]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/segment.c
f2fs: avoid infinite GC loop due to stale atomic files
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213 {
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC, HZ/50);
249 cond_resched();
250 goto retry;
251 }
252 err = -EAGAIN;
253 goto next;
254 }
255
256 err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 if (err) {
258 f2fs_put_dnode(&dn);
259 return err;
260 }
261
262 if (cur->old_addr == NEW_ADDR) {
263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 } else
266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 cur->old_addr, ni.version, true, true);
268 f2fs_put_dnode(&dn);
269 }
270 next:
271 /* we don't need to invalidate this in the sccessful status */
272 if (drop || recover) {
273 ClearPageUptodate(page);
274 clear_cold_data(page);
275 }
276 f2fs_clear_page_private(page);
277 f2fs_put_page(page, 1);
278
279 list_del(&cur->list);
280 kmem_cache_free(inmem_entry_slab, cur);
281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282 }
283 return err;
284 }
285
286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287 {
288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289 struct inode *inode;
290 struct f2fs_inode_info *fi;
291 next:
292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
293 if (list_empty(head)) {
294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295 return;
296 }
297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
298 inode = igrab(&fi->vfs_inode);
299 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
300
301 if (inode) {
302 if (gc_failure) {
303 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
304 goto drop;
305 goto skip;
306 }
307 drop:
308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
309 f2fs_drop_inmem_pages(inode);
310 iput(inode);
311 }
312 skip:
313 congestion_wait(BLK_RW_ASYNC, HZ/50);
314 cond_resched();
315 goto next;
316 }
317
318 void f2fs_drop_inmem_pages(struct inode *inode)
319 {
320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
321 struct f2fs_inode_info *fi = F2FS_I(inode);
322
323 while (!list_empty(&fi->inmem_pages)) {
324 mutex_lock(&fi->inmem_lock);
325 __revoke_inmem_pages(inode, &fi->inmem_pages,
326 true, false, true);
327 mutex_unlock(&fi->inmem_lock);
328 }
329
330 clear_inode_flag(inode, FI_ATOMIC_FILE);
331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332 stat_dec_atomic_write(inode);
333
334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335 if (!list_empty(&fi->inmem_ilist))
336 list_del_init(&fi->inmem_ilist);
337 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
338 }
339
340 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
341 {
342 struct f2fs_inode_info *fi = F2FS_I(inode);
343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
344 struct list_head *head = &fi->inmem_pages;
345 struct inmem_pages *cur = NULL;
346
347 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
348
349 mutex_lock(&fi->inmem_lock);
350 list_for_each_entry(cur, head, list) {
351 if (cur->page == page)
352 break;
353 }
354
355 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
356 list_del(&cur->list);
357 mutex_unlock(&fi->inmem_lock);
358
359 dec_page_count(sbi, F2FS_INMEM_PAGES);
360 kmem_cache_free(inmem_entry_slab, cur);
361
362 ClearPageUptodate(page);
363 f2fs_clear_page_private(page);
364 f2fs_put_page(page, 0);
365
366 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
367 }
368
369 static int __f2fs_commit_inmem_pages(struct inode *inode)
370 {
371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
372 struct f2fs_inode_info *fi = F2FS_I(inode);
373 struct inmem_pages *cur, *tmp;
374 struct f2fs_io_info fio = {
375 .sbi = sbi,
376 .ino = inode->i_ino,
377 .type = DATA,
378 .op = REQ_OP_WRITE,
379 .op_flags = REQ_SYNC | REQ_PRIO,
380 .io_type = FS_DATA_IO,
381 };
382 struct list_head revoke_list;
383 bool submit_bio = false;
384 int err = 0;
385
386 INIT_LIST_HEAD(&revoke_list);
387
388 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
389 struct page *page = cur->page;
390
391 lock_page(page);
392 if (page->mapping == inode->i_mapping) {
393 trace_f2fs_commit_inmem_page(page, INMEM);
394
395 f2fs_wait_on_page_writeback(page, DATA, true, true);
396
397 set_page_dirty(page);
398 if (clear_page_dirty_for_io(page)) {
399 inode_dec_dirty_pages(inode);
400 f2fs_remove_dirty_inode(inode);
401 }
402 retry:
403 fio.page = page;
404 fio.old_blkaddr = NULL_ADDR;
405 fio.encrypted_page = NULL;
406 fio.need_lock = LOCK_DONE;
407 err = f2fs_do_write_data_page(&fio);
408 if (err) {
409 if (err == -ENOMEM) {
410 congestion_wait(BLK_RW_ASYNC, HZ/50);
411 cond_resched();
412 goto retry;
413 }
414 unlock_page(page);
415 break;
416 }
417 /* record old blkaddr for revoking */
418 cur->old_addr = fio.old_blkaddr;
419 submit_bio = true;
420 }
421 unlock_page(page);
422 list_move_tail(&cur->list, &revoke_list);
423 }
424
425 if (submit_bio)
426 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
427
428 if (err) {
429 /*
430 * try to revoke all committed pages, but still we could fail
431 * due to no memory or other reason, if that happened, EAGAIN
432 * will be returned, which means in such case, transaction is
433 * already not integrity, caller should use journal to do the
434 * recovery or rewrite & commit last transaction. For other
435 * error number, revoking was done by filesystem itself.
436 */
437 err = __revoke_inmem_pages(inode, &revoke_list,
438 false, true, false);
439
440 /* drop all uncommitted pages */
441 __revoke_inmem_pages(inode, &fi->inmem_pages,
442 true, false, false);
443 } else {
444 __revoke_inmem_pages(inode, &revoke_list,
445 false, false, false);
446 }
447
448 return err;
449 }
450
451 int f2fs_commit_inmem_pages(struct inode *inode)
452 {
453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
454 struct f2fs_inode_info *fi = F2FS_I(inode);
455 int err;
456
457 f2fs_balance_fs(sbi, true);
458
459 down_write(&fi->i_gc_rwsem[WRITE]);
460
461 f2fs_lock_op(sbi);
462 set_inode_flag(inode, FI_ATOMIC_COMMIT);
463
464 mutex_lock(&fi->inmem_lock);
465 err = __f2fs_commit_inmem_pages(inode);
466 mutex_unlock(&fi->inmem_lock);
467
468 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
469
470 f2fs_unlock_op(sbi);
471 up_write(&fi->i_gc_rwsem[WRITE]);
472
473 return err;
474 }
475
476 /*
477 * This function balances dirty node and dentry pages.
478 * In addition, it controls garbage collection.
479 */
480 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
481 {
482 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
483 f2fs_show_injection_info(FAULT_CHECKPOINT);
484 f2fs_stop_checkpoint(sbi, false);
485 }
486
487 /* balance_fs_bg is able to be pending */
488 if (need && excess_cached_nats(sbi))
489 f2fs_balance_fs_bg(sbi);
490
491 if (!f2fs_is_checkpoint_ready(sbi))
492 return;
493
494 /*
495 * We should do GC or end up with checkpoint, if there are so many dirty
496 * dir/node pages without enough free segments.
497 */
498 if (has_not_enough_free_secs(sbi, 0, 0)) {
499 mutex_lock(&sbi->gc_mutex);
500 f2fs_gc(sbi, false, false, NULL_SEGNO);
501 }
502 }
503
504 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
505 {
506 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
507 return;
508
509 /* try to shrink extent cache when there is no enough memory */
510 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
511 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
512
513 /* check the # of cached NAT entries */
514 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
515 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
516
517 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
518 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
519 else
520 f2fs_build_free_nids(sbi, false, false);
521
522 if (!is_idle(sbi, REQ_TIME) &&
523 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
524 return;
525
526 /* checkpoint is the only way to shrink partial cached entries */
527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
528 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
529 excess_prefree_segs(sbi) ||
530 excess_dirty_nats(sbi) ||
531 excess_dirty_nodes(sbi) ||
532 f2fs_time_over(sbi, CP_TIME)) {
533 if (test_opt(sbi, DATA_FLUSH)) {
534 struct blk_plug plug;
535
536 mutex_lock(&sbi->flush_lock);
537
538 blk_start_plug(&plug);
539 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
540 blk_finish_plug(&plug);
541
542 mutex_unlock(&sbi->flush_lock);
543 }
544 f2fs_sync_fs(sbi->sb, true);
545 stat_inc_bg_cp_count(sbi->stat_info);
546 }
547 }
548
549 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
550 struct block_device *bdev)
551 {
552 struct bio *bio;
553 int ret;
554
555 bio = f2fs_bio_alloc(sbi, 0, false);
556 if (!bio)
557 return -ENOMEM;
558
559 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
560 bio_set_dev(bio, bdev);
561 ret = submit_bio_wait(bio);
562 bio_put(bio);
563
564 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
565 test_opt(sbi, FLUSH_MERGE), ret);
566 return ret;
567 }
568
569 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
570 {
571 int ret = 0;
572 int i;
573
574 if (!f2fs_is_multi_device(sbi))
575 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
576
577 for (i = 0; i < sbi->s_ndevs; i++) {
578 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
579 continue;
580 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
581 if (ret)
582 break;
583 }
584 return ret;
585 }
586
587 static int issue_flush_thread(void *data)
588 {
589 struct f2fs_sb_info *sbi = data;
590 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
591 wait_queue_head_t *q = &fcc->flush_wait_queue;
592 repeat:
593 if (kthread_should_stop())
594 return 0;
595
596 sb_start_intwrite(sbi->sb);
597
598 if (!llist_empty(&fcc->issue_list)) {
599 struct flush_cmd *cmd, *next;
600 int ret;
601
602 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
603 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
604
605 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
606
607 ret = submit_flush_wait(sbi, cmd->ino);
608 atomic_inc(&fcc->issued_flush);
609
610 llist_for_each_entry_safe(cmd, next,
611 fcc->dispatch_list, llnode) {
612 cmd->ret = ret;
613 complete(&cmd->wait);
614 }
615 fcc->dispatch_list = NULL;
616 }
617
618 sb_end_intwrite(sbi->sb);
619
620 wait_event_interruptible(*q,
621 kthread_should_stop() || !llist_empty(&fcc->issue_list));
622 goto repeat;
623 }
624
625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
626 {
627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
628 struct flush_cmd cmd;
629 int ret;
630
631 if (test_opt(sbi, NOBARRIER))
632 return 0;
633
634 if (!test_opt(sbi, FLUSH_MERGE)) {
635 atomic_inc(&fcc->queued_flush);
636 ret = submit_flush_wait(sbi, ino);
637 atomic_dec(&fcc->queued_flush);
638 atomic_inc(&fcc->issued_flush);
639 return ret;
640 }
641
642 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
643 f2fs_is_multi_device(sbi)) {
644 ret = submit_flush_wait(sbi, ino);
645 atomic_dec(&fcc->queued_flush);
646
647 atomic_inc(&fcc->issued_flush);
648 return ret;
649 }
650
651 cmd.ino = ino;
652 init_completion(&cmd.wait);
653
654 llist_add(&cmd.llnode, &fcc->issue_list);
655
656 /* update issue_list before we wake up issue_flush thread */
657 smp_mb();
658
659 if (waitqueue_active(&fcc->flush_wait_queue))
660 wake_up(&fcc->flush_wait_queue);
661
662 if (fcc->f2fs_issue_flush) {
663 wait_for_completion(&cmd.wait);
664 atomic_dec(&fcc->queued_flush);
665 } else {
666 struct llist_node *list;
667
668 list = llist_del_all(&fcc->issue_list);
669 if (!list) {
670 wait_for_completion(&cmd.wait);
671 atomic_dec(&fcc->queued_flush);
672 } else {
673 struct flush_cmd *tmp, *next;
674
675 ret = submit_flush_wait(sbi, ino);
676
677 llist_for_each_entry_safe(tmp, next, list, llnode) {
678 if (tmp == &cmd) {
679 cmd.ret = ret;
680 atomic_dec(&fcc->queued_flush);
681 continue;
682 }
683 tmp->ret = ret;
684 complete(&tmp->wait);
685 }
686 }
687 }
688
689 return cmd.ret;
690 }
691
692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
693 {
694 dev_t dev = sbi->sb->s_bdev->bd_dev;
695 struct flush_cmd_control *fcc;
696 int err = 0;
697
698 if (SM_I(sbi)->fcc_info) {
699 fcc = SM_I(sbi)->fcc_info;
700 if (fcc->f2fs_issue_flush)
701 return err;
702 goto init_thread;
703 }
704
705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
706 if (!fcc)
707 return -ENOMEM;
708 atomic_set(&fcc->issued_flush, 0);
709 atomic_set(&fcc->queued_flush, 0);
710 init_waitqueue_head(&fcc->flush_wait_queue);
711 init_llist_head(&fcc->issue_list);
712 SM_I(sbi)->fcc_info = fcc;
713 if (!test_opt(sbi, FLUSH_MERGE))
714 return err;
715
716 init_thread:
717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
719 if (IS_ERR(fcc->f2fs_issue_flush)) {
720 err = PTR_ERR(fcc->f2fs_issue_flush);
721 kvfree(fcc);
722 SM_I(sbi)->fcc_info = NULL;
723 return err;
724 }
725
726 return err;
727 }
728
729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
730 {
731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
732
733 if (fcc && fcc->f2fs_issue_flush) {
734 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
735
736 fcc->f2fs_issue_flush = NULL;
737 kthread_stop(flush_thread);
738 }
739 if (free) {
740 kvfree(fcc);
741 SM_I(sbi)->fcc_info = NULL;
742 }
743 }
744
745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
746 {
747 int ret = 0, i;
748
749 if (!f2fs_is_multi_device(sbi))
750 return 0;
751
752 for (i = 1; i < sbi->s_ndevs; i++) {
753 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
754 continue;
755 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
756 if (ret)
757 break;
758
759 spin_lock(&sbi->dev_lock);
760 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
761 spin_unlock(&sbi->dev_lock);
762 }
763
764 return ret;
765 }
766
767 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
768 enum dirty_type dirty_type)
769 {
770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
771
772 /* need not be added */
773 if (IS_CURSEG(sbi, segno))
774 return;
775
776 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
777 dirty_i->nr_dirty[dirty_type]++;
778
779 if (dirty_type == DIRTY) {
780 struct seg_entry *sentry = get_seg_entry(sbi, segno);
781 enum dirty_type t = sentry->type;
782
783 if (unlikely(t >= DIRTY)) {
784 f2fs_bug_on(sbi, 1);
785 return;
786 }
787 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
788 dirty_i->nr_dirty[t]++;
789 }
790 }
791
792 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
793 enum dirty_type dirty_type)
794 {
795 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
796
797 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
798 dirty_i->nr_dirty[dirty_type]--;
799
800 if (dirty_type == DIRTY) {
801 struct seg_entry *sentry = get_seg_entry(sbi, segno);
802 enum dirty_type t = sentry->type;
803
804 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
805 dirty_i->nr_dirty[t]--;
806
807 if (get_valid_blocks(sbi, segno, true) == 0) {
808 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
809 dirty_i->victim_secmap);
810 #ifdef CONFIG_F2FS_CHECK_FS
811 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
812 #endif
813 }
814 }
815 }
816
817 /*
818 * Should not occur error such as -ENOMEM.
