=
307 le32_to_cpu(ne->block_addr) ||
308 nat_get_version(e) != ne->version);
309 up_write(&nm_i->nat_tree_lock);
310 if (e != new)
311 __free_nat_entry(new);
312 }
313
314 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
315 block_t new_blkaddr, bool fsync_done)
316 {
317 struct f2fs_nm_info *nm_i = NM_I(sbi);
318 struct nat_entry *e;
319 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
320
321 down_write(&nm_i->nat_tree_lock);
322 e = __lookup_nat_cache(nm_i, ni->nid);
323 if (!e) {
324 e = __init_nat_entry(nm_i, new, NULL, true);
325 copy_node_info(&e->ni, ni);
326 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
327 } else if (new_blkaddr == NEW_ADDR) {
328 /*
329 * when nid is reallocated,
330 * previous nat entry can be remained in nat cache.
331 * So, reinitialize it with new information.
332 */
333 copy_node_info(&e->ni, ni);
334 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
335 }
336 /* let's free early to reduce memory consumption */
337 if (e != new)
338 __free_nat_entry(new);
339
340 /* sanity check */
341 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
342 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
343 new_blkaddr == NULL_ADDR);
344 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
345 new_blkaddr == NEW_ADDR);
346 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
347 nat_get_blkaddr(e) != NULL_ADDR &&
348 new_blkaddr == NEW_ADDR);
349
350 /* increment version no as node is removed */
351 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
352 unsigned char version = nat_get_version(e);
353 nat_set_version(e, inc_node_version(version));
354 }
355
356 /* change address */
357 nat_set_blkaddr(e, new_blkaddr);
358 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
359 set_nat_flag(e, IS_CHECKPOINTED, false);
360 __set_nat_cache_dirty(nm_i, e);
361
362 /* update fsync_mark if its inode nat entry is still alive */
363 if (ni->nid != ni->ino)
364 e = __lookup_nat_cache(nm_i, ni->ino);
365 if (e) {
366 if (fsync_done && ni->nid == ni->ino)
367 set_nat_flag(e, HAS_FSYNCED_INODE, true);
368 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
369 }
370 up_write(&nm_i->nat_tree_lock);
371 }
372
373 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 int nr = nr_shrink;
377
378 if (!down_write_trylock(&nm_i->nat_tree_lock))
379 return 0;
380
381 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
382 struct nat_entry *ne;
383 ne = list_first_entry(&nm_i->nat_entries,
384 struct nat_entry, list);
385 __del_from_nat_cache(nm_i, ne);
386 nr_shrink--;
387 }
388 up_write(&nm_i->nat_tree_lock);
389 return nr - nr_shrink;
390 }
391
392 /*
393 * This function always returns success
394 */
395 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
396 {
397 struct f2fs_nm_info *nm_i = NM_I(sbi);
398 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
399 struct f2fs_journal *journal = curseg->journal;
400 nid_t start_nid = START_NID(nid);
401 struct f2fs_nat_block *nat_blk;
402 struct page *page = NULL;
403 struct f2fs_nat_entry ne;
404 struct nat_entry *e;
405 pgoff_t index;
406 int i;
407
408 ni->nid = nid;
409
410 /* Check nat cache */
411 down_read(&nm_i->nat_tree_lock);
412 e = __lookup_nat_cache(nm_i, nid);
413 if (e) {
414 ni->ino = nat_get_ino(e);
415 ni->blk_addr = nat_get_blkaddr(e);
416 ni->version = nat_get_version(e);
417 up_read(&nm_i->nat_tree_lock);
418 return;
419 }
420
421 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
422
423 /* Check current segment summary */
424 down_read(&curseg->journal_rwsem);
425 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
426 if (i >= 0) {
427 ne = nat_in_journal(journal, i);
428 node_info_from_raw_nat(ni, &ne);
429 }
430 up_read(&curseg->journal_rwsem);
431 if (i >= 0) {
432 up_read(&nm_i->nat_tree_lock);
433 goto cache;
434 }
435
436 /* Fill node_info from nat page */
437 index = current_nat_addr(sbi, nid);
438 up_read(&nm_i->nat_tree_lock);
439
440 page = get_meta_page(sbi, index);
441 nat_blk = (struct f2fs_nat_block *)page_address(page);
442 ne = nat_blk->entries[nid - start_nid];
443 node_info_from_raw_nat(ni, &ne);
444 f2fs_put_page(page, 1);
445 cache:
446 /* cache nat entry */
447 cache_nat_entry(sbi, nid, &ne);
448 }
449
450 /*
451 * readahead MAX_RA_NODE number of node pages.
452 */
453 static void ra_node_pages(struct page *parent, int start, int n)
454 {
455 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
456 struct blk_plug plug;
457 int i, end;
458 nid_t nid;
459
460 blk_start_plug(&plug);
461
462 /* Then, try readahead for siblings of the desired node */
463 end = start + n;
464 end = min(end, NIDS_PER_BLOCK);
465 for (i = start; i < end; i++) {
466 nid = get_nid(parent, i, false);
467 ra_node_page(sbi, nid);
468 }
469
470 blk_finish_plug(&plug);
471 }
472
473 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
474 {
475 const long direct_index = ADDRS_PER_INODE(dn->inode);
476 const long direct_blks = ADDRS_PER_BLOCK;
477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 unsigned int skipped_unit = ADDRS_PER_BLOCK;
479 int cur_level = dn->cur_level;
480 int max_level = dn->max_level;
481 pgoff_t base = 0;
482
483 if (!dn->max_level)
484 return pgofs + 1;
485
486 while (max_level-- > cur_level)
487 skipped_unit *= NIDS_PER_BLOCK;
488
489 switch (dn->max_level) {
490 case 3:
491 base += 2 * indirect_blks;
492 case 2:
493 base += 2 * direct_blks;
494 case 1:
495 base += direct_index;
496 break;
497 default:
498 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
499 }
500
501 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
502 }
503
504 /*
505 * The maximum depth is four.
506 * Offset[0] will have raw inode offset.
507 */
508 static int get_node_path(struct inode *inode, long block,
509 int offset[4], unsigned int noffset[4])
510 {
511 const long direct_index = ADDRS_PER_INODE(inode);
512 const long direct_blks = ADDRS_PER_BLOCK;
513 const long dptrs_per_blk = NIDS_PER_BLOCK;
514 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
515 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
516 int n = 0;
517 int level = 0;
518
519 noffset[0] = 0;
520
521 if (block < direct_index) {
522 offset[n] = block;
523 goto got;
524 }
525 block -= direct_index;
526 if (block < direct_blks) {
527 offset[n++] = NODE_DIR1_BLOCK;
528 noffset[n] = 1;
529 offset[n] = block;
530 level = 1;
531 goto got;
532 }
533 block -= direct_blks;
534 if (block < direct_blks) {
535 offset[n++] = NODE_DIR2_BLOCK;
536 noffset[n] = 2;
537 offset[n] = block;
538 level = 1;
539 goto got;
540 }
541 block -= direct_blks;
542 if (block < indirect_blks) {
543 offset[n++] = NODE_IND1_BLOCK;
544 noffset[n] = 3;
545 offset[n++] = block / direct_blks;
546 noffset[n] = 4 + offset[n - 1];
547 offset[n] = block % direct_blks;
548 level = 2;
549 goto got;
550 }
551 block -= indirect_blks;
552 if (block < indirect_blks) {
553 offset[n++] = NODE_IND2_BLOCK;
554 noffset[n] = 4 + dptrs_per_blk;
555 offset[n++] = block / direct_blks;
556 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
557 offset[n] = block % direct_blks;
558 level = 2;
559 goto got;
560 }
561 block -= indirect_blks;
562 if (block < dindirect_blks) {
563 offset[n++] = NODE_DIND_BLOCK;
564 noffset[n] = 5 + (dptrs_per_blk * 2);
565 offset[n++] = block / indirect_blks;
566 noffset[n] = 6 + (dptrs_per_blk * 2) +
567 offset[n - 1] * (dptrs_per_blk + 1);
568 offset[n++] = (block / direct_blks) % dptrs_per_blk;
569 noffset[n] = 7 + (dptrs_per_blk * 2) +
570 offset[n - 2] * (dptrs_per_blk + 1) +
571 offset[n - 1];
572 offset[n] = block % direct_blks;
573 level = 3;
574 goto got;
575 } else {
576 return -E2BIG;
577 }
578 got:
579 return level;
580 }
581
582 /*
583 * Caller should call f2fs_put_dnode(dn).
584 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
585 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
586 * In the case of RDONLY_NODE, we don't need to care about mutex.
