]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/recovery.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / recovery.c
1 /*
2 * fs/f2fs/recovery.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16
17 /*
18 * Roll forward recovery scenarios.
19 *
20 * [Term] F: fsync_mark, D: dentry_mark
21 *
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
24 *
25 * 2. inode(x) | CP | inode(F) | dnode(F)
26 * -> No problem.
27 *
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
30 *
31 * 4. inode(x) | CP | dnode(F) | inode(F)
32 * -> No problem.
33 *
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
36 *
37 * 6. CP | inode(DF) | dnode(F)
38 * -> No problem.
39 *
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
42 *
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
46 */
47
48 static struct kmem_cache *fsync_entry_slab;
49
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 s64 nalloc = percpu_counter_sum_positive(&sbi->alloc_valid_block_count);
53
54 if (sbi->last_valid_block_count + nalloc > sbi->user_block_count)
55 return false;
56 return true;
57 }
58
59 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
60 nid_t ino)
61 {
62 struct fsync_inode_entry *entry;
63
64 list_for_each_entry(entry, head, list)
65 if (entry->inode->i_ino == ino)
66 return entry;
67
68 return NULL;
69 }
70
71 static struct fsync_inode_entry *add_fsync_inode(struct f2fs_sb_info *sbi,
72 struct list_head *head, nid_t ino)
73 {
74 struct inode *inode;
75 struct fsync_inode_entry *entry;
76
77 inode = f2fs_iget_retry(sbi->sb, ino);
78 if (IS_ERR(inode))
79 return ERR_CAST(inode);
80
81 entry = f2fs_kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
82 entry->inode = inode;
83 list_add_tail(&entry->list, head);
84
85 return entry;
86 }
87
88 static void del_fsync_inode(struct fsync_inode_entry *entry)
89 {
90 iput(entry->inode);
91 list_del(&entry->list);
92 kmem_cache_free(fsync_entry_slab, entry);
93 }
94
95 static int recover_dentry(struct inode *inode, struct page *ipage,
96 struct list_head *dir_list)
97 {
98 struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
99 nid_t pino = le32_to_cpu(raw_inode->i_pino);
100 struct f2fs_dir_entry *de;
101 struct fscrypt_name fname;
102 struct page *page;
103 struct inode *dir, *einode;
104 struct fsync_inode_entry *entry;
105 int err = 0;
106 char *name;
107
108 entry = get_fsync_inode(dir_list, pino);
109 if (!entry) {
110 entry = add_fsync_inode(F2FS_I_SB(inode), dir_list, pino);
111 if (IS_ERR(entry)) {
112 dir = ERR_CAST(entry);
113 err = PTR_ERR(entry);
114 goto out;
115 }
116 }
117
118 dir = entry->inode;
119
120 memset(&fname, 0, sizeof(struct fscrypt_name));
121 fname.disk_name.len = le32_to_cpu(raw_inode->i_namelen);
122 fname.disk_name.name = raw_inode->i_name;
123
124 if (unlikely(fname.disk_name.len > F2FS_NAME_LEN)) {
125 WARN_ON(1);
126 err = -ENAMETOOLONG;
127 goto out;
128 }
129 retry:
130 de = __f2fs_find_entry(dir, &fname, &page);
131 if (de && inode->i_ino == le32_to_cpu(de->ino))
132 goto out_unmap_put;
133
134 if (de) {
135 einode = f2fs_iget_retry(inode->i_sb, le32_to_cpu(de->ino));
136 if (IS_ERR(einode)) {
137 WARN_ON(1);
138 err = PTR_ERR(einode);
139 if (err == -ENOENT)
140 err = -EEXIST;
141 goto out_unmap_put;
142 }
143 err = acquire_orphan_inode(F2FS_I_SB(inode));
144 if (err) {
145 iput(einode);
146 goto out_unmap_put;
147 }
148 f2fs_delete_entry(de, page, dir, einode);
149 iput(einode);
150 goto retry;
151 } else if (IS_ERR(page)) {
152 err = PTR_ERR(page);
153 } else {
154 err = __f2fs_do_add_link(dir, &fname, inode,
155 inode->i_ino, inode->i_mode);
156 }
157 if (err == -ENOMEM)
158 goto retry;
159 goto out;
160
161 out_unmap_put:
162 f2fs_dentry_kunmap(dir, page);
163 f2fs_put_page(page, 0);
164 out:
165 if (file_enc_name(inode))
166 name = "<encrypted>";
167 else
168 name = raw_inode->i_name;
169 f2fs_msg(inode->i_sb, KERN_NOTICE,
170 "%s: ino = %x, name = %s, dir = %lx, err = %d",
171 __func__, ino_of_node(ipage), name,
172 IS_ERR(dir) ? 0 : dir->i_ino, err);
173 return err;
174 }
175
176 static void recover_inode(struct inode *inode, struct page *page)
177 {
178 struct f2fs_inode *raw = F2FS_INODE(page);
179 char *name;
180
181 inode->i_mode = le16_to_cpu(raw->i_mode);
182 f2fs_i_size_write(inode, le64_to_cpu(raw->i_size));
183 inode->i_atime.tv_sec = le64_to_cpu(raw->i_atime);