819 * Adding dirty entry into seglist is not critical operation.
820 * If a given segment is one of current working segments, it won't be added.
821 */
822 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
823 {
824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825 unsigned short valid_blocks, ckpt_valid_blocks;
826
827 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
828 return;
829
830 mutex_lock(&dirty_i->seglist_lock);
831
832 valid_blocks = get_valid_blocks(sbi, segno, false);
833 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
834
835 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
836 ckpt_valid_blocks == sbi->blocks_per_seg)) {
837 __locate_dirty_segment(sbi, segno, PRE);
838 __remove_dirty_segment(sbi, segno, DIRTY);
839 } else if (valid_blocks < sbi->blocks_per_seg) {
840 __locate_dirty_segment(sbi, segno, DIRTY);
841 } else {
842 /* Recovery routine with SSR needs this */
843 __remove_dirty_segment(sbi, segno, DIRTY);
844 }
845
846 mutex_unlock(&dirty_i->seglist_lock);
847 }
848
849 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
850 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
851 {
852 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
853 unsigned int segno;
854
855 mutex_lock(&dirty_i->seglist_lock);
856 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
857 if (get_valid_blocks(sbi, segno, false))
858 continue;
859 if (IS_CURSEG(sbi, segno))
860 continue;
861 __locate_dirty_segment(sbi, segno, PRE);
862 __remove_dirty_segment(sbi, segno, DIRTY);
863 }
864 mutex_unlock(&dirty_i->seglist_lock);
865 }
866
867 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
868 {
869 int ovp_hole_segs =
870 (overprovision_segments(sbi) - reserved_segments(sbi));
871 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
872 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
873 block_t holes[2] = {0, 0}; /* DATA and NODE */
874 block_t unusable;
875 struct seg_entry *se;
876 unsigned int segno;
877
878 mutex_lock(&dirty_i->seglist_lock);
879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
880 se = get_seg_entry(sbi, segno);
881 if (IS_NODESEG(se->type))
882 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
883 else
884 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
885 }
886 mutex_unlock(&dirty_i->seglist_lock);
887
888 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
889 if (unusable > ovp_holes)
890 return unusable - ovp_holes;
891 return 0;
892 }
893
894 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
895 {
896 int ovp_hole_segs =
897 (overprovision_segments(sbi) - reserved_segments(sbi));
898 if (unusable > F2FS_OPTION(sbi).unusable_cap)
899 return -EAGAIN;
900 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
901 dirty_segments(sbi) > ovp_hole_segs)
902 return -EAGAIN;
903 return 0;
904 }
905
906 /* This is only used by SBI_CP_DISABLED */
907 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
908 {
909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
910 unsigned int segno = 0;
911
912 mutex_lock(&dirty_i->seglist_lock);
913 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
914 if (get_valid_blocks(sbi, segno, false))
915 continue;
916 if (get_ckpt_valid_blocks(sbi, segno))
917 continue;
918 mutex_unlock(&dirty_i->seglist_lock);
919 return segno;
920 }
921 mutex_unlock(&dirty_i->seglist_lock);
922 return NULL_SEGNO;
923 }
924
925 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
926 struct block_device *bdev, block_t lstart,
927 block_t start, block_t len)
928 {
929 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
930 struct list_head *pend_list;
931 struct discard_cmd *dc;
932
933 f2fs_bug_on(sbi, !len);
934
935 pend_list = &dcc->pend_list[plist_idx(len)];
936
937 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
938 INIT_LIST_HEAD(&dc->list);
939 dc->bdev = bdev;
940 dc->lstart = lstart;
941 dc->start = start;
942 dc->len = len;
943 dc->ref = 0;
944 dc->state = D_PREP;
945 dc->queued = 0;
946 dc->error = 0;
947 init_completion(&dc->wait);
948 list_add_tail(&dc->list, pend_list);
949 spin_lock_init(&dc->lock);
950 dc->bio_ref = 0;
951 atomic_inc(&dcc->discard_cmd_cnt);
952 dcc->undiscard_blks += len;
953
954 return dc;
955 }
956
957 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
958 struct block_device *bdev, block_t lstart,
959 block_t start, block_t len,
960 struct rb_node *parent, struct rb_node **p,
961 bool leftmost)
962 {
963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 struct discard_cmd *dc;
965
966 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
967
968 rb_link_node(&dc->rb_node, parent, p);
969 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
970
971 return dc;
972 }
973
974 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
975 struct discard_cmd *dc)
976 {
977 if (dc->state == D_DONE)
978 atomic_sub(dc->queued, &dcc->queued_discard);
979
980 list_del(&dc->list);
981 rb_erase_cached(&dc->rb_node, &dcc->root);
982 dcc->undiscard_blks -= dc->len;
983
984 kmem_cache_free(discard_cmd_slab, dc);
985
986 atomic_dec(&dcc->discard_cmd_cnt);
987 }
988
989 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
990 struct discard_cmd *dc)
991 {
992 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
993 unsigned long flags;
994
995 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
996
997 spin_lock_irqsave(&dc->lock, flags);
998 if (dc->bio_ref) {
999 spin_unlock_irqrestore(&dc->lock, flags);
1000 return;
1001 }
1002 spin_unlock_irqrestore(&dc->lock, flags);
1003
1004 f2fs_bug_on(sbi, dc->ref);
1005
1006 if (dc->error == -EOPNOTSUPP)
1007 dc->error = 0;
1008
1009 if (dc->error)
1010 printk_ratelimited(
1011 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1012 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1013 __detach_discard_cmd(dcc, dc);
1014 }
1015
1016 static void f2fs_submit_discard_endio(struct bio *bio)
1017 {
1018 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1019 unsigned long flags;
1020
1021 dc->error = blk_status_to_errno(bio->bi_status);
1022
1023 spin_lock_irqsave(&dc->lock, flags);
1024 dc->bio_ref--;
1025 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1026 dc->state = D_DONE;
1027 complete_all(&dc->wait);
1028 }
1029 spin_unlock_irqrestore(&dc->lock, flags);
1030 bio_put(bio);
1031 }
1032
1033 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1034 block_t start, block_t end)
1035 {
1036 #ifdef CONFIG_F2FS_CHECK_FS
1037 struct seg_entry *sentry;
1038 unsigned int segno;
1039 block_t blk = start;
1040 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1041 unsigned long *map;
1042
1043 while (blk < end) {
1044 segno = GET_SEGNO(sbi, blk);
1045 sentry = get_seg_entry(sbi, segno);
1046 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1047
1048 if (end < START_BLOCK(sbi, segno + 1))
1049 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1050 else
1051 size = max_blocks;
1052 map = (unsigned long *)(sentry->cur_valid_map);
1053 offset = __find_rev_next_bit(map, size, offset);
1054 f2fs_bug_on(sbi, offset != size);
1055 blk = START_BLOCK(sbi, segno + 1);
1056 }
1057 #endif
1058 }
1059
1060 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1061 struct discard_policy *dpolicy,
1062 int discard_type, unsigned int granularity)
1063 {
1064 /* common policy */
1065 dpolicy->type = discard_type;
1066 dpolicy->sync = true;
1067 dpolicy->ordered = false;
1068 dpolicy->granularity = granularity;
1069
1070 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1071 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1072 dpolicy->timeout = 0;
1073
1074 if (discard_type == DPOLICY_BG) {
1075 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1077 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1078 dpolicy->io_aware = true;
1079 dpolicy->sync = false;
1080 dpolicy->ordered = true;
1081 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1082 dpolicy->granularity = 1;
1083 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1084 }
1085 } else if (discard_type == DPOLICY_FORCE) {
1086 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089 dpolicy->io_aware = false;
1090 } else if (discard_type == DPOLICY_FSTRIM) {
1091 dpolicy->io_aware = false;
1092 } else if (discard_type == DPOLICY_UMOUNT) {
1093 dpolicy->max_requests = UINT_MAX;
1094 dpolicy->io_aware = false;
1095 /* we need to issue all to keep CP_TRIMMED_FLAG */
1096 dpolicy->granularity = 1;
1097 }
1098 }
1099
1100 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1101 struct block_device *bdev, block_t lstart,
1102 block_t start, block_t len);
1103 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1104 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1105 struct discard_policy *dpolicy,
1106 struct discard_cmd *dc,
1107 unsigned int *issued)
1108 {
1109 struct block_device *bdev = dc->bdev;
1110 struct request_queue *q = bdev_get_queue(bdev);
1111 unsigned int max_discard_blocks =
1112 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1113 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1114 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1115 &(dcc->fstrim_list) : &(dcc->wait_list);
1116 int flag = dpolicy->sync ? REQ_SYNC : 0;
1117 block_t lstart, start, len, total_len;
1118 int err = 0;
1119
1120 if (dc->state != D_PREP)
1121 return 0;
1122
1123 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1124 return 0;
1125
1126 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1127
1128 lstart = dc->lstart;
1129 start = dc->start;
1130 len = dc->len;
1131 total_len = len;
1132
1133 dc->len = 0;
1134
1135 while (total_len && *issued < dpolicy->max_requests && !err) {
1136 struct bio *bio = NULL;
1137 unsigned long flags;
1138 bool last = true;
1139
1140 if (len > max_discard_blocks) {
1141 len = max_discard_blocks;
1142 last = false;
1143 }
1144
1145 (*issued)++;
1146 if (*issued == dpolicy->max_requests)
1147 last = true;
1148
1149 dc->len += len;
1150
1151 if (time_to_inject(sbi, FAULT_DISCARD)) {
1152 f2fs_show_injection_info(FAULT_DISCARD);
1153 err = -EIO;
1154 goto submit;
1155 }
1156 err = __blkdev_issue_discard(bdev,
1157 SECTOR_FROM_BLOCK(start),
1158 SECTOR_FROM_BLOCK(len),
1159 GFP_NOFS, 0, &bio);
1160 submit:
1161 if (err) {
1162 spin_lock_irqsave(&dc->lock, flags);
1163 if (dc->state == D_PARTIAL)
1164 dc->state = D_SUBMIT;
1165 spin_unlock_irqrestore(&dc->lock, flags);
1166
1167 break;
1168 }
1169
1170 f2fs_bug_on(sbi, !bio);
1171
1172 /*
1173 * should keep before submission to avoid D_DONE
1174 * right away
1175 */
1176 spin_lock_irqsave(&dc->lock, flags);
1177 if (last)
1178 dc->state = D_SUBMIT;
1179 else
1180 dc->state = D_PARTIAL;
1181 dc->bio_ref++;
1182 spin_unlock_irqrestore(&dc->lock, flags);
1183
1184 atomic_inc(&dcc->queued_discard);
1185 dc->queued++;
1186 list_move_tail(&dc->list, wait_list);
1187
1188 /* sanity check on discard range */
1189 __check_sit_bitmap(sbi, lstart, lstart + len);
1190
1191 bio->bi_private = dc;
1192 bio->bi_end_io = f2fs_submit_discard_endio;
1193 bio->bi_opf |= flag;
1194 submit_bio(bio);
1195
1196 atomic_inc(&dcc->issued_discard);
1197
1198 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1199
1200 lstart += len;
1201 start += len;
1202 total_len -= len;
1203 len = total_len;
1204 }
1205
1206 if (!err && len)
1207 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1208 return err;
1209 }
1210
1211 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1212 struct block_device *bdev, block_t lstart,
1213 block_t start, block_t len,
1214 struct rb_node **insert_p,
1215 struct rb_node *insert_parent)
1216 {
1217 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218 struct rb_node **p;
1219 struct rb_node *parent = NULL;
1220 struct discard_cmd *dc = NULL;
1221 bool leftmost = true;
1222
1223 if (insert_p && insert_parent) {
1224 parent = insert_parent;
1225 p = insert_p;
1226 goto do_insert;
1227 }
1228
1229 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1230 lstart, &leftmost);
1231 do_insert:
1232 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1233 p, leftmost);
1234 if (!dc)
1235 return NULL;
1236
1237 return dc;
1238 }
1239
1240 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1241 struct discard_cmd *dc)
1242 {
1243 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1244 }
1245
1246 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1247 struct discard_cmd *dc, block_t blkaddr)
1248 {
1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250 struct discard_info di = dc->di;
1251 bool modified = false;
1252
1253 if (dc->state == D_DONE || dc->len == 1) {
1254 __remove_discard_cmd(sbi, dc);
1255 return;
1256 }
1257
1258 dcc->undiscard_blks -= di.len;
1259
1260 if (blkaddr > di.lstart) {
1261 dc->len = blkaddr - dc->lstart;
1262 dcc->undiscard_blks += dc->len;
1263 __relocate_discard_cmd(dcc, dc);
1264 modified = true;
1265 }
1266
1267 if (blkaddr < di.lstart + di.len - 1) {
1268 if (modified) {
1269 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1270 di.start + blkaddr + 1 - di.lstart,
1271 di.lstart + di.len - 1 - blkaddr,
1272 NULL, NULL);
1273 } else {
1274 dc->lstart++;
1275 dc->len--;
1276 dc->start++;
1277 dcc->undiscard_blks += dc->len;
1278 __relocate_discard_cmd(dcc, dc);
1279 }
1280 }
1281 }
1282
1283 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1284 struct block_device *bdev, block_t lstart,
1285 block_t start, block_t len)
1286 {
1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289 struct discard_cmd *dc;
1290 struct discard_info di = {0};
1291 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1292 struct request_queue *q = bdev_get_queue(bdev);
1293 unsigned int max_discard_blocks =
1294 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1295 block_t end = lstart + len;
1296
1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298 NULL, lstart,
1299 (struct rb_entry **)&prev_dc,
1300 (struct rb_entry **)&next_dc,
1301 &insert_p, &insert_parent, true, NULL);
1302 if (dc)
1303 prev_dc = dc;
1304
1305 if (!prev_dc) {
1306 di.lstart = lstart;
1307 di.len = next_dc ? next_dc->lstart - lstart : len;
1308 di.len = min(di.len, len);
1309 di.start = start;
1310 }
1311
1312 while (1) {
1313 struct rb_node *node;
1314 bool merged = false;
1315 struct discard_cmd *tdc = NULL;
1316
1317 if (prev_dc) {
1318 di.lstart = prev_dc->lstart + prev_dc->len;
1319 if (di.lstart < lstart)
1320 di.lstart = lstart;
1321 if (di.lstart >= end)
1322 break;
1323
1324 if (!next_dc || next_dc->lstart > end)
1325 di.len = end - di.lstart;
1326 else
1327 di.len = next_dc->lstart - di.lstart;
1328 di.start = start + di.lstart - lstart;
1329 }
1330
1331 if (!di.len)
1332 goto next;
1333
1334 if (prev_dc && prev_dc->state == D_PREP &&
1335 prev_dc->bdev == bdev &&
1336 __is_discard_back_mergeable(&di, &prev_dc->di,
1337 max_discard_blocks)) {
1338 prev_dc->di.len += di.len;
1339 dcc->undiscard_blks += di.len;
1340 __relocate_discard_cmd(dcc, prev_dc);
1341 di = prev_dc->di;
1342 tdc = prev_dc;
1343 merged = true;
1344 }
1345
1346 if (next_dc && next_dc->state == D_PREP &&
1347 next_dc->bdev == bdev &&
1348 __is_discard_front_mergeable(&di, &next_dc->di,
1349 max_discard_blocks)) {
1350 next_dc->di.lstart = di.lstart;
1351 next_dc->di.len += di.len;
1352 next_dc->di.start = di.start;
