]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/f2fs/recovery.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-hirsute-kernel.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 /*
18 * Roll forward recovery scenarios.
19 *
20 * [Term] F: fsync_mark, D: dentry_mark
21 *
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
24 *
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
27 *
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
30 *
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
33 *
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
36 *
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
39 *
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
42 *
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
46 */
47
48 static struct kmem_cache *fsync_entry_slab;
49
50 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
53
54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
55 return false;
56 return true;
57 }
58
59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
60 nid_t ino)
61 {
62 struct fsync_inode_entry *entry;
63
64 list_for_each_entry(entry, head, list)
65 if (entry->inode->i_ino == ino)
66 return entry;
67
68 return NULL;
69 }
70
71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
72 struct list_head *head, nid_t ino, bool quota_inode)
73 {
74 struct inode *inode;
75 struct fsync_inode_entry *entry;
76 int err;
77
78 inode = f2fs_iget_retry(sbi->sb, ino);
79 if (IS_ERR(inode))
80 return ERR_CAST(inode);
81
82 err = dquot_initialize(inode);
83 if (err)
84 goto err_out;
85
86 if (quota_inode) {
87 err = dquot_alloc_inode(inode);
88 if (err)
89 goto err_out;
90 }
91
92 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
93 entry->inode = inode;
94 list_add_tail(&entry->list, head);
95
96 return entry;
97 err_out:
98 iput(inode);
99 return ERR_PTR(err);
100 }
101
102 static void del_fsync_inode(struct fsync_inode_entry *entry)
103 {
104 iput(entry->inode);
105 list_del(&entry->list);
106 kmem_cache_free(fsync_entry_slab, entry);
107 }
108
109 static int recover_dentry(struct inode *inode, struct page *ipage,
110 struct list_head *dir_list)
111 {
112 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
113 nid_t pino = le32_to_cpu(raw_inode->i_pino);
114 struct f2fs_dir_entry *de;
115 struct fscrypt_name fname;
116 struct page *page;
117 struct inode *dir, *einode;
118 struct fsync_inode_entry *entry;
119 int err = 0;
120 char *name;
121
122 entry = get_fsync_inode(dir_list, pino);
123 if (!entry) {
124 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list,
125 pino, false);
126 if (IS_ERR(entry)) {
127 dir = ERR_CAST(entry);
128 err = PTR_ERR(entry);
129 goto out;
130 }
131 }
132
133 dir = entry->inode;
134
135 memset(&fname, 0, sizeof(struct fscrypt_name));
136 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
137 fname.disk_name.name = raw_inode->i_name;
138
139 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
140 WARN_ON(1);
141 err = -ENAMETOOLONG;
142 goto out;
143 }
144 retry:
145 de = __f2fs_find_entry(dir, &fname, &page);
146 if (de && inode->i_ino == le32_to_cpu(de->ino))
147 goto out_put;
148
149 if (de) {
150 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
151 if (IS_ERR(einode)) {
152 WARN_ON(1);
153 err = PTR_ERR(einode);
154 if (err == -ENOENT)
155 err = -EEXIST;
156 goto out_put;
157 }
158
159 err = dquot_initialize(einode);
160 if (err) {
161 iput(einode);
162 goto out_put;
163 }
164
165 err = f2fs_acquire_orphan_inode(F2FS_I_SB(inode));
166 if (err) {
167 iput(einode);
168 goto out_put;
169 }
170 f2fs_delete_entry(de, page, dir, einode);
171 iput(einode);
172 goto retry;
173 } else if (IS_ERR(page)) {
174 err = PTR_ERR(page);
175 } else {
