]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/node.h
Merge tag '9p-for-5.15-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / node.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 /* start node id of a node block dedicated to the given node id */
9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES 8
16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE 8
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* check pinned file's alignment status of physical blocks */
42 #define FILE_NOT_ALIGNED 1
43
44 /* For flag in struct node_info */
45 enum {
46 IS_CHECKPOINTED, /* is it checkpointed before? */
47 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
48 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
49 IS_DIRTY, /* this nat entry is dirty? */
50 IS_PREALLOC, /* nat entry is preallocated */
51 };
52
53 /*
54 * For node information
55 */
56 struct node_info {
57 nid_t nid; /* node id */
58 nid_t ino; /* inode number of the node's owner */
59 block_t blk_addr; /* block address of the node */
60 unsigned char version; /* version of the node */
61 unsigned char flag; /* for node information bits */
62 };
63
64 struct nat_entry {
65 struct list_head list; /* for clean or dirty nat list */
66 struct node_info ni; /* in-memory node information */
67 };
68
69 #define nat_get_nid(nat) ((nat)->ni.nid)
70 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
71 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
72 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
73 #define nat_get_ino(nat) ((nat)->ni.ino)
74 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
75 #define nat_get_version(nat) ((nat)->ni.version)
76 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
77
78 #define inc_node_version(version) (++(version))
79
80 static inline void copy_node_info(struct node_info *dst,
81 struct node_info *src)
82 {
83 dst->nid = src->nid;
84 dst->ino = src->ino;
85 dst->blk_addr = src->blk_addr;
86 dst->version = src->version;
87 /* should not copy flag here */
88 }
89
90 static inline void set_nat_flag(struct nat_entry *ne,
91 unsigned int type, bool set)
92 {
93 unsigned char mask = 0x01 << type;
94 if (set)
95 ne->ni.flag |= mask;
96 else
97 ne->ni.flag &= ~mask;
98 }
99
100 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
101 {
102 unsigned char mask = 0x01 << type;
103 return ne->ni.flag & mask;
104 }
105
106 static inline void nat_reset_flag(struct nat_entry *ne)
107 {
108 /* these states can be set only after checkpoint was done */
109 set_nat_flag(ne, IS_CHECKPOINTED, true);
110 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111 set_nat_flag(ne, HAS_LAST_FSYNC, true);
112 }
113
114 static inline void node_info_from_raw_nat(struct node_info *ni,
115 struct f2fs_nat_entry *raw_ne)
116 {
117 ni->ino = le32_to_cpu(raw_ne->ino);
118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119 ni->version = raw_ne->version;
120 }
121
122 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123 struct node_info *ni)
124 {
125 raw_ne->ino = cpu_to_le32(ni->ino);
126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127 raw_ne->version = ni->version;
128 }
129
130 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131 {
132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133 NM_I(sbi)->dirty_nats_ratio / 100;
134 }
135
136 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137 {
138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139 }
140
141 static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
142 {
143 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
144 }
145
146 enum mem_type {
147 FREE_NIDS, /* indicates the free nid list */
148 NAT_ENTRIES, /* indicates the cached nat entry */
149 DIRTY_DENTS, /* indicates dirty dentry pages */
150 INO_ENTRIES, /* indicates inode entries */
151 EXTENT_CACHE, /* indicates extent cache */
152 INMEM_PAGES, /* indicates inmemory pages */
153 DISCARD_CACHE, /* indicates memory of cached discard cmds */
154 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
155 BASE_CHECK, /* check kernel status */
156 };
157
158 struct nat_entry_set {
159 struct list_head set_list; /* link with other nat sets */
160 struct list_head entry_list; /* link with dirty nat entries */
161 nid_t set; /* set number*/
162 unsigned int entry_cnt; /* the # of nat entries in set */
163 };
164
165 struct free_nid {
166 struct list_head list; /* for free node id list */
167 nid_t nid; /* node id */
168 int state; /* in use or not: FREE_NID or PREALLOC_NID */
169 };
170
171 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
172 {