1353 dcc->undiscard_blks += di.len;
1354 __relocate_discard_cmd(dcc, next_dc);
1355 if (tdc)
1356 __remove_discard_cmd(sbi, tdc);
1357 merged = true;
1358 }
1359
1360 if (!merged) {
1361 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1362 di.len, NULL, NULL);
1363 }
1364 next:
1365 prev_dc = next_dc;
1366 if (!prev_dc)
1367 break;
1368
1369 node = rb_next(&prev_dc->rb_node);
1370 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1371 }
1372 }
1373
1374 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1375 struct block_device *bdev, block_t blkstart, block_t blklen)
1376 {
1377 block_t lblkstart = blkstart;
1378
1379 if (!f2fs_bdev_support_discard(bdev))
1380 return 0;
1381
1382 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1383
1384 if (f2fs_is_multi_device(sbi)) {
1385 int devi = f2fs_target_device_index(sbi, blkstart);
1386
1387 blkstart -= FDEV(devi).start_blk;
1388 }
1389 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1390 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1391 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1392 return 0;
1393 }
1394
1395 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1396 struct discard_policy *dpolicy)
1397 {
1398 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1399 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1400 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1401 struct discard_cmd *dc;
1402 struct blk_plug plug;
1403 unsigned int pos = dcc->next_pos;
1404 unsigned int issued = 0;
1405 bool io_interrupted = false;
1406
1407 mutex_lock(&dcc->cmd_lock);
1408 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1409 NULL, pos,
1410 (struct rb_entry **)&prev_dc,
1411 (struct rb_entry **)&next_dc,
1412 &insert_p, &insert_parent, true, NULL);
1413 if (!dc)
1414 dc = next_dc;
1415
1416 blk_start_plug(&plug);
1417
1418 while (dc) {
1419 struct rb_node *node;
1420 int err = 0;
1421
1422 if (dc->state != D_PREP)
1423 goto next;
1424
1425 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1426 io_interrupted = true;
1427 break;
1428 }
1429
1430 dcc->next_pos = dc->lstart + dc->len;
1431 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1432
1433 if (issued >= dpolicy->max_requests)
1434 break;
1435 next:
1436 node = rb_next(&dc->rb_node);
1437 if (err)
1438 __remove_discard_cmd(sbi, dc);
1439 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1440 }
1441
1442 blk_finish_plug(&plug);
1443
1444 if (!dc)
1445 dcc->next_pos = 0;
1446
1447 mutex_unlock(&dcc->cmd_lock);
1448
1449 if (!issued && io_interrupted)
1450 issued = -1;
1451
1452 return issued;
1453 }
1454
1455 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1456 struct discard_policy *dpolicy)
1457 {
1458 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459 struct list_head *pend_list;
1460 struct discard_cmd *dc, *tmp;
1461 struct blk_plug plug;
1462 int i, issued = 0;
1463 bool io_interrupted = false;
1464
1465 if (dpolicy->timeout != 0)
1466 f2fs_update_time(sbi, dpolicy->timeout);
1467
1468 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1469 if (dpolicy->timeout != 0 &&
1470 f2fs_time_over(sbi, dpolicy->timeout))
1471 break;
1472
1473 if (i + 1 < dpolicy->granularity)
1474 break;
1475
1476 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1477 return __issue_discard_cmd_orderly(sbi, dpolicy);
1478
1479 pend_list = &dcc->pend_list[i];
1480
1481 mutex_lock(&dcc->cmd_lock);
1482 if (list_empty(pend_list))
1483 goto next;
1484 if (unlikely(dcc->rbtree_check))
1485 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1486 &dcc->root));
1487 blk_start_plug(&plug);
1488 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1489 f2fs_bug_on(sbi, dc->state != D_PREP);
1490
1491 if (dpolicy->timeout != 0 &&
1492 f2fs_time_over(sbi, dpolicy->timeout))
1493 break;
1494
1495 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1496 !is_idle(sbi, DISCARD_TIME)) {
1497 io_interrupted = true;
1498 break;
1499 }
1500
1501 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1502
1503 if (issued >= dpolicy->max_requests)
1504 break;
1505 }
1506 blk_finish_plug(&plug);
1507 next:
1508 mutex_unlock(&dcc->cmd_lock);
1509
1510 if (issued >= dpolicy->max_requests || io_interrupted)
1511 break;
1512 }
1513
1514 if (!issued && io_interrupted)
1515 issued = -1;
1516
1517 return issued;
1518 }
1519
1520 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521 {
1522 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523 struct list_head *pend_list;
1524 struct discard_cmd *dc, *tmp;
1525 int i;
1526 bool dropped = false;
1527
1528 mutex_lock(&dcc->cmd_lock);
1529 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530 pend_list = &dcc->pend_list[i];
1531 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532 f2fs_bug_on(sbi, dc->state != D_PREP);
1533 __remove_discard_cmd(sbi, dc);
1534 dropped = true;
1535 }
1536 }
1537 mutex_unlock(&dcc->cmd_lock);
1538
1539 return dropped;
1540 }
1541
1542 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543 {
1544 __drop_discard_cmd(sbi);
1545 }
1546
1547 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548 struct discard_cmd *dc)
1549 {
1550 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551 unsigned int len = 0;
1552
1553 wait_for_completion_io(&dc->wait);
1554 mutex_lock(&dcc->cmd_lock);
1555 f2fs_bug_on(sbi, dc->state != D_DONE);
1556 dc->ref--;
1557 if (!dc->ref) {
1558 if (!dc->error)
1559 len = dc->len;
1560 __remove_discard_cmd(sbi, dc);
1561 }
1562 mutex_unlock(&dcc->cmd_lock);
1563
1564 return len;
1565 }
1566
1567 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568 struct discard_policy *dpolicy,
1569 block_t start, block_t end)
1570 {
1571 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573 &(dcc->fstrim_list) : &(dcc->wait_list);
1574 struct discard_cmd *dc, *tmp;
1575 bool need_wait;
1576 unsigned int trimmed = 0;
1577
1578 next:
1579 need_wait = false;
1580
1581 mutex_lock(&dcc->cmd_lock);
1582 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1583 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1584 continue;
1585 if (dc->len < dpolicy->granularity)
1586 continue;
1587 if (dc->state == D_DONE && !dc->ref) {
1588 wait_for_completion_io(&dc->wait);
1589 if (!dc->error)
1590 trimmed += dc->len;
1591 __remove_discard_cmd(sbi, dc);
1592 } else {
1593 dc->ref++;
1594 need_wait = true;
1595 break;
1596 }
1597 }
1598 mutex_unlock(&dcc->cmd_lock);
1599
1600 if (need_wait) {
1601 trimmed += __wait_one_discard_bio(sbi, dc);
1602 goto next;
1603 }
1604
1605 return trimmed;
1606 }
1607
1608 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1609 struct discard_policy *dpolicy)
1610 {
1611 struct discard_policy dp;
1612 unsigned int discard_blks;
1613
1614 if (dpolicy)
1615 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1616
1617 /* wait all */
1618 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1619 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1621 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1622
1623 return discard_blks;
1624 }
1625
1626 /* This should be covered by global mutex, &sit_i->sentry_lock */
1627 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1628 {
1629 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630 struct discard_cmd *dc;
1631 bool need_wait = false;
1632
1633 mutex_lock(&dcc->cmd_lock);
1634 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1635 NULL, blkaddr);
1636 if (dc) {
1637 if (dc->state == D_PREP) {
1638 __punch_discard_cmd(sbi, dc, blkaddr);
1639 } else {
1640 dc->ref++;
1641 need_wait = true;
1642 }
1643 }
1644 mutex_unlock(&dcc->cmd_lock);
1645
1646 if (need_wait)
1647 __wait_one_discard_bio(sbi, dc);
1648 }
1649
1650 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1651 {
1652 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1653
1654 if (dcc && dcc->f2fs_issue_discard) {
1655 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1656
1657 dcc->f2fs_issue_discard = NULL;
1658 kthread_stop(discard_thread);
1659 }
1660 }
1661
1662 /* This comes from f2fs_put_super */
1663 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1664 {
1665 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666 struct discard_policy dpolicy;
1667 bool dropped;
1668
1669 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1670 dcc->discard_granularity);
1671 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1672 __issue_discard_cmd(sbi, &dpolicy);
1673 dropped = __drop_discard_cmd(sbi);
1674
1675 /* just to make sure there is no pending discard commands */
1676 __wait_all_discard_cmd(sbi, NULL);
1677
1678 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679 return dropped;
1680 }
1681
1682 static int issue_discard_thread(void *data)
1683 {
1684 struct f2fs_sb_info *sbi = data;
1685 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686 wait_queue_head_t *q = &dcc->discard_wait_queue;
1687 struct discard_policy dpolicy;
1688 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1689 int issued;
1690
1691 set_freezable();
1692
1693 do {
1694 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1695 dcc->discard_granularity);
1696
1697 wait_event_interruptible_timeout(*q,
1698 kthread_should_stop() || freezing(current) ||
1699 dcc->discard_wake,
1700 msecs_to_jiffies(wait_ms));
1701
1702 if (dcc->discard_wake)
1703 dcc->discard_wake = 0;
1704
1705 /* clean up pending candidates before going to sleep */
1706 if (atomic_read(&dcc->queued_discard))
1707 __wait_all_discard_cmd(sbi, NULL);
1708
1709 if (try_to_freeze())
1710 continue;
1711 if (f2fs_readonly(sbi->sb))
1712 continue;
1713 if (kthread_should_stop())
1714 return 0;
1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1716 wait_ms = dpolicy.max_interval;
1717 continue;
1718 }
1719
1720 if (sbi->gc_mode == GC_URGENT)
1721 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1722
1723 sb_start_intwrite(sbi->sb);
1724
1725 issued = __issue_discard_cmd(sbi, &dpolicy);
1726 if (issued > 0) {
1727 __wait_all_discard_cmd(sbi, &dpolicy);
1728 wait_ms = dpolicy.min_interval;
1729 } else if (issued == -1){
1730 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731 if (!wait_ms)
1732 wait_ms = dpolicy.mid_interval;
1733 } else {
1734 wait_ms = dpolicy.max_interval;
1735 }
1736
1737 sb_end_intwrite(sbi->sb);
1738
1739 } while (!kthread_should_stop());
1740 return 0;
1741 }
1742
1743 #ifdef CONFIG_BLK_DEV_ZONED
1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745 struct block_device *bdev, block_t blkstart, block_t blklen)
1746 {
1747 sector_t sector, nr_sects;
1748 block_t lblkstart = blkstart;
1749 int devi = 0;
1750
1751 if (f2fs_is_multi_device(sbi)) {
1752 devi = f2fs_target_device_index(sbi, blkstart);
1753 if (blkstart < FDEV(devi).start_blk ||
1754 blkstart > FDEV(devi).end_blk) {
1755 f2fs_err(sbi, "Invalid block %x", blkstart);
1756 return -EIO;
1757 }
1758 blkstart -= FDEV(devi).start_blk;
1759 }
1760
1761 /* For sequential zones, reset the zone write pointer */
1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763 sector = SECTOR_FROM_BLOCK(blkstart);
1764 nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767 nr_sects != bdev_zone_sectors(bdev)) {
1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770 blkstart, blklen);
1771 return -EIO;
1772 }
1773 trace_f2fs_issue_reset_zone(bdev, blkstart);
1774 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1775 }
1776
1777 /* For conventional zones, use regular discard if supported */
1778 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1779 }
1780 #endif
1781
1782 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1783 struct block_device *bdev, block_t blkstart, block_t blklen)
1784 {
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1787 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1788 #endif
1789 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1790 }
1791
1792 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1793 block_t blkstart, block_t blklen)
1794 {
1795 sector_t start = blkstart, len = 0;
1796 struct block_device *bdev;
1797 struct seg_entry *se;
1798 unsigned int offset;
1799 block_t i;
1800 int err = 0;
1801
1802 bdev = f2fs_target_device(sbi, blkstart, NULL);
1803
1804 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1805 if (i != start) {
1806 struct block_device *bdev2 =
1807 f2fs_target_device(sbi, i, NULL);
1808
1809 if (bdev2 != bdev) {
1810 err = __issue_discard_async(sbi, bdev,
1811 start, len);
1812 if (err)
1813 return err;
1814 bdev = bdev2;
1815 start = i;
1816 len = 0;
1817 }
1818 }
1819
1820 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1821 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1822
1823 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1824 sbi->discard_blks--;
1825 }
1826
1827 if (len)
1828 err = __issue_discard_async(sbi, bdev, start, len);
1829 return err;
1830 }
1831
1832 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833 bool check_only)
1834 {
1835 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836 int max_blocks = sbi->blocks_per_seg;
1837 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840 unsigned long *discard_map = (unsigned long *)se->discard_map;
1841 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842 unsigned int start = 0, end = -1;
1843 bool force = (cpc->reason & CP_DISCARD);
1844 struct discard_entry *de = NULL;
1845 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846 int i;
1847
1848 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1849 return false;
1850
1851 if (!force) {
1852 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1853 SM_I(sbi)->dcc_info->nr_discards >=
1854 SM_I(sbi)->dcc_info->max_discards)
1855 return false;
1856 }
1857
1858 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1859 for (i = 0; i < entries; i++)
1860 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1861 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1862
1863 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1864 SM_I(sbi)->dcc_info->max_discards) {
1865 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1866 if (start >= max_blocks)
1867 break;
1868
1869 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1870 if (force && start && end != max_blocks
1871 && (end - start) < cpc->trim_minlen)
1872 continue;
1873
1874 if (check_only)
1875 return true;
1876
1877 if (!de) {
1878 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1879 GFP_F2FS_ZERO);
1880 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1881 list_add_tail(&de->list, head);
1882 }
1883
1884 for (i = start; i < end; i++)
1885 __set_bit_le(i, (void *)de->discard_map);
1886
1887 SM_I(sbi)->dcc_info->nr_discards += end - start;
1888 }
1889 return false;
1890 }
1891
1892 static void release_discard_addr(struct discard_entry *entry)
1893 {
1894 list_del(&entry->list);
1895 kmem_cache_free(discard_entry_slab, entry);
1896 }
1897
1898 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1899 {
1900 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1901 struct discard_entry *entry, *this;
1902
1903 /* drop caches */
1904 list_for_each_entry_safe(entry, this, head, list)
1905 release_discard_addr(entry);
1906 }
1907
1908 /*
1909 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1910 */
1911 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1912 {