176 err = f2fs_add_dentry(dir, &fname, inode,
177 inode->i_ino, inode->i_mode);
178 }
179 if (err == -ENOMEM)
180 goto retry;
181 goto out;
182
183 out_put:
184 f2fs_put_page(page, 0);
185 out:
186 if (file_enc_name(inode))
187 name = "<encrypted>";
188 else
189 name = raw_inode->i_name;
190 f2fs_msg(inode->i_sb, KERN_NOTICE,
191 "%s: ino = %x, name = %s, dir = %lx, err = %d",
192 __func__, ino_of_node(ipage), name,
193 IS_ERR(dir) ? 0 : dir->i_ino, err);
194 return err;
195 }
196
197 static void recover_inline_flags(struct inode *inode, struct f2fs_inode *ri)
198 {
199 if (ri->i_inline & F2FS_PIN_FILE)
200 set_inode_flag(inode, FI_PIN_FILE);
201 else
202 clear_inode_flag(inode, FI_PIN_FILE);
203 if (ri->i_inline & F2FS_DATA_EXIST)
204 set_inode_flag(inode, FI_DATA_EXIST);
205 else
206 clear_inode_flag(inode, FI_DATA_EXIST);
207 }
208
209 static void recover_inode(struct inode *inode, struct page *page)
210 {
211 struct f2fs_inode *raw = F2FS_INODE(page);
212 char *name;
213
214 inode->i_mode = le16_to_cpu(raw->i_mode);
215 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
216 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
217 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
218 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
219 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
220 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
221 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
222
223 F2FS_I(inode)->i_advise = raw->i_advise;
224
225 recover_inline_flags(inode, raw);
226
227 if (file_enc_name(inode))
228 name = "<encrypted>";
229 else
230 name = F2FS_INODE(page)->i_name;
231
232 f2fs_msg(inode->i_sb, KERN_NOTICE,
233 "recover_inode: ino = %x, name = %s, inline = %x",
234 ino_of_node(page), name, raw->i_inline);
235 }
236
237 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
238 bool check_only)
239 {
240 struct curseg_info *curseg;
241 struct page *page = NULL;
242 block_t blkaddr;
243 unsigned int loop_cnt = 0;
244 unsigned int free_blocks = sbi->user_block_count -
245 valid_user_blocks(sbi);
246 int err = 0;
247
248 /* get node pages in the current segment */
249 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
250 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
251
252 while (1) {
253 struct fsync_inode_entry *entry;
254
255 if (!f2fs_is_valid_meta_blkaddr(sbi, blkaddr, META_POR))
256 return 0;
257
258 page = f2fs_get_tmp_page(sbi, blkaddr);
259
260 if (!is_recoverable_dnode(page))
261 break;
262
263 if (!is_fsync_dnode(page))
264 goto next;
265
266 entry = get_fsync_inode(head, ino_of_node(page));
267 if (!entry) {
268 bool quota_inode = false;
269
270 if (!check_only &&
271 IS_INODE(page) && is_dent_dnode(page)) {
272 err = f2fs_recover_inode_page(sbi, page);
273 if (err)
274 break;
275 quota_inode = true;
276 }
277
278 /*
279 * CP | dnode(F) | inode(DF)
280 * For this case, we should not give up now.
281 */
282 entry = add_fsync_inode(sbi, head, ino_of_node(page),
283 quota_inode);
284 if (IS_ERR(entry)) {
285 err = PTR_ERR(entry);
286 if (err == -ENOENT) {
287 err = 0;
288 goto next;
289 }
290 break;
291 }
292 }
293 entry->blkaddr = blkaddr;
294
295 if (IS_INODE(page) && is_dent_dnode(page))
296 entry->last_dentry = blkaddr;
297 next:
298 /* sanity check in order to detect looped node chain */
299 if (++loop_cnt >= free_blocks ||
300 blkaddr == next_blkaddr_of_node(page)) {
301 f2fs_msg(sbi->sb, KERN_NOTICE,
302 "%s: detect looped node chain, "
303 "blkaddr:%u, next:%u",
304 __func__, blkaddr, next_blkaddr_of_node(page));
305 err = -EINVAL;
306 break;
307 }
308
309 /* check next segment */
310 blkaddr = next_blkaddr_of_node(page);
311 f2fs_put_page(page, 1);
312
313 f2fs_ra_meta_pages_cond(sbi, blkaddr);