587 */
588 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
589 {
590 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
591 struct page *npage[4];
592 struct page *parent = NULL;
593 int offset[4];
594 unsigned int noffset[4];
595 nid_t nids[4];
596 int level, i = 0;
597 int err = 0;
598
599 level = get_node_path(dn->inode, index, offset, noffset);
600 if (level < 0)
601 return level;
602
603 nids[0] = dn->inode->i_ino;
604 npage[0] = dn->inode_page;
605
606 if (!npage[0]) {
607 npage[0] = get_node_page(sbi, nids[0]);
608 if (IS_ERR(npage[0]))
609 return PTR_ERR(npage[0]);
610 }
611
612 /* if inline_data is set, should not report any block indices */
613 if (f2fs_has_inline_data(dn->inode) && index) {
614 err = -ENOENT;
615 f2fs_put_page(npage[0], 1);
616 goto release_out;
617 }
618
619 parent = npage[0];
620 if (level != 0)
621 nids[1] = get_nid(parent, offset[0], true);
622 dn->inode_page = npage[0];
623 dn->inode_page_locked = true;
624
625 /* get indirect or direct nodes */
626 for (i = 1; i <= level; i++) {
627 bool done = false;
628
629 if (!nids[i] && mode == ALLOC_NODE) {
630 /* alloc new node */
631 if (!alloc_nid(sbi, &(nids[i]))) {
632 err = -ENOSPC;
633 goto release_pages;
634 }
635
636 dn->nid = nids[i];
637 npage[i] = new_node_page(dn, noffset[i]);
638 if (IS_ERR(npage[i])) {
639 alloc_nid_failed(sbi, nids[i]);
640 err = PTR_ERR(npage[i]);
641 goto release_pages;
642 }
643
644 set_nid(parent, offset[i - 1], nids[i], i == 1);
645 alloc_nid_done(sbi, nids[i]);
646 done = true;
647 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
648 npage[i] = get_node_page_ra(parent, offset[i - 1]);
649 if (IS_ERR(npage[i])) {
650 err = PTR_ERR(npage[i]);
651 goto release_pages;
652 }
653 done = true;
654 }
655 if (i == 1) {
656 dn->inode_page_locked = false;
657 unlock_page(parent);
658 } else {
659 f2fs_put_page(parent, 1);
660 }
661
662 if (!done) {
663 npage[i] = get_node_page(sbi, nids[i]);
664 if (IS_ERR(npage[i])) {
665 err = PTR_ERR(npage[i]);
666 f2fs_put_page(npage[0], 0);
667 goto release_out;
668 }
669 }
670 if (i < level) {
671 parent = npage[i];
672 nids[i + 1] = get_nid(parent, offset[i], false);
673 }
674 }
675 dn->nid = nids[level];
676 dn->ofs_in_node = offset[level];
677 dn->node_page = npage[level];
678 dn->data_blkaddr = datablock_addr(dn->inode,
679 dn->node_page, dn->ofs_in_node);
680 return 0;
681
682 release_pages:
683 f2fs_put_page(parent, 1);
684 if (i > 1)
685 f2fs_put_page(npage[0], 0);
686 release_out:
687 dn->inode_page = NULL;
688 dn->node_page = NULL;
689 if (err == -ENOENT) {
690 dn->cur_level = i;
691 dn->max_level = level;
692 dn->ofs_in_node = offset[level];
693 }
694 return err;
695 }
696
697 static void truncate_node(struct dnode_of_data *dn)
698 {
699 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
700 struct node_info ni;
701
702 get_node_info(sbi, dn->nid, &ni);
703
704 /* Deallocate node address */
705 invalidate_blocks(sbi, ni.blk_addr);
706 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
707 set_node_addr(sbi, &ni, NULL_ADDR, false);
708
709 if (dn->nid == dn->inode->i_ino) {
710 remove_orphan_inode(sbi, dn->nid);
711 dec_valid_inode_count(sbi);
712 f2fs_inode_synced(dn->inode);
713 }
714
715 clear_node_page_dirty(dn->node_page);
716 set_sbi_flag(sbi, SBI_IS_DIRTY);
717
718 f2fs_put_page(dn->node_page, 1);
719
720 invalidate_mapping_pages(NODE_MAPPING(sbi),
721 dn->node_page->index, dn->node_page->index);
722
723 dn->node_page = NULL;
724 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
725 }
726
727 static int truncate_dnode(struct dnode_of_data *dn)
728 {
729 struct page *page;
730
731 if (dn->nid == 0)
732 return 1;
733
734 /* get direct node */
735 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
736 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
737 return 1;
738 else if (IS_ERR(page))
739 return PTR_ERR(page);
740
741 /* Make dnode_of_data for parameter */
742 dn->node_page = page;
743 dn->ofs_in_node = 0;
744 truncate_data_blocks(dn);
745 truncate_node(dn);
746 return 1;
747 }
748
749 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
750 int ofs, int depth)
751 {
752 struct dnode_of_data rdn = *dn;
753 struct page *page;
754 struct f2fs_node *rn;
755 nid_t child_nid;
756 unsigned int child_nofs;
757 int freed = 0;
758 int i, ret;
759
760 if (dn->nid == 0)
761 return NIDS_PER_BLOCK + 1;
762
763 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
764
765 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
766 if (IS_ERR(page)) {
767 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
768 return PTR_ERR(page);
769 }
770
771 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
772
773 rn = F2FS_NODE(page);
774 if (depth < 3) {
775 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
776 child_nid = le32_to_cpu(rn->in.nid[i]);
777 if (child_nid == 0)
778 continue;
779 rdn.nid = child_nid;
780 ret = truncate_dnode(&rdn);
781 if (ret < 0)
782 goto out_err;
783 if (set_nid(page, i, 0, false))
784 dn->node_changed = true;
785 }
786 } else {
787 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
788 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
789 child_nid = le32_to_cpu(rn->in.nid[i]);
790 if (child_nid == 0) {
791 child_nofs += NIDS_PER_BLOCK + 1;
792 continue;
793 }
794 rdn.nid = child_nid;
795 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
796 if (ret == (NIDS_PER_BLOCK + 1)) {
797 if (set_nid(page, i, 0, false))
798 dn->node_changed = true;
799 child_nofs += ret;
800 } else if (ret < 0 && ret != -ENOENT) {
801 goto out_err;
802 }
803 }
804 freed = child_nofs;
805 }
806
807 if (!ofs) {
808 /* remove current indirect node */
809 dn->node_page = page;
810 truncate_node(dn);
811 freed++;
812 } else {
813 f2fs_put_page(page, 1);
814 }
815 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
816 return freed;
817
818 out_err:
819 f2fs_put_page(page, 1);
820 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
821 return ret;
822 }
823
824 static int truncate_partial_nodes(struct dnode_of_data *dn,
825 struct f2fs_inode *ri, int *offset, int depth)
826 {
827 struct page *pages[2];
828 nid_t nid[3];
829 nid_t child_nid;
830 int err = 0;
831 int i;
832 int idx = depth - 2;
833
834 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
835 if (!nid[0])
836 return 0;
837
838 /* get indirect nodes in the path */
839 for (i = 0; i < idx + 1; i++) {
840 /* reference count'll be increased */
841 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
842 if (IS_ERR(pages[i])) {
843 err = PTR_ERR(pages[i]);
844 idx = i - 1;
845 goto fail;
846 }
847 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
848 }
849
850 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
851
852 /* free direct nodes linked to a partial indirect node */
853 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
854 child_nid = get_nid(pages[idx], i, false);
855 if (!child_nid)
856 continue;
857 dn->nid = child_nid;
858 err = truncate_dnode(dn);
859 if (err < 0)
860 goto fail;
861 if (set_nid(pages[idx], i, 0, false))
862 dn->node_changed = true;
863 }
864
865 if (offset[idx + 1] == 0) {
866 dn->node_page = pages[idx];
867 dn->nid = nid[idx];
868 truncate_node(dn);
869 } else {
870 f2fs_put_page(pages[idx], 1);
871 }
872 offset[idx]++;
873 offset[idx + 1] = 0;
874 idx--;
875 fail:
876 for (i = idx; i >= 0; i--)
877 f2fs_put_page(pages[i], 1);
878
879 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
880
881 return err;
882 }
883
884 /*
885 * All the block addresses of data and nodes should be nullified.
886 */
887 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
888 {
889 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
890 int err = 0, cont = 1;
891 int level, offset[4], noffset[4];
892 unsigned int nofs = 0;
893 struct f2fs_inode *ri;
894 struct dnode_of_data dn;
895 struct page *page;
896
897 trace_f2fs_truncate_inode_blocks_enter(inode, from);
898
899 level = get_node_path(inode, from, offset, noffset);
900 if (level < 0)
901 return level;
902
903 page = get_node_page(sbi, inode->i_ino);
904 if (IS_ERR(page)) {
905 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
906 return PTR_ERR(page);
907 }
908
909 set_new_dnode(&dn, inode, page, NULL, 0);
910 unlock_page(page);
911
912 ri = F2FS_INODE(page);
913 switch (level) {
914 case 0:
915 case 1:
916 nofs = noffset[1];
917 break;
918 case 2:
919 nofs = noffset[1];
920 if (!offset[level - 1])
921 goto skip_partial;
922 err = truncate_partial_nodes(&dn, ri, offset, level);
923 if (err < 0 && err != -ENOENT)
924 goto fail;
925 nofs += 1 + NIDS_PER_BLOCK;
926 break;
927 case 3:
928 nofs = 5 + 2 * NIDS_PER_BLOCK;
929 if (!offset[level - 1])
930 goto skip_partial;
931 err = truncate_partial_nodes(&dn, ri, offset, level);
932 if (err < 0 && err != -ENOENT)
933 goto fail;
934 break;
935 default:
936 BUG();
937 }
938
939 skip_partial:
940 while (cont) {
941 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
942 switch (offset[0]) {
943 case NODE_DIR1_BLOCK:
944 case NODE_DIR2_BLOCK:
945 err = truncate_dnode(&dn);
946 break;
947
948 case NODE_IND1_BLOCK:
949 case NODE_IND2_BLOCK:
950 err = truncate_nodes(&dn, nofs, offset[1], 2);
951 break;
952
953 case NODE_DIND_BLOCK:
954 err = truncate_nodes(&dn, nofs, offset[1], 3);
955 cont = 0;
956 break;
957
958 default:
959 BUG();
960 }
961 if (err < 0 && err != -ENOENT)
962 goto fail;
963 if (offset[1] == 0 &&
964 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
965 lock_page(page);
966 BUG_ON(page->mapping != NODE_MAPPING(sbi));
967 f2fs_wait_on_page_writeback(page, NODE, true);
968 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
969 set_page_dirty(page);
970 unlock_page(page);
971 }
972 offset[1] = 0;
973 offset[0]++;
974 nofs += err;
975 }
976 fail:
977 f2fs_put_page(page, 0);
978 trace_f2fs_truncate_inode_blocks_exit(inode, err);
979 return err > 0 ? 0 : err;
980 }
981
982 /* caller must lock inode page */
983 int truncate_xattr_node(struct inode *inode)
984 {
985 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
986 nid_t nid = F2FS_I(inode)->i_xattr_nid;
987 struct dnode_of_data dn;
988 struct page *npage;
989
990 if (!nid)
991 return 0;
992
993 npage = get_node_page(sbi, nid);
994 if (IS_ERR(npage))
995 return PTR_ERR(npage);
996
997 f2fs_i_xnid_write(inode, 0);
998
999 set_new_dnode(&dn, inode, NULL, npage, nid);
1000 truncate_node(&dn);
1001 return 0;
1002 }
1003
1004 /*
1005 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1006 * f2fs_unlock_op().