1913 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1914 unsigned int segno;
1915
1916 mutex_lock(&dirty_i->seglist_lock);
1917 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1918 __set_test_and_free(sbi, segno);
1919 mutex_unlock(&dirty_i->seglist_lock);
1920 }
1921
1922 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1923 struct cp_control *cpc)
1924 {
1925 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1926 struct list_head *head = &dcc->entry_list;
1927 struct discard_entry *entry, *this;
1928 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1929 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1930 unsigned int start = 0, end = -1;
1931 unsigned int secno, start_segno;
1932 bool force = (cpc->reason & CP_DISCARD);
1933 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1934
1935 mutex_lock(&dirty_i->seglist_lock);
1936
1937 while (1) {
1938 int i;
1939
1940 if (need_align && end != -1)
1941 end--;
1942 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1943 if (start >= MAIN_SEGS(sbi))
1944 break;
1945 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1946 start + 1);
1947
1948 if (need_align) {
1949 start = rounddown(start, sbi->segs_per_sec);
1950 end = roundup(end, sbi->segs_per_sec);
1951 }
1952
1953 for (i = start; i < end; i++) {
1954 if (test_and_clear_bit(i, prefree_map))
1955 dirty_i->nr_dirty[PRE]--;
1956 }
1957
1958 if (!f2fs_realtime_discard_enable(sbi))
1959 continue;
1960
1961 if (force && start >= cpc->trim_start &&
1962 (end - 1) <= cpc->trim_end)
1963 continue;
1964
1965 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1966 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1967 (end - start) << sbi->log_blocks_per_seg);
1968 continue;
1969 }
1970 next:
1971 secno = GET_SEC_FROM_SEG(sbi, start);
1972 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1973 if (!IS_CURSEC(sbi, secno) &&
1974 !get_valid_blocks(sbi, start, true))
1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1976 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1977
1978 start = start_segno + sbi->segs_per_sec;
1979 if (start < end)
1980 goto next;
1981 else
1982 end = start - 1;
1983 }
1984 mutex_unlock(&dirty_i->seglist_lock);
1985
1986 /* send small discards */
1987 list_for_each_entry_safe(entry, this, head, list) {
1988 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1989 bool is_valid = test_bit_le(0, entry->discard_map);
1990
1991 find_next:
1992 if (is_valid) {
1993 next_pos = find_next_zero_bit_le(entry->discard_map,
1994 sbi->blocks_per_seg, cur_pos);
1995 len = next_pos - cur_pos;
1996
1997 if (f2fs_sb_has_blkzoned(sbi) ||
1998 (force && len < cpc->trim_minlen))
1999 goto skip;
2000
2001 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2002 len);
2003 total_len += len;
2004 } else {
2005 next_pos = find_next_bit_le(entry->discard_map,
2006 sbi->blocks_per_seg, cur_pos);
2007 }
2008 skip:
2009 cur_pos = next_pos;
2010 is_valid = !is_valid;
2011
2012 if (cur_pos < sbi->blocks_per_seg)
2013 goto find_next;
2014
2015 release_discard_addr(entry);
2016 dcc->nr_discards -= total_len;
2017 }
2018
2019 wake_up_discard_thread(sbi, false);
2020 }
2021
2022 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2023 {
2024 dev_t dev = sbi->sb->s_bdev->bd_dev;
2025 struct discard_cmd_control *dcc;
2026 int err = 0, i;
2027
2028 if (SM_I(sbi)->dcc_info) {
2029 dcc = SM_I(sbi)->dcc_info;
2030 goto init_thread;
2031 }
2032
2033 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2034 if (!dcc)
2035 return -ENOMEM;
2036
2037 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2038 INIT_LIST_HEAD(&dcc->entry_list);
2039 for (i = 0; i < MAX_PLIST_NUM; i++)
2040 INIT_LIST_HEAD(&dcc->pend_list[i]);
2041 INIT_LIST_HEAD(&dcc->wait_list);
2042 INIT_LIST_HEAD(&dcc->fstrim_list);
2043 mutex_init(&dcc->cmd_lock);
2044 atomic_set(&dcc->issued_discard, 0);
2045 atomic_set(&dcc->queued_discard, 0);
2046 atomic_set(&dcc->discard_cmd_cnt, 0);
2047 dcc->nr_discards = 0;
2048 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2049 dcc->undiscard_blks = 0;
2050 dcc->next_pos = 0;
2051 dcc->root = RB_ROOT_CACHED;
2052 dcc->rbtree_check = false;
2053
2054 init_waitqueue_head(&dcc->discard_wait_queue);
2055 SM_I(sbi)->dcc_info = dcc;
2056 init_thread:
2057 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059 if (IS_ERR(dcc->f2fs_issue_discard)) {
2060 err = PTR_ERR(dcc->f2fs_issue_discard);
2061 kvfree(dcc);
2062 SM_I(sbi)->dcc_info = NULL;
2063 return err;
2064 }
2065
2066 return err;
2067 }
2068
2069 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2070 {
2071 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2072
2073 if (!dcc)
2074 return;
2075
2076 f2fs_stop_discard_thread(sbi);
2077
2078 /*
2079 * Recovery can cache discard commands, so in error path of
2080 * fill_super(), it needs to give a chance to handle them.
2081 */
2082 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2083 f2fs_issue_discard_timeout(sbi);
2084
2085 kvfree(dcc);
2086 SM_I(sbi)->dcc_info = NULL;
2087 }
2088
2089 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2090 {
2091 struct sit_info *sit_i = SIT_I(sbi);
2092
2093 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2094 sit_i->dirty_sentries++;
2095 return false;
2096 }
2097
2098 return true;
2099 }
2100
2101 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2102 unsigned int segno, int modified)
2103 {
2104 struct seg_entry *se = get_seg_entry(sbi, segno);
2105 se->type = type;
2106 if (modified)
2107 __mark_sit_entry_dirty(sbi, segno);
2108 }
2109
2110 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2111 {
2112 struct seg_entry *se;
2113 unsigned int segno, offset;
2114 long int new_vblocks;
2115 bool exist;
2116 #ifdef CONFIG_F2FS_CHECK_FS
2117 bool mir_exist;
2118 #endif
2119
2120 segno = GET_SEGNO(sbi, blkaddr);
2121
2122 se = get_seg_entry(sbi, segno);
2123 new_vblocks = se->valid_blocks + del;
2124 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2125
2126 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2127 (new_vblocks > sbi->blocks_per_seg)));
2128
2129 se->valid_blocks = new_vblocks;
2130 se->mtime = get_mtime(sbi, false);
2131 if (se->mtime > SIT_I(sbi)->max_mtime)
2132 SIT_I(sbi)->max_mtime = se->mtime;
2133
2134 /* Update valid block bitmap */
2135 if (del > 0) {
2136 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2137 #ifdef CONFIG_F2FS_CHECK_FS
2138 mir_exist = f2fs_test_and_set_bit(offset,
2139 se->cur_valid_map_mir);
2140 if (unlikely(exist != mir_exist)) {
2141 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2142 blkaddr, exist);
2143 f2fs_bug_on(sbi, 1);
2144 }
2145 #endif
2146 if (unlikely(exist)) {
2147 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2148 blkaddr);
2149 f2fs_bug_on(sbi, 1);
2150 se->valid_blocks--;
2151 del = 0;
2152 }
2153
2154 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2155 sbi->discard_blks--;
2156
2157 /*
2158 * SSR should never reuse block which is checkpointed
2159 * or newly invalidated.
2160 */
2161 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163 se->ckpt_valid_blocks++;
2164 }
2165 } else {
2166 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168 mir_exist = f2fs_test_and_clear_bit(offset,
2169 se->cur_valid_map_mir);
2170 if (unlikely(exist != mir_exist)) {
2171 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172 blkaddr, exist);
2173 f2fs_bug_on(sbi, 1);
2174 }
2175 #endif
2176 if (unlikely(!exist)) {
2177 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178 blkaddr);
2179 f2fs_bug_on(sbi, 1);
2180 se->valid_blocks++;
2181 del = 0;
2182 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183 /*
2184 * If checkpoints are off, we must not reuse data that
2185 * was used in the previous checkpoint. If it was used
2186 * before, we must track that to know how much space we
2187 * really have.
2188 */
2189 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190 spin_lock(&sbi->stat_lock);
2191 sbi->unusable_block_count++;
2192 spin_unlock(&sbi->stat_lock);
2193 }
2194 }
2195
2196 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197 sbi->discard_blks++;
2198 }
2199 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200 se->ckpt_valid_blocks += del;
2201
2202 __mark_sit_entry_dirty(sbi, segno);
2203
2204 /* update total number of valid blocks to be written in ckpt area */
2205 SIT_I(sbi)->written_valid_blocks += del;
2206
2207 if (__is_large_section(sbi))
2208 get_sec_entry(sbi, segno)->valid_blocks += del;
2209 }
2210
2211 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212 {
2213 unsigned int segno = GET_SEGNO(sbi, addr);
2214 struct sit_info *sit_i = SIT_I(sbi);
2215
2216 f2fs_bug_on(sbi, addr == NULL_ADDR);
2217 if (addr == NEW_ADDR)
2218 return;
2219
2220 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222 /* add it into sit main buffer */
2223 down_write(&sit_i->sentry_lock);
2224
2225 update_sit_entry(sbi, addr, -1);
2226
2227 /* add it into dirty seglist */
2228 locate_dirty_segment(sbi, segno);
2229
2230 up_write(&sit_i->sentry_lock);
2231 }
2232
2233 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234 {
2235 struct sit_info *sit_i = SIT_I(sbi);
2236 unsigned int segno, offset;
2237 struct seg_entry *se;
2238 bool is_cp = false;
2239
2240 if (!__is_valid_data_blkaddr(blkaddr))
2241 return true;
2242
2243 down_read(&sit_i->sentry_lock);
2244
2245 segno = GET_SEGNO(sbi, blkaddr);
2246 se = get_seg_entry(sbi, segno);
2247 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250 is_cp = true;
2251
2252 up_read(&sit_i->sentry_lock);
2253
2254 return is_cp;
2255 }
2256
2257 /*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261 struct f2fs_summary *sum)
2262 {
2263 struct curseg_info *curseg = CURSEG_I(sbi, type);
2264 void *addr = curseg->sum_blk;
2265 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266 memcpy(addr, sum, sizeof(struct f2fs_summary));
2267 }
2268
2269 /*
2270 * Calculate the number of current summary pages for writing
2271 */
2272 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273 {
2274 int valid_sum_count = 0;
2275 int i, sum_in_page;
2276
2277 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278 if (sbi->ckpt->alloc_type[i] == SSR)
2279 valid_sum_count += sbi->blocks_per_seg;
2280 else {
2281 if (for_ra)
2282 valid_sum_count += le16_to_cpu(
2283 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284 else
2285 valid_sum_count += curseg_blkoff(sbi, i);
2286 }
2287 }
2288
2289 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291 if (valid_sum_count <= sum_in_page)
2292 return 1;
2293 else if ((valid_sum_count - sum_in_page) <=
2294 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295 return 2;
2296 return 3;
2297 }
2298
2299 /*
2300 * Caller should put this summary page
2301 */
2302 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303 {
2304 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305 }
2306
2307 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308 void *src, block_t blk_addr)
2309 {
2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312 memcpy(page_address(page), src, PAGE_SIZE);
2313 set_page_dirty(page);
2314 f2fs_put_page(page, 1);
2315 }
2316
2317 static void write_sum_page(struct f2fs_sb_info *sbi,
2318 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319 {
2320 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321 }
2322
2323 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324 int type, block_t blk_addr)
2325 {
2326 struct curseg_info *curseg = CURSEG_I(sbi, type);
2327 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328 struct f2fs_summary_block *src = curseg->sum_blk;
2329 struct f2fs_summary_block *dst;
2330
2331 dst = (struct f2fs_summary_block *)page_address(page);
2332 memset(dst, 0, PAGE_SIZE);
2333
2334 mutex_lock(&curseg->curseg_mutex);
2335
2336 down_read(&curseg->journal_rwsem);
2337 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338 up_read(&curseg->journal_rwsem);
2339
2340 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343 mutex_unlock(&curseg->curseg_mutex);
2344
2345 set_page_dirty(page);
2346 f2fs_put_page(page, 1);
2347 }
2348
2349 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350 {
2351 struct curseg_info *curseg = CURSEG_I(sbi, type);
2352 unsigned int segno = curseg->segno + 1;
2353 struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356 return !test_bit(segno, free_i->free_segmap);
2357 return 0;
2358 }
2359
2360 /*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364 static void get_new_segment(struct f2fs_sb_info *sbi,
2365 unsigned int *newseg, bool new_sec, int dir)
2366 {
2367 struct free_segmap_info *free_i = FREE_I(sbi);
2368 unsigned int segno, secno, zoneno;
2369 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372 unsigned int left_start = hint;
2373 bool init = true;
2374 int go_left = 0;
2375 int i;
2376
2377 spin_lock(&free_i->segmap_lock);
2378
2379 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380 segno = find_next_zero_bit(free_i->free_segmap,
2381 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383 goto got_it;
2384 }
2385 find_other_zone:
2386 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387 if (secno >= MAIN_SECS(sbi)) {
2388 if (dir == ALLOC_RIGHT) {
2389 secno = find_next_zero_bit(free_i->free_secmap,
2390 MAIN_SECS(sbi), 0);
2391 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392 } else {
2393 go_left = 1;
2394 left_start = hint - 1;
2395 }
2396 }
2397 if (go_left == 0)
2398 goto skip_left;
2399
2400 while (test_bit(left_start, free_i->free_secmap)) {
2401 if (left_start > 0) {
2402 left_start--;
2403 continue;
2404 }
2405 left_start = find_next_zero_bit(free_i->free_secmap,
2406 MAIN_SECS(sbi), 0);
2407 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408 break;
2409 }
2410 secno = left_start;
2411 skip_left:
2412 segno = GET_SEG_FROM_SEC(sbi, secno);
2413 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415 /* give up on finding another zone */
2416 if (!init)
2417 goto got_it;
2418 if (sbi->secs_per_zone == 1)
2419 goto got_it;
2420 if (zoneno == old_zoneno)
2421 goto got_it;
2422 if (dir == ALLOC_LEFT) {
2423 if (!go_left && zoneno + 1 >= total_zones)
2424 goto got_it;
2425 if (go_left && zoneno == 0)
2426 goto got_it;
2427 }
2428 for (i = 0; i < NR_CURSEG_TYPE; i++)
2429 if (CURSEG_I(sbi, i)->zone == zoneno)
2430 break;
2431
2432 if (i < NR_CURSEG_TYPE) {
2433 /* zone is in user, try another */
2434 if (go_left)
2435 hint = zoneno * sbi->secs_per_zone - 1;
2436 else if (zoneno + 1 >= total_zones)
2437 hint = 0;
2438 else
2439 hint = (zoneno + 1) * sbi->secs_per_zone;
2440 init = false;
2441 goto find_other_zone;
2442 }
2443 got_it:
2444 /* set it as dirty segment in free segmap */
2445 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446 __set_inuse(sbi, segno);
2447 *newseg = segno;
2448 spin_unlock(&free_i->segmap_lock);
2449 }
2450
2451 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452 {
2453 struct curseg_info *curseg = CURSEG_I(sbi, type);
2454 struct summary_footer *sum_footer;
2455
2456 curseg->segno = curseg->next_segno;
2457 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458 curseg->next_blkoff = 0;
2459 curseg->next_segno = NULL_SEGNO;
2460
2461 sum_footer = &(curseg->sum_blk->footer);