173 struct f2fs_nm_info *nm_i = NM_I(sbi);
174 struct free_nid *fnid;
175
176 spin_lock(&nm_i->nid_list_lock);
177 if (nm_i->nid_cnt[FREE_NID] <= 0) {
178 spin_unlock(&nm_i->nid_list_lock);
179 return;
180 }
181 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
182 *nid = fnid->nid;
183 spin_unlock(&nm_i->nid_list_lock);
184 }
185
186 /*
187 * inline functions
188 */
189 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
190 {
191 struct f2fs_nm_info *nm_i = NM_I(sbi);
192
193 #ifdef CONFIG_F2FS_CHECK_FS
194 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
195 nm_i->bitmap_size))
196 f2fs_bug_on(sbi, 1);
197 #endif
198 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
199 }
200
201 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
202 {
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 pgoff_t block_off;
205 pgoff_t block_addr;
206
207 /*
208 * block_off = segment_off * 512 + off_in_segment
209 * OLD = (segment_off * 512) * 2 + off_in_segment
210 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
211 */
212 block_off = NAT_BLOCK_OFFSET(start);
213
214 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
215 (block_off << 1) -
216 (block_off & (sbi->blocks_per_seg - 1)));
217
218 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
219 block_addr += sbi->blocks_per_seg;
220
221 return block_addr;
222 }
223
224 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
225 pgoff_t block_addr)
226 {
227 struct f2fs_nm_info *nm_i = NM_I(sbi);
228
229 block_addr -= nm_i->nat_blkaddr;
230 block_addr ^= 1 << sbi->log_blocks_per_seg;
231 return block_addr + nm_i->nat_blkaddr;
232 }
233
234 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
235 {
236 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
237
238 f2fs_change_bit(block_off, nm_i->nat_bitmap);
239 #ifdef CONFIG_F2FS_CHECK_FS
240 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
241 #endif
242 }
243
244 static inline nid_t ino_of_node(struct page *node_page)
245 {
246 struct f2fs_node *rn = F2FS_NODE(node_page);
247 return le32_to_cpu(rn->footer.ino);
248 }
249
250 static inline nid_t nid_of_node(struct page *node_page)
251 {
252 struct f2fs_node *rn = F2FS_NODE(node_page);
253 return le32_to_cpu(rn->footer.nid);
254 }
255
256 static inline unsigned int ofs_of_node(struct page *node_page)
257 {
258 struct f2fs_node *rn = F2FS_NODE(node_page);
259 unsigned flag = le32_to_cpu(rn->footer.flag);
260 return flag >> OFFSET_BIT_SHIFT;
261 }
262
263 static inline __u64 cpver_of_node(struct page *node_page)
264 {
265 struct f2fs_node *rn = F2FS_NODE(node_page);
266 return le64_to_cpu(rn->footer.cp_ver);
267 }
268
269 static inline block_t next_blkaddr_of_node(struct page *node_page)
270 {
271 struct f2fs_node *rn = F2FS_NODE(node_page);
272 return le32_to_cpu(rn->footer.next_blkaddr);
273 }
274
275 static inline void fill_node_footer(struct page *page, nid_t nid,
276 nid_t ino, unsigned int ofs, bool reset)
277 {
278 struct f2fs_node *rn = F2FS_NODE(page);
279 unsigned int old_flag = 0;
280
281 if (reset)
282 memset(rn, 0, sizeof(*rn));
283 else
284 old_flag = le32_to_cpu(rn->footer.flag);
285
286 rn->footer.nid = cpu_to_le32(nid);
287 rn->footer.ino = cpu_to_le32(ino);
288
289 /* should remain old flag bits such as COLD_BIT_SHIFT */
290 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
291 (old_flag & OFFSET_BIT_MASK));
292 }
293
294 static inline void copy_node_footer(struct page *dst, struct page *src)
295 {
296 struct f2fs_node *src_rn = F2FS_NODE(src);
297 struct f2fs_node *dst_rn = F2FS_NODE(dst);
298 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
299 }
300
301 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
302 {
303 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
304 struct f2fs_node *rn = F2FS_NODE(page);
305 __u64 cp_ver = cur_cp_version(ckpt);
306
307 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
308 cp_ver |= (cur_cp_crc(ckpt) << 32);
309
310 rn->footer.cp_ver = cpu_to_le64(cp_ver);
311 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
312 }
313
314 static inline bool is_recoverable_dnode(struct page *page)
315 {
316 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
317 __u64 cp_ver = cur_cp_version(ckpt);
318
319 /* Don't care crc part, if fsck.f2fs sets it. */
320 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
321 return (cp_ver << 32) == (cpver_of_node(page) << 32);
322
323 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
324 cp_ver |= (cur_cp_crc(ckpt) << 32);
325
326 return cp_ver == cpver_of_node(page);
327 }
328
329 /*
330 * f2fs assigns the following node offsets described as (num).
