]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/segment.c
ASoC: rockchip: add bindings for rk3368 i2s
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 mutex_lock(&fi->inmem_lock);
246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
247 mutex_unlock(&fi->inmem_lock);
248
249 clear_inode_flag(inode, FI_ATOMIC_FILE);
250 stat_dec_atomic_write(inode);
251 }
252
253 static int __commit_inmem_pages(struct inode *inode,
254 struct list_head *revoke_list)
255 {
256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 struct f2fs_inode_info *fi = F2FS_I(inode);
258 struct inmem_pages *cur, *tmp;
259 struct f2fs_io_info fio = {
260 .sbi = sbi,
261 .type = DATA,
262 .op = REQ_OP_WRITE,
263 .op_flags = REQ_SYNC | REQ_PRIO,
264 .encrypted_page = NULL,
265 };
266 pgoff_t last_idx = ULONG_MAX;
267 int err = 0;
268
269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
270 struct page *page = cur->page;
271
272 lock_page(page);
273 if (page->mapping == inode->i_mapping) {
274 trace_f2fs_commit_inmem_page(page, INMEM);
275
276 set_page_dirty(page);
277 f2fs_wait_on_page_writeback(page, DATA, true);
278 if (clear_page_dirty_for_io(page)) {
279 inode_dec_dirty_pages(inode);
280 remove_dirty_inode(inode);
281 }
282
283 fio.page = page;
284 err = do_write_data_page(&fio);
285 if (err) {
286 unlock_page(page);
287 break;
288 }
289
290 /* record old blkaddr for revoking */
291 cur->old_addr = fio.old_blkaddr;
292 last_idx = page->index;
293 }
294 unlock_page(page);
295 list_move_tail(&cur->list, revoke_list);
296 }
297
298 if (last_idx != ULONG_MAX)
299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
300 DATA, WRITE);
301
302 if (!err)
303 __revoke_inmem_pages(inode, revoke_list, false, false);
304
305 return err;
306 }
307
308 int commit_inmem_pages(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct list_head revoke_list;
313 int err;
314
315 INIT_LIST_HEAD(&revoke_list);
316 f2fs_balance_fs(sbi, true);
317 f2fs_lock_op(sbi);
318
319 set_inode_flag(inode, FI_ATOMIC_COMMIT);
320
321 mutex_lock(&fi->inmem_lock);
322 err = __commit_inmem_pages(inode, &revoke_list);
323 if (err) {
324 int ret;
325 /*
326 * try to revoke all committed pages, but still we could fail
327 * due to no memory or other reason, if that happened, EAGAIN
328 * will be returned, which means in such case, transaction is
329 * already not integrity, caller should use journal to do the
330 * recovery or rewrite & commit last transaction. For other
331 * error number, revoking was done by filesystem itself.
332 */
333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
334 if (ret)
335 err = ret;
336
337 /* drop all uncommitted pages */
338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
339 }
340 mutex_unlock(&fi->inmem_lock);
341
342 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
343
344 f2fs_unlock_op(sbi);
345 return err;
346 }
347
348 /*
349 * This function balances dirty node and dentry pages.
350 * In addition, it controls garbage collection.
351 */
352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
353 {
354 #ifdef CONFIG_F2FS_FAULT_INJECTION
355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
356 f2fs_show_injection_info(FAULT_CHECKPOINT);
357 f2fs_stop_checkpoint(sbi, false);
358 }
359 #endif
360
361 if (!need)
362 return;
363
364 /* balance_fs_bg is able to be pending */
365 if (excess_cached_nats(sbi))
366 f2fs_balance_fs_bg(sbi);
367
368 /*
369 * We should do GC or end up with checkpoint, if there are so many dirty
370 * dir/node pages without enough free segments.
371 */
372 if (has_not_enough_free_secs(sbi, 0, 0)) {
373 mutex_lock(&sbi->gc_mutex);
374 f2fs_gc(sbi, false, false);
375 }
376 }
377
378 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
379 {
380 /* try to shrink extent cache when there is no enough memory */
381 if (!available_free_memory(sbi, EXTENT_CACHE))
382 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
383
384 /* check the # of cached NAT entries */
385 if (!available_free_memory(sbi, NAT_ENTRIES))
386 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
387
388 if (!available_free_memory(sbi, FREE_NIDS))
389 try_to_free_nids(sbi, MAX_FREE_NIDS);
390 else
391 build_free_nids(sbi, false, false);
392
393 if (!is_idle(sbi))
394 return;
395
396 /* checkpoint is the only way to shrink partial cached entries */
397 if (!available_free_memory(sbi, NAT_ENTRIES) ||
398 !available_free_memory(sbi, INO_ENTRIES) ||
399 excess_prefree_segs(sbi) ||
400 excess_dirty_nats(sbi) ||
401 f2fs_time_over(sbi, CP_TIME)) {
402 if (test_opt(sbi, DATA_FLUSH)) {
403 struct blk_plug plug;
404
405 blk_start_plug(&plug);
406 sync_dirty_inodes(sbi, FILE_INODE);
407 blk_finish_plug(&plug);
408 }
409 f2fs_sync_fs(sbi->sb, true);
410 stat_inc_bg_cp_count(sbi->stat_info);
411 }
412 }
413
414 static int __submit_flush_wait(struct block_device *bdev)
415 {
416 struct bio *bio = f2fs_bio_alloc(0);
417 int ret;
418