2462 memset(sum_footer, 0, sizeof(struct summary_footer));
2463 if (IS_DATASEG(type))
2464 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465 if (IS_NODESEG(type))
2466 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468 }
2469
2470 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471 {
2472 /* if segs_per_sec is large than 1, we need to keep original policy. */
2473 if (__is_large_section(sbi))
2474 return CURSEG_I(sbi, type)->segno;
2475
2476 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477 return 0;
2478
2479 if (test_opt(sbi, NOHEAP) &&
2480 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481 return 0;
2482
2483 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486 /* find segments from 0 to reuse freed segments */
2487 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488 return 0;
2489
2490 return CURSEG_I(sbi, type)->segno;
2491 }
2492
2493 /*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498 {
2499 struct curseg_info *curseg = CURSEG_I(sbi, type);
2500 unsigned int segno = curseg->segno;
2501 int dir = ALLOC_LEFT;
2502
2503 write_sum_page(sbi, curseg->sum_blk,
2504 GET_SUM_BLOCK(sbi, segno));
2505 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506 dir = ALLOC_RIGHT;
2507
2508 if (test_opt(sbi, NOHEAP))
2509 dir = ALLOC_RIGHT;
2510
2511 segno = __get_next_segno(sbi, type);
2512 get_new_segment(sbi, &segno, new_sec, dir);
2513 curseg->next_segno = segno;
2514 reset_curseg(sbi, type, 1);
2515 curseg->alloc_type = LFS;
2516 }
2517
2518 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519 struct curseg_info *seg, block_t start)
2520 {
2521 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526 int i, pos;
2527
2528 for (i = 0; i < entries; i++)
2529 target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533 seg->next_blkoff = pos;
2534 }
2535
2536 /*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542 struct curseg_info *seg)
2543 {
2544 if (seg->alloc_type == SSR)
2545 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546 else
2547 seg->next_blkoff++;
2548 }
2549
2550 /*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555 {
2556 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557 struct curseg_info *curseg = CURSEG_I(sbi, type);
2558 unsigned int new_segno = curseg->next_segno;
2559 struct f2fs_summary_block *sum_node;
2560 struct page *sum_page;
2561
2562 write_sum_page(sbi, curseg->sum_blk,
2563 GET_SUM_BLOCK(sbi, curseg->segno));
2564 __set_test_and_inuse(sbi, new_segno);
2565
2566 mutex_lock(&dirty_i->seglist_lock);
2567 __remove_dirty_segment(sbi, new_segno, PRE);
2568 __remove_dirty_segment(sbi, new_segno, DIRTY);
2569 mutex_unlock(&dirty_i->seglist_lock);
2570
2571 reset_curseg(sbi, type, 1);
2572 curseg->alloc_type = SSR;
2573 __next_free_blkoff(sbi, curseg, 0);
2574
2575 sum_page = f2fs_get_sum_page(sbi, new_segno);
2576 f2fs_bug_on(sbi, IS_ERR(sum_page));
2577 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579 f2fs_put_page(sum_page, 1);
2580 }
2581
2582 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583 {
2584 struct curseg_info *curseg = CURSEG_I(sbi, type);
2585 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586 unsigned segno = NULL_SEGNO;
2587 int i, cnt;
2588 bool reversed = false;
2589
2590 /* f2fs_need_SSR() already forces to do this */
2591 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592 curseg->next_segno = segno;
2593 return 1;
2594 }
2595
2596 /* For node segments, let's do SSR more intensively */
2597 if (IS_NODESEG(type)) {
2598 if (type >= CURSEG_WARM_NODE) {
2599 reversed = true;
2600 i = CURSEG_COLD_NODE;
2601 } else {
2602 i = CURSEG_HOT_NODE;
2603 }
2604 cnt = NR_CURSEG_NODE_TYPE;
2605 } else {
2606 if (type >= CURSEG_WARM_DATA) {
2607 reversed = true;
2608 i = CURSEG_COLD_DATA;
2609 } else {
2610 i = CURSEG_HOT_DATA;
2611 }
2612 cnt = NR_CURSEG_DATA_TYPE;
2613 }
2614
2615 for (; cnt-- > 0; reversed ? i-- : i++) {
2616 if (i == type)
2617 continue;
2618 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619 curseg->next_segno = segno;
2620 return 1;
2621 }
2622 }
2623
2624 /* find valid_blocks=0 in dirty list */
2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626 segno = get_free_segment(sbi);
2627 if (segno != NULL_SEGNO) {
2628 curseg->next_segno = segno;
2629 return 1;
2630 }
2631 }
2632 return 0;
2633 }
2634
2635 /*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640 int type, bool force)
2641 {
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644 if (force)
2645 new_curseg(sbi, type, true);
2646 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647 type == CURSEG_WARM_NODE)
2648 new_curseg(sbi, type, false);
2649 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651 new_curseg(sbi, type, false);
2652 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653 change_curseg(sbi, type);
2654 else
2655 new_curseg(sbi, type, false);
2656
2657 stat_inc_seg_type(sbi, curseg);
2658 }
2659
2660 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661 unsigned int start, unsigned int end)
2662 {
2663 struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 unsigned int segno;
2665
2666 down_read(&SM_I(sbi)->curseg_lock);
2667 mutex_lock(&curseg->curseg_mutex);
2668 down_write(&SIT_I(sbi)->sentry_lock);
2669
2670 segno = CURSEG_I(sbi, type)->segno;
2671 if (segno < start || segno > end)
2672 goto unlock;
2673
2674 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675 change_curseg(sbi, type);
2676 else
2677 new_curseg(sbi, type, true);
2678
2679 stat_inc_seg_type(sbi, curseg);
2680
2681 locate_dirty_segment(sbi, segno);
2682 unlock:
2683 up_write(&SIT_I(sbi)->sentry_lock);
2684
2685 if (segno != curseg->segno)
2686 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687 type, segno, curseg->segno);
2688
2689 mutex_unlock(&curseg->curseg_mutex);
2690 up_read(&SM_I(sbi)->curseg_lock);
2691 }
2692
2693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694 {
2695 struct curseg_info *curseg;
2696 unsigned int old_segno;
2697 int i;
2698
2699 down_write(&SIT_I(sbi)->sentry_lock);
2700
2701 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702 curseg = CURSEG_I(sbi, i);
2703 old_segno = curseg->segno;
2704 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705 locate_dirty_segment(sbi, old_segno);
2706 }
2707
2708 up_write(&SIT_I(sbi)->sentry_lock);
2709 }
2710
2711 static const struct segment_allocation default_salloc_ops = {
2712 .allocate_segment = allocate_segment_by_default,
2713 };
2714
2715 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716 struct cp_control *cpc)
2717 {
2718 __u64 trim_start = cpc->trim_start;
2719 bool has_candidate = false;
2720
2721 down_write(&SIT_I(sbi)->sentry_lock);
2722 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723 if (add_discard_addrs(sbi, cpc, true)) {
2724 has_candidate = true;
2725 break;
2726 }
2727 }
2728 up_write(&SIT_I(sbi)->sentry_lock);
2729
2730 cpc->trim_start = trim_start;
2731 return has_candidate;
2732 }
2733
2734 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735 struct discard_policy *dpolicy,
2736 unsigned int start, unsigned int end)
2737 {
2738 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741 struct discard_cmd *dc;
2742 struct blk_plug plug;
2743 int issued;
2744 unsigned int trimmed = 0;
2745
2746 next:
2747 issued = 0;
2748
2749 mutex_lock(&dcc->cmd_lock);
2750 if (unlikely(dcc->rbtree_check))
2751 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752 &dcc->root));
2753
2754 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755 NULL, start,
2756 (struct rb_entry **)&prev_dc,
2757 (struct rb_entry **)&next_dc,
2758 &insert_p, &insert_parent, true, NULL);
2759 if (!dc)
2760 dc = next_dc;
2761
2762 blk_start_plug(&plug);
2763
2764 while (dc && dc->lstart <= end) {
2765 struct rb_node *node;
2766 int err = 0;
2767
2768 if (dc->len < dpolicy->granularity)
2769 goto skip;
2770
2771 if (dc->state != D_PREP) {
2772 list_move_tail(&dc->list, &dcc->fstrim_list);
2773 goto skip;
2774 }
2775
2776 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778 if (issued >= dpolicy->max_requests) {
2779 start = dc->lstart + dc->len;
2780
2781 if (err)
2782 __remove_discard_cmd(sbi, dc);
2783
2784 blk_finish_plug(&plug);
2785 mutex_unlock(&dcc->cmd_lock);
2786 trimmed += __wait_all_discard_cmd(sbi, NULL);
2787 congestion_wait(BLK_RW_ASYNC, HZ/50);
2788 goto next;
2789 }
2790 skip:
2791 node = rb_next(&dc->rb_node);
2792 if (err)
2793 __remove_discard_cmd(sbi, dc);
2794 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796 if (fatal_signal_pending(current))
2797 break;
2798 }
2799
2800 blk_finish_plug(&plug);
2801 mutex_unlock(&dcc->cmd_lock);
2802
2803 return trimmed;
2804 }
2805
2806 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807 {
2808 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810 unsigned int start_segno, end_segno;
2811 block_t start_block, end_block;
2812 struct cp_control cpc;
2813 struct discard_policy dpolicy;
2814 unsigned long long trimmed = 0;
2815 int err = 0;
2816 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819 return -EINVAL;
2820
2821 if (end < MAIN_BLKADDR(sbi))
2822 goto out;
2823
2824 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826 return -EFSCORRUPTED;
2827 }
2828
2829 /* start/end segment number in main_area */
2830 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832 GET_SEGNO(sbi, end);
2833 if (need_align) {
2834 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836 }
2837
2838 cpc.reason = CP_DISCARD;
2839 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840 cpc.trim_start = start_segno;
2841 cpc.trim_end = end_segno;
2842
2843 if (sbi->discard_blks == 0)
2844 goto out;
2845
2846 mutex_lock(&sbi->gc_mutex);
2847 err = f2fs_write_checkpoint(sbi, &cpc);
2848 mutex_unlock(&sbi->gc_mutex);
2849 if (err)
2850 goto out;
2851
2852 /*
2853 * We filed discard candidates, but actually we don't need to wait for
2854 * all of them, since they'll be issued in idle time along with runtime
2855 * discard option. User configuration looks like using runtime discard
2856 * or periodic fstrim instead of it.
2857 */
2858 if (f2fs_realtime_discard_enable(sbi))
2859 goto out;
2860
2861 start_block = START_BLOCK(sbi, start_segno);
2862 end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866 start_block, end_block);
2867
2868 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869 start_block, end_block);
2870 out:
2871 if (!err)
2872 range->len = F2FS_BLK_TO_BYTES(trimmed);
2873 return err;
2874 }
2875
2876 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877 {
2878 struct curseg_info *curseg = CURSEG_I(sbi, type);
2879 if (curseg->next_blkoff < sbi->blocks_per_seg)
2880 return true;
2881 return false;
2882 }
2883
2884 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885 {
2886 switch (hint) {
2887 case WRITE_LIFE_SHORT:
2888 return CURSEG_HOT_DATA;
2889 case WRITE_LIFE_EXTREME:
2890 return CURSEG_COLD_DATA;
2891 default:
2892 return CURSEG_WARM_DATA;
2893 }
2894 }
2895
2896 /* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User F2FS Block
2905 * ---- ---- -----
2906 * META WRITE_LIFE_NOT_SET
2907 * HOT_NODE "
2908 * WARM_NODE "
2909 * COLD_NODE "
2910 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2911 * extension list " "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE " "
2918 * WRITE_LIFE_MEDIUM " "
2919 * WRITE_LIFE_LONG " "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User F2FS Block
2932 * ---- ---- -----
2933 * META WRITE_LIFE_MEDIUM;
2934 * HOT_NODE WRITE_LIFE_NOT_SET
2935 * WARM_NODE "
2936 * COLD_NODE WRITE_LIFE_NONE
2937 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2938 * extension list " "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE " "
2945 * WRITE_LIFE_MEDIUM " "
2946 * WRITE_LIFE_LONG " "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2955 */
2956
2957 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958 enum page_type type, enum temp_type temp)
2959 {
2960 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961 if (type == DATA) {
2962 if (temp == WARM)
2963 return WRITE_LIFE_NOT_SET;
2964 else if (temp == HOT)
2965 return WRITE_LIFE_SHORT;
2966 else if (temp == COLD)
2967 return WRITE_LIFE_EXTREME;
2968 } else {
2969 return WRITE_LIFE_NOT_SET;
2970 }
2971 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972 if (type == DATA) {
2973 if (temp == WARM)
2974 return WRITE_LIFE_LONG;
2975 else if (temp == HOT)
2976 return WRITE_LIFE_SHORT;
2977 else if (temp == COLD)
2978 return WRITE_LIFE_EXTREME;
2979 } else if (type == NODE) {
2980 if (temp == WARM || temp == HOT)
2981 return WRITE_LIFE_NOT_SET;
2982 else if (temp == COLD)
2983 return WRITE_LIFE_NONE;
2984 } else if (type == META) {
2985 return WRITE_LIFE_MEDIUM;
2986 }
2987 }
2988 return WRITE_LIFE_NOT_SET;
2989 }
2990
2991 static int __get_segment_type_2(struct f2fs_io_info *fio)
2992 {
2993 if (fio->type == DATA)
2994 return CURSEG_HOT_DATA;
2995 else
2996 return CURSEG_HOT_NODE;
2997 }
2998
2999 static int __get_segment_type_4(struct f2fs_io_info *fio)
3000 {
3001 if (fio->type == DATA) {
3002 struct inode *inode = fio->page->mapping->host;
3003
3004 if (S_ISDIR(inode->i_mode))
3005 return CURSEG_HOT_DATA;
3006 else
3007 return CURSEG_COLD_DATA;
3008 } else {
3009 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010 return CURSEG_WARM_NODE;
3011 else
3012 return CURSEG_COLD_NODE;
3013 }
3014 }
3015
3016 static int __get_segment_type_6(struct f2fs_io_info *fio)
3017 {
3018 if (fio->type == DATA) {
3019 struct inode *inode = fio->page->mapping->host;
3020
3021 if (is_cold_data(fio->page) || file_is_cold(inode))
3022 return CURSEG_COLD_DATA;
3023 if (file_is_hot(inode) ||
3024 is_inode_flag_set(inode, FI_HOT_DATA) ||
3025 f2fs_is_atomic_file(inode) ||
3026 f2fs_is_volatile_file(inode))
3027 return CURSEG_HOT_DATA;
3028 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029 } else {
3030 if (IS_DNODE(fio->page))
3031 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032 CURSEG_HOT_NODE;
3033 return CURSEG_COLD_NODE;
3034 }
3035 }
3036
3037 static int __get_segment_type(struct f2fs_io_info *fio)
3038 {
3039 int type = 0;
3040
3041 switch (F2FS_OPTION(fio->sbi).active_logs) {
3042 case 2:
3043 type = __get_segment_type_2(fio);
3044 break;
3045 case 4:
3046 type = __get_segment_type_4(fio);
3047 break;
3048 case 6:
3049 type = __get_segment_type_6(fio);
3050 break;
3051 default:
3052 f2fs_bug_on(fio->sbi, true);
3053 }
3054
3055 if (IS_HOT(type))
3056 fio->temp = HOT;
3057 else if (IS_WARM(type))
3058 fio->temp = WARM;
3059 else
3060 fio->temp = COLD;
3061 return type;
3062 }
3063
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065 block_t old_blkaddr, block_t *new_blkaddr,
3066 struct f2fs_summary *sum, int type,
3067 struct f2fs_io_info *fio, bool add_list)
3068 {
3069 struct sit_info *sit_i = SIT_I(sbi);
3070 struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072 down_read(&SM_I(sbi)->curseg_lock);
3073
3074 mutex_lock(&curseg->curseg_mutex);
3075 down_write(&sit_i->sentry_lock);
3076
3077 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081 /*
3082 * __add_sum_entry should be resided under the curseg_mutex
3083 * because, this function updates a summary entry in the
3084 * current summary block.
