]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/node.h
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 /*
50 * For node information
51 */
52 struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58 };
59
60 struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63 };
64
65 #define nat_get_nid(nat) (nat->ni.nid)
66 #define nat_set_nid(nat, n) (nat->ni.nid = n)
67 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69 #define nat_get_ino(nat) (nat->ni.ino)
70 #define nat_set_ino(nat, i) (nat->ni.ino = i)
71 #define nat_get_version(nat) (nat->ni.version)
72 #define nat_set_version(nat, v) (nat->ni.version = v)
73
74 #define inc_node_version(version) (++version)
75
76 static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78 {
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84 }
85
86 static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88 {
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94 }
95
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100 }
101
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112 {
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116 }
117
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120 {
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124 }
125
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136
137 enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144 };
145
146 struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151 };
152
153 /*
154 * For free nid mangement
155 */
156 enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159 };
160
161 struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165 };
166
167 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168 {
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181 }
182
183 /*
184 * inline functions
185 */
186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187 {
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
190 }
191
192 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
193 {
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 pgoff_t block_off;
196 pgoff_t block_addr;
197 int seg_off;
198
199 block_off = NAT_BLOCK_OFFSET(start);
200 seg_off = block_off >> sbi->log_blocks_per_seg;
201
202 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
203 (seg_off << sbi->log_blocks_per_seg << 1) +
204 (block_off & (sbi->blocks_per_seg - 1)));
205
206 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
207 block_addr += sbi->blocks_per_seg;
208
209 return block_addr;
210 }
211
212 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
213 pgoff_t block_addr)
214 {
215 struct f2fs_nm_info *nm_i = NM_I(sbi);
216
217 block_addr -= nm_i->nat_blkaddr;
218 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
219 block_addr -= sbi->blocks_per_seg;
220 else
221 block_addr += sbi->blocks_per_seg;
222
223 return block_addr + nm_i->nat_blkaddr;
224 }
225
226 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227 {
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231 }
232
233 static inline nid_t ino_of_node(struct page *node_page)
234 {
235 struct f2fs_node *rn = F2FS_NODE(node_page);
236 return le32_to_cpu(rn->footer.ino);
237 }
238
239 static inline nid_t nid_of_node(struct page *node_page)
240 {
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.nid);
243 }
244
245 static inline unsigned int ofs_of_node(struct page *node_page)
246 {
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 unsigned flag = le32_to_cpu(rn->footer.flag);
249 return flag >> OFFSET_BIT_SHIFT;
250 }
251
252 static inline __u64 cpver_of_node(struct page *node_page)
253 {
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 return le64_to_cpu(rn->footer.cp_ver);
256 }
257
258 static inline block_t next_blkaddr_of_node(struct page *node_page)
259 {
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le32_to_cpu(rn->footer.next_blkaddr);
262 }
263
264 static inline void fill_node_footer(struct page *page, nid_t nid,
265 nid_t ino, unsigned int ofs, bool reset)
266 {
267 struct f2fs_node *rn = F2FS_NODE(page);
268 unsigned int old_flag = 0;
269
270 if (reset)
271 memset(rn, 0, sizeof(*rn));
272 else
273 old_flag = le32_to_cpu(rn->footer.flag);
274
275 rn->footer.nid = cpu_to_le32(nid);
276 rn->footer.ino = cpu_to_le32(ino);
277
278 /* should remain old flag bits such as COLD_BIT_SHIFT */
279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 (old_flag & OFFSET_BIT_MASK));
281 }
282
283 static inline void copy_node_footer(struct page *dst, struct page *src)
284 {
285 struct f2fs_node *src_rn = F2FS_NODE(src);
286 struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288 }
289
290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291 {
292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 struct f2fs_node *rn = F2FS_NODE(page);
294 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
295 __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
296
297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
298 __u64 crc = le32_to_cpu(*((__le32 *)
299 ((unsigned char *)ckpt + crc_offset)));
300 cp_ver |= (crc << 32);
301 }
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304 }
305
306 static inline bool is_recoverable_dnode(struct page *page)
307 {
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
310 __u64 cp_ver = cur_cp_version(ckpt);
311
312 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
313 __u64 crc = le32_to_cpu(*((__le32 *)
314 ((unsigned char *)ckpt + crc_offset)));
315 cp_ver |= (crc << 32);
316 }
317 return cp_ver == cpver_of_node(page);
318 }
319
320 /*
321 * f2fs assigns the following node offsets described as (num).
