]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/recovery.c
f2fs: need fsck.f2fs when f2fs_bug_on is triggered
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 static struct kmem_cache *fsync_entry_slab;
18
19 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
20 {
21 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
22 > sbi->user_block_count)
23 return false;
24 return true;
25 }
26
27 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
28 nid_t ino)
29 {
30 struct fsync_inode_entry *entry;
31
32 list_for_each_entry(entry, head, list)
33 if (entry->inode->i_ino == ino)
34 return entry;
35
36 return NULL;
37 }
38
39 static int recover_dentry(struct page *ipage, struct inode *inode)
40 {
41 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
42 nid_t pino = le32_to_cpu(raw_inode->i_pino);
43 struct f2fs_dir_entry *de;
44 struct qstr name;
45 struct page *page;
46 struct inode *dir, *einode;
47 int err = 0;
48
49 dir = f2fs_iget(inode->i_sb, pino);
50 if (IS_ERR(dir)) {
51 err = PTR_ERR(dir);
52 goto out;
53 }
54
55 name.len = le32_to_cpu(raw_inode->i_namelen);
56 name.name = raw_inode->i_name;
57
58 if (unlikely(name.len > F2FS_NAME_LEN)) {
59 WARN_ON(1);
60 err = -ENAMETOOLONG;
61 goto out_err;
62 }
63 retry:
64 de = f2fs_find_entry(dir, &name, &page);
65 if (de && inode->i_ino == le32_to_cpu(de->ino)) {
66 clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
67 goto out_unmap_put;
68 }
69 if (de) {
70 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
71 if (IS_ERR(einode)) {
72 WARN_ON(1);
73 err = PTR_ERR(einode);
74 if (err == -ENOENT)
75 err = -EEXIST;
76 goto out_unmap_put;
77 }
78 err = acquire_orphan_inode(F2FS_I_SB(inode));
79 if (err) {
80 iput(einode);
81 goto out_unmap_put;
82 }
83 f2fs_delete_entry(de, page, einode);
84 iput(einode);
85 goto retry;
86 }
87 err = __f2fs_add_link(dir, &name, inode);
88 if (err)
89 goto out_err;
90
91 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
92 iput(dir);
93 } else {
94 add_dirty_dir_inode(dir);
95 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
96 }
97
98 goto out;
99
100 out_unmap_put:
101 kunmap(page);
102 f2fs_put_page(page, 0);
103 out_err:
104 iput(dir);
105 out:
106 f2fs_msg(inode->i_sb, KERN_NOTICE,
107 "%s: ino = %x, name = %s, dir = %lx, err = %d",
108 __func__, ino_of_node(ipage), raw_inode->i_name,
109 IS_ERR(dir) ? 0 : dir->i_ino, err);
110 return err;
111 }
112
113 static int recover_inode(struct inode *inode, struct page *node_page)
114 {
115 struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
116
117 if (!IS_INODE(node_page))
118 return 0;
119
120 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
121 i_size_write(inode, le64_to_cpu(raw_inode->i_size));
122 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
123 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
124 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
125 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
126 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
127 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
128
129 if (is_dent_dnode(node_page))
130 return recover_dentry(node_page, inode);
131
132 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
133 ino_of_node(node_page), raw_inode->i_name);
134 return 0;
135 }
136
137 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
138 {
139 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
140 struct curseg_info *curseg;
141 struct page *page;
142 block_t blkaddr;
143 int err = 0;
144
145 /* get node pages in the current segment */
146 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
147 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
148
149 /* read node page */
150 page = alloc_page(GFP_F2FS_ZERO);
151 if (!page)
152 return -ENOMEM;
153 lock_page(page);
154
155 while (1) {
156 struct fsync_inode_entry *entry;
157
158 err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
159 if (err)
160 return err;
161
162 lock_page(page);
163
164 if (cp_ver != cpver_of_node(page))
165 break;
166
167 if (!is_fsync_dnode(page))
168 goto next;
169
170 entry = get_fsync_inode(head, ino_of_node(page));
171 if (entry) {
172 if (IS_INODE(page) && is_dent_dnode(page))
173 set_inode_flag(F2FS_I(entry->inode),
174 FI_INC_LINK);
175 } else {
