]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/recovery.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 /*
18 * Roll forward recovery scenarios.
19 *
20 * [Term] F: fsync_mark, D: dentry_mark
21 *
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
24 *
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
27 *
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
30 *
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
33 *
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
36 *
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
39 *
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
42 *
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
46 */
47
48 static struct kmem_cache *fsync_entry_slab;
49
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
53
54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
55 return false;
56 return true;
57 }
58
59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
60 nid_t ino)
61 {
62 struct fsync_inode_entry *entry;
63
64 list_for_each_entry(entry, head, list)
65 if (entry->inode->i_ino == ino)
66 return entry;
67
68 return NULL;
69 }
70
71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
72 struct list_head *head, nid_t ino, bool quota_inode)
73 {
74 struct inode *inode;
75 struct fsync_inode_entry *entry;
76 int err;
77
78 inode = f2fs_iget_retry(sbi->sb, ino);
79 if (IS_ERR(inode))
80 return ERR_CAST(inode);
81
82 err = dquot_initialize(inode);
83 if (err)
84 goto err_out;
85
86 if (quota_inode) {
87 err = dquot_alloc_inode(inode);
88 if (err)
89 goto err_out;
90 }
91
92 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
93 entry->inode = inode;
94 list_add_tail(&entry->list, head);
95
96 return entry;
97 err_out:
98 iput(inode);
99 return ERR_PTR(err);
100 }
101
102 static void del_fsync_inode(struct fsync_inode_entry *entry)
103 {
104 iput(entry->inode);
105 list_del(&entry->list);
106 kmem_cache_free(fsync_entry_slab, entry);
107 }
108
109 static int recover_dentry(struct inode *inode, struct page *ipage,
110 struct list_head *dir_list)
111 {
112 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
113 nid_t pino = le32_to_cpu(raw_inode->i_pino);
114 struct f2fs_dir_entry *de;
115 struct fscrypt_name fname;
116 struct page *page;
117 struct inode *dir, *einode;
118 struct fsync_inode_entry *entry;
119 int err = 0;
120 char *name;
121
122 entry = get_fsync_inode(dir_list, pino);
123 if (!entry) {
124 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list,
125 pino, false);
126 if (IS_ERR(entry)) {
127 dir = ERR_CAST(entry);
128 err = PTR_ERR(entry);
129 goto out;
130 }
131 }
132
133 dir = entry->inode;
134
135 memset(&fname, 0, sizeof(struct fscrypt_name));
136 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
137 fname.disk_name.name = raw_inode->i_name;
138
139 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
140 WARN_ON(1);
141 err = -ENAMETOOLONG;
142 goto out;
143 }
144 retry:
145 de = __f2fs_find_entry(dir, &fname, &page);
146 if (de && inode->i_ino == le32_to_cpu(de->ino))
147 goto out_unmap_put;
148
149 if (de) {
150 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
151 if (IS_ERR(einode)) {
152 WARN_ON(1);
153 err = PTR_ERR(einode);
154 if (err == -ENOENT)
155 err = -EEXIST;
156 goto out_unmap_put;
157 }
158
159 err = dquot_initialize(einode);
160 if (err) {
161 iput(einode);
162 goto out_unmap_put;
163 }
164
165 err = acquire_orphan_inode(F2FS_I_SB(inode));
166 if (err) {
167 iput(einode);
168 goto out_unmap_put;
169 }
170 f2fs_delete_entry(de, page, dir, einode);
171 iput(einode);
172 goto retry;
173 } else if (IS_ERR(page)) {
174 err = PTR_ERR(page);
175 } else {
176 err = __f2fs_do_add_link(dir, &fname, inode,
177 inode->i_ino, inode->i_mode);
178 }
179 if (err == -ENOMEM)
180 goto retry;
181 goto out;
182
183 out_unmap_put:
184 f2fs_dentry_kunmap(dir, page);
185 f2fs_put_page(page, 0);
186 out:
187 if (file_enc_name(inode))
188 name = "<encrypted>";
189 else
190 name = raw_inode->i_name;
191 f2fs_msg(inode->i_sb, KERN_NOTICE,
192 "%s: ino = %x, name = %s, dir = %lx, err = %d",
193 __func__, ino_of_node(ipage), name,
194 IS_ERR(dir) ? 0 : dir->i_ino, err);
195 return err;
196 }
197
198 static void recover_inode(struct inode *inode, struct page *page)
199 {
200 struct f2fs_inode *raw = F2FS_INODE(page);
201 char *name;
202
203 inode->i_mode = le16_to_cpu(raw->i_mode);
204 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
205 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
206 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
207 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
208 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
209 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
210 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
211
212 F2FS_I(inode)->i_advise = raw->i_advise;
213
214 if (file_enc_name(inode))
215 name = "<encrypted>";
216 else
217 name = F2FS_INODE(page)->i_name;
218
219 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
220 ino_of_node(page), name);
221 }
222
223 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
224 bool check_only)
225 {
226 struct curseg_info *curseg;
227 struct page *page = NULL;
228 block_t blkaddr;
229 int err = 0;
230
231 /* get node pages in the current segment */
232 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
233 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
234
235 while (1) {
236 struct fsync_inode_entry *entry;
237
238 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
239 return 0;
240
241 page = get_tmp_page(sbi, blkaddr);
242
243 if (!is_recoverable_dnode(page))
244 break;
245
246 if (!is_fsync_dnode(page))
247 goto next;
248
249 entry = get_fsync_inode(head, ino_of_node(page));
250 if (!entry) {
251 bool quota_inode = false;
252
253 if (!check_only &&
254 IS_INODE(page) && is_dent_dnode(page)) {
255 err = recover_inode_page(sbi, page);
256 if (err)
257 break;
258 quota_inode = true;
259 }
260
261 /*
262 * CP | dnode(F) | inode(DF)
263 * For this case, we should not give up now.
