]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/node.h
f2fs: introduce __wait_discard_cmd
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 /*
50 * For node information
51 */
52 struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58 };
59
60 struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63 };
64
65 #define nat_get_nid(nat) ((nat)->ni.nid)
66 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
67 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
69 #define nat_get_ino(nat) ((nat)->ni.ino)
70 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
71 #define nat_get_version(nat) ((nat)->ni.version)
72 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
73
74 #define inc_node_version(version) (++(version))
75
76 static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78 {
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84 }
85
86 static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88 {
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94 }
95
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100 }
101
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112 {
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116 }
117
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120 {
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124 }
125
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136
137 enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144 };
145
146 struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151 };
152
153 /*
154 * For free nid mangement
155 */
156 enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159 };
160
161 struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165 };
166
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181 }
182
183 /*
184 * inline functions
185 */
186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189
190 #ifdef CONFIG_F2FS_CHECK_FS
191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
192 nm_i->bitmap_size))
193 f2fs_bug_on(sbi, 1);
194 #endif
195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
196 }
197
198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
199 {
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 pgoff_t block_off;
202 pgoff_t block_addr;
203
204 /*
205 * block_off = segment_off * 512 + off_in_segment
206 * OLD = (segment_off * 512) * 2 + off_in_segment
207 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
208 */
209 block_off = NAT_BLOCK_OFFSET(start);
210
211 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
212 (block_off << 1) -
213 (block_off & (sbi->blocks_per_seg - 1)));
214
215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
216 block_addr += sbi->blocks_per_seg;
217
218 return block_addr;
219 }
220
221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
222 pgoff_t block_addr)
223 {
224 struct f2fs_nm_info *nm_i = NM_I(sbi);
225
226 block_addr -= nm_i->nat_blkaddr;
227 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
228 block_addr -= sbi->blocks_per_seg;
229 else
230 block_addr += sbi->blocks_per_seg;
231
232 return block_addr + nm_i->nat_blkaddr;
233 }
234
235 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
236 {
237 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
238
239 f2fs_change_bit(block_off, nm_i->nat_bitmap);
240 #ifdef CONFIG_F2FS_CHECK_FS
241 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
242 #endif
243 }
244
245 static inline nid_t ino_of_node(struct page *node_page)
246 {
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.ino);
249 }
250
251 static inline nid_t nid_of_node(struct page *node_page)
252 {
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 return le32_to_cpu(rn->footer.nid);
255 }
256
257 static inline unsigned int ofs_of_node(struct page *node_page)
258 {
259 struct f2fs_node *rn = F2FS_NODE(node_page);
260 unsigned flag = le32_to_cpu(rn->footer.flag);
261 return flag >> OFFSET_BIT_SHIFT;
262 }
263
264 static inline __u64 cpver_of_node(struct page *node_page)
265 {
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le64_to_cpu(rn->footer.cp_ver);
268 }
269
270 static inline block_t next_blkaddr_of_node(struct page *node_page)
271 {
272 struct f2fs_node *rn = F2FS_NODE(node_page);
273 return le32_to_cpu(rn->footer.next_blkaddr);
274 }
275
276 static inline void fill_node_footer(struct page *page, nid_t nid,
277 nid_t ino, unsigned int ofs, bool reset)
278 {
279 struct f2fs_node *rn = F2FS_NODE(page);
280 unsigned int old_flag = 0;
281
282 if (reset)
283 memset(rn, 0, sizeof(*rn));
284 else
285 old_flag = le32_to_cpu(rn->footer.flag);
286
287 rn->footer.nid = cpu_to_le32(nid);
288 rn->footer.ino = cpu_to_le32(ino);
289
290 /* should remain old flag bits such as COLD_BIT_SHIFT */
291 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
292 (old_flag & OFFSET_BIT_MASK));
293 }
294
295 static inline void copy_node_footer(struct page *dst, struct page *src)
296 {
297 struct f2fs_node *src_rn = F2FS_NODE(src);
298 struct f2fs_node *dst_rn = F2FS_NODE(dst);
299 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
300 }
301
302 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
303 {
304 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
305 struct f2fs_node *rn = F2FS_NODE(page);
306 __u64 cp_ver = cur_cp_version(ckpt);
307
308 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
309 cp_ver |= (cur_cp_crc(ckpt) << 32);
310
311 rn->footer.cp_ver = cpu_to_le64(cp_ver);
312 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
313 }
314
315 static inline bool is_recoverable_dnode(struct page *page)
316 {
317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
318 __u64 cp_ver = cur_cp_version(ckpt);
319
320 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
321 cp_ver |= (cur_cp_crc(ckpt) << 32);
322
323 return cp_ver == cpver_of_node(page);
324 }
325
326 /*
327 * f2fs assigns the following node offsets described as (num).