176 if (IS_INODE(page) && is_dent_dnode(page)) {
177 err = recover_inode_page(sbi, page);
178 if (err)
179 break;
180 }
181
182 /* add this fsync inode to the list */
183 entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
184 if (!entry) {
185 err = -ENOMEM;
186 break;
187 }
188
189 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
190 if (IS_ERR(entry->inode)) {
191 err = PTR_ERR(entry->inode);
192 kmem_cache_free(fsync_entry_slab, entry);
193 break;
194 }
195 list_add_tail(&entry->list, head);
196 }
197 entry->blkaddr = blkaddr;
198
199 err = recover_inode(entry->inode, page);
200 if (err && err != -ENOENT)
201 break;
202 next:
203 /* check next segment */
204 blkaddr = next_blkaddr_of_node(page);
205 }
206
207 unlock_page(page);
208 __free_pages(page, 0);
209
210 return err;
211 }
212
213 static void destroy_fsync_dnodes(struct list_head *head)
214 {
215 struct fsync_inode_entry *entry, *tmp;
216
217 list_for_each_entry_safe(entry, tmp, head, list) {
218 iput(entry->inode);
219 list_del(&entry->list);
220 kmem_cache_free(fsync_entry_slab, entry);
221 }
222 }
223
224 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
225 block_t blkaddr, struct dnode_of_data *dn)
226 {
227 struct seg_entry *sentry;
228 unsigned int segno = GET_SEGNO(sbi, blkaddr);
229 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
230 struct f2fs_summary_block *sum_node;
231 struct f2fs_summary sum;
232 struct page *sum_page, *node_page;
233 nid_t ino, nid;
234 struct inode *inode;
235 unsigned int offset;
236 block_t bidx;
237 int i;
238
239 sentry = get_seg_entry(sbi, segno);
240 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
241 return 0;
242
243 /* Get the previous summary */
244 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
245 struct curseg_info *curseg = CURSEG_I(sbi, i);
246 if (curseg->segno == segno) {
247 sum = curseg->sum_blk->entries[blkoff];
248 goto got_it;
249 }
250 }
251
252 sum_page = get_sum_page(sbi, segno);
253 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
254 sum = sum_node->entries[blkoff];
255 f2fs_put_page(sum_page, 1);
256 got_it:
257 /* Use the locked dnode page and inode */
258 nid = le32_to_cpu(sum.nid);
259 if (dn->inode->i_ino == nid) {
260 struct dnode_of_data tdn = *dn;
261 tdn.nid = nid;
262 tdn.node_page = dn->inode_page;
263 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
264 truncate_data_blocks_range(&tdn, 1);
265 return 0;
266 } else if (dn->nid == nid) {
267 struct dnode_of_data tdn = *dn;
268 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
269 truncate_data_blocks_range(&tdn, 1);
270 return 0;
271 }
272
273 /* Get the node page */
274 node_page = get_node_page(sbi, nid);
275 if (IS_ERR(node_page))
276 return PTR_ERR(node_page);
277
278 offset = ofs_of_node(node_page);
279 ino = ino_of_node(node_page);
280 f2fs_put_page(node_page, 1);
281
282 /* Deallocate previous index in the node page */
283 inode = f2fs_iget(sbi->sb, ino);
284 if (IS_ERR(inode))
285 return PTR_ERR(inode);
286
287 bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
288 le16_to_cpu(sum.ofs_in_node);
289
290 truncate_hole(inode, bidx, bidx + 1);
291 iput(inode);
292 return 0;
293 }
294
295 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
296 struct page *page, block_t blkaddr)
297 {
298 struct f2fs_inode_info *fi = F2FS_I(inode);
299 unsigned int start, end;
300 struct dnode_of_data dn;
301 struct f2fs_summary sum;
302 struct node_info ni;
303 int err = 0, recovered = 0;
304
305 /* step 1: recover xattr */
306 if (IS_INODE(page)) {
307 recover_inline_xattr(inode, page);
308 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
309 recover_xattr_data(inode, page, blkaddr);
310 goto out;
311 }
312
313 /* step 2: recover inline data */
314 if (recover_inline_data(inode, page))
315 goto out;
316
317 /* step 3: recover data indices */
318 start = start_bidx_of_node(ofs_of_node(page), fi);
319 end = start + ADDRS_PER_PAGE(page, fi);
320
321 f2fs_lock_op(sbi);
322
323 set_new_dnode(&dn, inode, NULL, NULL, 0);
324
325 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
326 if (err) {
327 f2fs_unlock_op(sbi);
328 goto out;
329 }
330
331 f2fs_wait_on_page_writeback(dn.node_page, NODE);
332
333 get_node_info(sbi, dn.nid, &ni);