419 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
420 bio->bi_bdev = bdev;
421 ret = submit_bio_wait(bio);
422 bio_put(bio);
423 return ret;
424 }
425
426 static int submit_flush_wait(struct f2fs_sb_info *sbi)
427 {
428 int ret = __submit_flush_wait(sbi->sb->s_bdev);
429 int i;
430
431 if (sbi->s_ndevs && !ret) {
432 for (i = 1; i < sbi->s_ndevs; i++) {
433 trace_f2fs_issue_flush(FDEV(i).bdev,
434 test_opt(sbi, NOBARRIER),
435 test_opt(sbi, FLUSH_MERGE));
436 ret = __submit_flush_wait(FDEV(i).bdev);
437 if (ret)
438 break;
439 }
440 }
441 return ret;
442 }
443
444 static int issue_flush_thread(void *data)
445 {
446 struct f2fs_sb_info *sbi = data;
447 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
448 wait_queue_head_t *q = &fcc->flush_wait_queue;
449 repeat:
450 if (kthread_should_stop())
451 return 0;
452
453 if (!llist_empty(&fcc->issue_list)) {
454 struct flush_cmd *cmd, *next;
455 int ret;
456
457 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
458 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
459
460 ret = submit_flush_wait(sbi);
461 llist_for_each_entry_safe(cmd, next,
462 fcc->dispatch_list, llnode) {
463 cmd->ret = ret;
464 complete(&cmd->wait);
465 }
466 fcc->dispatch_list = NULL;
467 }
468
469 wait_event_interruptible(*q,
470 kthread_should_stop() || !llist_empty(&fcc->issue_list));
471 goto repeat;
472 }
473
474 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
475 {
476 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
477 struct flush_cmd cmd;
478
479 if (test_opt(sbi, NOBARRIER))
480 return 0;
481
482 if (!test_opt(sbi, FLUSH_MERGE))
483 return submit_flush_wait(sbi);
484
485 if (!atomic_read(&fcc->submit_flush)) {
486 int ret;
487
488 atomic_inc(&fcc->submit_flush);
489 ret = submit_flush_wait(sbi);
490 atomic_dec(&fcc->submit_flush);
491 return ret;
492 }
493
494 init_completion(&cmd.wait);
495
496 atomic_inc(&fcc->submit_flush);
497 llist_add(&cmd.llnode, &fcc->issue_list);
498
499 if (!fcc->dispatch_list)
500 wake_up(&fcc->flush_wait_queue);
501
502 if (fcc->f2fs_issue_flush) {
503 wait_for_completion(&cmd.wait);
504 atomic_dec(&fcc->submit_flush);
505 } else {
506 llist_del_all(&fcc->issue_list);
507 atomic_set(&fcc->submit_flush, 0);
508 }
509
510 return cmd.ret;
511 }
512
513 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
514 {
515 dev_t dev = sbi->sb->s_bdev->bd_dev;
516 struct flush_cmd_control *fcc;
517 int err = 0;
518
519 if (SM_I(sbi)->fcc_info) {
520 fcc = SM_I(sbi)->fcc_info;
521 goto init_thread;
522 }
523
524 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
525 if (!fcc)
526 return -ENOMEM;
527 atomic_set(&fcc->submit_flush, 0);
528 init_waitqueue_head(&fcc->flush_wait_queue);
529 init_llist_head(&fcc->issue_list);
530 SM_I(sbi)->fcc_info = fcc;
531 init_thread:
532 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
533 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
534 if (IS_ERR(fcc->f2fs_issue_flush)) {
535 err = PTR_ERR(fcc->f2fs_issue_flush);
536 kfree(fcc);
537 SM_I(sbi)->fcc_info = NULL;
538 return err;
539 }
540
541 return err;
542 }
543
544 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
545 {
546 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
547
548 if (fcc && fcc->f2fs_issue_flush) {
549 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
550
551 fcc->f2fs_issue_flush = NULL;
552 kthread_stop(flush_thread);
553 }
554 if (free) {
555 kfree(fcc);
556 SM_I(sbi)->fcc_info = NULL;
557 }
558 }
559
560 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
561 enum dirty_type dirty_type)
562 {
563 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
564
565 /* need not be added */
566 if (IS_CURSEG(sbi, segno))
567 return;
568
569 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
570 dirty_i->nr_dirty[dirty_type]++;
571
572 if (dirty_type == DIRTY) {
573 struct seg_entry *sentry = get_seg_entry(sbi, segno);
574 enum dirty_type t = sentry->type;
575
576 if (unlikely(t >= DIRTY)) {
577 f2fs_bug_on(sbi, 1);
578 return;
579 }
580 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
581 dirty_i->nr_dirty[t]++;
582 }
583 }
584
585 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
586 enum dirty_type dirty_type)
587 {
588 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
589
590 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
591 dirty_i->nr_dirty[dirty_type]--;
592
593 if (dirty_type == DIRTY) {
594 struct seg_entry *sentry = get_seg_entry(sbi, segno);
595 enum dirty_type t = sentry->type;
596
597 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
598 dirty_i->nr_dirty[t]--;
599
600 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
601 clear_bit(GET_SECNO(sbi, segno),
602 dirty_i->victim_secmap);
603 }
604 }
605
606 /*
607 * Should not occur error such as -ENOMEM.
608 * Adding dirty entry into seglist is not critical operation.
609 * If a given segment is one of current working segments, it won't be added.