328 * N = NIDS_PER_BLOCK
329 *
330 * Inode block (0)
331 * |- direct node (1)
332 * |- direct node (2)
333 * |- indirect node (3)
334 * | `- direct node (4 => 4 + N - 1)
335 * |- indirect node (4 + N)
336 * | `- direct node (5 + N => 5 + 2N - 1)
337 * `- double indirect node (5 + 2N)
338 * `- indirect node (6 + 2N)
339 * `- direct node
340 * ......
341 * `- indirect node ((6 + 2N) + x(N + 1))
342 * `- direct node
343 * ......
344 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
345 * `- direct node
346 */
347 static inline bool IS_DNODE(struct page *node_page)
348 {
349 unsigned int ofs = ofs_of_node(node_page);
350
351 if (f2fs_has_xattr_block(ofs))
352 return true;
353
354 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
355 ofs == 5 + 2 * NIDS_PER_BLOCK)
356 return false;
357 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
358 ofs -= 6 + 2 * NIDS_PER_BLOCK;
359 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
360 return false;
361 }
362 return true;
363 }
364
365 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
366 {
367 struct f2fs_node *rn = F2FS_NODE(p);
368
369 f2fs_wait_on_page_writeback(p, NODE, true);
370
371 if (i)
372 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
373 else
374 rn->in.nid[off] = cpu_to_le32(nid);
375 return set_page_dirty(p);
376 }
377
378 static inline nid_t get_nid(struct page *p, int off, bool i)
379 {
380 struct f2fs_node *rn = F2FS_NODE(p);
381
382 if (i)
383 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
384 return le32_to_cpu(rn->in.nid[off]);
385 }
386
387 /*
388 * Coldness identification:
389 * - Mark cold files in f2fs_inode_info
390 * - Mark cold node blocks in their node footer
391 * - Mark cold data pages in page cache
392 */
393 static inline int is_cold_data(struct page *page)
394 {
395 return PageChecked(page);
396 }
397
398 static inline void set_cold_data(struct page *page)
399 {
400 SetPageChecked(page);
401 }
402
403 static inline void clear_cold_data(struct page *page)
404 {
405 ClearPageChecked(page);
406 }
407
408 static inline int is_node(struct page *page, int type)
409 {
410 struct f2fs_node *rn = F2FS_NODE(page);
411 return le32_to_cpu(rn->footer.flag) & (1 << type);
412 }
413
414 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
415 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
416 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
417
418 static inline int is_inline_node(struct page *page)
419 {
420 return PageChecked(page);
421 }
422
423 static inline void set_inline_node(struct page *page)
424 {
425 SetPageChecked(page);
426 }
427
428 static inline void clear_inline_node(struct page *page)
429 {
430 ClearPageChecked(page);
431 }
432
433 static inline void set_cold_node(struct inode *inode, struct page *page)
434 {
435 struct f2fs_node *rn = F2FS_NODE(page);
436 unsigned int flag = le32_to_cpu(rn->footer.flag);
437
438 if (S_ISDIR(inode->i_mode))
439 flag &= ~(0x1 << COLD_BIT_SHIFT);
440 else
441 flag |= (0x1 << COLD_BIT_SHIFT);
442 rn->footer.flag = cpu_to_le32(flag);
443 }
444
445 static inline void set_mark(struct page *page, int mark, int type)
446 {
447 struct f2fs_node *rn = F2FS_NODE(page);
448 unsigned int flag = le32_to_cpu(rn->footer.flag);
449 if (mark)
450 flag |= (0x1 << type);
451 else
452 flag &= ~(0x1 << type);
453 rn->footer.flag = cpu_to_le32(flag);
454 }
455 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
456 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)