184 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
185 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
186 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_atime_nsec);
187 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
188 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
189
190 F2FS_I(inode)->i_advise = raw->i_advise;
191
192 if (file_enc_name(inode))
193 name = "<encrypted>";
194 else
195 name = F2FS_INODE(page)->i_name;
196
197 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
198 ino_of_node(page), name);
199 }
200
201 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head,
202 bool check_only)
203 {
204 struct curseg_info *curseg;
205 struct page *page = NULL;
206 block_t blkaddr;
207 int err = 0;
208
209 /* get node pages in the current segment */
210 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
211 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
212
213 while (1) {
214 struct fsync_inode_entry *entry;
215
216 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
217 return 0;
218
219 page = get_tmp_page(sbi, blkaddr);
220
221 if (!is_recoverable_dnode(page))
222 break;
223
224 if (!is_fsync_dnode(page))
225 goto next;
226
227 entry = get_fsync_inode(head, ino_of_node(page));
228 if (!entry) {
229 if (!check_only &&
230 IS_INODE(page) && is_dent_dnode(page)) {
231 err = recover_inode_page(sbi, page);
232 if (err)
233 break;
234 }
235
236 /*
237 * CP | dnode(F) | inode(DF)
238 * For this case, we should not give up now.
239 */
240 entry = add_fsync_inode(sbi, head, ino_of_node(page));
241 if (IS_ERR(entry)) {
242 err = PTR_ERR(entry);
243 if (err == -ENOENT) {
244 err = 0;
245 goto next;
246 }
247 break;
248 }
249 }
250 entry->blkaddr = blkaddr;
251
252 if (IS_INODE(page) && is_dent_dnode(page))
253 entry->last_dentry = blkaddr;
254 next:
255 /* check next segment */
256 blkaddr = next_blkaddr_of_node(page);
257 f2fs_put_page(page, 1);
258
259 ra_meta_pages_cond(sbi, blkaddr);
260 }
261 f2fs_put_page(page, 1);
262 return err;
263 }
264
265 static void destroy_fsync_dnodes(struct list_head *head)
266 {
267 struct fsync_inode_entry *entry, *tmp;
268
269 list_for_each_entry_safe(entry, tmp, head, list)
270 del_fsync_inode(entry);
271 }
272
273 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
274 block_t blkaddr, struct dnode_of_data *dn)
275 {
276 struct seg_entry *sentry;
277 unsigned int segno = GET_SEGNO(sbi, blkaddr);
278 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
279 struct f2fs_summary_block *sum_node;
280 struct f2fs_summary sum;
281 struct page *sum_page, *node_page;
282 struct dnode_of_data tdn = *dn;
283 nid_t ino, nid;
284 struct inode *inode;
285 unsigned int offset;
286 block_t bidx;
287 int i;
288
289 sentry = get_seg_entry(sbi, segno);
290 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
291 return 0;
292
293 /* Get the previous summary */
294 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
295 struct curseg_info *curseg = CURSEG_I(sbi, i);
296 if (curseg->segno == segno) {
297 sum = curseg->sum_blk->entries[blkoff];
298 goto got_it;
299 }
300 }
301
302 sum_page = get_sum_page(sbi, segno);
303 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
304 sum = sum_node->entries[blkoff];
305 f2fs_put_page(sum_page, 1);
306 got_it:
307 /* Use the locked dnode page and inode */
308 nid = le32_to_cpu(sum.nid);
309 if (dn->inode->i_ino == nid) {
310 tdn.nid = nid;
311 if (!dn->inode_page_locked)
312 lock_page(dn->inode_page);
313 tdn.node_page = dn->inode_page;
314 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
315 goto truncate_out;
316 } else if (dn->nid == nid) {
317 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
318 goto truncate_out;
319 }
320
321 /* Get the node page */
322 node_page = get_node_page(sbi, nid);
323 if (IS_ERR(node_page))
324 return PTR_ERR(node_page);
325
326 offset = ofs_of_node(node_page);
327 ino = ino_of_node(node_page);
328 f2fs_put_page(node_page, 1);
329
330 if (ino != dn->inode->i_ino) {
331 /* Deallocate previous index in the node page */
332 inode = f2fs_iget_retry(sbi->sb, ino);
333 if (IS_ERR(inode))
334 return PTR_ERR(inode);
335 } else {
336 inode = dn->inode;
337 }
338
339 bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
340
341 /*
342 * if inode page is locked, unlock temporarily, but its reference
343 * count keeps alive.
