]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/node.h
drm/dp_mst: Remove drm_dp_mst_topology_cbs.destroy_connector
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / node.h
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 /* start node id of a node block dedicated to the given node id */
9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES 8
16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
19
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE 128
22
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD 1
25
26 /* control dirty nats ratio threshold (default: 10% over max nid count) */
27 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
28 /* control total # of nats */
29 #define DEF_NAT_CACHE_THRESHOLD 100000
30
31 /* vector size for gang look-up from nat cache that consists of radix tree */
32 #define NATVEC_SIZE 64
33 #define SETVEC_SIZE 32
34
35 /* return value for read_node_page */
36 #define LOCKED_PAGE 1
37
38 /* For flag in struct node_info */
39 enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44 IS_PREALLOC, /* nat entry is preallocated */
45 };
46
47 /*
48 * For node information
49 */
50 struct node_info {
51 nid_t nid; /* node id */
52 nid_t ino; /* inode number of the node's owner */
53 block_t blk_addr; /* block address of the node */
54 unsigned char version; /* version of the node */
55 unsigned char flag; /* for node information bits */
56 };
57
58 struct nat_entry {
59 struct list_head list; /* for clean or dirty nat list */
60 struct node_info ni; /* in-memory node information */
61 };
62
63 #define nat_get_nid(nat) ((nat)->ni.nid)
64 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
65 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
66 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
67 #define nat_get_ino(nat) ((nat)->ni.ino)
68 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
69 #define nat_get_version(nat) ((nat)->ni.version)
70 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
71
72 #define inc_node_version(version) (++(version))
73
74 static inline void copy_node_info(struct node_info *dst,
75 struct node_info *src)
76 {
77 dst->nid = src->nid;
78 dst->ino = src->ino;
79 dst->blk_addr = src->blk_addr;
80 dst->version = src->version;
81 /* should not copy flag here */
82 }
83
84 static inline void set_nat_flag(struct nat_entry *ne,
85 unsigned int type, bool set)
86 {
87 unsigned char mask = 0x01 << type;
88 if (set)
89 ne->ni.flag |= mask;
90 else
91 ne->ni.flag &= ~mask;
92 }
93
94 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
95 {
96 unsigned char mask = 0x01 << type;
97 return ne->ni.flag & mask;
98 }
99
100 static inline void nat_reset_flag(struct nat_entry *ne)
101 {
102 /* these states can be set only after checkpoint was done */
103 set_nat_flag(ne, IS_CHECKPOINTED, true);
104 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105 set_nat_flag(ne, HAS_LAST_FSYNC, true);
106 }
107
108 static inline void node_info_from_raw_nat(struct node_info *ni,
109 struct f2fs_nat_entry *raw_ne)
110 {
111 ni->ino = le32_to_cpu(raw_ne->ino);
112 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113 ni->version = raw_ne->version;
114 }
115
116 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117 struct node_info *ni)
118 {
119 raw_ne->ino = cpu_to_le32(ni->ino);
120 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121 raw_ne->version = ni->version;
122 }
123
124 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125 {
126 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127 NM_I(sbi)->dirty_nats_ratio / 100;
128 }
129
130 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131 {
132 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133 }
134
135 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136 {
137 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138 }
139
140 enum mem_type {
141 FREE_NIDS, /* indicates the free nid list */
142 NAT_ENTRIES, /* indicates the cached nat entry */
143 DIRTY_DENTS, /* indicates dirty dentry pages */
144 INO_ENTRIES, /* indicates inode entries */
145 EXTENT_CACHE, /* indicates extent cache */
146 INMEM_PAGES, /* indicates inmemory pages */
147 BASE_CHECK, /* check kernel status */
148 };
149
150 struct nat_entry_set {
151 struct list_head set_list; /* link with other nat sets */
152 struct list_head entry_list; /* link with dirty nat entries */
153 nid_t set; /* set number*/
154 unsigned int entry_cnt; /* the # of nat entries in set */
155 };
156
157 struct free_nid {
158 struct list_head list; /* for free node id list */
159 nid_t nid; /* node id */
160 int state; /* in use or not: FREE_NID or PREALLOC_NID */
161 };
162
163 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164 {
165 struct f2fs_nm_info *nm_i = NM_I(sbi);