610 */
611 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
612 {
613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
614 unsigned short valid_blocks;
615
616 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
617 return;
618
619 mutex_lock(&dirty_i->seglist_lock);
620
621 valid_blocks = get_valid_blocks(sbi, segno, 0);
622
623 if (valid_blocks == 0) {
624 __locate_dirty_segment(sbi, segno, PRE);
625 __remove_dirty_segment(sbi, segno, DIRTY);
626 } else if (valid_blocks < sbi->blocks_per_seg) {
627 __locate_dirty_segment(sbi, segno, DIRTY);
628 } else {
629 /* Recovery routine with SSR needs this */
630 __remove_dirty_segment(sbi, segno, DIRTY);
631 }
632
633 mutex_unlock(&dirty_i->seglist_lock);
634 }
635
636 static void __add_discard_cmd(struct f2fs_sb_info *sbi,
637 struct bio *bio, block_t lstart, block_t len)
638 {
639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
640 struct list_head *cmd_list = &(dcc->discard_cmd_list);
641 struct discard_cmd *dc;
642
643 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
644 INIT_LIST_HEAD(&dc->list);
645 dc->bio = bio;
646 bio->bi_private = dc;
647 dc->lstart = lstart;
648 dc->len = len;
649 dc->state = D_PREP;
650 init_completion(&dc->wait);
651
652 mutex_lock(&dcc->cmd_lock);
653 list_add_tail(&dc->list, cmd_list);
654 mutex_unlock(&dcc->cmd_lock);
655 }
656
657 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
658 {
659 int err = dc->bio->bi_error;
660
661 if (dc->state == D_DONE)
662 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard));
663
664 if (err == -EOPNOTSUPP)
665 err = 0;
666
667 if (err)
668 f2fs_msg(sbi->sb, KERN_INFO,
669 "Issue discard failed, ret: %d", err);
670 bio_put(dc->bio);
671 list_del(&dc->list);
672 kmem_cache_free(discard_cmd_slab, dc);
673 }
674
675 /* This should be covered by global mutex, &sit_i->sentry_lock */
676 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
677 {
678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
679 struct list_head *wait_list = &(dcc->discard_cmd_list);
680 struct discard_cmd *dc, *tmp;
681 struct blk_plug plug;
682
683 mutex_lock(&dcc->cmd_lock);
684
685 blk_start_plug(&plug);
686
687 list_for_each_entry_safe(dc, tmp, wait_list, list) {
688
689 if (blkaddr == NULL_ADDR) {
690 if (dc->state == D_PREP) {
691 dc->state = D_SUBMIT;
692 submit_bio(dc->bio);
693 atomic_inc(&dcc->submit_discard);
694 }
695 continue;
696 }
697
698 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
699 if (dc->state == D_SUBMIT)
700 wait_for_completion_io(&dc->wait);
701 else
702 __remove_discard_cmd(sbi, dc);
703 }
704 }
705 blk_finish_plug(&plug);
706
707 /* this comes from f2fs_put_super */
708 if (blkaddr == NULL_ADDR) {
709 list_for_each_entry_safe(dc, tmp, wait_list, list) {
710 wait_for_completion_io(&dc->wait);
711 __remove_discard_cmd(sbi, dc);
712 }
713 }
714 mutex_unlock(&dcc->cmd_lock);
715 }
716
717 static void f2fs_submit_discard_endio(struct bio *bio)
718 {
719 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
720
721 complete(&dc->wait);
722 dc->state = D_DONE;
723 }
724
725 static int issue_discard_thread(void *data)
726 {
727 struct f2fs_sb_info *sbi = data;
728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
729 wait_queue_head_t *q = &dcc->discard_wait_queue;
730 struct list_head *cmd_list = &dcc->discard_cmd_list;
731 struct discard_cmd *dc, *tmp;
732 struct blk_plug plug;
733 int iter = 0;
734 repeat:
735 if (kthread_should_stop())
736 return 0;
737
738 blk_start_plug(&plug);
739
740 mutex_lock(&dcc->cmd_lock);
741 list_for_each_entry_safe(dc, tmp, cmd_list, list) {
742 if (dc->state == D_PREP) {
743 dc->state = D_SUBMIT;
744 submit_bio(dc->bio);
745 atomic_inc(&dcc->submit_discard);
746 if (iter++ > DISCARD_ISSUE_RATE)
747 break;
748 } else if (dc->state == D_DONE) {
749 __remove_discard_cmd(sbi, dc);
750 }
751 }
752 mutex_unlock(&dcc->cmd_lock);
753
754 blk_finish_plug(&plug);
755
756 iter = 0;
757 congestion_wait(BLK_RW_SYNC, HZ/50);
758
759 wait_event_interruptible(*q,
760 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
761 goto repeat;
762 }
763
764
765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
766 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
767 struct block_device *bdev, block_t blkstart, block_t blklen)
768 {
769 struct bio *bio = NULL;
770 block_t lblkstart = blkstart;
771 int err;
772
773 trace_f2fs_issue_discard(bdev, blkstart, blklen);
774
775 if (sbi->s_ndevs) {
776 int devi = f2fs_target_device_index(sbi, blkstart);
777
778 blkstart -= FDEV(devi).start_blk;
779 }
780 err = __blkdev_issue_discard(bdev,
781 SECTOR_FROM_BLOCK(blkstart),
782 SECTOR_FROM_BLOCK(blklen),
783 GFP_NOFS, 0, &bio);
784 if (!err && bio) {
785 bio->bi_end_io = f2fs_submit_discard_endio;
786 bio->bi_opf |= REQ_SYNC;
787
788 __add_discard_cmd(sbi, bio, lblkstart, blklen);
789 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
790 }
791 return err;
792 }
793
794 #ifdef CONFIG_BLK_DEV_ZONED
795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
796 struct block_device *bdev, block_t blkstart, block_t blklen)
797 {
798 sector_t sector, nr_sects;
799 int devi = 0;
800
801 if (sbi->s_ndevs) {
802 devi = f2fs_target_device_index(sbi, blkstart);
803 blkstart -= FDEV(devi).start_blk;
804 }
805
806 /*
807 * We need to know the type of the zone: for conventional zones,
808 * use regular discard if the drive supports it. For sequential
809 * zones, reset the zone write pointer.
