]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/node.h
Merge tag 'sound-fix-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / node.h
1 /*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 8
19 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
25
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD 1
28
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD 100000
33
34 /* vector size for gang look-up from nat cache that consists of radix tree */
35 #define NATVEC_SIZE 64
36 #define SETVEC_SIZE 32
37
38 /* return value for read_node_page */
39 #define LOCKED_PAGE 1
40
41 /* For flag in struct node_info */
42 enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 };
48
49 /*
50 * For node information
51 */
52 struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58 };
59
60 struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63 };
64
65 #define nat_get_nid(nat) ((nat)->ni.nid)
66 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
67 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
68 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
69 #define nat_get_ino(nat) ((nat)->ni.ino)
70 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
71 #define nat_get_version(nat) ((nat)->ni.version)
72 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
73
74 #define inc_node_version(version) (++(version))
75
76 static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78 {
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84 }
85
86 static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88 {
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94 }
95
96 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97 {
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100 }
101
102 static inline void nat_reset_flag(struct nat_entry *ne)
103 {
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108 }
109
110 static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112 {
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116 }
117
118 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120 {
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124 }
125
126 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127 {
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130 }
131
132 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133 {
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135 }
136
137 enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 INMEM_PAGES, /* indicates inmemory pages */
144 BASE_CHECK, /* check kernel status */
145 };
146
147 struct nat_entry_set {
148 struct list_head set_list; /* link with other nat sets */
149 struct list_head entry_list; /* link with dirty nat entries */
150 nid_t set; /* set number*/
151 unsigned int entry_cnt; /* the # of nat entries in set */
152 };
153
154 struct free_nid {
155 struct list_head list; /* for free node id list */
156 nid_t nid; /* node id */
157 int state; /* in use or not: FREE_NID or PREALLOC_NID */
158 };
159
160 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
161 {
162 struct f2fs_nm_info *nm_i = NM_I(sbi);
163 struct free_nid *fnid;
164
165 spin_lock(&nm_i->nid_list_lock);
166 if (nm_i->nid_cnt[FREE_NID] <= 0) {
167 spin_unlock(&nm_i->nid_list_lock);
168 return;
169 }
170 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
171 *nid = fnid->nid;
172 spin_unlock(&nm_i->nid_list_lock);
173 }
174
175 /*
176 * inline functions
177 */
178 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
179 {
180 struct f2fs_nm_info *nm_i = NM_I(sbi);
181
182 #ifdef CONFIG_F2FS_CHECK_FS
183 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
184 nm_i->bitmap_size))
185 f2fs_bug_on(sbi, 1);
186 #endif
187 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
188 }
189
190 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
191 {
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 pgoff_t block_off;
194 pgoff_t block_addr;
195
196 /*
197 * block_off = segment_off * 512 + off_in_segment
198 * OLD = (segment_off * 512) * 2 + off_in_segment
199 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
200 */
201 block_off = NAT_BLOCK_OFFSET(start);
202
203 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
204 (block_off << 1) -
205 (block_off & (sbi->blocks_per_seg - 1)));
206
207 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
208 block_addr += sbi->blocks_per_seg;
209
210 return block_addr;
211 }
212
213 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
214 pgoff_t block_addr)
215 {
216 struct f2fs_nm_info *nm_i = NM_I(sbi);
217
218 block_addr -= nm_i->nat_blkaddr;
219 block_addr ^= 1 << sbi->log_blocks_per_seg;
220 return block_addr + nm_i->nat_blkaddr;
221 }
222
223 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
224 {
225 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
226
227 f2fs_change_bit(block_off, nm_i->nat_bitmap);
228 #ifdef CONFIG_F2FS_CHECK_FS
229 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
230 #endif
231 }
232
233 static inline nid_t ino_of_node(struct page *node_page)
234 {
235 struct f2fs_node *rn = F2FS_NODE(node_page);
236 return le32_to_cpu(rn->footer.ino);
237 }
238
239 static inline nid_t nid_of_node(struct page *node_page)
240 {
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.nid);
243 }
244
245 static inline unsigned int ofs_of_node(struct page *node_page)
246 {
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 unsigned flag = le32_to_cpu(rn->footer.flag);
249 return flag >> OFFSET_BIT_SHIFT;
250 }
251
252 static inline __u64 cpver_of_node(struct page *node_page)
253 {
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 return le64_to_cpu(rn->footer.cp_ver);
256 }
257
258 static inline block_t next_blkaddr_of_node(struct page *node_page)
259 {
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le32_to_cpu(rn->footer.next_blkaddr);
262 }
263
264 static inline void fill_node_footer(struct page *page, nid_t nid,
265 nid_t ino, unsigned int ofs, bool reset)
266 {
267 struct f2fs_node *rn = F2FS_NODE(page);
268 unsigned int old_flag = 0;
269
270 if (reset)
271 memset(rn, 0, sizeof(*rn));
272 else
273 old_flag = le32_to_cpu(rn->footer.flag);
274
275 rn->footer.nid = cpu_to_le32(nid);
276 rn->footer.ino = cpu_to_le32(ino);
277
278 /* should remain old flag bits such as COLD_BIT_SHIFT */
279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 (old_flag & OFFSET_BIT_MASK));
281 }
282
283 static inline void copy_node_footer(struct page *dst, struct page *src)
284 {
285 struct f2fs_node *src_rn = F2FS_NODE(src);
286 struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288 }
289
290 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291 {
292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 struct f2fs_node *rn = F2FS_NODE(page);
294 __u64 cp_ver = cur_cp_version(ckpt);
295
296 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
297 cp_ver |= (cur_cp_crc(ckpt) << 32);
298
299 rn->footer.cp_ver = cpu_to_le64(cp_ver);
300 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
301 }
302
303 static inline bool is_recoverable_dnode(struct page *page)
304 {
305 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
306 __u64 cp_ver = cur_cp_version(ckpt);
307
308 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
309 cp_ver |= (cur_cp_crc(ckpt) << 32);
310
311 return cp_ver == cpver_of_node(page);
312 }
313
314 /*
315 * f2fs assigns the following node offsets described as (num).