331 * N = NIDS_PER_BLOCK
332 *
333 * Inode block (0)
334 * |- direct node (1)
335 * |- direct node (2)
336 * |- indirect node (3)
337 * | `- direct node (4 => 4 + N - 1)
338 * |- indirect node (4 + N)
339 * | `- direct node (5 + N => 5 + 2N - 1)
340 * `- double indirect node (5 + 2N)
341 * `- indirect node (6 + 2N)
342 * `- direct node
343 * ......
344 * `- indirect node ((6 + 2N) + x(N + 1))
345 * `- direct node
346 * ......
347 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
348 * `- direct node
349 */
350 static inline bool IS_DNODE(struct page *node_page)
351 {
352 unsigned int ofs = ofs_of_node(node_page);
353
354 if (f2fs_has_xattr_block(ofs))
355 return true;
356
357 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
358 ofs == 5 + 2 * NIDS_PER_BLOCK)
359 return false;
360 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
361 ofs -= 6 + 2 * NIDS_PER_BLOCK;
362 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
363 return false;
364 }
365 return true;
366 }
367
368 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
369 {
370 struct f2fs_node *rn = F2FS_NODE(p);
371
372 f2fs_wait_on_page_writeback(p, NODE, true, true);
373
374 if (i)
375 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
376 else
377 rn->in.nid[off] = cpu_to_le32(nid);
378 return set_page_dirty(p);
379 }
380
381 static inline nid_t get_nid(struct page *p, int off, bool i)
382 {
383 struct f2fs_node *rn = F2FS_NODE(p);
384
385 if (i)
386 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
387 return le32_to_cpu(rn->in.nid[off]);
388 }
389
390 /*
391 * Coldness identification:
392 * - Mark cold files in f2fs_inode_info
393 * - Mark cold node blocks in their node footer
394 * - Mark cold data pages in page cache
395 */
396
397 static inline int is_node(struct page *page, int type)
398 {
399 struct f2fs_node *rn = F2FS_NODE(page);
400 return le32_to_cpu(rn->footer.flag) & (1 << type);
401 }
402
403 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
404 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
405 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
406
407 static inline void set_cold_node(struct page *page, bool is_dir)
408 {
409 struct f2fs_node *rn = F2FS_NODE(page);
410 unsigned int flag = le32_to_cpu(rn->footer.flag);
411
412 if (is_dir)
413 flag &= ~(0x1 << COLD_BIT_SHIFT);
414 else
415 flag |= (0x1 << COLD_BIT_SHIFT);
416 rn->footer.flag = cpu_to_le32(flag);
417 }
418
419 static inline void set_mark(struct page *page, int mark, int type)
420 {
421 struct f2fs_node *rn = F2FS_NODE(page);
422 unsigned int flag = le32_to_cpu(rn->footer.flag);
423 if (mark)
424 flag |= (0x1 << type);
425 else
426 flag &= ~(0x1 << type);
427 rn->footer.flag = cpu_to_le32(flag);
428
429 #ifdef CONFIG_F2FS_CHECK_FS
430 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
431 #endif
432 }
433 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
434 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)