810 */
811 switch (get_blkz_type(sbi, bdev, blkstart)) {
812
813 case BLK_ZONE_TYPE_CONVENTIONAL:
814 if (!blk_queue_discard(bdev_get_queue(bdev)))
815 return 0;
816 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
817 case BLK_ZONE_TYPE_SEQWRITE_REQ:
818 case BLK_ZONE_TYPE_SEQWRITE_PREF:
819 sector = SECTOR_FROM_BLOCK(blkstart);
820 nr_sects = SECTOR_FROM_BLOCK(blklen);
821
822 if (sector & (bdev_zone_sectors(bdev) - 1) ||
823 nr_sects != bdev_zone_sectors(bdev)) {
824 f2fs_msg(sbi->sb, KERN_INFO,
825 "(%d) %s: Unaligned discard attempted (block %x + %x)",
826 devi, sbi->s_ndevs ? FDEV(devi).path: "",
827 blkstart, blklen);
828 return -EIO;
829 }
830 trace_f2fs_issue_reset_zone(bdev, blkstart);
831 return blkdev_reset_zones(bdev, sector,
832 nr_sects, GFP_NOFS);
833 default:
834 /* Unknown zone type: broken device ? */
835 return -EIO;
836 }
837 }
838 #endif
839
840 static int __issue_discard_async(struct f2fs_sb_info *sbi,
841 struct block_device *bdev, block_t blkstart, block_t blklen)
842 {
843 #ifdef CONFIG_BLK_DEV_ZONED
844 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
845 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
846 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
847 #endif
848 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
849 }
850
851 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
852 block_t blkstart, block_t blklen)
853 {
854 sector_t start = blkstart, len = 0;
855 struct block_device *bdev;
856 struct seg_entry *se;
857 unsigned int offset;
858 block_t i;
859 int err = 0;
860
861 bdev = f2fs_target_device(sbi, blkstart, NULL);
862
863 for (i = blkstart; i < blkstart + blklen; i++, len++) {
864 if (i != start) {
865 struct block_device *bdev2 =
866 f2fs_target_device(sbi, i, NULL);
867
868 if (bdev2 != bdev) {
869 err = __issue_discard_async(sbi, bdev,
870 start, len);
871 if (err)
872 return err;
873 bdev = bdev2;
874 start = i;
875 len = 0;
876 }
877 }
878
879 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
880 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
881
882 if (!f2fs_test_and_set_bit(offset, se->discard_map))
883 sbi->discard_blks--;
884 }
885
886 if (len)
887 err = __issue_discard_async(sbi, bdev, start, len);
888 return err;
889 }
890
891 static void __add_discard_entry(struct f2fs_sb_info *sbi,
892 struct cp_control *cpc, struct seg_entry *se,
893 unsigned int start, unsigned int end)
894 {
895 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
896 struct discard_entry *new, *last;
897
898 if (!list_empty(head)) {
899 last = list_last_entry(head, struct discard_entry, list);
900 if (START_BLOCK(sbi, cpc->trim_start) + start ==
901 last->blkaddr + last->len &&
902 last->len < MAX_DISCARD_BLOCKS(sbi)) {
903 last->len += end - start;
904 goto done;
905 }
906 }
907
908 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
909 INIT_LIST_HEAD(&new->list);
910 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
911 new->len = end - start;
912 list_add_tail(&new->list, head);
913 done:
914 SM_I(sbi)->dcc_info->nr_discards += end - start;
915 }
916
917 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
918 bool check_only)
919 {
920 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
921 int max_blocks = sbi->blocks_per_seg;
922 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
923 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
924 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
925 unsigned long *discard_map = (unsigned long *)se->discard_map;
926 unsigned long *dmap = SIT_I(sbi)->tmp_map;
927 unsigned int start = 0, end = -1;
928 bool force = (cpc->reason == CP_DISCARD);
929 int i;
930
931 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
932 return false;
933
934 if (!force) {
935 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
936 SM_I(sbi)->dcc_info->nr_discards >=
937 SM_I(sbi)->dcc_info->max_discards)
938 return false;
939 }
940
941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
942 for (i = 0; i < entries; i++)
943 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
944 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
945
946 while (force || SM_I(sbi)->dcc_info->nr_discards <=
947 SM_I(sbi)->dcc_info->max_discards) {
948 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
949 if (start >= max_blocks)
950 break;
951
952 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
953 if (force && start && end != max_blocks
954 && (end - start) < cpc->trim_minlen)
955 continue;
956
957 if (check_only)
958 return true;
959
960 __add_discard_entry(sbi, cpc, se, start, end);
961 }
962 return false;
963 }
964
965 void release_discard_addrs(struct f2fs_sb_info *sbi)
966 {
967 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
968 struct discard_entry *entry, *this;
969
970 /* drop caches */
971 list_for_each_entry_safe(entry, this, head, list) {
972 list_del(&entry->list);
973 kmem_cache_free(discard_entry_slab, entry);
974 }
975 }
976
977 /*
978 * Should call clear_prefree_segments after checkpoint is done.