316 * N = NIDS_PER_BLOCK
317 *
318 * Inode block (0)
319 * |- direct node (1)
320 * |- direct node (2)
321 * |- indirect node (3)
322 * | `- direct node (4 => 4 + N - 1)
323 * |- indirect node (4 + N)
324 * | `- direct node (5 + N => 5 + 2N - 1)
325 * `- double indirect node (5 + 2N)
326 * `- indirect node (6 + 2N)
327 * `- direct node
328 * ......
329 * `- indirect node ((6 + 2N) + x(N + 1))
330 * `- direct node
331 * ......
332 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
333 * `- direct node
334 */
335 static inline bool IS_DNODE(struct page *node_page)
336 {
337 unsigned int ofs = ofs_of_node(node_page);
338
339 if (f2fs_has_xattr_block(ofs))
340 return true;
341
342 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
343 ofs == 5 + 2 * NIDS_PER_BLOCK)
344 return false;
345 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
346 ofs -= 6 + 2 * NIDS_PER_BLOCK;
347 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
348 return false;
349 }
350 return true;
351 }
352
353 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
354 {
355 struct f2fs_node *rn = F2FS_NODE(p);
356
357 f2fs_wait_on_page_writeback(p, NODE, true);
358
359 if (i)
360 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
361 else
362 rn->in.nid[off] = cpu_to_le32(nid);
363 return set_page_dirty(p);
364 }
365
366 static inline nid_t get_nid(struct page *p, int off, bool i)
367 {
368 struct f2fs_node *rn = F2FS_NODE(p);
369
370 if (i)
371 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
372 return le32_to_cpu(rn->in.nid[off]);
373 }
374
375 /*
376 * Coldness identification:
377 * - Mark cold files in f2fs_inode_info
378 * - Mark cold node blocks in their node footer
379 * - Mark cold data pages in page cache
380 */
381 static inline int is_cold_data(struct page *page)
382 {
383 return PageChecked(page);
384 }
385
386 static inline void set_cold_data(struct page *page)
387 {
388 SetPageChecked(page);
389 }
390
391 static inline void clear_cold_data(struct page *page)
392 {
393 ClearPageChecked(page);
394 }
395
396 static inline int is_node(struct page *page, int type)
397 {
398 struct f2fs_node *rn = F2FS_NODE(page);
399 return le32_to_cpu(rn->footer.flag) & (1 << type);
400 }
401
402 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
403 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
404 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
405
406 static inline int is_inline_node(struct page *page)
407 {
408 return PageChecked(page);
409 }
410
411 static inline void set_inline_node(struct page *page)
412 {
413 SetPageChecked(page);
414 }
415
416 static inline void clear_inline_node(struct page *page)
417 {
418 ClearPageChecked(page);
419 }
420
421 static inline void set_cold_node(struct inode *inode, struct page *page)
422 {
423 struct f2fs_node *rn = F2FS_NODE(page);
424 unsigned int flag = le32_to_cpu(rn->footer.flag);
425
426 if (S_ISDIR(inode->i_mode))
427 flag &= ~(0x1 << COLD_BIT_SHIFT);
428 else
429 flag |= (0x1 << COLD_BIT_SHIFT);
430 rn->footer.flag = cpu_to_le32(flag);
431 }
432
433 static inline void set_mark(struct page *page, int mark, int type)
434 {
435 struct f2fs_node *rn = F2FS_NODE(page);
436 unsigned int flag = le32_to_cpu(rn->footer.flag);
437 if (mark)
438 flag |= (0x1 << type);
439 else
440 flag &= ~(0x1 << type);
441 rn->footer.flag = cpu_to_le32(flag);
442 }
443 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
444 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)