166 struct free_nid *fnid;
167
168 spin_lock(&nm_i->nid_list_lock);
169 if (nm_i->nid_cnt[FREE_NID] <= 0) {
170 spin_unlock(&nm_i->nid_list_lock);
171 return;
172 }
173 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174 *nid = fnid->nid;
175 spin_unlock(&nm_i->nid_list_lock);
176 }
177
178 /*
179 * inline functions
180 */
181 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182 {
183 struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185 #ifdef CONFIG_F2FS_CHECK_FS
186 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187 nm_i->bitmap_size))
188 f2fs_bug_on(sbi, 1);
189 #endif
190 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191 }
192
193 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194 {
195 struct f2fs_nm_info *nm_i = NM_I(sbi);
196 pgoff_t block_off;
197 pgoff_t block_addr;
198
199 /*
200 * block_off = segment_off * 512 + off_in_segment
201 * OLD = (segment_off * 512) * 2 + off_in_segment
202 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203 */
204 block_off = NAT_BLOCK_OFFSET(start);
205
206 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207 (block_off << 1) -
208 (block_off & (sbi->blocks_per_seg - 1)));
209
210 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211 block_addr += sbi->blocks_per_seg;
212
213 return block_addr;
214 }
215
216 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217 pgoff_t block_addr)
218 {
219 struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221 block_addr -= nm_i->nat_blkaddr;
222 block_addr ^= 1 << sbi->log_blocks_per_seg;
223 return block_addr + nm_i->nat_blkaddr;
224 }
225
226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227 {
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231 #ifdef CONFIG_F2FS_CHECK_FS
232 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233 #endif
234 }
235
236 static inline nid_t ino_of_node(struct page *node_page)
237 {
238 struct f2fs_node *rn = F2FS_NODE(node_page);
239 return le32_to_cpu(rn->footer.ino);
240 }
241
242 static inline nid_t nid_of_node(struct page *node_page)
243 {
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.nid);
246 }
247
248 static inline unsigned int ofs_of_node(struct page *node_page)
249 {
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 unsigned flag = le32_to_cpu(rn->footer.flag);
252 return flag >> OFFSET_BIT_SHIFT;
253 }
254
255 static inline __u64 cpver_of_node(struct page *node_page)
256 {
257 struct f2fs_node *rn = F2FS_NODE(node_page);
258 return le64_to_cpu(rn->footer.cp_ver);
259 }
260
261 static inline block_t next_blkaddr_of_node(struct page *node_page)
262 {
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le32_to_cpu(rn->footer.next_blkaddr);
265 }
266
267 static inline void fill_node_footer(struct page *page, nid_t nid,
268 nid_t ino, unsigned int ofs, bool reset)
269 {
270 struct f2fs_node *rn = F2FS_NODE(page);
271 unsigned int old_flag = 0;
272
273 if (reset)
274 memset(rn, 0, sizeof(*rn));
275 else
276 old_flag = le32_to_cpu(rn->footer.flag);
277
278 rn->footer.nid = cpu_to_le32(nid);
279 rn->footer.ino = cpu_to_le32(ino);
280
281 /* should remain old flag bits such as COLD_BIT_SHIFT */
282 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283 (old_flag & OFFSET_BIT_MASK));
284 }
285
286 static inline void copy_node_footer(struct page *dst, struct page *src)
287 {
288 struct f2fs_node *src_rn = F2FS_NODE(src);
289 struct f2fs_node *dst_rn = F2FS_NODE(dst);
290 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291 }
292
293 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294 {
295 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296 struct f2fs_node *rn = F2FS_NODE(page);
297 __u64 cp_ver = cur_cp_version(ckpt);
298
299 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300 cp_ver |= (cur_cp_crc(ckpt) << 32);
301
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304 }
305
306 static inline bool is_recoverable_dnode(struct page *page)
307 {
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 __u64 cp_ver = cur_cp_version(ckpt);
310
311 /* Don't care crc part, if fsck.f2fs sets it. */
312 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313 return (cp_ver << 32) == (cpver_of_node(page) << 32);
314
315 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316 cp_ver |= (cur_cp_crc(ckpt) << 32);
317
318 return cp_ver == cpver_of_node(page);
319 }
320
321 /*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 * Inode block (0)
326 * |- direct node (1)
327 * |- direct node (2)
328 * |- indirect node (3)
329 * | `- direct node (4 => 4 + N - 1)
330 * |- indirect node (4 + N)
331 * | `- direct node (5 + N => 5 + 2N - 1)
332 * `- double indirect node (5 + 2N)
333 * `- indirect node (6 + 2N)
334 * `- direct node
335 * ......