979 */
980 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
981 {
982 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
983 unsigned int segno;
984
985 mutex_lock(&dirty_i->seglist_lock);
986 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
987 __set_test_and_free(sbi, segno);
988 mutex_unlock(&dirty_i->seglist_lock);
989 }
990
991 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
992 {
993 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
994 struct discard_entry *entry, *this;
995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
996 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
997 unsigned int start = 0, end = -1;
998 unsigned int secno, start_segno;
999 bool force = (cpc->reason == CP_DISCARD);
1000
1001 mutex_lock(&dirty_i->seglist_lock);
1002
1003 while (1) {
1004 int i;
1005 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1006 if (start >= MAIN_SEGS(sbi))
1007 break;
1008 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1009 start + 1);
1010
1011 for (i = start; i < end; i++)
1012 clear_bit(i, prefree_map);
1013
1014 dirty_i->nr_dirty[PRE] -= end - start;
1015
1016 if (!test_opt(sbi, DISCARD))
1017 continue;
1018
1019 if (force && start >= cpc->trim_start &&
1020 (end - 1) <= cpc->trim_end)
1021 continue;
1022
1023 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1024 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1025 (end - start) << sbi->log_blocks_per_seg);
1026 continue;
1027 }
1028 next:
1029 secno = GET_SECNO(sbi, start);
1030 start_segno = secno * sbi->segs_per_sec;
1031 if (!IS_CURSEC(sbi, secno) &&
1032 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
1033 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1034 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1035
1036 start = start_segno + sbi->segs_per_sec;
1037 if (start < end)
1038 goto next;
1039 else
1040 end = start - 1;
1041 }
1042 mutex_unlock(&dirty_i->seglist_lock);
1043
1044 /* send small discards */
1045 list_for_each_entry_safe(entry, this, head, list) {
1046 if (force && entry->len < cpc->trim_minlen)
1047 goto skip;
1048 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
1049 cpc->trimmed += entry->len;
1050 skip:
1051 list_del(&entry->list);
1052 SM_I(sbi)->dcc_info->nr_discards -= entry->len;
1053 kmem_cache_free(discard_entry_slab, entry);
1054 }
1055 }
1056
1057 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1058 {
1059 dev_t dev = sbi->sb->s_bdev->bd_dev;
1060 struct discard_cmd_control *dcc;
1061 int err = 0;
1062
1063 if (SM_I(sbi)->dcc_info) {
1064 dcc = SM_I(sbi)->dcc_info;
1065 goto init_thread;
1066 }
1067
1068 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1069 if (!dcc)
1070 return -ENOMEM;
1071
1072 INIT_LIST_HEAD(&dcc->discard_entry_list);
1073 INIT_LIST_HEAD(&dcc->discard_cmd_list);
1074 mutex_init(&dcc->cmd_lock);
1075 atomic_set(&dcc->submit_discard, 0);
1076 dcc->nr_discards = 0;
1077 dcc->max_discards = 0;
1078
1079 init_waitqueue_head(&dcc->discard_wait_queue);
1080 SM_I(sbi)->dcc_info = dcc;
1081 init_thread:
1082 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1083 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1084 if (IS_ERR(dcc->f2fs_issue_discard)) {
1085 err = PTR_ERR(dcc->f2fs_issue_discard);
1086 kfree(dcc);
1087 SM_I(sbi)->dcc_info = NULL;
1088 return err;
1089 }
1090
1091 return err;
1092 }
1093
1094 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
1095 {
1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097
1098 if (dcc && dcc->f2fs_issue_discard) {
1099 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1100
1101 dcc->f2fs_issue_discard = NULL;
1102 kthread_stop(discard_thread);
1103 }
1104 if (free) {
1105 kfree(dcc);
1106 SM_I(sbi)->dcc_info = NULL;
1107 }
1108 }
1109
1110 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1111 {
1112 struct sit_info *sit_i = SIT_I(sbi);
1113
1114 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1115 sit_i->dirty_sentries++;
1116 return false;
1117 }
1118
1119 return true;
1120 }
1121
1122 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1123 unsigned int segno, int modified)
1124 {
1125 struct seg_entry *se = get_seg_entry(sbi, segno);
1126 se->type = type;
1127 if (modified)
1128 __mark_sit_entry_dirty(sbi, segno);
1129 }
1130
1131 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1132 {
1133 struct seg_entry *se;
1134 unsigned int segno, offset;
1135 long int new_vblocks;
1136
1137 segno = GET_SEGNO(sbi, blkaddr);
1138
1139 se = get_seg_entry(sbi, segno);
1140 new_vblocks = se->valid_blocks + del;
1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1142
1143 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1144 (new_vblocks > sbi->blocks_per_seg)));
1145
1146 se->valid_blocks = new_vblocks;
1147 se->mtime = get_mtime(sbi);
1148 SIT_I(sbi)->max_mtime = se->mtime;
1149
1150 /* Update valid block bitmap */
1151 if (del > 0) {
1152 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1153 #ifdef CONFIG_F2FS_CHECK_FS
1154 if (f2fs_test_and_set_bit(offset,
1155 se->cur_valid_map_mir))
1156 f2fs_bug_on(sbi, 1);
1157 else
1158 WARN_ON(1);
1159 #else
1160 f2fs_bug_on(sbi, 1);
1161 #endif
1162 }
1163 if (f2fs_discard_en(sbi) &&
1164 !f2fs_test_and_set_bit(offset, se->discard_map))
1165 sbi->discard_blks--;
1166 } else {
1167 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1168 #ifdef CONFIG_F2FS_CHECK_FS
1169 if (!f2fs_test_and_clear_bit(offset,
1170 se->cur_valid_map_mir))
1171 f2fs_bug_on(sbi, 1);
1172 else
1173 WARN_ON(1);
1174 #else
1175 f2fs_bug_on(sbi, 1);
1176 #endif
1177 }
1178 if (f2fs_discard_en(sbi) &&
1179 f2fs_test_and_clear_bit(offset, se->discard_map))
1180 sbi->discard_blks++;
1181 }
1182 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1183 se->ckpt_valid_blocks += del;
1184
1185 __mark_sit_entry_dirty(sbi, segno);
1186
1187 /* update total number of valid blocks to be written in ckpt area */
1188 SIT_I(sbi)->written_valid_blocks += del;
1189
1190 if (sbi->segs_per_sec > 1)
1191 get_sec_entry(sbi, segno)->valid_blocks += del;
1192 }
1193
1194 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1195 {
1196 update_sit_entry(sbi, new, 1);
1197 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1198 update_sit_entry(sbi, old, -1);
1199
1200 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1201 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1202 }
1203
1204 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1205 {
1206 unsigned int segno = GET_SEGNO(sbi, addr);
1207 struct sit_info *sit_i = SIT_I(sbi);
1208
1209 f2fs_bug_on(sbi, addr == NULL_ADDR);
1210 if (addr == NEW_ADDR)
1211 return;
1212
1213 /* add it into sit main buffer */
1214 mutex_lock(&sit_i->sentry_lock);
1215
1216 update_sit_entry(sbi, addr, -1);
1217
1218 /* add it into dirty seglist */
1219 locate_dirty_segment(sbi, segno);
1220
1221 mutex_unlock(&sit_i->sentry_lock);