264 */
265 entry = add_fsync_inode(sbi, head, ino_of_node(page),
266 quota_inode);
267 if (IS_ERR(entry)) {
268 err = PTR_ERR(entry);
269 if (err == -ENOENT) {
270 err = 0;
271 goto next;
272 }
273 break;
274 }
275 }
276 entry->blkaddr = blkaddr;
277
278 if (IS_INODE(page) && is_dent_dnode(page))
279 entry->last_dentry = blkaddr;
280 next:
281 /* check next segment */
282 blkaddr = next_blkaddr_of_node(page);
283 f2fs_put_page(page, 1);
284
285 ra_meta_pages_cond(sbi, blkaddr);
286 }
287 f2fs_put_page(page, 1);
288 return err;
289 }
290
291 static void destroy_fsync_dnodes(struct list_head *head)
292 {
293 struct fsync_inode_entry *entry, *tmp;
294
295 list_for_each_entry_safe(entry, tmp, head, list)
296 del_fsync_inode(entry);
297 }
298
299 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
300 block_t blkaddr, struct dnode_of_data *dn)
301 {
302 struct seg_entry *sentry;
303 unsigned int segno = GET_SEGNO(sbi, blkaddr);
304 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
305 struct f2fs_summary_block *sum_node;
306 struct f2fs_summary sum;
307 struct page *sum_page, *node_page;
308 struct dnode_of_data tdn = *dn;
309 nid_t ino, nid;
310 struct inode *inode;
311 unsigned int offset;
312 block_t bidx;
313 int i;
314
315 sentry = get_seg_entry(sbi, segno);
316 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
317 return 0;
318
319 /* Get the previous summary */
320 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
321 struct curseg_info *curseg = CURSEG_I(sbi, i);
322 if (curseg->segno == segno) {
323 sum = curseg->sum_blk->entries[blkoff];
324 goto got_it;
325 }
326 }
327
328 sum_page = get_sum_page(sbi, segno);
329 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
330 sum = sum_node->entries[blkoff];
331 f2fs_put_page(sum_page, 1);
332 got_it:
333 /* Use the locked dnode page and inode */
334 nid = le32_to_cpu(sum.nid);
335 if (dn->inode->i_ino == nid) {
336 tdn.nid = nid;
337 if (!dn->inode_page_locked)
338 lock_page(dn->inode_page);
339 tdn.node_page = dn->inode_page;
340 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
341 goto truncate_out;
342 } else if (dn->nid == nid) {
343 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
344 goto truncate_out;
345 }
346
347 /* Get the node page */
348 node_page = get_node_page(sbi, nid);
349 if (IS_ERR(node_page))
350 return PTR_ERR(node_page);
351
352 offset = ofs_of_node(node_page);
353 ino = ino_of_node(node_page);
354 f2fs_put_page(node_page, 1);
355
356 if (ino != dn->inode->i_ino) {
357 int ret;
358
359 /* Deallocate previous index in the node page */
360 inode = f2fs_iget_retry(sbi->sb, ino);
361 if (IS_ERR(inode))
362 return PTR_ERR(inode);
363
364 ret = dquot_initialize(inode);
365 if (ret) {
366 iput(inode);
367 return ret;
368 }
369 } else {
370 inode = dn->inode;
371 }
372
373 bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
374
375 /*
376 * if inode page is locked, unlock temporarily, but its reference
377 * count keeps alive.