336 * `- indirect node ((6 + 2N) + x(N + 1))
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 * `- direct node
341 */
342 static inline bool IS_DNODE(struct page *node_page)
343 {
344 unsigned int ofs = ofs_of_node(node_page);
345
346 if (f2fs_has_xattr_block(ofs))
347 return true;
348
349 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350 ofs == 5 + 2 * NIDS_PER_BLOCK)
351 return false;
352 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353 ofs -= 6 + 2 * NIDS_PER_BLOCK;
354 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355 return false;
356 }
357 return true;
358 }
359
360 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361 {
362 struct f2fs_node *rn = F2FS_NODE(p);
363
364 f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366 if (i)
367 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368 else
369 rn->in.nid[off] = cpu_to_le32(nid);
370 return set_page_dirty(p);
371 }
372
373 static inline nid_t get_nid(struct page *p, int off, bool i)
374 {
375 struct f2fs_node *rn = F2FS_NODE(p);
376
377 if (i)
378 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379 return le32_to_cpu(rn->in.nid[off]);
380 }
381
382 /*
383 * Coldness identification:
384 * - Mark cold files in f2fs_inode_info
385 * - Mark cold node blocks in their node footer
386 * - Mark cold data pages in page cache
387 */
388 static inline int is_cold_data(struct page *page)
389 {
390 return PageChecked(page);
391 }
392
393 static inline void set_cold_data(struct page *page)
394 {
395 SetPageChecked(page);
396 }
397
398 static inline void clear_cold_data(struct page *page)
399 {
400 ClearPageChecked(page);
401 }
402
403 static inline int is_node(struct page *page, int type)
404 {
405 struct f2fs_node *rn = F2FS_NODE(page);
406 return le32_to_cpu(rn->footer.flag) & (1 << type);
407 }
408
409 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
410 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
411 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
412
413 static inline int is_inline_node(struct page *page)
414 {
415 return PageChecked(page);
416 }
417
418 static inline void set_inline_node(struct page *page)
419 {
420 SetPageChecked(page);
421 }
422
423 static inline void clear_inline_node(struct page *page)
424 {
425 ClearPageChecked(page);
426 }
427
428 static inline void set_cold_node(struct page *page, bool is_dir)
429 {
430 struct f2fs_node *rn = F2FS_NODE(page);
431 unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433 if (is_dir)
434 flag &= ~(0x1 << COLD_BIT_SHIFT);
435 else
436 flag |= (0x1 << COLD_BIT_SHIFT);
437 rn->footer.flag = cpu_to_le32(flag);
438 }
439
440 static inline void set_mark(struct page *page, int mark, int type)
441 {
442 struct f2fs_node *rn = F2FS_NODE(page);
443 unsigned int flag = le32_to_cpu(rn->footer.flag);
444 if (mark)
445 flag |= (0x1 << type);
446 else
447 flag &= ~(0x1 << type);
448 rn->footer.flag = cpu_to_le32(flag);
449
450 #ifdef CONFIG_F2FS_CHECK_FS
451 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452 #endif
453 }
454 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
455 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)