334 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
335 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
336
337 for (; start < end; start++) {
338 block_t src, dest;
339
340 src = datablock_addr(dn.node_page, dn.ofs_in_node);
341 dest = datablock_addr(page, dn.ofs_in_node);
342
343 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
344 if (src == NULL_ADDR) {
345 err = reserve_new_block(&dn);
346 /* We should not get -ENOSPC */
347 f2fs_bug_on(sbi, err);
348 }
349
350 /* Check the previous node page having this index */
351 err = check_index_in_prev_nodes(sbi, dest, &dn);
352 if (err)
353 goto err;
354
355 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
356
357 /* write dummy data page */
358 recover_data_page(sbi, NULL, &sum, src, dest);
359 update_extent_cache(dest, &dn);
360 recovered++;
361 }
362 dn.ofs_in_node++;
363 }
364
365 /* write node page in place */
366 set_summary(&sum, dn.nid, 0, 0);
367 if (IS_INODE(dn.node_page))
368 sync_inode_page(&dn);
369
370 copy_node_footer(dn.node_page, page);
371 fill_node_footer(dn.node_page, dn.nid, ni.ino,
372 ofs_of_node(page), false);
373 set_page_dirty(dn.node_page);
374 err:
375 f2fs_put_dnode(&dn);
376 f2fs_unlock_op(sbi);
377 out:
378 f2fs_msg(sbi->sb, KERN_NOTICE,
379 "recover_data: ino = %lx, recovered = %d blocks, err = %d",
380 inode->i_ino, recovered, err);
381 return err;
382 }
383
384 static int recover_data(struct f2fs_sb_info *sbi,
385 struct list_head *head, int type)
386 {
387 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
388 struct curseg_info *curseg;
389 struct page *page;
390 int err = 0;
391 block_t blkaddr;
392
393 /* get node pages in the current segment */
394 curseg = CURSEG_I(sbi, type);
395 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
396
397 /* read node page */
398 page = alloc_page(GFP_F2FS_ZERO);
399 if (!page)
400 return -ENOMEM;
401
402 lock_page(page);
403
404 while (1) {
405 struct fsync_inode_entry *entry;
406
407 err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
408 if (err)
409 return err;
410
411 lock_page(page);
412
413 if (cp_ver != cpver_of_node(page))
414 break;
415
416 entry = get_fsync_inode(head, ino_of_node(page));
417 if (!entry)
418 goto next;
419
420 err = do_recover_data(sbi, entry->inode, page, blkaddr);
421 if (err)
422 break;
423
424 if (entry->blkaddr == blkaddr) {
425 iput(entry->inode);
426 list_del(&entry->list);
427 kmem_cache_free(fsync_entry_slab, entry);
428 }
429 next:
430 /* check next segment */
431 blkaddr = next_blkaddr_of_node(page);
432 }
433
434 unlock_page(page);
435 __free_pages(page, 0);
436
437 if (!err)
438 allocate_new_segments(sbi);
439 return err;
440 }
441
442 int recover_fsync_data(struct f2fs_sb_info *sbi)
443 {
444 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
445 struct list_head inode_list;
446 block_t blkaddr;
447 int err;
448 bool need_writecp = false;
449
450 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
451 sizeof(struct fsync_inode_entry));
452 if (!fsync_entry_slab)
453 return -ENOMEM;
454
455 INIT_LIST_HEAD(&inode_list);
456
457 /* step #1: find fsynced inode numbers */
458 sbi->por_doing = true;
459
460 /* prevent checkpoint */
461 mutex_lock(&sbi->cp_mutex);
462
463 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
464
465 err = find_fsync_dnodes(sbi, &inode_list);
466 if (err)
467 goto out;
468
469 if (list_empty(&inode_list))
470 goto out;
471
472 need_writecp = true;
473
474 /* step #2: recover data */
475 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
476 if (!err)
477 f2fs_bug_on(sbi, !list_empty(&inode_list));
478 out:
479 destroy_fsync_dnodes(&inode_list);
480 kmem_cache_destroy(fsync_entry_slab);
481
482 if (err) {
483 truncate_inode_pages_final(NODE_MAPPING(sbi));
484 truncate_inode_pages_final(META_MAPPING(sbi));
485 }
486
487 sbi->por_doing = false;
488 if (err) {
489 discard_next_dnode(sbi, blkaddr);
490
491 /* Flush all the NAT/SIT pages */
492 while (get_pages(sbi, F2FS_DIRTY_META))
493 sync_meta_pages(sbi, META, LONG_MAX);
494 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
495 mutex_unlock(&sbi->cp_mutex);
496 } else if (need_writecp) {
497 mutex_unlock(&sbi->cp_mutex);
498 write_checkpoint(sbi, false);
499 } else {
500 mutex_unlock(&sbi->cp_mutex);
501 }
502 return err;
503 }