314 }
315 f2fs_put_page(page, 1);
316 return err;
317 }
318
319 static void destroy_fsync_dnodes(struct list_head *head)
320 {
321 struct fsync_inode_entry *entry, *tmp;
322
323 list_for_each_entry_safe(entry, tmp, head, list)
324 del_fsync_inode(entry);
325 }
326
327 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
328 block_t blkaddr, struct dnode_of_data *dn)
329 {
330 struct seg_entry *sentry;
331 unsigned int segno = GET_SEGNO(sbi, blkaddr);
332 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
333 struct f2fs_summary_block *sum_node;
334 struct f2fs_summary sum;
335 struct page *sum_page, *node_page;
336 struct dnode_of_data tdn = *dn;
337 nid_t ino, nid;
338 struct inode *inode;
339 unsigned int offset;
340 block_t bidx;
341 int i;
342
343 sentry = get_seg_entry(sbi, segno);
344 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
345 return 0;
346
347 /* Get the previous summary */
348 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
349 struct curseg_info *curseg = CURSEG_I(sbi, i);
350 if (curseg->segno == segno) {
351 sum = curseg->sum_blk->entries[blkoff];
352 goto got_it;
353 }
354 }
355
356 sum_page = f2fs_get_sum_page(sbi, segno);
357 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
358 sum = sum_node->entries[blkoff];
359 f2fs_put_page(sum_page, 1);
360 got_it:
361 /* Use the locked dnode page and inode */
362 nid = le32_to_cpu(sum.nid);
363 if (dn->inode->i_ino == nid) {
364 tdn.nid = nid;
365 if (!dn->inode_page_locked)
366 lock_page(dn->inode_page);
367 tdn.node_page = dn->inode_page;
368 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
369 goto truncate_out;
370 } else if (dn->nid == nid) {
371 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
372 goto truncate_out;
373 }
374
375 /* Get the node page */
376 node_page = f2fs_get_node_page(sbi, nid);
377 if (IS_ERR(node_page))
378 return PTR_ERR(node_page);
379
380 offset = ofs_of_node(node_page);
381 ino = ino_of_node(node_page);
382 f2fs_put_page(node_page, 1);
383
384 if (ino != dn->inode->i_ino) {
385 int ret;
386
387 /* Deallocate previous index in the node page */
388 inode = f2fs_iget_retry(sbi->sb, ino);
389 if (IS_ERR(inode))
390 return PTR_ERR(inode);
391
392 ret = dquot_initialize(inode);
393 if (ret) {
394 iput(inode);
395 return ret;
396 }
397 } else {
398 inode = dn->inode;
399 }
400
401 bidx = f2fs_start_bidx_of_node(offset, inode) +
402 le16_to_cpu(sum.ofs_in_node);
403
404 /*
405 * if inode page is locked, unlock temporarily, but its reference
406 * count keeps alive.
407 */
408 if (ino == dn->inode->i_ino && dn->inode_page_locked)
409 unlock_page(dn->inode_page);
410
411 set_new_dnode(&tdn, inode, NULL, NULL, 0);
412 if (f2fs_get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
413 goto out;
414
415 if (tdn.data_blkaddr == blkaddr)
416 f2fs_truncate_data_blocks_range(&tdn, 1);
417
418 f2fs_put_dnode(&tdn);
419 out:
420 if (ino != dn->inode->i_ino)
421 iput(inode);
422 else if (dn->inode_page_locked)
423 lock_page(dn->inode_page);
424 return 0;
425
426 truncate_out:
427 if (datablock_addr(tdn.inode, tdn.node_page,
428 tdn.ofs_in_node) == blkaddr)
429 f2fs_truncate_data_blocks_range(&tdn, 1);
430 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
431 unlock_page(dn->inode_page);
432 return 0;
433 }
434
435 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
436 struct page *page)
437 {
438 struct dnode_of_data dn;
439 struct node_info ni;
440 unsigned int start, end;
441 int err = 0, recovered = 0;
442
443 /* step 1: recover xattr */
444 if (IS_INODE(page)) {
445 f2fs_recover_inline_xattr(inode, page);
446 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
447 err = f2fs_recover_xattr_data(inode, page);
448 if (!err)