344 */
345 if (ino == dn->inode->i_ino && dn->inode_page_locked)
346 unlock_page(dn->inode_page);
347
348 set_new_dnode(&tdn, inode, NULL, NULL, 0);
349 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
350 goto out;
351
352 if (tdn.data_blkaddr == blkaddr)
353 truncate_data_blocks_range(&tdn, 1);
354
355 f2fs_put_dnode(&tdn);
356 out:
357 if (ino != dn->inode->i_ino)
358 iput(inode);
359 else if (dn->inode_page_locked)
360 lock_page(dn->inode_page);
361 return 0;
362
363 truncate_out:
364 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
365 truncate_data_blocks_range(&tdn, 1);
366 if (dn->inode->i_ino == nid && !dn->inode_page_locked)
367 unlock_page(dn->inode_page);
368 return 0;
369 }
370
371 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
372 struct page *page, block_t blkaddr)
373 {
374 struct dnode_of_data dn;
375 struct node_info ni;
376 unsigned int start, end;
377 int err = 0, recovered = 0;
378
379 /* step 1: recover xattr */
380 if (IS_INODE(page)) {
381 recover_inline_xattr(inode, page);
382 } else if (f2fs_has_xattr_block(ofs_of_node(page))) {
383 err = recover_xattr_data(inode, page, blkaddr);
384 if (!err)
385 recovered++;
386 goto out;
387 }
388
389 /* step 2: recover inline data */
390 if (recover_inline_data(inode, page))
391 goto out;
392
393 /* step 3: recover data indices */
394 start = start_bidx_of_node(ofs_of_node(page), inode);
395 end = start + ADDRS_PER_PAGE(page, inode);
396
397 set_new_dnode(&dn, inode, NULL, NULL, 0);
398 retry_dn:
399 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
400 if (err) {
401 if (err == -ENOMEM) {
402 congestion_wait(BLK_RW_ASYNC, HZ/50);
403 goto retry_dn;
404 }
405 goto out;
406 }
407
408 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
409
410 get_node_info(sbi, dn.nid, &ni);
411 f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
412 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
413
414 for (; start < end; start++, dn.ofs_in_node++) {
415 block_t src, dest;
416
417 src = datablock_addr(dn.node_page, dn.ofs_in_node);
418 dest = datablock_addr(page, dn.ofs_in_node);
419
420 /* skip recovering if dest is the same as src */
421 if (src == dest)
422 continue;
423
424 /* dest is invalid, just invalidate src block */
425 if (dest == NULL_ADDR) {
426 truncate_data_blocks_range(&dn, 1);
427 continue;
428 }
429
430 if (!file_keep_isize(inode) &&
431 (i_size_read(inode) <= ((loff_t)start << PAGE_SHIFT)))
432 f2fs_i_size_write(inode,
433 (loff_t)(start + 1) << PAGE_SHIFT);
434
435 /*
436 * dest is reserved block, invalidate src block
437 * and then reserve one new block in dnode page.