1007 */
1008 int remove_inode_page(struct inode *inode)
1009 {
1010 struct dnode_of_data dn;
1011 int err;
1012
1013 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1014 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1015 if (err)
1016 return err;
1017
1018 err = truncate_xattr_node(inode);
1019 if (err) {
1020 f2fs_put_dnode(&dn);
1021 return err;
1022 }
1023
1024 /* remove potential inline_data blocks */
1025 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1026 S_ISLNK(inode->i_mode))
1027 truncate_data_blocks_range(&dn, 1);
1028
1029 /* 0 is possible, after f2fs_new_inode() has failed */
1030 f2fs_bug_on(F2FS_I_SB(inode),
1031 inode->i_blocks != 0 && inode->i_blocks != 8);
1032
1033 /* will put inode & node pages */
1034 truncate_node(&dn);
1035 return 0;
1036 }
1037
1038 struct page *new_inode_page(struct inode *inode)
1039 {
1040 struct dnode_of_data dn;
1041
1042 /* allocate inode page for new inode */
1043 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1044
1045 /* caller should f2fs_put_page(page, 1); */
1046 return new_node_page(&dn, 0);
1047 }
1048
1049 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1050 {
1051 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1052 struct node_info new_ni;
1053 struct page *page;
1054 int err;
1055
1056 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1057 return ERR_PTR(-EPERM);
1058
1059 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1060 if (!page)
1061 return ERR_PTR(-ENOMEM);
1062
1063 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1064 goto fail;
1065
1066 #ifdef CONFIG_F2FS_CHECK_FS
1067 get_node_info(sbi, dn->nid, &new_ni);
1068 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1069 #endif
1070 new_ni.nid = dn->nid;
1071 new_ni.ino = dn->inode->i_ino;
1072 new_ni.blk_addr = NULL_ADDR;
1073 new_ni.flag = 0;
1074 new_ni.version = 0;
1075 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1076
1077 f2fs_wait_on_page_writeback(page, NODE, true);
1078 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1079 set_cold_node(dn->inode, page);
1080 if (!PageUptodate(page))
1081 SetPageUptodate(page);
1082 if (set_page_dirty(page))
1083 dn->node_changed = true;
1084
1085 if (f2fs_has_xattr_block(ofs))
1086 f2fs_i_xnid_write(dn->inode, dn->nid);
1087
1088 if (ofs == 0)
1089 inc_valid_inode_count(sbi);
1090 return page;
1091
1092 fail:
1093 clear_node_page_dirty(page);
1094 f2fs_put_page(page, 1);
1095 return ERR_PTR(err);
1096 }
1097
1098 /*
1099 * Caller should do after getting the following values.
1100 * 0: f2fs_put_page(page, 0)
1101 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1102 */
1103 static int read_node_page(struct page *page, int op_flags)
1104 {
1105 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1106 struct node_info ni;
1107 struct f2fs_io_info fio = {
1108 .sbi = sbi,
1109 .type = NODE,
1110 .op = REQ_OP_READ,
1111 .op_flags = op_flags,
1112 .page = page,
1113 .encrypted_page = NULL,
1114 };
1115
1116 if (PageUptodate(page))
1117 return LOCKED_PAGE;
1118
1119 get_node_info(sbi, page->index, &ni);
1120
1121 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1122 ClearPageUptodate(page);
1123 return -ENOENT;
1124 }
1125
1126 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1127 return f2fs_submit_page_bio(&fio);
1128 }
1129
1130 /*
1131 * Readahead a node page
1132 */
1133 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1134 {
1135 struct page *apage;
1136 int err;
1137
1138 if (!nid)
1139 return;
1140 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1141
1142 rcu_read_lock();
1143 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1144 rcu_read_unlock();
1145 if (apage)
1146 return;
1147
1148 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1149 if (!apage)
1150 return;
1151
1152 err = read_node_page(apage, REQ_RAHEAD);
1153 f2fs_put_page(apage, err ? 1 : 0);
1154 }
1155
1156 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1157 struct page *parent, int start)
1158 {
1159 struct page *page;
1160 int err;
1161
1162 if (!nid)
1163 return ERR_PTR(-ENOENT);
1164 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1165 repeat:
1166 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1167 if (!page)
1168 return ERR_PTR(-ENOMEM);
1169
1170 err = read_node_page(page, 0);
1171 if (err < 0) {
1172 f2fs_put_page(page, 1);
1173 return ERR_PTR(err);
1174 } else if (err == LOCKED_PAGE) {
1175 err = 0;
1176 goto page_hit;
1177 }
1178
1179 if (parent)
1180 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1181
1182 lock_page(page);
1183
1184 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1185 f2fs_put_page(page, 1);
1186 goto repeat;
1187 }
1188
1189 if (unlikely(!PageUptodate(page))) {
1190 err = -EIO;
1191 goto out_err;
1192 }
1193
1194 if (!f2fs_inode_chksum_verify(sbi, page)) {
1195 err = -EBADMSG;
1196 goto out_err;
1197 }
1198 page_hit:
1199 if(unlikely(nid != nid_of_node(page))) {
1200 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1201 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1202 nid, nid_of_node(page), ino_of_node(page),
1203 ofs_of_node(page), cpver_of_node(page),
1204 next_blkaddr_of_node(page));
1205 err = -EINVAL;
1206 out_err:
1207 ClearPageUptodate(page);
1208 f2fs_put_page(page, 1);
1209 return ERR_PTR(err);
1210 }
1211 return page;
1212 }
1213
1214 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1215 {
1216 return __get_node_page(sbi, nid, NULL, 0);
1217 }
1218
1219 struct page *get_node_page_ra(struct page *parent, int start)
1220 {
1221 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1222 nid_t nid = get_nid(parent, start, false);
1223
1224 return __get_node_page(sbi, nid, parent, start);
1225 }
1226
1227 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1228 {
1229 struct inode *inode;
1230 struct page *page;
1231 int ret;
1232
1233 /* should flush inline_data before evict_inode */
1234 inode = ilookup(sbi->sb, ino);
1235 if (!inode)
1236 return;
1237
1238 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1239 FGP_LOCK|FGP_NOWAIT, 0);
1240 if (!page)
1241 goto iput_out;
1242
1243 if (!PageUptodate(page))
1244 goto page_out;
1245
1246 if (!PageDirty(page))
1247 goto page_out;
1248
1249 if (!clear_page_dirty_for_io(page))
1250 goto page_out;
1251
1252 ret = f2fs_write_inline_data(inode, page);
1253 inode_dec_dirty_pages(inode);
1254 remove_dirty_inode(inode);
1255 if (ret)
1256 set_page_dirty(page);
1257 page_out:
1258 f2fs_put_page(page, 1);
1259 iput_out:
1260 iput(inode);
1261 }
1262
1263 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1264 {
1265 pgoff_t index;
1266 struct pagevec pvec;
1267 struct page *last_page = NULL;
1268 int nr_pages;
1269
1270 pagevec_init(&pvec);
1271 index = 0;
1272
1273 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1274 PAGECACHE_TAG_DIRTY))) {
1275 int i;
1276
1277 for (i = 0; i < nr_pages; i++) {
1278 struct page *page = pvec.pages[i];
1279
1280 if (unlikely(f2fs_cp_error(sbi))) {
1281 f2fs_put_page(last_page, 0);
1282 pagevec_release(&pvec);
1283 return ERR_PTR(-EIO);
1284 }
1285
1286 if (!IS_DNODE(page) || !is_cold_node(page))
1287 continue;
1288 if (ino_of_node(page) != ino)
1289 continue;
1290
1291 lock_page(page);
1292
1293 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1294 continue_unlock:
1295 unlock_page(page);
1296 continue;
1297 }
1298 if (ino_of_node(page) != ino)
1299 goto continue_unlock;
1300
1301 if (!PageDirty(page)) {
1302 /* someone wrote it for us */
1303 goto continue_unlock;
1304 }
1305
1306 if (last_page)
1307 f2fs_put_page(last_page, 0);
1308
1309 get_page(page);
1310 last_page = page;
1311 unlock_page(page);
1312 }
1313 pagevec_release(&pvec);
1314 cond_resched();
1315 }
1316 return last_page;
1317 }
1318
1319 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1320 struct writeback_control *wbc, bool do_balance,
1321 enum iostat_type io_type)
1322 {
1323 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1324 nid_t nid;
1325 struct node_info ni;
1326 struct f2fs_io_info fio = {
1327 .sbi = sbi,
1328 .ino = ino_of_node(page),
1329 .type = NODE,
1330 .op = REQ_OP_WRITE,
1331 .op_flags = wbc_to_write_flags(wbc),
1332 .page = page,
1333 .encrypted_page = NULL,
1334 .submitted = false,