1222 }
1223
1224 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1225 {
1226 struct sit_info *sit_i = SIT_I(sbi);
1227 unsigned int segno, offset;
1228 struct seg_entry *se;
1229 bool is_cp = false;
1230
1231 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1232 return true;
1233
1234 mutex_lock(&sit_i->sentry_lock);
1235
1236 segno = GET_SEGNO(sbi, blkaddr);
1237 se = get_seg_entry(sbi, segno);
1238 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1239
1240 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1241 is_cp = true;
1242
1243 mutex_unlock(&sit_i->sentry_lock);
1244
1245 return is_cp;
1246 }
1247
1248 /*
1249 * This function should be resided under the curseg_mutex lock
1250 */
1251 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1252 struct f2fs_summary *sum)
1253 {
1254 struct curseg_info *curseg = CURSEG_I(sbi, type);
1255 void *addr = curseg->sum_blk;
1256 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1257 memcpy(addr, sum, sizeof(struct f2fs_summary));
1258 }
1259
1260 /*
1261 * Calculate the number of current summary pages for writing
1262 */
1263 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1264 {
1265 int valid_sum_count = 0;
1266 int i, sum_in_page;
1267
1268 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1269 if (sbi->ckpt->alloc_type[i] == SSR)
1270 valid_sum_count += sbi->blocks_per_seg;
1271 else {
1272 if (for_ra)
1273 valid_sum_count += le16_to_cpu(
1274 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1275 else
1276 valid_sum_count += curseg_blkoff(sbi, i);
1277 }
1278 }
1279
1280 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1281 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1282 if (valid_sum_count <= sum_in_page)
1283 return 1;
1284 else if ((valid_sum_count - sum_in_page) <=
1285 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1286 return 2;
1287 return 3;
1288 }
1289
1290 /*
1291 * Caller should put this summary page
1292 */
1293 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1294 {
1295 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1296 }
1297
1298 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1299 {
1300 struct page *page = grab_meta_page(sbi, blk_addr);
1301 void *dst = page_address(page);
1302
1303 if (src)
1304 memcpy(dst, src, PAGE_SIZE);
1305 else
1306 memset(dst, 0, PAGE_SIZE);
1307 set_page_dirty(page);
1308 f2fs_put_page(page, 1);
1309 }
1310
1311 static void write_sum_page(struct f2fs_sb_info *sbi,
1312 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1313 {
1314 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1315 }
1316
1317 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1318 int type, block_t blk_addr)
1319 {
1320 struct curseg_info *curseg = CURSEG_I(sbi, type);
1321 struct page *page = grab_meta_page(sbi, blk_addr);
1322 struct f2fs_summary_block *src = curseg->sum_blk;
1323 struct f2fs_summary_block *dst;
1324
1325 dst = (struct f2fs_summary_block *)page_address(page);
1326
1327 mutex_lock(&curseg->curseg_mutex);
1328
1329 down_read(&curseg->journal_rwsem);
1330 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1331 up_read(&curseg->journal_rwsem);
1332
1333 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1334 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1335
1336 mutex_unlock(&curseg->curseg_mutex);
1337
1338 set_page_dirty(page);
1339 f2fs_put_page(page, 1);
1340 }
1341
1342 /*
1343 * Find a new segment from the free segments bitmap to right order
1344 * This function should be returned with success, otherwise BUG
1345 */
1346 static void get_new_segment(struct f2fs_sb_info *sbi,
1347 unsigned int *newseg, bool new_sec, int dir)
1348 {
1349 struct free_segmap_info *free_i = FREE_I(sbi);
1350 unsigned int segno, secno, zoneno;
1351 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1352 unsigned int hint = *newseg / sbi->segs_per_sec;
1353 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1354 unsigned int left_start = hint;
1355 bool init = true;
1356 int go_left = 0;
1357 int i;
1358
1359 spin_lock(&free_i->segmap_lock);
1360
1361 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1362 segno = find_next_zero_bit(free_i->free_segmap,
1363 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1364 if (segno < (hint + 1) * sbi->segs_per_sec)
1365 goto got_it;
1366 }
1367 find_other_zone:
1368 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1369 if (secno >= MAIN_SECS(sbi)) {
1370 if (dir == ALLOC_RIGHT) {
1371 secno = find_next_zero_bit(free_i->free_secmap,
1372 MAIN_SECS(sbi), 0);
1373 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1374 } else {
1375 go_left = 1;
1376 left_start = hint - 1;
1377 }
1378 }
1379 if (go_left == 0)
1380 goto skip_left;
1381
1382 while (test_bit(left_start, free_i->free_secmap)) {
1383 if (left_start > 0) {
1384 left_start--;
1385 continue;
1386 }
1387 left_start = find_next_zero_bit(free_i->free_secmap,
1388 MAIN_SECS(sbi), 0);
1389 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1390 break;
1391 }
1392 secno = left_start;
1393 skip_left:
1394 hint = secno;
1395 segno = secno * sbi->segs_per_sec;
1396 zoneno = secno / sbi->secs_per_zone;
1397
1398 /* give up on finding another zone */
1399 if (!init)
1400 goto got_it;
1401 if (sbi->secs_per_zone == 1)
1402 goto got_it;
1403 if (zoneno == old_zoneno)
1404 goto got_it;
1405 if (dir == ALLOC_LEFT) {
1406 if (!go_left && zoneno + 1 >= total_zones)
1407 goto got_it;
1408 if (go_left && zoneno == 0)
1409 goto got_it;
1410 }
1411 for (i = 0; i < NR_CURSEG_TYPE; i++)
1412 if (CURSEG_I(sbi, i)->zone == zoneno)
1413 break;
1414
1415 if (i < NR_CURSEG_TYPE) {
1416 /* zone is in user, try another */
1417 if (go_left)
1418 hint = zoneno * sbi->secs_per_zone - 1;
1419 else if (zoneno + 1 >= total_zones)
1420 hint = 0;
1421 else
1422 hint = (zoneno + 1) * sbi->secs_per_zone;
1423 init = false;
1424 goto find_other_zone;
1425 }
1426 got_it:
1427 /* set it as dirty segment in free segmap */
1428 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1429 __set_inuse(sbi, segno);
1430 *newseg = segno;
1431 spin_unlock(&free_i->segmap_lock);
1432 }
1433
1434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1435 {
1436 struct curseg_info *curseg = CURSEG_I(sbi, type);
1437 struct summary_footer *sum_footer;
1438
1439 curseg->segno = curseg->next_segno;
1440 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1441 curseg->next_blkoff = 0;
1442 curseg->next_segno = NULL_SEGNO;
1443
1444 sum_footer = &(curseg->sum_blk->footer);
1445 memset(sum_footer, 0, sizeof(struct summary_footer));
1446 if (IS_DATASEG(type))
1447 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1448 if (IS_NODESEG(type))
1449 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1450 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1451 }
1452
1453 /*
1454 * Allocate a current working segment.