378 */
379 if (ino == dn->inode->i_ino && dn->inode_page_locked)
380 unlock_page(dn->inode_page);
381
382 set_new_dnode(&tdn, inode, NULL, NULL, 0);
383 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
384 goto out;
385
386 if (tdn.data_blkaddr == blkaddr)
387 truncate_data_blocks_range(&tdn, 1);
388
389 f2fs_put_dnode(&tdn);
390 out:
391 if (ino != dn->inode->i_ino)
392 iput(inode);
393 else if (dn->inode_page_locked)
394 lock_page(dn->inode_page);
395 return 0;
396
397 truncate_out:
398 if (datablock_addr(tdn.inode, tdn.node_page,
399 tdn.ofs_in_node) == blkaddr)
400 truncate_data_blocks_range(&tdn, 1);
401 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
402 unlock_page(dn->inode_page);
403 return 0;
404 }
405
406 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
407 struct page *page, block_t blkaddr)
408 {
409 struct dnode_of_data dn;
410 struct node_info ni;
411 unsigned int start, end;
412 int err = 0, recovered = 0;
413
414 /* step 1: recover xattr */
415 if (IS_INODE(page)) {
416 recover_inline_xattr(inode, page);
417 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
418 err = recover_xattr_data(inode, page, blkaddr);
419 if (!err)
420 recovered++;
421 goto out;
422 }
423
424 /* step 2: recover inline data */
425 if (recover_inline_data(inode, page))
426 goto out;
427
428 /* step 3: recover data indices */
429 start = start_bidx_of_node(ofs_of_node(page), inode);
430 end = start + ADDRS_PER_PAGE(page, inode);
431
432 set_new_dnode(&dn, inode, NULL, NULL, 0);
433 retry_dn:
434 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
435 if (err) {
436 if (err == -ENOMEM) {
437 congestion_wait(BLK_RW_ASYNC, HZ/50);
438 goto retry_dn;
439 }
440 goto out;
441 }
442
443 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
444
445 get_node_info(sbi, dn.nid, &ni);
446 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
447 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
448
449 for (; start < end; start++, dn.ofs_in_node++) {
450 block_t src, dest;
451
452 src = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
453 dest = datablock_addr(dn.inode, page, dn.ofs_in_node);
454
455 /* skip recovering if dest is the same as src */
456 if (src == dest)
457 continue;
458
459 /* dest is invalid, just invalidate src block */
460 if (dest == NULL_ADDR) {
461 truncate_data_blocks_range(&dn, 1);
462 continue;
463 }
464
465 if (!file_keep_isize(inode) &&
466 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
467 f2fs_i_size_write(inode,
468 (loff_t)(start + 1) << PAGE_SHIFT);
469
470 /*
471 * dest is reserved block, invalidate src block
472 * and then reserve one new block in dnode page.
473 */
474 if (dest == NEW_ADDR) {
475 truncate_data_blocks_range(&dn, 1);
476 reserve_new_block(&dn);
477 continue;
478 }
479
480 /* dest is valid block, try to recover from src to dest */
481 if (is_valid_blkaddr(sbi, dest, META_POR)) {
482
483 if (src == NULL_ADDR) {
484 err = reserve_new_block(&dn);
485 #ifdef CONFIG_F2FS_FAULT_INJECTION
486 while (err)
487 err = reserve_new_block(&dn);
488 #endif
489 /* We should not get -ENOSPC */
490 f2fs_bug_on(sbi, err);
491 if (err)
492 goto err;
493 }
494 retry_prev:
495 /* Check the previous node page having this index */
496 err = check_index_in_prev_nodes(sbi, dest, &dn);
497 if (err) {
498 if (err == -ENOMEM) {
499 congestion_wait(BLK_RW_ASYNC, HZ/50);
500 goto retry_prev;
501 }
502 goto err;
503 }
504
505 /* write dummy data page */
506 f2fs_replace_block(sbi, &dn, src, dest,
507 ni.version, false, false);
508 recovered++;
509 }
510 }
511
512 copy_node_footer(dn.node_page, page);
513 fill_node_footer(dn.node_page, dn.nid, ni.ino,
514 ofs_of_node(page), false);
515 set_page_dirty(dn.node_page);
516 err:
517 f2fs_put_dnode(&dn);
518 out:
519 f2fs_msg(sbi->sb, KERN_NOTICE,
520 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
521 inode->i_ino,
522 file_keep_isize(inode) ? "keep" : "recover",
523 recovered, err);
524 return err;
525 }
526
527 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
528 struct list_head *dir_list)
529 {
530 struct curseg_info *curseg;
531 struct page *page = NULL;
532 int err = 0;
533 block_t blkaddr;
534
535 /* get node pages in the current segment */
536 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
537 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
538
539 while (1) {
540 struct fsync_inode_entry *entry;
541
542 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
543 break;
544
545 ra_meta_pages_cond(sbi, blkaddr);
546
547 page = get_tmp_page(sbi, blkaddr);
548
549 if (!is_recoverable_dnode(page)) {
550 f2fs_put_page(page, 1);
551 break;
552 }
553
554 entry = get_fsync_inode(inode_list, ino_of_node(page));
555 if (!entry)
556 goto next;
557 /*
558 * inode(x) | CP | inode(x) | dnode(F)
559 * In this case, we can lose the latest inode(x).