3085 */
3086 __add_sum_entry(sbi, type, sum);
3087
3088 __refresh_next_blkoff(sbi, curseg);
3089
3090 stat_inc_block_count(sbi, curseg);
3091
3092 /*
3093 * SIT information should be updated before segment allocation,
3094 * since SSR needs latest valid block information.
3095 */
3096 update_sit_entry(sbi, *new_blkaddr, 1);
3097 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098 update_sit_entry(sbi, old_blkaddr, -1);
3099
3100 if (!__has_curseg_space(sbi, type))
3101 sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103 /*
3104 * segment dirty status should be updated after segment allocation,
3105 * so we just need to update status only one time after previous
3106 * segment being closed.
3107 */
3108 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111 up_write(&sit_i->sentry_lock);
3112
3113 if (page && IS_NODESEG(type)) {
3114 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116 f2fs_inode_chksum_set(sbi, page);
3117 }
3118
3119 if (add_list) {
3120 struct f2fs_bio_info *io;
3121
3122 INIT_LIST_HEAD(&fio->list);
3123 fio->in_list = true;
3124 fio->retry = false;
3125 io = sbi->write_io[fio->type] + fio->temp;
3126 spin_lock(&io->io_lock);
3127 list_add_tail(&fio->list, &io->io_list);
3128 spin_unlock(&io->io_lock);
3129 }
3130
3131 mutex_unlock(&curseg->curseg_mutex);
3132
3133 up_read(&SM_I(sbi)->curseg_lock);
3134 }
3135
3136 static void update_device_state(struct f2fs_io_info *fio)
3137 {
3138 struct f2fs_sb_info *sbi = fio->sbi;
3139 unsigned int devidx;
3140
3141 if (!f2fs_is_multi_device(sbi))
3142 return;
3143
3144 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3145
3146 /* update device state for fsync */
3147 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3148
3149 /* update device state for checkpoint */
3150 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3151 spin_lock(&sbi->dev_lock);
3152 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3153 spin_unlock(&sbi->dev_lock);
3154 }
3155 }
3156
3157 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3158 {
3159 int type = __get_segment_type(fio);
3160 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3161
3162 if (keep_order)
3163 down_read(&fio->sbi->io_order_lock);
3164 reallocate:
3165 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3166 &fio->new_blkaddr, sum, type, fio, true);
3167 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3168 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3169 fio->old_blkaddr, fio->old_blkaddr);
3170
3171 /* writeout dirty page into bdev */
3172 f2fs_submit_page_write(fio);
3173 if (fio->retry) {
3174 fio->old_blkaddr = fio->new_blkaddr;
3175 goto reallocate;
3176 }
3177
3178 update_device_state(fio);
3179
3180 if (keep_order)
3181 up_read(&fio->sbi->io_order_lock);
3182 }
3183
3184 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3185 enum iostat_type io_type)
3186 {
3187 struct f2fs_io_info fio = {
3188 .sbi = sbi,
3189 .type = META,
3190 .temp = HOT,
3191 .op = REQ_OP_WRITE,
3192 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3193 .old_blkaddr = page->index,
3194 .new_blkaddr = page->index,
3195 .page = page,
3196 .encrypted_page = NULL,
3197 .in_list = false,
3198 };
3199
3200 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3201 fio.op_flags &= ~REQ_META;
3202
3203 set_page_writeback(page);
3204 ClearPageError(page);
3205 f2fs_submit_page_write(&fio);
3206
3207 stat_inc_meta_count(sbi, page->index);
3208 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3209 }
3210
3211 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3212 {
3213 struct f2fs_summary sum;
3214
3215 set_summary(&sum, nid, 0, 0);
3216 do_write_page(&sum, fio);
3217
3218 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3219 }
3220
3221 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3222 struct f2fs_io_info *fio)
3223 {
3224 struct f2fs_sb_info *sbi = fio->sbi;
3225 struct f2fs_summary sum;
3226
3227 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3228 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3229 do_write_page(&sum, fio);
3230 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3231
3232 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3233 }
3234
3235 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3236 {
3237 int err;
3238 struct f2fs_sb_info *sbi = fio->sbi;
3239 unsigned int segno;
3240
3241 fio->new_blkaddr = fio->old_blkaddr;
3242 /* i/o temperature is needed for passing down write hints */
3243 __get_segment_type(fio);
3244
3245 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3246
3247 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3248 set_sbi_flag(sbi, SBI_NEED_FSCK);
3249 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3250 __func__, segno);
3251 return -EFSCORRUPTED;
3252 }
3253
3254 stat_inc_inplace_blocks(fio->sbi);
3255
3256 if (fio->bio)
3257 err = f2fs_merge_page_bio(fio);
3258 else
3259 err = f2fs_submit_page_bio(fio);
3260 if (!err) {
3261 update_device_state(fio);
3262 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3263 }
3264
3265 return err;
3266 }
3267
3268 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3269 unsigned int segno)
3270 {
3271 int i;
3272
3273 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3274 if (CURSEG_I(sbi, i)->segno == segno)
3275 break;
3276 }
3277 return i;
3278 }
3279
3280 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3281 block_t old_blkaddr, block_t new_blkaddr,
3282 bool recover_curseg, bool recover_newaddr)
3283 {
3284 struct sit_info *sit_i = SIT_I(sbi);
3285 struct curseg_info *curseg;
3286 unsigned int segno, old_cursegno;
3287 struct seg_entry *se;
3288 int type;
3289 unsigned short old_blkoff;
3290
3291 segno = GET_SEGNO(sbi, new_blkaddr);
3292 se = get_seg_entry(sbi, segno);
3293 type = se->type;
3294
3295 down_write(&SM_I(sbi)->curseg_lock);
3296
3297 if (!recover_curseg) {
3298 /* for recovery flow */
3299 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3300 if (old_blkaddr == NULL_ADDR)
3301 type = CURSEG_COLD_DATA;
3302 else
3303 type = CURSEG_WARM_DATA;
3304 }
3305 } else {
3306 if (IS_CURSEG(sbi, segno)) {
3307 /* se->type is volatile as SSR allocation */
3308 type = __f2fs_get_curseg(sbi, segno);
3309 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3310 } else {
3311 type = CURSEG_WARM_DATA;
3312 }
3313 }
3314
3315 f2fs_bug_on(sbi, !IS_DATASEG(type));
3316 curseg = CURSEG_I(sbi, type);
3317
3318 mutex_lock(&curseg->curseg_mutex);
3319 down_write(&sit_i->sentry_lock);
3320
3321 old_cursegno = curseg->segno;
3322 old_blkoff = curseg->next_blkoff;
3323
3324 /* change the current segment */
3325 if (segno != curseg->segno) {
3326 curseg->next_segno = segno;
3327 change_curseg(sbi, type);
3328 }
3329
3330 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3331 __add_sum_entry(sbi, type, sum);
3332
3333 if (!recover_curseg || recover_newaddr)
3334 update_sit_entry(sbi, new_blkaddr, 1);
3335 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3336 invalidate_mapping_pages(META_MAPPING(sbi),
3337 old_blkaddr, old_blkaddr);
3338 update_sit_entry(sbi, old_blkaddr, -1);
3339 }
3340
3341 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3342 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3343
3344 locate_dirty_segment(sbi, old_cursegno);
3345
3346 if (recover_curseg) {
3347 if (old_cursegno != curseg->segno) {
3348 curseg->next_segno = old_cursegno;
3349 change_curseg(sbi, type);
3350 }
3351 curseg->next_blkoff = old_blkoff;
3352 }
3353
3354 up_write(&sit_i->sentry_lock);
3355 mutex_unlock(&curseg->curseg_mutex);
3356 up_write(&SM_I(sbi)->curseg_lock);
3357 }
3358
3359 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3360 block_t old_addr, block_t new_addr,
3361 unsigned char version, bool recover_curseg,
3362 bool recover_newaddr)
3363 {
3364 struct f2fs_summary sum;
3365
3366 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3367
3368 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3369 recover_curseg, recover_newaddr);
3370
3371 f2fs_update_data_blkaddr(dn, new_addr);
3372 }
3373
3374 void f2fs_wait_on_page_writeback(struct page *page,
3375 enum page_type type, bool ordered, bool locked)
3376 {
3377 if (PageWriteback(page)) {
3378 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3379
3380 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3381 if (ordered) {
3382 wait_on_page_writeback(page);
3383 f2fs_bug_on(sbi, locked && PageWriteback(page));
3384 } else {
3385 wait_for_stable_page(page);
3386 }
3387 }
3388 }
3389
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3391 {
3392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393 struct page *cpage;
3394
3395 if (!f2fs_post_read_required(inode))
3396 return;
3397
3398 if (!__is_valid_data_blkaddr(blkaddr))
3399 return;
3400
3401 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3402 if (cpage) {
3403 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3404 f2fs_put_page(cpage, 1);
3405 }
3406 }
3407
3408 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3409 block_t len)
3410 {
3411 block_t i;
3412
3413 for (i = 0; i < len; i++)
3414 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3415 }
3416
3417 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3418 {
3419 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3420 struct curseg_info *seg_i;
3421 unsigned char *kaddr;
3422 struct page *page;
3423 block_t start;
3424 int i, j, offset;
3425
3426 start = start_sum_block(sbi);
3427
3428 page = f2fs_get_meta_page(sbi, start++);
3429 if (IS_ERR(page))
3430 return PTR_ERR(page);
3431 kaddr = (unsigned char *)page_address(page);
3432
3433 /* Step 1: restore nat cache */
3434 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3435 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3436
3437 /* Step 2: restore sit cache */
3438 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3439 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3440 offset = 2 * SUM_JOURNAL_SIZE;
3441
3442 /* Step 3: restore summary entries */
3443 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3444 unsigned short blk_off;
3445 unsigned int segno;
3446
3447 seg_i = CURSEG_I(sbi, i);
3448 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3449 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3450 seg_i->next_segno = segno;
3451 reset_curseg(sbi, i, 0);
3452 seg_i->alloc_type = ckpt->alloc_type[i];
3453 seg_i->next_blkoff = blk_off;
3454
3455 if (seg_i->alloc_type == SSR)
3456 blk_off = sbi->blocks_per_seg;
3457
3458 for (j = 0; j < blk_off; j++) {
3459 struct f2fs_summary *s;
3460 s = (struct f2fs_summary *)(kaddr + offset);
3461 seg_i->sum_blk->entries[j] = *s;
3462 offset += SUMMARY_SIZE;
3463 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3464 SUM_FOOTER_SIZE)
3465 continue;
3466
3467 f2fs_put_page(page, 1);
3468 page = NULL;
3469
3470 page = f2fs_get_meta_page(sbi, start++);
3471 if (IS_ERR(page))
3472 return PTR_ERR(page);
3473 kaddr = (unsigned char *)page_address(page);
3474 offset = 0;
3475 }
3476 }
3477 f2fs_put_page(page, 1);
3478 return 0;
3479 }
3480
3481 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3482 {
3483 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3484 struct f2fs_summary_block *sum;
3485 struct curseg_info *curseg;
3486 struct page *new;
3487 unsigned short blk_off;
3488 unsigned int segno = 0;
3489 block_t blk_addr = 0;
3490 int err = 0;
3491
3492 /* get segment number and block addr */
3493 if (IS_DATASEG(type)) {
3494 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3495 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3496 CURSEG_HOT_DATA]);
3497 if (__exist_node_summaries(sbi))
3498 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3499 else
3500 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3501 } else {
3502 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3503 CURSEG_HOT_NODE]);
3504 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3505 CURSEG_HOT_NODE]);
3506 if (__exist_node_summaries(sbi))
3507 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3508 type - CURSEG_HOT_NODE);
3509 else
3510 blk_addr = GET_SUM_BLOCK(sbi, segno);
3511 }
3512
3513 new = f2fs_get_meta_page(sbi, blk_addr);
3514 if (IS_ERR(new))
3515 return PTR_ERR(new);
3516 sum = (struct f2fs_summary_block *)page_address(new);
3517
3518 if (IS_NODESEG(type)) {
3519 if (__exist_node_summaries(sbi)) {
3520 struct f2fs_summary *ns = &sum->entries[0];
3521 int i;
3522 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3523 ns->version = 0;
3524 ns->ofs_in_node = 0;
3525 }
3526 } else {
3527 err = f2fs_restore_node_summary(sbi, segno, sum);
3528 if (err)
3529 goto out;
3530 }
3531 }
3532
3533 /* set uncompleted segment to curseg */
3534 curseg = CURSEG_I(sbi, type);
3535 mutex_lock(&curseg->curseg_mutex);
3536
3537 /* update journal info */
3538 down_write(&curseg->journal_rwsem);
3539 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3540 up_write(&curseg->journal_rwsem);
3541
3542 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3543 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3544 curseg->next_segno = segno;
3545 reset_curseg(sbi, type, 0);
3546 curseg->alloc_type = ckpt->alloc_type[type];
3547 curseg->next_blkoff = blk_off;
3548 mutex_unlock(&curseg->curseg_mutex);
3549 out:
3550 f2fs_put_page(new, 1);
3551 return err;
3552 }
3553
3554 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3555 {
3556 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3557 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3558 int type = CURSEG_HOT_DATA;
3559 int err;
3560
3561 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3562 int npages = f2fs_npages_for_summary_flush(sbi, true);
3563
3564 if (npages >= 2)
3565 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3566 META_CP, true);
3567
3568 /* restore for compacted data summary */
3569 err = read_compacted_summaries(sbi);
3570 if (err)
3571 return err;
3572 type = CURSEG_HOT_NODE;
3573 }
3574
3575 if (__exist_node_summaries(sbi))
3576 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3577 NR_CURSEG_TYPE - type, META_CP, true);
3578
3579 for (; type <= CURSEG_COLD_NODE; type++) {
3580 err = read_normal_summaries(sbi, type);
3581 if (err)
3582 return err;
3583 }
3584
3585 /* sanity check for summary blocks */