1455 * This function always allocates a free segment in LFS manner.
1456 */
1457 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1458 {
1459 struct curseg_info *curseg = CURSEG_I(sbi, type);
1460 unsigned int segno = curseg->segno;
1461 int dir = ALLOC_LEFT;
1462
1463 write_sum_page(sbi, curseg->sum_blk,
1464 GET_SUM_BLOCK(sbi, segno));
1465 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1466 dir = ALLOC_RIGHT;
1467
1468 if (test_opt(sbi, NOHEAP))
1469 dir = ALLOC_RIGHT;
1470
1471 get_new_segment(sbi, &segno, new_sec, dir);
1472 curseg->next_segno = segno;
1473 reset_curseg(sbi, type, 1);
1474 curseg->alloc_type = LFS;
1475 }
1476
1477 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1478 struct curseg_info *seg, block_t start)
1479 {
1480 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1481 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1482 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1483 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1484 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1485 int i, pos;
1486
1487 for (i = 0; i < entries; i++)
1488 target_map[i] = ckpt_map[i] | cur_map[i];
1489
1490 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1491
1492 seg->next_blkoff = pos;
1493 }
1494
1495 /*
1496 * If a segment is written by LFS manner, next block offset is just obtained
1497 * by increasing the current block offset. However, if a segment is written by
1498 * SSR manner, next block offset obtained by calling __next_free_blkoff
1499 */
1500 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1501 struct curseg_info *seg)
1502 {
1503 if (seg->alloc_type == SSR)
1504 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1505 else
1506 seg->next_blkoff++;
1507 }
1508
1509 /*
1510 * This function always allocates a used segment(from dirty seglist) by SSR
1511 * manner, so it should recover the existing segment information of valid blocks
1512 */
1513 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1514 {
1515 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1516 struct curseg_info *curseg = CURSEG_I(sbi, type);
1517 unsigned int new_segno = curseg->next_segno;
1518 struct f2fs_summary_block *sum_node;
1519 struct page *sum_page;
1520
1521 write_sum_page(sbi, curseg->sum_blk,
1522 GET_SUM_BLOCK(sbi, curseg->segno));
1523 __set_test_and_inuse(sbi, new_segno);
1524
1525 mutex_lock(&dirty_i->seglist_lock);
1526 __remove_dirty_segment(sbi, new_segno, PRE);
1527 __remove_dirty_segment(sbi, new_segno, DIRTY);
1528 mutex_unlock(&dirty_i->seglist_lock);
1529
1530 reset_curseg(sbi, type, 1);
1531 curseg->alloc_type = SSR;
1532 __next_free_blkoff(sbi, curseg, 0);
1533
1534 if (reuse) {
1535 sum_page = get_sum_page(sbi, new_segno);
1536 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1537 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1538 f2fs_put_page(sum_page, 1);
1539 }
1540 }
1541
1542 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1543 {
1544 struct curseg_info *curseg = CURSEG_I(sbi, type);
1545 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1546 int i, cnt;
1547 bool reversed = false;
1548
1549 /* need_SSR() already forces to do this */
1550 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
1551 return 1;
1552
1553 /* For node segments, let's do SSR more intensively */
1554 if (IS_NODESEG(type)) {
1555 if (type >= CURSEG_WARM_NODE) {
1556 reversed = true;
1557 i = CURSEG_COLD_NODE;
1558 } else {
1559 i = CURSEG_HOT_NODE;
1560 }
1561 cnt = NR_CURSEG_NODE_TYPE;
1562 } else {
1563 if (type >= CURSEG_WARM_DATA) {
1564 reversed = true;
1565 i = CURSEG_COLD_DATA;
1566 } else {
1567 i = CURSEG_HOT_DATA;
1568 }
1569 cnt = NR_CURSEG_DATA_TYPE;
1570 }
1571
1572 for (; cnt-- > 0; reversed ? i-- : i++) {
1573 if (i == type)
1574 continue;
1575 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1576 BG_GC, i, SSR))
1577 return 1;
1578 }
1579 return 0;
1580 }
1581
1582 /*
1583 * flush out current segment and replace it with new segment
1584 * This function should be returned with success, otherwise BUG
1585 */
1586 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1587 int type, bool force)
1588 {
1589 if (force)
1590 new_curseg(sbi, type, true);
1591 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1592 type == CURSEG_WARM_NODE)
1593 new_curseg(sbi, type, false);
1594 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1595 change_curseg(sbi, type, true);
1596 else
1597 new_curseg(sbi, type, false);
1598
1599 stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
1600 }
1601
1602 void allocate_new_segments(struct f2fs_sb_info *sbi)
1603 {
1604 struct curseg_info *curseg;
1605 unsigned int old_segno;
1606 int i;
1607
1608 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1609 curseg = CURSEG_I(sbi, i);
1610 old_segno = curseg->segno;
1611 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1612 locate_dirty_segment(sbi, old_segno);
1613 }
1614 }
1615
1616 static const struct segment_allocation default_salloc_ops = {
1617 .allocate_segment = allocate_segment_by_default,
1618 };
1619
1620 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621 {
1622 __u64 trim_start = cpc->trim_start;
1623 bool has_candidate = false;