1335 .io_type = io_type,
1336 .io_wbc = wbc,
1337 };
1338
1339 trace_f2fs_writepage(page, NODE);
1340
1341 if (unlikely(f2fs_cp_error(sbi))) {
1342 dec_page_count(sbi, F2FS_DIRTY_NODES);
1343 unlock_page(page);
1344 return 0;
1345 }
1346
1347 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1348 goto redirty_out;
1349
1350 /* get old block addr of this node page */
1351 nid = nid_of_node(page);
1352 f2fs_bug_on(sbi, page->index != nid);
1353
1354 if (wbc->for_reclaim) {
1355 if (!down_read_trylock(&sbi->node_write))
1356 goto redirty_out;
1357 } else {
1358 down_read(&sbi->node_write);
1359 }
1360
1361 get_node_info(sbi, nid, &ni);
1362
1363 /* This page is already truncated */
1364 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1365 ClearPageUptodate(page);
1366 dec_page_count(sbi, F2FS_DIRTY_NODES);
1367 up_read(&sbi->node_write);
1368 unlock_page(page);
1369 return 0;
1370 }
1371
1372 if (atomic && !test_opt(sbi, NOBARRIER))
1373 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1374
1375 set_page_writeback(page);
1376 fio.old_blkaddr = ni.blk_addr;
1377 write_node_page(nid, &fio);
1378 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1379 dec_page_count(sbi, F2FS_DIRTY_NODES);
1380 up_read(&sbi->node_write);
1381
1382 if (wbc->for_reclaim) {
1383 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1384 page->index, NODE);
1385 submitted = NULL;
1386 }
1387
1388 unlock_page(page);
1389
1390 if (unlikely(f2fs_cp_error(sbi))) {
1391 f2fs_submit_merged_write(sbi, NODE);
1392 submitted = NULL;
1393 }
1394 if (submitted)
1395 *submitted = fio.submitted;
1396
1397 if (do_balance)
1398 f2fs_balance_fs(sbi, false);
1399 return 0;
1400
1401 redirty_out:
1402 redirty_page_for_writepage(wbc, page);
1403 return AOP_WRITEPAGE_ACTIVATE;
1404 }
1405
1406 void move_node_page(struct page *node_page, int gc_type)
1407 {
1408 if (gc_type == FG_GC) {
1409 struct writeback_control wbc = {
1410 .sync_mode = WB_SYNC_ALL,
1411 .nr_to_write = 1,
1412 .for_reclaim = 0,
1413 };
1414
1415 set_page_dirty(node_page);
1416 f2fs_wait_on_page_writeback(node_page, NODE, true);
1417
1418 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1419 if (!clear_page_dirty_for_io(node_page))
1420 goto out_page;
1421
1422 if (__write_node_page(node_page, false, NULL,
1423 &wbc, false, FS_GC_NODE_IO))
1424 unlock_page(node_page);
1425 goto release_page;
1426 } else {
1427 /* set page dirty and write it */
1428 if (!PageWriteback(node_page))
1429 set_page_dirty(node_page);
1430 }
1431 out_page:
1432 unlock_page(node_page);
1433 release_page:
1434 f2fs_put_page(node_page, 0);
1435 }
1436
1437 static int f2fs_write_node_page(struct page *page,
1438 struct writeback_control *wbc)
1439 {
1440 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1441 }
1442
1443 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1444 struct writeback_control *wbc, bool atomic)
1445 {
1446 pgoff_t index;
1447 pgoff_t last_idx = ULONG_MAX;
1448 struct pagevec pvec;
1449 int ret = 0;
1450 struct page *last_page = NULL;
1451 bool marked = false;
1452 nid_t ino = inode->i_ino;
1453 int nr_pages;
1454
1455 if (atomic) {
1456 last_page = last_fsync_dnode(sbi, ino);
1457 if (IS_ERR_OR_NULL(last_page))
1458 return PTR_ERR_OR_ZERO(last_page);
1459 }
1460 retry:
1461 pagevec_init(&pvec);
1462 index = 0;
1463
1464 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1465 PAGECACHE_TAG_DIRTY))) {
1466 int i;
1467
1468 for (i = 0; i < nr_pages; i++) {
1469 struct page *page = pvec.pages[i];
1470 bool submitted = false;
1471
1472 if (unlikely(f2fs_cp_error(sbi))) {
1473 f2fs_put_page(last_page, 0);
1474 pagevec_release(&pvec);
1475 ret = -EIO;
1476 goto out;
1477 }
1478
1479 if (!IS_DNODE(page) || !is_cold_node(page))
1480 continue;
1481 if (ino_of_node(page) != ino)
1482 continue;
1483
1484 lock_page(page);
1485
1486 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1487 continue_unlock:
1488 unlock_page(page);
1489 continue;
1490 }
1491 if (ino_of_node(page) != ino)
1492 goto continue_unlock;
1493
1494 if (!PageDirty(page) && page != last_page) {
1495 /* someone wrote it for us */
1496 goto continue_unlock;
1497 }
1498
1499 f2fs_wait_on_page_writeback(page, NODE, true);
1500 BUG_ON(PageWriteback(page));
1501
1502 set_fsync_mark(page, 0);
1503 set_dentry_mark(page, 0);
1504
1505 if (!atomic || page == last_page) {
1506 set_fsync_mark(page, 1);
1507 if (IS_INODE(page)) {
1508 if (is_inode_flag_set(inode,
1509 FI_DIRTY_INODE))
1510 update_inode(inode, page);
1511 set_dentry_mark(page,
1512 need_dentry_mark(sbi, ino));
1513 }
1514 /* may be written by other thread */
1515 if (!PageDirty(page))
1516 set_page_dirty(page);
1517 }
1518
1519 if (!clear_page_dirty_for_io(page))
1520 goto continue_unlock;
1521
1522 ret = __write_node_page(page, atomic &&
1523 page == last_page,
1524 &submitted, wbc, true,
1525 FS_NODE_IO);
1526 if (ret) {
1527 unlock_page(page);
1528 f2fs_put_page(last_page, 0);
1529 break;
1530 } else if (submitted) {
1531 last_idx = page->index;
1532 }
1533
1534 if (page == last_page) {
1535 f2fs_put_page(page, 0);
1536 marked = true;
1537 break;
1538 }
1539 }
1540 pagevec_release(&pvec);
1541 cond_resched();
1542
1543 if (ret || marked)
1544 break;
1545 }
1546 if (!ret && atomic && !marked) {
1547 f2fs_msg(sbi->sb, KERN_DEBUG,
1548 "Retry to write fsync mark: ino=%u, idx=%lx",
1549 ino, last_page->index);
1550 lock_page(last_page);
1551 f2fs_wait_on_page_writeback(last_page, NODE, true);
1552 set_page_dirty(last_page);
1553 unlock_page(last_page);
1554 goto retry;
1555 }
1556 out:
1557 if (last_idx != ULONG_MAX)
1558 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1559 return ret ? -EIO: 0;
1560 }
1561
1562 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1563 bool do_balance, enum iostat_type io_type)
1564 {
1565 pgoff_t index;
1566 struct pagevec pvec;
1567 int step = 0;
1568 int nwritten = 0;
1569 int ret = 0;
1570 int nr_pages;
1571
1572 pagevec_init(&pvec);
1573
1574 next_step:
1575 index = 0;
1576
1577 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1578 PAGECACHE_TAG_DIRTY))) {
1579 int i;
1580
1581 for (i = 0; i < nr_pages; i++) {
1582 struct page *page = pvec.pages[i];
1583 bool submitted = false;
1584
1585 /*
1586 * flushing sequence with step:
1587 * 0. indirect nodes
1588 * 1. dentry dnodes
1589 * 2. file dnodes
1590 */
1591 if (step == 0 && IS_DNODE(page))
1592 continue;
1593 if (step == 1 && (!IS_DNODE(page) ||
1594 is_cold_node(page)))
1595 continue;
1596 if (step == 2 && (!IS_DNODE(page) ||
1597 !is_cold_node(page)))
1598 continue;
1599 lock_node:
1600 if (!trylock_page(page))
1601 continue;
1602
1603 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1604 continue_unlock:
1605 unlock_page(page);
1606 continue;
1607 }
1608
1609 if (!PageDirty(page)) {
1610 /* someone wrote it for us */
1611 goto continue_unlock;
1612 }
1613
1614 /* flush inline_data */
1615 if (is_inline_node(page)) {
1616 clear_inline_node(page);
1617 unlock_page(page);
1618 flush_inline_data(sbi, ino_of_node(page));
1619 goto lock_node;
1620 }
1621
1622 f2fs_wait_on_page_writeback(page, NODE, true);
1623
1624 BUG_ON(PageWriteback(page));
1625 if (!clear_page_dirty_for_io(page))
1626 goto continue_unlock;
1627
1628 set_fsync_mark(page, 0);
1629 set_dentry_mark(page, 0);
1630
1631 ret = __write_node_page(page, false, &submitted,
1632 wbc, do_balance, io_type);
1633 if (ret)
1634 unlock_page(page);
1635 else if (submitted)
1636 nwritten++;
1637
1638 if (--wbc->nr_to_write == 0)
1639 break;
1640 }
1641 pagevec_release(&pvec);
1642 cond_resched();
1643
1644 if (wbc->nr_to_write == 0) {
1645 step = 2;
1646 break;
1647 }
1648 }
1649
1650 if (step < 2) {
1651 step++;
1652 goto next_step;
1653 }
1654
1655 if (nwritten)
1656 f2fs_submit_merged_write(sbi, NODE);
1657
1658 if (unlikely(f2fs_cp_error(sbi)))
1659 return -EIO;
1660 return ret;
1661 }
1662
1663 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1664 {
1665 pgoff_t index = 0;
1666 struct pagevec pvec;
1667 int ret2, ret = 0;
1668 int nr_pages;
1669
1670 pagevec_init(&pvec);
1671
1672 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1673 PAGECACHE_TAG_WRITEBACK))) {
1674 int i;
1675
1676 for (i = 0; i < nr_pages; i++) {