449 recovered++;
450 goto out;
451 }
452
453 /* step 2: recover inline data */
454 if (f2fs_recover_inline_data(inode, page))
455 goto out;
456
457 /* step 3: recover data indices */
458 start = f2fs_start_bidx_of_node(ofs_of_node(page), inode);
459 end = start + ADDRS_PER_PAGE(page, inode);
460
461 set_new_dnode(&dn, inode, NULL, NULL, 0);
462 retry_dn:
463 err = f2fs_get_dnode_of_data(&dn, start, ALLOC_NODE);
464 if (err) {
465 if (err == -ENOMEM) {
466 congestion_wait(BLK_RW_ASYNC, HZ/50);
467 goto retry_dn;
468 }
469 goto out;
470 }
471
472 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
473
474 f2fs_get_node_info(sbi, dn.nid, &ni);
475 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
476 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
477
478 for (; start < end; start++, dn.ofs_in_node++) {
479 block_t src, dest;
480
481 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
482 dest = datablock_addr(dn.inode, page, dn.ofs_in_node);
483
484 /* skip recovering if dest is the same as src */
485 if (src == dest)
486 continue;
487
488 /* dest is invalid, just invalidate src block */
489 if (dest == NULL_ADDR) {
490 f2fs_truncate_data_blocks_range(&dn, 1);
491 continue;
492 }
493
494 if (!file_keep_isize(inode) &&
495 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
496 f2fs_i_size_write(inode,
497 (loff_t)(start + 1) << PAGE_SHIFT);
498
499 /*
500 * dest is reserved block, invalidate src block
501 * and then reserve one new block in dnode page.
502 */
503 if (dest == NEW_ADDR) {
504 f2fs_truncate_data_blocks_range(&dn, 1);
505 f2fs_reserve_new_block(&dn);
506 continue;
507 }
508
509 /* dest is valid block, try to recover from src to dest */
510 if (f2fs_is_valid_meta_blkaddr(sbi, dest, META_POR)) {
511
512 if (src == NULL_ADDR) {
513 err = f2fs_reserve_new_block(&dn);
514 #ifdef CONFIG_F2FS_FAULT_INJECTION
515 while (err)
516 err = f2fs_reserve_new_block(&dn);
517 #endif
518 /* We should not get -ENOSPC */
519 f2fs_bug_on(sbi, err);
520 if (err)
521 goto err;
522 }
523 retry_prev:
524 /* Check the previous node page having this index */
525 err = check_index_in_prev_nodes(sbi, dest, &dn);
526 if (err) {
527 if (err == -ENOMEM) {
528 congestion_wait(BLK_RW_ASYNC, HZ/50);
529 goto retry_prev;
530 }
531 goto err;
532 }
533
534 /* write dummy data page */
535 f2fs_replace_block(sbi, &dn, src, dest,
536 ni.version, false, false);
537 recovered++;
538 }
539 }
540
541 copy_node_footer(dn.node_page, page);
542 fill_node_footer(dn.node_page, dn.nid, ni.ino,
543 ofs_of_node(page), false);
544 set_page_dirty(dn.node_page);
545 err:
546 f2fs_put_dnode(&dn);
547 out:
548 f2fs_msg(sbi->sb, KERN_NOTICE,
549 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
550 inode->i_ino,
551 file_keep_isize(inode) ? "keep" : "recover",
552 recovered, err);
553 return err;
554 }
555
556 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
557 struct list_head *dir_list)
558 {
559 struct curseg_info *curseg;
560 struct page *page = NULL;
561 int err = 0;
562 block_t blkaddr;
563
564 /* get node pages in the current segment */
565 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
566 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
567
568 while (1) {
569 struct fsync_inode_entry *entry;
570
571 if (!f2fs_is_valid_meta_blkaddr(sbi, blkaddr, META_POR))
572 break;
573
574 f2fs_ra_meta_pages_cond(sbi, blkaddr);
575
576 page = f2fs_get_tmp_page(sbi, blkaddr);
577
578 if (!is_recoverable_dnode(page)) {
579 f2fs_put_page(page, 1);
580 break;
581 }
582
583 entry = get_fsync_inode(inode_list, ino_of_node(page));
584 if (!entry)
585 goto next;
586 /*
587 * inode(x) | CP | inode(x) | dnode(F)
588 * In this case, we can lose the latest inode(x).