3586 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3587 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3588 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3589 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3590 return -EINVAL;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3597 {
3598 struct page *page;
3599 unsigned char *kaddr;
3600 struct f2fs_summary *summary;
3601 struct curseg_info *seg_i;
3602 int written_size = 0;
3603 int i, j;
3604
3605 page = f2fs_grab_meta_page(sbi, blkaddr++);
3606 kaddr = (unsigned char *)page_address(page);
3607 memset(kaddr, 0, PAGE_SIZE);
3608
3609 /* Step 1: write nat cache */
3610 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3611 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3612 written_size += SUM_JOURNAL_SIZE;
3613
3614 /* Step 2: write sit cache */
3615 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3616 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3617 written_size += SUM_JOURNAL_SIZE;
3618
3619 /* Step 3: write summary entries */
3620 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3621 unsigned short blkoff;
3622 seg_i = CURSEG_I(sbi, i);
3623 if (sbi->ckpt->alloc_type[i] == SSR)
3624 blkoff = sbi->blocks_per_seg;
3625 else
3626 blkoff = curseg_blkoff(sbi, i);
3627
3628 for (j = 0; j < blkoff; j++) {
3629 if (!page) {
3630 page = f2fs_grab_meta_page(sbi, blkaddr++);
3631 kaddr = (unsigned char *)page_address(page);
3632 memset(kaddr, 0, PAGE_SIZE);
3633 written_size = 0;
3634 }
3635 summary = (struct f2fs_summary *)(kaddr + written_size);
3636 *summary = seg_i->sum_blk->entries[j];
3637 written_size += SUMMARY_SIZE;
3638
3639 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3640 SUM_FOOTER_SIZE)
3641 continue;
3642
3643 set_page_dirty(page);
3644 f2fs_put_page(page, 1);
3645 page = NULL;
3646 }
3647 }
3648 if (page) {
3649 set_page_dirty(page);
3650 f2fs_put_page(page, 1);
3651 }
3652 }
3653
3654 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3655 block_t blkaddr, int type)
3656 {
3657 int i, end;
3658 if (IS_DATASEG(type))
3659 end = type + NR_CURSEG_DATA_TYPE;
3660 else
3661 end = type + NR_CURSEG_NODE_TYPE;
3662
3663 for (i = type; i < end; i++)
3664 write_current_sum_page(sbi, i, blkaddr + (i - type));
3665 }
3666
3667 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3668 {
3669 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3670 write_compacted_summaries(sbi, start_blk);
3671 else
3672 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3673 }
3674
3675 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3676 {
3677 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3678 }
3679
3680 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3681 unsigned int val, int alloc)
3682 {
3683 int i;
3684
3685 if (type == NAT_JOURNAL) {
3686 for (i = 0; i < nats_in_cursum(journal); i++) {
3687 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3688 return i;
3689 }
3690 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3691 return update_nats_in_cursum(journal, 1);
3692 } else if (type == SIT_JOURNAL) {
3693 for (i = 0; i < sits_in_cursum(journal); i++)
3694 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3695 return i;
3696 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3697 return update_sits_in_cursum(journal, 1);
3698 }
3699 return -1;
3700 }
3701
3702 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3703 unsigned int segno)
3704 {
3705 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3706 }
3707
3708 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3709 unsigned int start)
3710 {
3711 struct sit_info *sit_i = SIT_I(sbi);
3712 struct page *page;
3713 pgoff_t src_off, dst_off;
3714
3715 src_off = current_sit_addr(sbi, start);
3716 dst_off = next_sit_addr(sbi, src_off);
3717
3718 page = f2fs_grab_meta_page(sbi, dst_off);
3719 seg_info_to_sit_page(sbi, page, start);
3720
3721 set_page_dirty(page);
3722 set_to_next_sit(sit_i, start);
3723
3724 return page;
3725 }
3726
3727 static struct sit_entry_set *grab_sit_entry_set(void)
3728 {
3729 struct sit_entry_set *ses =
3730 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3731
3732 ses->entry_cnt = 0;
3733 INIT_LIST_HEAD(&ses->set_list);
3734 return ses;
3735 }
3736
3737 static void release_sit_entry_set(struct sit_entry_set *ses)
3738 {
3739 list_del(&ses->set_list);
3740 kmem_cache_free(sit_entry_set_slab, ses);
3741 }
3742
3743 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3744 struct list_head *head)
3745 {
3746 struct sit_entry_set *next = ses;
3747
3748 if (list_is_last(&ses->set_list, head))
3749 return;
3750
3751 list_for_each_entry_continue(next, head, set_list)
3752 if (ses->entry_cnt <= next->entry_cnt)
3753 break;
3754
3755 list_move_tail(&ses->set_list, &next->set_list);
3756 }
3757
3758 static void add_sit_entry(unsigned int segno, struct list_head *head)
3759 {
3760 struct sit_entry_set *ses;
3761 unsigned int start_segno = START_SEGNO(segno);
3762
3763 list_for_each_entry(ses, head, set_list) {
3764 if (ses->start_segno == start_segno) {
3765 ses->entry_cnt++;
3766 adjust_sit_entry_set(ses, head);
3767 return;
3768 }
3769 }
3770
3771 ses = grab_sit_entry_set();
3772
3773 ses->start_segno = start_segno;
3774 ses->entry_cnt++;
3775 list_add(&ses->set_list, head);
3776 }
3777
3778 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3779 {
3780 struct f2fs_sm_info *sm_info = SM_I(sbi);
3781 struct list_head *set_list = &sm_info->sit_entry_set;
3782 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3783 unsigned int segno;
3784
3785 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3786 add_sit_entry(segno, set_list);
3787 }
3788
3789 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3790 {
3791 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3792 struct f2fs_journal *journal = curseg->journal;
3793 int i;
3794
3795 down_write(&curseg->journal_rwsem);
3796 for (i = 0; i < sits_in_cursum(journal); i++) {
3797 unsigned int segno;
3798 bool dirtied;
3799
3800 segno = le32_to_cpu(segno_in_journal(journal, i));
3801 dirtied = __mark_sit_entry_dirty(sbi, segno);
3802
3803 if (!dirtied)
3804 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3805 }
3806 update_sits_in_cursum(journal, -i);
3807 up_write(&curseg->journal_rwsem);
3808 }
3809
3810 /*
3811 * CP calls this function, which flushes SIT entries including sit_journal,
3812 * and moves prefree segs to free segs.
3813 */
3814 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3815 {
3816 struct sit_info *sit_i = SIT_I(sbi);
3817 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3818 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3819 struct f2fs_journal *journal = curseg->journal;
3820 struct sit_entry_set *ses, *tmp;
3821 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3822 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3823 struct seg_entry *se;
3824
3825 down_write(&sit_i->sentry_lock);
3826
3827 if (!sit_i->dirty_sentries)
3828 goto out;
3829
3830 /*
3831 * add and account sit entries of dirty bitmap in sit entry
3832 * set temporarily
3833 */
3834 add_sits_in_set(sbi);
3835
3836 /*
3837 * if there are no enough space in journal to store dirty sit
3838 * entries, remove all entries from journal and add and account
3839 * them in sit entry set.
3840 */
3841 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3842 !to_journal)
3843 remove_sits_in_journal(sbi);
3844
3845 /*
3846 * there are two steps to flush sit entries:
3847 * #1, flush sit entries to journal in current cold data summary block.
3848 * #2, flush sit entries to sit page.
3849 */
3850 list_for_each_entry_safe(ses, tmp, head, set_list) {
3851 struct page *page = NULL;
3852 struct f2fs_sit_block *raw_sit = NULL;
3853 unsigned int start_segno = ses->start_segno;
3854 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3855 (unsigned long)MAIN_SEGS(sbi));
3856 unsigned int segno = start_segno;
3857
3858 if (to_journal &&
3859 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3860 to_journal = false;
3861
3862 if (to_journal) {
3863 down_write(&curseg->journal_rwsem);
3864 } else {
3865 page = get_next_sit_page(sbi, start_segno);
3866 raw_sit = page_address(page);
3867 }
3868
3869 /* flush dirty sit entries in region of current sit set */
3870 for_each_set_bit_from(segno, bitmap, end) {
3871 int offset, sit_offset;
3872
3873 se = get_seg_entry(sbi, segno);
3874 #ifdef CONFIG_F2FS_CHECK_FS
3875 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3876 SIT_VBLOCK_MAP_SIZE))
3877 f2fs_bug_on(sbi, 1);
3878 #endif
3879
3880 /* add discard candidates */
3881 if (!(cpc->reason & CP_DISCARD)) {
3882 cpc->trim_start = segno;
3883 add_discard_addrs(sbi, cpc, false);
3884 }
3885
3886 if (to_journal) {
3887 offset = f2fs_lookup_journal_in_cursum(journal,
3888 SIT_JOURNAL, segno, 1);
3889 f2fs_bug_on(sbi, offset < 0);
3890 segno_in_journal(journal, offset) =
3891 cpu_to_le32(segno);
3892 seg_info_to_raw_sit(se,
3893 &sit_in_journal(journal, offset));
3894 check_block_count(sbi, segno,
3895 &sit_in_journal(journal, offset));
3896 } else {
3897 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3898 seg_info_to_raw_sit(se,
3899 &raw_sit->entries[sit_offset]);
3900 check_block_count(sbi, segno,
3901 &raw_sit->entries[sit_offset]);
3902 }
3903
3904 __clear_bit(segno, bitmap);
3905 sit_i->dirty_sentries--;
3906 ses->entry_cnt--;
3907 }
3908
3909 if (to_journal)
3910 up_write(&curseg->journal_rwsem);
3911 else
3912 f2fs_put_page(page, 1);
3913
3914 f2fs_bug_on(sbi, ses->entry_cnt);
3915 release_sit_entry_set(ses);
3916 }
3917
3918 f2fs_bug_on(sbi, !list_empty(head));
3919 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3920 out:
3921 if (cpc->reason & CP_DISCARD) {
3922 __u64 trim_start = cpc->trim_start;
3923
3924 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3925 add_discard_addrs(sbi, cpc, false);
3926
3927 cpc->trim_start = trim_start;
3928 }
3929 up_write(&sit_i->sentry_lock);
3930
3931 set_prefree_as_free_segments(sbi);
3932 }
3933
3934 static int build_sit_info(struct f2fs_sb_info *sbi)
3935 {
3936 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3937 struct sit_info *sit_i;
3938 unsigned int sit_segs, start;
3939 char *src_bitmap, *bitmap;
3940 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3941
3942 /* allocate memory for SIT information */
3943 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3944 if (!sit_i)
3945 return -ENOMEM;
3946
3947 SM_I(sbi)->sit_info = sit_i;
3948
3949 sit_i->sentries =
3950 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3951 MAIN_SEGS(sbi)),
3952 GFP_KERNEL);
3953 if (!sit_i->sentries)
3954 return -ENOMEM;
3955
3956 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3957 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3958 GFP_KERNEL);
3959 if (!sit_i->dirty_sentries_bitmap)
3960 return -ENOMEM;
3961
3962 #ifdef CONFIG_F2FS_CHECK_FS
3963 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
3964 #else
3965 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
3966 #endif
3967 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3968 if (!sit_i->bitmap)
3969 return -ENOMEM;
3970
3971 bitmap = sit_i->bitmap;
3972
3973 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3974 sit_i->sentries[start].cur_valid_map = bitmap;
3975 bitmap += SIT_VBLOCK_MAP_SIZE;
3976
3977 sit_i->sentries[start].ckpt_valid_map = bitmap;
3978 bitmap += SIT_VBLOCK_MAP_SIZE;
3979
3980 #ifdef CONFIG_F2FS_CHECK_FS
3981 sit_i->sentries[start].cur_valid_map_mir = bitmap;
3982 bitmap += SIT_VBLOCK_MAP_SIZE;
3983 #endif
3984
3985 sit_i->sentries[start].discard_map = bitmap;
3986 bitmap += SIT_VBLOCK_MAP_SIZE;
3987 }
3988
3989 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3990 if (!sit_i->tmp_map)
3991 return -ENOMEM;
3992
3993 if (__is_large_section(sbi)) {
3994 sit_i->sec_entries =
3995 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3996 MAIN_SECS(sbi)),
3997 GFP_KERNEL);
3998 if (!sit_i->sec_entries)
3999 return -ENOMEM;
4000 }
4001
4002 /* get information related with SIT */
4003 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4004
4005 /* setup SIT bitmap from ckeckpoint pack */
4006 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4007 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4008
4009 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4010 if (!sit_i->sit_bitmap)
4011 return -ENOMEM;
4012
4013 #ifdef CONFIG_F2FS_CHECK_FS
4014 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4015 sit_bitmap_size, GFP_KERNEL);
4016 if (!sit_i->sit_bitmap_mir)
4017 return -ENOMEM;
4018
4019 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4020 main_bitmap_size, GFP_KERNEL);
4021 if (!sit_i->invalid_segmap)
4022 return -ENOMEM;
4023 #endif
4024
4025 /* init SIT information */
4026 sit_i->s_ops = &default_salloc_ops;
4027
4028 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4029 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4030 sit_i->written_valid_blocks = 0;
4031 sit_i->bitmap_size = sit_bitmap_size;
4032 sit_i->dirty_sentries = 0;
4033 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4034 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4035 sit_i->mounted_time = ktime_get_real_seconds();
4036 init_rwsem(&sit_i->sentry_lock);
4037 return 0;
4038 }
4039
4040 static int build_free_segmap(struct f2fs_sb_info *sbi)
4041 {
4042 struct free_segmap_info *free_i;
4043 unsigned int bitmap_size, sec_bitmap_size;
4044
4045 /* allocate memory for free segmap information */
4046 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4047 if (!free_i)
4048 return -ENOMEM;
4049
4050 SM_I(sbi)->free_info = free_i;
4051
4052 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4053 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4054 if (!free_i->free_segmap)
4055 return -ENOMEM;
4056
4057 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4058 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4059 if (!free_i->free_secmap)
4060 return -ENOMEM;
4061
4062 /* set all segments as dirty temporarily */
4063 memset(free_i->free_segmap, 0xff, bitmap_size);
4064 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4065
4066 /* init free segmap information */
4067 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4068 free_i->free_segments = 0;
4069 free_i->free_sections = 0;
4070 spin_lock_init(&free_i->segmap_lock);
4071 return 0;
4072 }
4073