1677 struct page *page = pvec.pages[i];
1678
1679 if (ino && ino_of_node(page) == ino) {
1680 f2fs_wait_on_page_writeback(page, NODE, true);
1681 if (TestClearPageError(page))
1682 ret = -EIO;
1683 }
1684 }
1685 pagevec_release(&pvec);
1686 cond_resched();
1687 }
1688
1689 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1690 if (!ret)
1691 ret = ret2;
1692 return ret;
1693 }
1694
1695 static int f2fs_write_node_pages(struct address_space *mapping,
1696 struct writeback_control *wbc)
1697 {
1698 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1699 struct blk_plug plug;
1700 long diff;
1701
1702 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1703 goto skip_write;
1704
1705 /* balancing f2fs's metadata in background */
1706 f2fs_balance_fs_bg(sbi);
1707
1708 /* collect a number of dirty node pages and write together */
1709 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1710 goto skip_write;
1711
1712 trace_f2fs_writepages(mapping->host, wbc, NODE);
1713
1714 diff = nr_pages_to_write(sbi, NODE, wbc);
1715 wbc->sync_mode = WB_SYNC_NONE;
1716 blk_start_plug(&plug);
1717 sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1718 blk_finish_plug(&plug);
1719 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1720 return 0;
1721
1722 skip_write:
1723 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1724 trace_f2fs_writepages(mapping->host, wbc, NODE);
1725 return 0;
1726 }
1727
1728 static int f2fs_set_node_page_dirty(struct page *page)
1729 {
1730 trace_f2fs_set_page_dirty(page, NODE);
1731
1732 if (!PageUptodate(page))
1733 SetPageUptodate(page);
1734 if (!PageDirty(page)) {
1735 f2fs_set_page_dirty_nobuffers(page);
1736 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1737 SetPagePrivate(page);
1738 f2fs_trace_pid(page);
1739 return 1;
1740 }
1741 return 0;
1742 }
1743
1744 /*
1745 * Structure of the f2fs node operations
1746 */
1747 const struct address_space_operations f2fs_node_aops = {
1748 .writepage = f2fs_write_node_page,
1749 .writepages = f2fs_write_node_pages,
1750 .set_page_dirty = f2fs_set_node_page_dirty,
1751 .invalidatepage = f2fs_invalidate_page,
1752 .releasepage = f2fs_release_page,
1753 #ifdef CONFIG_MIGRATION
1754 .migratepage = f2fs_migrate_page,
1755 #endif
1756 };
1757
1758 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1759 nid_t n)
1760 {
1761 return radix_tree_lookup(&nm_i->free_nid_root, n);
1762 }
1763
1764 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1765 struct free_nid *i, enum nid_state state)
1766 {
1767 struct f2fs_nm_info *nm_i = NM_I(sbi);
1768
1769 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1770 if (err)
1771 return err;
1772
1773 f2fs_bug_on(sbi, state != i->state);
1774 nm_i->nid_cnt[state]++;
1775 if (state == FREE_NID)
1776 list_add_tail(&i->list, &nm_i->free_nid_list);
1777 return 0;
1778 }
1779
1780 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1781 struct free_nid *i, enum nid_state state)
1782 {
1783 struct f2fs_nm_info *nm_i = NM_I(sbi);
1784
1785 f2fs_bug_on(sbi, state != i->state);
1786 nm_i->nid_cnt[state]--;
1787 if (state == FREE_NID)
1788 list_del(&i->list);
1789 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1790 }
1791
1792 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1793 enum nid_state org_state, enum nid_state dst_state)
1794 {
1795 struct f2fs_nm_info *nm_i = NM_I(sbi);
1796
1797 f2fs_bug_on(sbi, org_state != i->state);
1798 i->state = dst_state;
1799 nm_i->nid_cnt[org_state]--;
1800 nm_i->nid_cnt[dst_state]++;
1801
1802 switch (dst_state) {
1803 case PREALLOC_NID:
1804 list_del(&i->list);
1805 break;
1806 case FREE_NID:
1807 list_add_tail(&i->list, &nm_i->free_nid_list);
1808 break;
1809 default:
1810 BUG_ON(1);
1811 }
1812 }
1813
1814 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1815 bool set, bool build)
1816 {
1817 struct f2fs_nm_info *nm_i = NM_I(sbi);
1818 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1819 unsigned int nid_ofs = nid - START_NID(nid);
1820
1821 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1822 return;
1823
1824 if (set) {
1825 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1826 return;
1827 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1828 nm_i->free_nid_count[nat_ofs]++;
1829 } else {
1830 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1831 return;
1832 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1833 if (!build)
1834 nm_i->free_nid_count[nat_ofs]--;
1835 }
1836 }
1837
1838 /* return if the nid is recognized as free */
1839 static bool add_free_nid(struct f2fs_sb_info *sbi,
1840 nid_t nid, bool build, bool update)
1841 {
1842 struct f2fs_nm_info *nm_i = NM_I(sbi);
1843 struct free_nid *i, *e;
1844 struct nat_entry *ne;
1845 int err = -EINVAL;
1846 bool ret = false;
1847
1848 /* 0 nid should not be used */
1849 if (unlikely(nid == 0))
1850 return false;
1851
1852 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1853 i->nid = nid;
1854 i->state = FREE_NID;
1855
1856 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1857
1858 spin_lock(&nm_i->nid_list_lock);
1859
1860 if (build) {
1861 /*
1862 * Thread A Thread B
1863 * - f2fs_create
1864 * - f2fs_new_inode
1865 * - alloc_nid
1866 * - __insert_nid_to_list(PREALLOC_NID)
1867 * - f2fs_balance_fs_bg
1868 * - build_free_nids
1869 * - __build_free_nids
1870 * - scan_nat_page
1871 * - add_free_nid
1872 * - __lookup_nat_cache
1873 * - f2fs_add_link
1874 * - init_inode_metadata
1875 * - new_inode_page
1876 * - new_node_page
1877 * - set_node_addr
1878 * - alloc_nid_done
1879 * - __remove_nid_from_list(PREALLOC_NID)
1880 * - __insert_nid_to_list(FREE_NID)
1881 */
1882 ne = __lookup_nat_cache(nm_i, nid);
1883 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1884 nat_get_blkaddr(ne) != NULL_ADDR))
1885 goto err_out;
1886
1887 e = __lookup_free_nid_list(nm_i, nid);
1888 if (e) {
1889 if (e->state == FREE_NID)
1890 ret = true;
1891 goto err_out;
1892 }
1893 }
1894 ret = true;
1895 err = __insert_free_nid(sbi, i, FREE_NID);
1896 err_out:
1897 if (update) {
1898 update_free_nid_bitmap(sbi, nid, ret, build);
1899 if (!build)
1900 nm_i->available_nids++;
1901 }
1902 spin_unlock(&nm_i->nid_list_lock);
1903 radix_tree_preload_end();
1904
1905 if (err)
1906 kmem_cache_free(free_nid_slab, i);
1907 return ret;
1908 }
1909
1910 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1911 {
1912 struct f2fs_nm_info *nm_i = NM_I(sbi);
1913 struct free_nid *i;
1914 bool need_free = false;
1915
1916 spin_lock(&nm_i->nid_list_lock);
1917 i = __lookup_free_nid_list(nm_i, nid);
1918 if (i && i->state == FREE_NID) {
1919 __remove_free_nid(sbi, i, FREE_NID);
1920 need_free = true;
1921 }
1922 spin_unlock(&nm_i->nid_list_lock);
1923
1924 if (need_free)
1925 kmem_cache_free(free_nid_slab, i);
1926 }
1927
1928 static void scan_nat_page(struct f2fs_sb_info *sbi,
1929 struct page *nat_page, nid_t start_nid)
1930 {
1931 struct f2fs_nm_info *nm_i = NM_I(sbi);
1932 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1933 block_t blk_addr;
1934 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1935 int i;
1936
1937 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1938
1939 i = start_nid % NAT_ENTRY_PER_BLOCK;
1940
1941 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1942 if (unlikely(start_nid >= nm_i->max_nid))
1943 break;
1944
1945 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1946 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1947 if (blk_addr == NULL_ADDR) {
1948 add_free_nid(sbi, start_nid, true, true);
1949 } else {
1950 spin_lock(&NM_I(sbi)->nid_list_lock);
1951 update_free_nid_bitmap(sbi, start_nid, false, true);
1952 spin_unlock(&NM_I(sbi)->nid_list_lock);
1953 }
1954 }
1955 }
1956
1957 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1958 {
1959 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1960 struct f2fs_journal *journal = curseg->journal;
1961 int i;
1962
1963 down_read(&curseg->journal_rwsem);
1964 for (i = 0; i < nats_in_cursum(journal); i++) {
1965 block_t addr;
1966 nid_t nid;
1967
1968 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1969 nid = le32_to_cpu(nid_in_journal(journal, i));
1970 if (addr == NULL_ADDR)
1971 add_free_nid(sbi, nid, true, false);
1972 else
1973 remove_free_nid(sbi, nid);