560 * So, call recover_inode for the inode update.
561 */
562 if (IS_INODE(page))
563 recover_inode(entry->inode, page);
564 if (entry->last_dentry == blkaddr) {
565 err = recover_dentry(entry->inode, page, dir_list);
566 if (err) {
567 f2fs_put_page(page, 1);
568 break;
569 }
570 }
571 err = do_recover_data(sbi, entry->inode, page, blkaddr);
572 if (err) {
573 f2fs_put_page(page, 1);
574 break;
575 }
576
577 if (entry->blkaddr == blkaddr)
578 del_fsync_inode(entry);
579 next:
580 /* check next segment */
581 blkaddr = next_blkaddr_of_node(page);
582 f2fs_put_page(page, 1);
583 }
584 if (!err)
585 allocate_new_segments(sbi);
586 return err;
587 }
588
589 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
590 {
591 struct list_head inode_list;
592 struct list_head dir_list;
593 int err;
594 int ret = 0;
595 unsigned long s_flags = sbi->sb->s_flags;
596 bool need_writecp = false;
597 #ifdef CONFIG_QUOTA
598 int quota_enabled;
599 #endif
600
601 if (s_flags & SB_RDONLY) {
602 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
603 sbi->sb->s_flags &= ~SB_RDONLY;
604 }
605
606 #ifdef CONFIG_QUOTA
607 /* Needed for iput() to work correctly and not trash data */
608 sbi->sb->s_flags |= SB_ACTIVE;
609 /* Turn on quotas so that they are updated correctly */
610 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
611 #endif
612
613 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
614 sizeof(struct fsync_inode_entry));
615 if (!fsync_entry_slab) {
616 err = -ENOMEM;
617 goto out;
618 }
619
620 INIT_LIST_HEAD(&inode_list);
621 INIT_LIST_HEAD(&dir_list);
622
623 /* prevent checkpoint */
624 mutex_lock(&sbi->cp_mutex);
625
626 /* step #1: find fsynced inode numbers */
627 err = find_fsync_dnodes(sbi, &inode_list, check_only);
628 if (err || list_empty(&inode_list))
629 goto skip;
630
631 if (check_only) {
632 ret = 1;
633 goto skip;
634 }
635
636 need_writecp = true;
637
638 /* step #2: recover data */
639 err = recover_data(sbi, &inode_list, &dir_list);
640 if (!err)
641 f2fs_bug_on(sbi, !list_empty(&inode_list));
642 skip:
643 destroy_fsync_dnodes(&inode_list);
644
645 /* truncate meta pages to be used by the recovery */
646 truncate_inode_pages_range(META_MAPPING(sbi),
647 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
648
649 if (err) {
650 truncate_inode_pages_final(NODE_MAPPING(sbi));
651 truncate_inode_pages_final(META_MAPPING(sbi));
652 }
653
654 clear_sbi_flag(sbi, SBI_POR_DOING);
655 mutex_unlock(&sbi->cp_mutex);
656
657 /* let's drop all the directory inodes for clean checkpoint */
658 destroy_fsync_dnodes(&dir_list);
659
660 if (!err && need_writecp) {
661 struct cp_control cpc = {
662 .reason = CP_RECOVERY,
663 };
664 err = write_checkpoint(sbi, &cpc);
665 }
666
667 kmem_cache_destroy(fsync_entry_slab);
668 out:
669 #ifdef CONFIG_QUOTA
670 /* Turn quotas off */
671 if (quota_enabled)
672 f2fs_quota_off_umount(sbi->sb);
673 #endif
674 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
675
676 return ret ? ret: err;
677 }