589 * So, call recover_inode for the inode update.
590 */
591 if (IS_INODE(page))
592 recover_inode(entry->inode, page);
593 if (entry->last_dentry == blkaddr) {
594 err = recover_dentry(entry->inode, page, dir_list);
595 if (err) {
596 f2fs_put_page(page, 1);
597 break;
598 }
599 }
600 err = do_recover_data(sbi, entry->inode, page);
601 if (err) {
602 f2fs_put_page(page, 1);
603 break;
604 }
605
606 if (entry->blkaddr == blkaddr)
607 del_fsync_inode(entry);
608 next:
609 /* check next segment */
610 blkaddr = next_blkaddr_of_node(page);
611 f2fs_put_page(page, 1);
612 }
613 if (!err)
614 f2fs_allocate_new_segments(sbi);
615 return err;
616 }
617
618 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
619 {
620 struct list_head inode_list;
621 struct list_head dir_list;
622 int err;
623 int ret = 0;
624 unsigned long s_flags = sbi->sb->s_flags;
625 bool need_writecp = false;
626 #ifdef CONFIG_QUOTA
627 int quota_enabled;
628 #endif
629
630 if (s_flags & SB_RDONLY) {
631 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
632 sbi->sb->s_flags &= ~SB_RDONLY;
633 }
634
635 #ifdef CONFIG_QUOTA
636 /* Needed for iput() to work correctly and not trash data */
637 sbi->sb->s_flags |= SB_ACTIVE;
638 /* Turn on quotas so that they are updated correctly */
639 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
640 #endif
641
642 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
643 sizeof(struct fsync_inode_entry));
644 if (!fsync_entry_slab) {
645 err = -ENOMEM;
646 goto out;
647 }
648
649 INIT_LIST_HEAD(&inode_list);
650 INIT_LIST_HEAD(&dir_list);
651
652 /* prevent checkpoint */
653 mutex_lock(&sbi->cp_mutex);
654
655 /* step #1: find fsynced inode numbers */
656 err = find_fsync_dnodes(sbi, &inode_list, check_only);
657 if (err || list_empty(&inode_list))
658 goto skip;
659
660 if (check_only) {
661 ret = 1;
662 goto skip;
663 }
664
665 need_writecp = true;
666
667 /* step #2: recover data */
668 err = recover_data(sbi, &inode_list, &dir_list);
669 if (!err)
670 f2fs_bug_on(sbi, !list_empty(&inode_list));
671 skip:
672 destroy_fsync_dnodes(&inode_list);
673
674 /* truncate meta pages to be used by the recovery */
675 truncate_inode_pages_range(META_MAPPING(sbi),
676 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
677
678 if (err) {
679 truncate_inode_pages_final(NODE_MAPPING(sbi));
680 truncate_inode_pages_final(META_MAPPING(sbi));
681 }
682
683 clear_sbi_flag(sbi, SBI_POR_DOING);
684 mutex_unlock(&sbi->cp_mutex);
685
686 /* let's drop all the directory inodes for clean checkpoint */
687 destroy_fsync_dnodes(&dir_list);
688
689 if (!err && need_writecp) {
690 struct cp_control cpc = {
691 .reason = CP_RECOVERY,
692 };
693 err = f2fs_write_checkpoint(sbi, &cpc);
694 }
695
696 kmem_cache_destroy(fsync_entry_slab);
697 out:
698 #ifdef CONFIG_QUOTA
699 /* Turn quotas off */
700 if (quota_enabled)
701 f2fs_quota_off_umount(sbi->sb);
702 #endif
703 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
704
705 return ret ? ret: err;
706 }