1974 }
1975 up_read(&curseg->journal_rwsem);
1976 }
1977
1978 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1979 {
1980 struct f2fs_nm_info *nm_i = NM_I(sbi);
1981 unsigned int i, idx;
1982 nid_t nid;
1983
1984 down_read(&nm_i->nat_tree_lock);
1985
1986 for (i = 0; i < nm_i->nat_blocks; i++) {
1987 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1988 continue;
1989 if (!nm_i->free_nid_count[i])
1990 continue;
1991 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1992 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
1993 NAT_ENTRY_PER_BLOCK, idx);
1994 if (idx >= NAT_ENTRY_PER_BLOCK)
1995 break;
1996
1997 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1998 add_free_nid(sbi, nid, true, false);
1999
2000 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2001 goto out;
2002 }
2003 }
2004 out:
2005 scan_curseg_cache(sbi);
2006
2007 up_read(&nm_i->nat_tree_lock);
2008 }
2009
2010 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2011 {
2012 struct f2fs_nm_info *nm_i = NM_I(sbi);
2013 int i = 0;
2014 nid_t nid = nm_i->next_scan_nid;
2015
2016 if (unlikely(nid >= nm_i->max_nid))
2017 nid = 0;
2018
2019 /* Enough entries */
2020 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2021 return;
2022
2023 if (!sync && !available_free_memory(sbi, FREE_NIDS))
2024 return;
2025
2026 if (!mount) {
2027 /* try to find free nids in free_nid_bitmap */
2028 scan_free_nid_bits(sbi);
2029
2030 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2031 return;
2032 }
2033
2034 /* readahead nat pages to be scanned */
2035 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2036 META_NAT, true);
2037
2038 down_read(&nm_i->nat_tree_lock);
2039
2040 while (1) {
2041 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2042 nm_i->nat_block_bitmap)) {
2043 struct page *page = get_current_nat_page(sbi, nid);
2044
2045 scan_nat_page(sbi, page, nid);
2046 f2fs_put_page(page, 1);
2047 }
2048
2049 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2050 if (unlikely(nid >= nm_i->max_nid))
2051 nid = 0;
2052
2053 if (++i >= FREE_NID_PAGES)
2054 break;
2055 }
2056
2057 /* go to the next free nat pages to find free nids abundantly */
2058 nm_i->next_scan_nid = nid;
2059
2060 /* find free nids from current sum_pages */
2061 scan_curseg_cache(sbi);
2062
2063 up_read(&nm_i->nat_tree_lock);
2064
2065 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2066 nm_i->ra_nid_pages, META_NAT, false);
2067 }
2068
2069 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2070 {
2071 mutex_lock(&NM_I(sbi)->build_lock);
2072 __build_free_nids(sbi, sync, mount);
2073 mutex_unlock(&NM_I(sbi)->build_lock);
2074 }
2075
2076 /*
2077 * If this function returns success, caller can obtain a new nid
2078 * from second parameter of this function.
2079 * The returned nid could be used ino as well as nid when inode is created.
2080 */
2081 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2082 {
2083 struct f2fs_nm_info *nm_i = NM_I(sbi);
2084 struct free_nid *i = NULL;
2085 retry:
2086 #ifdef CONFIG_F2FS_FAULT_INJECTION
2087 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2088 f2fs_show_injection_info(FAULT_ALLOC_NID);
2089 return false;
2090 }
2091 #endif
2092 spin_lock(&nm_i->nid_list_lock);
2093
2094 if (unlikely(nm_i->available_nids == 0)) {
2095 spin_unlock(&nm_i->nid_list_lock);
2096 return false;
2097 }
2098
2099 /* We should not use stale free nids created by build_free_nids */
2100 if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2101 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2102 i = list_first_entry(&nm_i->free_nid_list,
2103 struct free_nid, list);
2104 *nid = i->nid;
2105
2106 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2107 nm_i->available_nids--;
2108
2109 update_free_nid_bitmap(sbi, *nid, false, false);
2110
2111 spin_unlock(&nm_i->nid_list_lock);
2112 return true;
2113 }
2114 spin_unlock(&nm_i->nid_list_lock);
2115
2116 /* Let's scan nat pages and its caches to get free nids */
2117 build_free_nids(sbi, true, false);
2118 goto retry;
2119 }
2120
2121 /*
2122 * alloc_nid() should be called prior to this function.
2123 */
2124 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2125 {
2126 struct f2fs_nm_info *nm_i = NM_I(sbi);
2127 struct free_nid *i;
2128
2129 spin_lock(&nm_i->nid_list_lock);
2130 i = __lookup_free_nid_list(nm_i, nid);
2131 f2fs_bug_on(sbi, !i);
2132 __remove_free_nid(sbi, i, PREALLOC_NID);
2133 spin_unlock(&nm_i->nid_list_lock);
2134
2135 kmem_cache_free(free_nid_slab, i);
2136 }
2137
2138 /*
2139 * alloc_nid() should be called prior to this function.
2140 */
2141 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2142 {
2143 struct f2fs_nm_info *nm_i = NM_I(sbi);
2144 struct free_nid *i;
2145 bool need_free = false;
2146
2147 if (!nid)
2148 return;
2149
2150 spin_lock(&nm_i->nid_list_lock);
2151 i = __lookup_free_nid_list(nm_i, nid);
2152 f2fs_bug_on(sbi, !i);
2153
2154 if (!available_free_memory(sbi, FREE_NIDS)) {
2155 __remove_free_nid(sbi, i, PREALLOC_NID);
2156 need_free = true;
2157 } else {
2158 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2159 }
2160
2161 nm_i->available_nids++;
2162
2163 update_free_nid_bitmap(sbi, nid, true, false);
2164
2165 spin_unlock(&nm_i->nid_list_lock);
2166
2167 if (need_free)
2168 kmem_cache_free(free_nid_slab, i);
2169 }
2170
2171 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2172 {
2173 struct f2fs_nm_info *nm_i = NM_I(sbi);
2174 struct free_nid *i, *next;
2175 int nr = nr_shrink;
2176
2177 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2178 return 0;
2179
2180 if (!mutex_trylock(&nm_i->build_lock))
2181 return 0;
2182
2183 spin_lock(&nm_i->nid_list_lock);
2184 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2185 if (nr_shrink <= 0 ||
2186 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2187 break;
2188
2189 __remove_free_nid(sbi, i, FREE_NID);
2190 kmem_cache_free(free_nid_slab, i);
2191 nr_shrink--;
2192 }
2193 spin_unlock(&nm_i->nid_list_lock);
2194 mutex_unlock(&nm_i->build_lock);
2195
2196 return nr - nr_shrink;
2197 }
2198
2199 void recover_inline_xattr(struct inode *inode, struct page *page)
2200 {
2201 void *src_addr, *dst_addr;
2202 size_t inline_size;
2203 struct page *ipage;
2204 struct f2fs_inode *ri;
2205
2206 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2207 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2208
2209 ri = F2FS_INODE(page);
2210 if (ri->i_inline & F2FS_INLINE_XATTR) {
2211 set_inode_flag(inode, FI_INLINE_XATTR);
2212 } else {
2213 clear_inode_flag(inode, FI_INLINE_XATTR);
2214 goto update_inode;
2215 }
2216
2217 dst_addr = inline_xattr_addr(inode, ipage);
2218 src_addr = inline_xattr_addr(inode, page);
2219 inline_size = inline_xattr_size(inode);
2220
2221 f2fs_wait_on_page_writeback(ipage, NODE, true);
2222 memcpy(dst_addr, src_addr, inline_size);
2223 update_inode:
2224 update_inode(inode, ipage);
2225 f2fs_put_page(ipage, 1);
2226 }
2227
2228 int recover_xattr_data(struct inode *inode, struct page *page)
2229 {
2230 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2231 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2232 nid_t new_xnid;
2233 struct dnode_of_data dn;
2234 struct node_info ni;
2235 struct page *xpage;
2236
2237 if (!prev_xnid)
2238 goto recover_xnid;
2239
2240 /* 1: invalidate the previous xattr nid */
2241 get_node_info(sbi, prev_xnid, &ni);
2242 invalidate_blocks(sbi, ni.blk_addr);
2243 dec_valid_node_count(sbi, inode, false);
2244 set_node_addr(sbi, &ni, NULL_ADDR, false);
2245
2246 recover_xnid:
2247 /* 2: update xattr nid in inode */
2248 if (!alloc_nid(sbi, &new_xnid))
2249 return -ENOSPC;
2250
2251 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2252 xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2253 if (IS_ERR(xpage)) {
2254 alloc_nid_failed(sbi, new_xnid);
2255 return PTR_ERR(xpage);
2256 }
2257
2258 alloc_nid_done(sbi, new_xnid);
2259 update_inode_page(inode);
2260
2261 /* 3: update and set xattr node page dirty */
2262 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2263
2264 set_page_dirty(xpage);
2265 f2fs_put_page(xpage, 1);
2266
2267 return 0;
2268 }
2269
2270 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2271 {