322 * N = NIDS_PER_BLOCK
323 *
324 * Inode block (0)
325 * |- direct node (1)
326 * |- direct node (2)
327 * |- indirect node (3)
328 * | `- direct node (4 => 4 + N - 1)
329 * |- indirect node (4 + N)
330 * | `- direct node (5 + N => 5 + 2N - 1)
331 * `- double indirect node (5 + 2N)
332 * `- indirect node (6 + 2N)
333 * `- direct node
334 * ......
335 * `- indirect node ((6 + 2N) + x(N + 1))
336 * `- direct node
337 * ......
338 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
339 * `- direct node
340 */
341 static inline bool IS_DNODE(struct page *node_page)
342 {
343 unsigned int ofs = ofs_of_node(node_page);
344
345 if (f2fs_has_xattr_block(ofs))
346 return false;
347
348 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
349 ofs == 5 + 2 * NIDS_PER_BLOCK)
350 return false;
351 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
352 ofs -= 6 + 2 * NIDS_PER_BLOCK;
353 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
354 return false;
355 }
356 return true;
357 }
358
359 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
360 {
361 struct f2fs_node *rn = F2FS_NODE(p);
362
363 f2fs_wait_on_page_writeback(p, NODE, true);
364
365 if (i)
366 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
367 else
368 rn->in.nid[off] = cpu_to_le32(nid);
369 return set_page_dirty(p);
370 }
371
372 static inline nid_t get_nid(struct page *p, int off, bool i)
373 {
374 struct f2fs_node *rn = F2FS_NODE(p);
375
376 if (i)
377 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
378 return le32_to_cpu(rn->in.nid[off]);
379 }
380
381 /*
382 * Coldness identification:
383 * - Mark cold files in f2fs_inode_info
384 * - Mark cold node blocks in their node footer
385 * - Mark cold data pages in page cache
386 */
387 static inline int is_cold_data(struct page *page)
388 {
389 return PageChecked(page);
390 }
391
392 static inline void set_cold_data(struct page *page)
393 {
394 SetPageChecked(page);
395 }
396
397 static inline void clear_cold_data(struct page *page)
398 {
399 ClearPageChecked(page);
400 }
401
402 static inline int is_node(struct page *page, int type)
403 {
404 struct f2fs_node *rn = F2FS_NODE(page);
405 return le32_to_cpu(rn->footer.flag) & (1 << type);
406 }
407
408 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
409 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
410 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
411
412 static inline int is_inline_node(struct page *page)
413 {
414 return PageChecked(page);
415 }
416
417 static inline void set_inline_node(struct page *page)
418 {
419 SetPageChecked(page);
420 }
421
422 static inline void clear_inline_node(struct page *page)
423 {
424 ClearPageChecked(page);
425 }
426
427 static inline void set_cold_node(struct inode *inode, struct page *page)
428 {
429 struct f2fs_node *rn = F2FS_NODE(page);
430 unsigned int flag = le32_to_cpu(rn->footer.flag);
431
432 if (S_ISDIR(inode->i_mode))
433 flag &= ~(0x1 << COLD_BIT_SHIFT);
434 else
435 flag |= (0x1 << COLD_BIT_SHIFT);
436 rn->footer.flag = cpu_to_le32(flag);
437 }
438
439 static inline void set_mark(struct page *page, int mark, int type)
440 {
441 struct f2fs_node *rn = F2FS_NODE(page);
442 unsigned int flag = le32_to_cpu(rn->footer.flag);
443 if (mark)
444 flag |= (0x1 << type);
445 else
446 flag &= ~(0x1 << type);
447 rn->footer.flag = cpu_to_le32(flag);
448 }
449 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
450 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)