4074 static int build_curseg(struct f2fs_sb_info *sbi)
4075 {
4076 struct curseg_info *array;
4077 int i;
4078
4079 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4080 GFP_KERNEL);
4081 if (!array)
4082 return -ENOMEM;
4083
4084 SM_I(sbi)->curseg_array = array;
4085
4086 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4087 mutex_init(&array[i].curseg_mutex);
4088 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4089 if (!array[i].sum_blk)
4090 return -ENOMEM;
4091 init_rwsem(&array[i].journal_rwsem);
4092 array[i].journal = f2fs_kzalloc(sbi,
4093 sizeof(struct f2fs_journal), GFP_KERNEL);
4094 if (!array[i].journal)
4095 return -ENOMEM;
4096 array[i].segno = NULL_SEGNO;
4097 array[i].next_blkoff = 0;
4098 }
4099 return restore_curseg_summaries(sbi);
4100 }
4101
4102 static int build_sit_entries(struct f2fs_sb_info *sbi)
4103 {
4104 struct sit_info *sit_i = SIT_I(sbi);
4105 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4106 struct f2fs_journal *journal = curseg->journal;
4107 struct seg_entry *se;
4108 struct f2fs_sit_entry sit;
4109 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4110 unsigned int i, start, end;
4111 unsigned int readed, start_blk = 0;
4112 int err = 0;
4113 block_t total_node_blocks = 0;
4114
4115 do {
4116 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4117 META_SIT, true);
4118
4119 start = start_blk * sit_i->sents_per_block;
4120 end = (start_blk + readed) * sit_i->sents_per_block;
4121
4122 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4123 struct f2fs_sit_block *sit_blk;
4124 struct page *page;
4125
4126 se = &sit_i->sentries[start];
4127 page = get_current_sit_page(sbi, start);
4128 if (IS_ERR(page))
4129 return PTR_ERR(page);
4130 sit_blk = (struct f2fs_sit_block *)page_address(page);
4131 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4132 f2fs_put_page(page, 1);
4133
4134 err = check_block_count(sbi, start, &sit);
4135 if (err)
4136 return err;
4137 seg_info_from_raw_sit(se, &sit);
4138 if (IS_NODESEG(se->type))
4139 total_node_blocks += se->valid_blocks;
4140
4141 /* build discard map only one time */
4142 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4143 memset(se->discard_map, 0xff,
4144 SIT_VBLOCK_MAP_SIZE);
4145 } else {
4146 memcpy(se->discard_map,
4147 se->cur_valid_map,
4148 SIT_VBLOCK_MAP_SIZE);
4149 sbi->discard_blks +=
4150 sbi->blocks_per_seg -
4151 se->valid_blocks;
4152 }
4153
4154 if (__is_large_section(sbi))
4155 get_sec_entry(sbi, start)->valid_blocks +=
4156 se->valid_blocks;
4157 }
4158 start_blk += readed;
4159 } while (start_blk < sit_blk_cnt);
4160
4161 down_read(&curseg->journal_rwsem);
4162 for (i = 0; i < sits_in_cursum(journal); i++) {
4163 unsigned int old_valid_blocks;
4164
4165 start = le32_to_cpu(segno_in_journal(journal, i));
4166 if (start >= MAIN_SEGS(sbi)) {
4167 f2fs_err(sbi, "Wrong journal entry on segno %u",
4168 start);
4169 err = -EFSCORRUPTED;
4170 break;
4171 }
4172
4173 se = &sit_i->sentries[start];
4174 sit = sit_in_journal(journal, i);
4175
4176 old_valid_blocks = se->valid_blocks;
4177 if (IS_NODESEG(se->type))
4178 total_node_blocks -= old_valid_blocks;
4179
4180 err = check_block_count(sbi, start, &sit);
4181 if (err)
4182 break;
4183 seg_info_from_raw_sit(se, &sit);
4184 if (IS_NODESEG(se->type))
4185 total_node_blocks += se->valid_blocks;
4186
4187 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4188 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4189 } else {
4190 memcpy(se->discard_map, se->cur_valid_map,
4191 SIT_VBLOCK_MAP_SIZE);
4192 sbi->discard_blks += old_valid_blocks;
4193 sbi->discard_blks -= se->valid_blocks;
4194 }
4195
4196 if (__is_large_section(sbi)) {
4197 get_sec_entry(sbi, start)->valid_blocks +=
4198 se->valid_blocks;
4199 get_sec_entry(sbi, start)->valid_blocks -=
4200 old_valid_blocks;
4201 }
4202 }
4203 up_read(&curseg->journal_rwsem);
4204
4205 if (!err && total_node_blocks != valid_node_count(sbi)) {
4206 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4207 total_node_blocks, valid_node_count(sbi));
4208 err = -EFSCORRUPTED;
4209 }
4210
4211 return err;
4212 }
4213
4214 static void init_free_segmap(struct f2fs_sb_info *sbi)
4215 {
4216 unsigned int start;
4217 int type;
4218
4219 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4220 struct seg_entry *sentry = get_seg_entry(sbi, start);
4221 if (!sentry->valid_blocks)
4222 __set_free(sbi, start);
4223 else
4224 SIT_I(sbi)->written_valid_blocks +=
4225 sentry->valid_blocks;
4226 }
4227
4228 /* set use the current segments */
4229 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4230 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4231 __set_test_and_inuse(sbi, curseg_t->segno);
4232 }
4233 }
4234
4235 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4236 {
4237 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4238 struct free_segmap_info *free_i = FREE_I(sbi);
4239 unsigned int segno = 0, offset = 0;
4240 unsigned short valid_blocks;
4241
4242 while (1) {
4243 /* find dirty segment based on free segmap */
4244 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4245 if (segno >= MAIN_SEGS(sbi))
4246 break;
4247 offset = segno + 1;
4248 valid_blocks = get_valid_blocks(sbi, segno, false);
4249 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4250 continue;
4251 if (valid_blocks > sbi->blocks_per_seg) {
4252 f2fs_bug_on(sbi, 1);
4253 continue;
4254 }
4255 mutex_lock(&dirty_i->seglist_lock);
4256 __locate_dirty_segment(sbi, segno, DIRTY);
4257 mutex_unlock(&dirty_i->seglist_lock);
4258 }
4259 }
4260
4261 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4262 {
4263 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4264 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4265
4266 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4267 if (!dirty_i->victim_secmap)
4268 return -ENOMEM;
4269 return 0;
4270 }
4271
4272 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4273 {
4274 struct dirty_seglist_info *dirty_i;
4275 unsigned int bitmap_size, i;
4276
4277 /* allocate memory for dirty segments list information */
4278 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4279 GFP_KERNEL);
4280 if (!dirty_i)
4281 return -ENOMEM;
4282
4283 SM_I(sbi)->dirty_info = dirty_i;
4284 mutex_init(&dirty_i->seglist_lock);
4285
4286 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4287
4288 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4289 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4290 GFP_KERNEL);
4291 if (!dirty_i->dirty_segmap[i])
4292 return -ENOMEM;
4293 }
4294
4295 init_dirty_segmap(sbi);
4296 return init_victim_secmap(sbi);
4297 }
4298
4299 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4300 {
4301 int i;
4302
4303 /*
4304 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4305 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4306 */
4307 for (i = 0; i < NO_CHECK_TYPE; i++) {
4308 struct curseg_info *curseg = CURSEG_I(sbi, i);
4309 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4310 unsigned int blkofs = curseg->next_blkoff;
4311
4312 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4313 goto out;
4314
4315 if (curseg->alloc_type == SSR)
4316 continue;
4317
4318 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4319 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4320 continue;
4321 out:
4322 f2fs_err(sbi,
4323 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4324 i, curseg->segno, curseg->alloc_type,
4325 curseg->next_blkoff, blkofs);
4326 return -EFSCORRUPTED;
4327 }
4328 }
4329 return 0;
4330 }
4331
4332 /*
4333 * Update min, max modified time for cost-benefit GC algorithm
4334 */
4335 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4336 {
4337 struct sit_info *sit_i = SIT_I(sbi);
4338 unsigned int segno;
4339
4340 down_write(&sit_i->sentry_lock);
4341
4342 sit_i->min_mtime = ULLONG_MAX;
4343
4344 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4345 unsigned int i;
4346 unsigned long long mtime = 0;
4347
4348 for (i = 0; i < sbi->segs_per_sec; i++)
4349 mtime += get_seg_entry(sbi, segno + i)->mtime;
4350
4351 mtime = div_u64(mtime, sbi->segs_per_sec);
4352
4353 if (sit_i->min_mtime > mtime)
4354 sit_i->min_mtime = mtime;
4355 }
4356 sit_i->max_mtime = get_mtime(sbi, false);
4357 up_write(&sit_i->sentry_lock);
4358 }
4359
4360 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4361 {
4362 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4363 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4364 struct f2fs_sm_info *sm_info;
4365 int err;
4366
4367 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4368 if (!sm_info)
4369 return -ENOMEM;
4370
4371 /* init sm info */
4372 sbi->sm_info = sm_info;
4373 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4374 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4375 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4376 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4377 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4378 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4379 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4380 sm_info->rec_prefree_segments = sm_info->main_segments *
4381 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4382 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4383 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4384
4385 if (!test_opt(sbi, LFS))
4386 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4387 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4388 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4389 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4390 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4391 sm_info->min_ssr_sections = reserved_sections(sbi);
4392
4393 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4394
4395 init_rwsem(&sm_info->curseg_lock);
4396
4397 if (!f2fs_readonly(sbi->sb)) {
4398 err = f2fs_create_flush_cmd_control(sbi);
4399 if (err)
4400 return err;
4401 }
4402
4403 err = create_discard_cmd_control(sbi);
4404 if (err)
4405 return err;
4406
4407 err = build_sit_info(sbi);
4408 if (err)
4409 return err;
4410 err = build_free_segmap(sbi);
4411 if (err)
4412 return err;
4413 err = build_curseg(sbi);
4414 if (err)
4415 return err;
4416
4417 /* reinit free segmap based on SIT */
4418 err = build_sit_entries(sbi);
4419 if (err)
4420 return err;
4421
4422 init_free_segmap(sbi);
4423 err = build_dirty_segmap(sbi);
4424 if (err)
4425 return err;
4426
4427 err = sanity_check_curseg(sbi);
4428 if (err)
4429 return err;
4430
4431 init_min_max_mtime(sbi);
4432 return 0;
4433 }
4434
4435 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4436 enum dirty_type dirty_type)
4437 {
4438 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4439
4440 mutex_lock(&dirty_i->seglist_lock);
4441 kvfree(dirty_i->dirty_segmap[dirty_type]);
4442 dirty_i->nr_dirty[dirty_type] = 0;
4443 mutex_unlock(&dirty_i->seglist_lock);
4444 }
4445
4446 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4447 {
4448 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4449 kvfree(dirty_i->victim_secmap);
4450 }
4451
4452 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4453 {
4454 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4455 int i;
4456
4457 if (!dirty_i)
4458 return;
4459
4460 /* discard pre-free/dirty segments list */
4461 for (i = 0; i < NR_DIRTY_TYPE; i++)
4462 discard_dirty_segmap(sbi, i);
4463
4464 destroy_victim_secmap(sbi);
4465 SM_I(sbi)->dirty_info = NULL;
4466 kvfree(dirty_i);
4467 }
4468
4469 static void destroy_curseg(struct f2fs_sb_info *sbi)
4470 {
4471 struct curseg_info *array = SM_I(sbi)->curseg_array;
4472 int i;
4473
4474 if (!array)
4475 return;
4476 SM_I(sbi)->curseg_array = NULL;
4477 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4478 kvfree(array[i].sum_blk);
4479 kvfree(array[i].journal);
4480 }
4481 kvfree(array);
4482 }
4483
4484 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4485 {
4486 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4487 if (!free_i)
4488 return;
4489 SM_I(sbi)->free_info = NULL;
4490 kvfree(free_i->free_segmap);
4491 kvfree(free_i->free_secmap);
4492 kvfree(free_i);
4493 }
4494
4495 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4496 {
4497 struct sit_info *sit_i = SIT_I(sbi);
4498
4499 if (!sit_i)
4500 return;
4501
4502 if (sit_i->sentries)
4503 kvfree(sit_i->bitmap);
4504 kvfree(sit_i->tmp_map);
4505
4506 kvfree(sit_i->sentries);
4507 kvfree(sit_i->sec_entries);
4508 kvfree(sit_i->dirty_sentries_bitmap);
4509
4510 SM_I(sbi)->sit_info = NULL;
4511 kvfree(sit_i->sit_bitmap);
4512 #ifdef CONFIG_F2FS_CHECK_FS
4513 kvfree(sit_i->sit_bitmap_mir);
4514 kvfree(sit_i->invalid_segmap);
4515 #endif
4516 kvfree(sit_i);
4517 }
4518
4519 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4520 {
4521 struct f2fs_sm_info *sm_info = SM_I(sbi);
4522
4523 if (!sm_info)
4524 return;
4525 f2fs_destroy_flush_cmd_control(sbi, true);
4526 destroy_discard_cmd_control(sbi);
4527 destroy_dirty_segmap(sbi);
4528 destroy_curseg(sbi);
4529 destroy_free_segmap(sbi);
4530 destroy_sit_info(sbi);
4531 sbi->sm_info = NULL;
4532 kvfree(sm_info);
4533 }
4534
4535 int __init f2fs_create_segment_manager_caches(void)
4536 {
4537 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4538 sizeof(struct discard_entry));
4539 if (!discard_entry_slab)
4540 goto fail;
4541
4542 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4543 sizeof(struct discard_cmd));
4544 if (!discard_cmd_slab)
4545 goto destroy_discard_entry;
4546
4547 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4548 sizeof(struct sit_entry_set));
4549 if (!sit_entry_set_slab)
4550 goto destroy_discard_cmd;
4551
4552 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4553 sizeof(struct inmem_pages));
4554 if (!inmem_entry_slab)
4555 goto destroy_sit_entry_set;
4556 return 0;
4557
4558 destroy_sit_entry_set:
4559 kmem_cache_destroy(sit_entry_set_slab);
4560 destroy_discard_cmd:
4561 kmem_cache_destroy(discard_cmd_slab);
4562 destroy_discard_entry:
4563 kmem_cache_destroy(discard_entry_slab);
4564 fail:
4565 return -ENOMEM;
4566 }
4567
4568 void f2fs_destroy_segment_manager_caches(void)
4569 {
4570 kmem_cache_destroy(sit_entry_set_slab);
4571 kmem_cache_destroy(discard_cmd_slab);
4572 kmem_cache_destroy(discard_entry_slab);
4573 kmem_cache_destroy(inmem_entry_slab);
4574 }