2272 struct f2fs_inode *src, *dst;
2273 nid_t ino = ino_of_node(page);
2274 struct node_info old_ni, new_ni;
2275 struct page *ipage;
2276
2277 get_node_info(sbi, ino, &old_ni);
2278
2279 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2280 return -EINVAL;
2281 retry:
2282 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2283 if (!ipage) {
2284 congestion_wait(BLK_RW_ASYNC, HZ/50);
2285 goto retry;
2286 }
2287
2288 /* Should not use this inode from free nid list */
2289 remove_free_nid(sbi, ino);
2290
2291 if (!PageUptodate(ipage))
2292 SetPageUptodate(ipage);
2293 fill_node_footer(ipage, ino, ino, 0, true);
2294
2295 src = F2FS_INODE(page);
2296 dst = F2FS_INODE(ipage);
2297
2298 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2299 dst->i_size = 0;
2300 dst->i_blocks = cpu_to_le64(1);
2301 dst->i_links = cpu_to_le32(1);
2302 dst->i_xattr_nid = 0;
2303 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2304 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2305 dst->i_extra_isize = src->i_extra_isize;
2306
2307 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2308 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2309 i_inline_xattr_size))
2310 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2311
2312 if (f2fs_sb_has_project_quota(sbi->sb) &&
2313 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2314 i_projid))
2315 dst->i_projid = src->i_projid;
2316 }
2317
2318 new_ni = old_ni;
2319 new_ni.ino = ino;
2320
2321 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2322 WARN_ON(1);
2323 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2324 inc_valid_inode_count(sbi);
2325 set_page_dirty(ipage);
2326 f2fs_put_page(ipage, 1);
2327 return 0;
2328 }
2329
2330 void restore_node_summary(struct f2fs_sb_info *sbi,
2331 unsigned int segno, struct f2fs_summary_block *sum)
2332 {
2333 struct f2fs_node *rn;
2334 struct f2fs_summary *sum_entry;
2335 block_t addr;
2336 int i, idx, last_offset, nrpages;
2337
2338 /* scan the node segment */
2339 last_offset = sbi->blocks_per_seg;
2340 addr = START_BLOCK(sbi, segno);
2341 sum_entry = &sum->entries[0];
2342
2343 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2344 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2345
2346 /* readahead node pages */
2347 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2348
2349 for (idx = addr; idx < addr + nrpages; idx++) {
2350 struct page *page = get_tmp_page(sbi, idx);
2351
2352 rn = F2FS_NODE(page);
2353 sum_entry->nid = rn->footer.nid;
2354 sum_entry->version = 0;
2355 sum_entry->ofs_in_node = 0;
2356 sum_entry++;
2357 f2fs_put_page(page, 1);
2358 }
2359
2360 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2361 addr + nrpages);
2362 }
2363 }
2364
2365 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2366 {
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2369 struct f2fs_journal *journal = curseg->journal;
2370 int i;
2371
2372 down_write(&curseg->journal_rwsem);
2373 for (i = 0; i < nats_in_cursum(journal); i++) {
2374 struct nat_entry *ne;
2375 struct f2fs_nat_entry raw_ne;
2376 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2377
2378 raw_ne = nat_in_journal(journal, i);
2379
2380 ne = __lookup_nat_cache(nm_i, nid);
2381 if (!ne) {
2382 ne = __alloc_nat_entry(nid, true);
2383 __init_nat_entry(nm_i, ne, &raw_ne, true);
2384 }
2385
2386 /*
2387 * if a free nat in journal has not been used after last
2388 * checkpoint, we should remove it from available nids,
2389 * since later we will add it again.
2390 */
2391 if (!get_nat_flag(ne, IS_DIRTY) &&
2392 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2393 spin_lock(&nm_i->nid_list_lock);
2394 nm_i->available_nids--;
2395 spin_unlock(&nm_i->nid_list_lock);
2396 }
2397
2398 __set_nat_cache_dirty(nm_i, ne);
2399 }
2400 update_nats_in_cursum(journal, -i);
2401 up_write(&curseg->journal_rwsem);
2402 }
2403
2404 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2405 struct list_head *head, int max)
2406 {
2407 struct nat_entry_set *cur;
2408
2409 if (nes->entry_cnt >= max)
2410 goto add_out;
2411
2412 list_for_each_entry(cur, head, set_list) {
2413 if (cur->entry_cnt >= nes->entry_cnt) {
2414 list_add(&nes->set_list, cur->set_list.prev);
2415 return;
2416 }
2417 }
2418 add_out:
2419 list_add_tail(&nes->set_list, head);
2420 }
2421
2422 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2423 struct page *page)
2424 {
2425 struct f2fs_nm_info *nm_i = NM_I(sbi);
2426 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2427 struct f2fs_nat_block *nat_blk = page_address(page);
2428 int valid = 0;
2429 int i = 0;
2430
2431 if (!enabled_nat_bits(sbi, NULL))
2432 return;
2433
2434 if (nat_index == 0) {
2435 valid = 1;
2436 i = 1;
2437 }
2438 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2439 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2440 valid++;
2441 }
2442 if (valid == 0) {
2443 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2444 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2445 return;
2446 }
2447
2448 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2449 if (valid == NAT_ENTRY_PER_BLOCK)
2450 __set_bit_le(nat_index, nm_i->full_nat_bits);
2451 else
2452 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2453 }
2454
2455 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2456 struct nat_entry_set *set, struct cp_control *cpc)
2457 {
2458 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2459 struct f2fs_journal *journal = curseg->journal;
2460 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2461 bool to_journal = true;
2462 struct f2fs_nat_block *nat_blk;
2463 struct nat_entry *ne, *cur;
2464 struct page *page = NULL;
2465
2466 /*
2467 * there are two steps to flush nat entries:
2468 * #1, flush nat entries to journal in current hot data summary block.
2469 * #2, flush nat entries to nat page.
2470 */
2471 if (enabled_nat_bits(sbi, cpc) ||
2472 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2473 to_journal = false;
2474
2475 if (to_journal) {
2476 down_write(&curseg->journal_rwsem);
2477 } else {
2478 page = get_next_nat_page(sbi, start_nid);
2479 nat_blk = page_address(page);
2480 f2fs_bug_on(sbi, !nat_blk);
2481 }
2482
2483 /* flush dirty nats in nat entry set */
2484 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2485 struct f2fs_nat_entry *raw_ne;
2486 nid_t nid = nat_get_nid(ne);
2487 int offset;
2488
2489 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2490
2491 if (to_journal) {
2492 offset = lookup_journal_in_cursum(journal,
2493 NAT_JOURNAL, nid, 1);
2494 f2fs_bug_on(sbi, offset < 0);
2495 raw_ne = &nat_in_journal(journal, offset);
2496 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2497 } else {
2498 raw_ne = &nat_blk->entries[nid - start_nid];
2499 }
2500 raw_nat_from_node_info(raw_ne, &ne->ni);
2501 nat_reset_flag(ne);
2502 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2503 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2504 add_free_nid(sbi, nid, false, true);
2505 } else {
2506 spin_lock(&NM_I(sbi)->nid_list_lock);
2507 update_free_nid_bitmap(sbi, nid, false, false);
2508 spin_unlock(&NM_I(sbi)->nid_list_lock);
2509 }
2510 }
2511
2512 if (to_journal) {
2513 up_write(&curseg->journal_rwsem);
2514 } else {
2515 __update_nat_bits(sbi, start_nid, page);
2516 f2fs_put_page(page, 1);
2517 }
2518
2519 /* Allow dirty nats by node block allocation in write_begin */
2520 if (!set->entry_cnt) {
2521 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2522 kmem_cache_free(nat_entry_set_slab, set);
2523 }
2524 }
2525
2526 /*
2527 * This function is called during the checkpointing process.
2528 */
2529 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2530 {
2531 struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2533 struct f2fs_journal *journal = curseg->journal;
2534 struct nat_entry_set *setvec[SETVEC_SIZE];
2535 struct nat_entry_set *set, *tmp;
2536 unsigned int found;
2537 nid_t set_idx = 0;
2538 LIST_HEAD(sets);
2539
2540 if (!nm_i->dirty_nat_cnt)
2541 return;
2542
2543 down_write(&nm_i->nat_tree_lock);
2544
2545 /*
2546 * if there are no enough space in journal to store dirty nat
2547 * entries, remove all entries from journal and merge them
2548 * into nat entry set.