438 */
439 if (dest == NEW_ADDR) {
440 truncate_data_blocks_range(&dn, 1);
441 reserve_new_block(&dn);
442 continue;
443 }
444
445 /* dest is valid block, try to recover from src to dest */
446 if (is_valid_blkaddr(sbi, dest, META_POR)) {
447
448 if (src == NULL_ADDR) {
449 err = reserve_new_block(&dn);
450 #ifdef CONFIG_F2FS_FAULT_INJECTION
451 while (err)
452 err = reserve_new_block(&dn);
453 #endif
454 /* We should not get -ENOSPC */
455 f2fs_bug_on(sbi, err);
456 if (err)
457 goto err;
458 }
459 retry_prev:
460 /* Check the previous node page having this index */
461 err = check_index_in_prev_nodes(sbi, dest, &dn);
462 if (err) {
463 if (err == -ENOMEM) {
464 congestion_wait(BLK_RW_ASYNC, HZ/50);
465 goto retry_prev;
466 }
467 goto err;
468 }
469
470 /* write dummy data page */
471 f2fs_replace_block(sbi, &dn, src, dest,
472 ni.version, false, false);
473 recovered++;
474 }
475 }
476
477 copy_node_footer(dn.node_page, page);
478 fill_node_footer(dn.node_page, dn.nid, ni.ino,
479 ofs_of_node(page), false);
480 set_page_dirty(dn.node_page);
481 err:
482 f2fs_put_dnode(&dn);
483 out:
484 f2fs_msg(sbi->sb, KERN_NOTICE,
485 "recover_data: ino = %lx (i_size: %s) recovered = %d, err = %d",
486 inode->i_ino,
487 file_keep_isize(inode) ? "keep" : "recover",
488 recovered, err);
489 return err;
490 }
491
492 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *inode_list,
493 struct list_head *dir_list)
494 {
495 struct curseg_info *curseg;
496 struct page *page = NULL;
497 int err = 0;
498 block_t blkaddr;
499
500 /* get node pages in the current segment */
501 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
502 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
503
504 while (1) {
505 struct fsync_inode_entry *entry;
506
507 if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
508 break;
509
510 ra_meta_pages_cond(sbi, blkaddr);
511
512 page = get_tmp_page(sbi, blkaddr);
513
514 if (!is_recoverable_dnode(page)) {
515 f2fs_put_page(page, 1);
516 break;
517 }
518
519 entry = get_fsync_inode(inode_list, ino_of_node(page));
520 if (!entry)
521 goto next;
522 /*
523 * inode(x) | CP | inode(x) | dnode(F)
524 * In this case, we can lose the latest inode(x).
525 * So, call recover_inode for the inode update.
526 */
527 if (IS_INODE(page))
528 recover_inode(entry->inode, page);
529 if (entry->last_dentry == blkaddr) {
530 err = recover_dentry(entry->inode, page, dir_list);
531 if (err) {
532 f2fs_put_page(page, 1);
533 break;
534 }
535 }
536 err = do_recover_data(sbi, entry->inode, page, blkaddr);
537 if (err) {
538 f2fs_put_page(page, 1);
539 break;
540 }
541
542 if (entry->blkaddr == blkaddr)
543 del_fsync_inode(entry);
544 next:
545 /* check next segment */
546 blkaddr = next_blkaddr_of_node(page);
547 f2fs_put_page(page, 1);
548 }
549 if (!err)
550 allocate_new_segments(sbi);
551 return err;
552 }
553
554 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only)
555 {
556 struct list_head inode_list;
557 struct list_head dir_list;
558 int err;
559 int ret = 0;
560 bool need_writecp = false;
561
562 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
563 sizeof(struct fsync_inode_entry));
564 if (!fsync_entry_slab)
565 return -ENOMEM;
566
567 INIT_LIST_HEAD(&inode_list);
568 INIT_LIST_HEAD(&dir_list);
569
570 /* prevent checkpoint */
571 mutex_lock(&sbi->cp_mutex);
572
573 /* step #1: find fsynced inode numbers */
574 err = find_fsync_dnodes(sbi, &inode_list, check_only);
575 if (err || list_empty(&inode_list))
576 goto out;
577
578 if (check_only) {
579 ret = 1;
580 goto out;
581 }
582
583 need_writecp = true;
584
585 /* step #2: recover data */
586 err = recover_data(sbi, &inode_list, &dir_list);
587 if (!err)
588 f2fs_bug_on(sbi, !list_empty(&inode_list));
589 out:
590 destroy_fsync_dnodes(&inode_list);
591
592 /* truncate meta pages to be used by the recovery */
593 truncate_inode_pages_range(META_MAPPING(sbi),
594 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
595
596 if (err) {
597 truncate_inode_pages_final(NODE_MAPPING(sbi));
598 truncate_inode_pages_final(META_MAPPING(sbi));
599 }
600
601 clear_sbi_flag(sbi, SBI_POR_DOING);
602 if (err)
603 set_ckpt_flags(sbi, CP_ERROR_FLAG);
604 mutex_unlock(&sbi->cp_mutex);
605
606 /* let's drop all the directory inodes for clean checkpoint */
607 destroy_fsync_dnodes(&dir_list);
608
609 if (!err && need_writecp) {
610 struct cp_control cpc = {
611 .reason = CP_RECOVERY,
612 };
613 err = write_checkpoint(sbi, &cpc);
614 }
615
616 kmem_cache_destroy(fsync_entry_slab);
617 return ret ? ret: err;
618 }