2549 */
2550 if (enabled_nat_bits(sbi, cpc) ||
2551 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2552 remove_nats_in_journal(sbi);
2553
2554 while ((found = __gang_lookup_nat_set(nm_i,
2555 set_idx, SETVEC_SIZE, setvec))) {
2556 unsigned idx;
2557 set_idx = setvec[found - 1]->set + 1;
2558 for (idx = 0; idx < found; idx++)
2559 __adjust_nat_entry_set(setvec[idx], &sets,
2560 MAX_NAT_JENTRIES(journal));
2561 }
2562
2563 /* flush dirty nats in nat entry set */
2564 list_for_each_entry_safe(set, tmp, &sets, set_list)
2565 __flush_nat_entry_set(sbi, set, cpc);
2566
2567 up_write(&nm_i->nat_tree_lock);
2568 /* Allow dirty nats by node block allocation in write_begin */
2569 }
2570
2571 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2572 {
2573 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2574 struct f2fs_nm_info *nm_i = NM_I(sbi);
2575 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2576 unsigned int i;
2577 __u64 cp_ver = cur_cp_version(ckpt);
2578 block_t nat_bits_addr;
2579
2580 if (!enabled_nat_bits(sbi, NULL))
2581 return 0;
2582
2583 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2584 F2FS_BLKSIZE - 1);
2585 nm_i->nat_bits = f2fs_kzalloc(sbi,
2586 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2587 if (!nm_i->nat_bits)
2588 return -ENOMEM;
2589
2590 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2591 nm_i->nat_bits_blocks;
2592 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2593 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2594
2595 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2596 page_address(page), F2FS_BLKSIZE);
2597 f2fs_put_page(page, 1);
2598 }
2599
2600 cp_ver |= (cur_cp_crc(ckpt) << 32);
2601 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2602 disable_nat_bits(sbi, true);
2603 return 0;
2604 }
2605
2606 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2607 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2608
2609 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2610 return 0;
2611 }
2612
2613 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2614 {
2615 struct f2fs_nm_info *nm_i = NM_I(sbi);
2616 unsigned int i = 0;
2617 nid_t nid, last_nid;
2618
2619 if (!enabled_nat_bits(sbi, NULL))
2620 return;
2621
2622 for (i = 0; i < nm_i->nat_blocks; i++) {
2623 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2624 if (i >= nm_i->nat_blocks)
2625 break;
2626
2627 __set_bit_le(i, nm_i->nat_block_bitmap);
2628
2629 nid = i * NAT_ENTRY_PER_BLOCK;
2630 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2631
2632 spin_lock(&NM_I(sbi)->nid_list_lock);
2633 for (; nid < last_nid; nid++)
2634 update_free_nid_bitmap(sbi, nid, true, true);
2635 spin_unlock(&NM_I(sbi)->nid_list_lock);
2636 }
2637
2638 for (i = 0; i < nm_i->nat_blocks; i++) {
2639 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2640 if (i >= nm_i->nat_blocks)
2641 break;
2642
2643 __set_bit_le(i, nm_i->nat_block_bitmap);
2644 }
2645 }
2646
2647 static int init_node_manager(struct f2fs_sb_info *sbi)
2648 {
2649 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2650 struct f2fs_nm_info *nm_i = NM_I(sbi);
2651 unsigned char *version_bitmap;
2652 unsigned int nat_segs;
2653 int err;
2654
2655 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2656
2657 /* segment_count_nat includes pair segment so divide to 2. */
2658 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2659 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2660 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2661
2662 /* not used nids: 0, node, meta, (and root counted as valid node) */
2663 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2664 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2665 nm_i->nid_cnt[FREE_NID] = 0;
2666 nm_i->nid_cnt[PREALLOC_NID] = 0;
2667 nm_i->nat_cnt = 0;
2668 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2669 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2670 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2671
2672 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2673 INIT_LIST_HEAD(&nm_i->free_nid_list);
2674 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2675 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2676 INIT_LIST_HEAD(&nm_i->nat_entries);
2677
2678 mutex_init(&nm_i->build_lock);
2679 spin_lock_init(&nm_i->nid_list_lock);
2680 init_rwsem(&nm_i->nat_tree_lock);
2681
2682 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2683 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2684 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2685 if (!version_bitmap)
2686 return -EFAULT;
2687
2688 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2689 GFP_KERNEL);
2690 if (!nm_i->nat_bitmap)
2691 return -ENOMEM;
2692
2693 err = __get_nat_bitmaps(sbi);
2694 if (err)
2695 return err;
2696
2697 #ifdef CONFIG_F2FS_CHECK_FS
2698 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2699 GFP_KERNEL);
2700 if (!nm_i->nat_bitmap_mir)
2701 return -ENOMEM;
2702 #endif
2703
2704 return 0;
2705 }
2706
2707 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2708 {
2709 struct f2fs_nm_info *nm_i = NM_I(sbi);
2710
2711 nm_i->free_nid_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2712 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2713 if (!nm_i->free_nid_bitmap)
2714 return -ENOMEM;
2715
2716 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2717 GFP_KERNEL);
2718 if (!nm_i->nat_block_bitmap)
2719 return -ENOMEM;
2720
2721 nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2722 sizeof(unsigned short), GFP_KERNEL);
2723 if (!nm_i->free_nid_count)
2724 return -ENOMEM;
2725 return 0;
2726 }
2727
2728 int build_node_manager(struct f2fs_sb_info *sbi)
2729 {
2730 int err;
2731
2732 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2733 GFP_KERNEL);
2734 if (!sbi->nm_info)
2735 return -ENOMEM;
2736
2737 err = init_node_manager(sbi);
2738 if (err)
2739 return err;
2740
2741 err = init_free_nid_cache(sbi);
2742 if (err)
2743 return err;
2744
2745 /* load free nid status from nat_bits table */
2746 load_free_nid_bitmap(sbi);
2747
2748 build_free_nids(sbi, true, true);
2749 return 0;
2750 }
2751
2752 void destroy_node_manager(struct f2fs_sb_info *sbi)
2753 {
2754 struct f2fs_nm_info *nm_i = NM_I(sbi);
2755 struct free_nid *i, *next_i;
2756 struct nat_entry *natvec[NATVEC_SIZE];
2757 struct nat_entry_set *setvec[SETVEC_SIZE];
2758 nid_t nid = 0;
2759 unsigned int found;
2760
2761 if (!nm_i)
2762 return;
2763
2764 /* destroy free nid list */
2765 spin_lock(&nm_i->nid_list_lock);
2766 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2767 __remove_free_nid(sbi, i, FREE_NID);
2768 spin_unlock(&nm_i->nid_list_lock);
2769 kmem_cache_free(free_nid_slab, i);
2770 spin_lock(&nm_i->nid_list_lock);
2771 }
2772 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2773 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2774 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2775 spin_unlock(&nm_i->nid_list_lock);
2776
2777 /* destroy nat cache */
2778 down_write(&nm_i->nat_tree_lock);
2779 while ((found = __gang_lookup_nat_cache(nm_i,
2780 nid, NATVEC_SIZE, natvec))) {
2781 unsigned idx;
2782
2783 nid = nat_get_nid(natvec[found - 1]) + 1;
2784 for (idx = 0; idx < found; idx++)
2785 __del_from_nat_cache(nm_i, natvec[idx]);
2786 }
2787 f2fs_bug_on(sbi, nm_i->nat_cnt);
2788
2789 /* destroy nat set cache */
2790 nid = 0;
2791 while ((found = __gang_lookup_nat_set(nm_i,
2792 nid, SETVEC_SIZE, setvec))) {
2793 unsigned idx;
2794
2795 nid = setvec[found - 1]->set + 1;
2796 for (idx = 0; idx < found; idx++) {
2797 /* entry_cnt is not zero, when cp_error was occurred */
2798 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2799 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2800 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2801 }
2802 }
2803 up_write(&nm_i->nat_tree_lock);
2804
2805 kvfree(nm_i->nat_block_bitmap);
2806 kvfree(nm_i->free_nid_bitmap);
2807 kvfree(nm_i->free_nid_count);
2808
2809 kfree(nm_i->nat_bitmap);
2810 kfree(nm_i->nat_bits);
2811 #ifdef CONFIG_F2FS_CHECK_FS
2812 kfree(nm_i->nat_bitmap_mir);
2813 #endif
2814 sbi->nm_info = NULL;
2815 kfree(nm_i);
2816 }
2817
2818 int __init create_node_manager_caches(void)
2819 {
2820 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2821 sizeof(struct nat_entry));
2822 if (!nat_entry_slab)
2823 goto fail;
2824
2825 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2826 sizeof(struct free_nid));
2827 if (!free_nid_slab)
2828 goto destroy_nat_entry;
2829
2830 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2831 sizeof(struct nat_entry_set));
2832 if (!nat_entry_set_slab)
2833 goto destroy_free_nid;
2834 return 0;
2835
2836 destroy_free_nid:
2837 kmem_cache_destroy(free_nid_slab);
2838 destroy_nat_entry:
2839 kmem_cache_destroy(nat_entry_slab);
2840 fail:
2841 return -ENOMEM;
2842 }
2843
2844 void destroy_node_manager_caches(void)
2845 {
2846 kmem_cache_destroy(nat_entry_set_slab);
2847 kmem_cache_destroy(free_nid_slab);
2848 kmem_cache_destroy(nat_entry_slab);
2849 }