1624
1625 mutex_lock(&SIT_I(sbi)->sentry_lock);
1626 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
1627 if (add_discard_addrs(sbi, cpc, true)) {
1628 has_candidate = true;
1629 break;
1630 }
1631 }
1632 mutex_unlock(&SIT_I(sbi)->sentry_lock);
1633
1634 cpc->trim_start = trim_start;
1635 return has_candidate;
1636 }
1637
1638 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1639 {
1640 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1641 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1642 unsigned int start_segno, end_segno;
1643 struct cp_control cpc;
1644 int err = 0;
1645
1646 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1647 return -EINVAL;
1648
1649 cpc.trimmed = 0;
1650 if (end <= MAIN_BLKADDR(sbi))
1651 goto out;
1652
1653 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1654 f2fs_msg(sbi->sb, KERN_WARNING,
1655 "Found FS corruption, run fsck to fix.");
1656 goto out;
1657 }
1658
1659 /* start/end segment number in main_area */
1660 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1661 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1662 GET_SEGNO(sbi, end);
1663 cpc.reason = CP_DISCARD;
1664 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1665
1666 /* do checkpoint to issue discard commands safely */
1667 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1668 cpc.trim_start = start_segno;
1669
1670 if (sbi->discard_blks == 0)
1671 break;
1672 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1673 cpc.trim_end = end_segno;
1674 else
1675 cpc.trim_end = min_t(unsigned int,
1676 rounddown(start_segno +
1677 BATCHED_TRIM_SEGMENTS(sbi),
1678 sbi->segs_per_sec) - 1, end_segno);
1679
1680 mutex_lock(&sbi->gc_mutex);
1681 err = write_checkpoint(sbi, &cpc);
1682 mutex_unlock(&sbi->gc_mutex);
1683 if (err)
1684 break;
1685
1686 schedule();
1687 }
1688 out:
1689 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1690 return err;
1691 }
1692
1693 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1694 {
1695 struct curseg_info *curseg = CURSEG_I(sbi, type);
1696 if (curseg->next_blkoff < sbi->blocks_per_seg)
1697 return true;
1698 return false;
1699 }
1700
1701 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1702 {
1703 if (p_type == DATA)
1704 return CURSEG_HOT_DATA;
1705 else
1706 return CURSEG_HOT_NODE;
1707 }
1708
1709 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1710 {
1711 if (p_type == DATA) {
1712 struct inode *inode = page->mapping->host;
1713
1714 if (S_ISDIR(inode->i_mode))
1715 return CURSEG_HOT_DATA;
1716 else
1717 return CURSEG_COLD_DATA;
1718 } else {
1719 if (IS_DNODE(page) && is_cold_node(page))
1720 return CURSEG_WARM_NODE;
1721 else
1722 return CURSEG_COLD_NODE;
1723 }
1724 }
1725
1726 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1727 {
1728 if (p_type == DATA) {
1729 struct inode *inode = page->mapping->host;
1730
1731 if (S_ISDIR(inode->i_mode))
1732 return CURSEG_HOT_DATA;
1733 else if (is_cold_data(page) || file_is_cold(inode))
1734 return CURSEG_COLD_DATA;
1735 else
1736 return CURSEG_WARM_DATA;
1737 } else {
1738 if (IS_DNODE(page))
1739 return is_cold_node(page) ? CURSEG_WARM_NODE :
1740 CURSEG_HOT_NODE;
1741 else
1742 return CURSEG_COLD_NODE;
1743 }
1744 }
1745
1746 static int __get_segment_type(struct page *page, enum page_type p_type)
1747 {
1748 switch (F2FS_P_SB(page)->active_logs) {
1749 case 2:
1750 return __get_segment_type_2(page, p_type);
1751 case 4:
1752 return __get_segment_type_4(page, p_type);
1753 }
1754 /* NR_CURSEG_TYPE(6) logs by default */
1755 f2fs_bug_on(F2FS_P_SB(page),
1756 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1757 return __get_segment_type_6(page, p_type);
1758 }
1759
1760 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1761 block_t old_blkaddr, block_t *new_blkaddr,
1762 struct f2fs_summary *sum, int type)
1763 {
1764 struct sit_info *sit_i = SIT_I(sbi);
1765 struct curseg_info *curseg = CURSEG_I(sbi, type);
1766
1767 mutex_lock(&curseg->curseg_mutex);
1768 mutex_lock(&sit_i->sentry_lock);
1769
1770 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1771
1772 f2fs_wait_discard_bio(sbi, *new_blkaddr);
1773
1774 /*
1775 * __add_sum_entry should be resided under the curseg_mutex
1776 * because, this function updates a summary entry in the
1777 * current summary block.
1778 */
1779 __add_sum_entry(sbi, type, sum);
1780
1781 __refresh_next_blkoff(sbi, curseg);
1782
1783 stat_inc_block_count(sbi, curseg);
1784
1785 /*
1786 * SIT information should be updated before segment allocation,
1787 * since SSR needs latest valid block information.
1788 */
1789 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1790
1791 if (!__has_curseg_space(sbi, type))
1792 sit_i->s_ops->allocate_segment(sbi, type, false);
1793
1794 mutex_unlock(&sit_i->sentry_lock);
1795
1796 if (page && IS_NODESEG(type))
1797 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1798
1799 mutex_unlock(&curseg->curseg_mutex);
1800 }
1801
1802 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1803 {
1804 int type = __get_segment_type(fio->page, fio->type);
1805 int err;
1806
1807 if (fio->type == NODE || fio->type == DATA)
1808 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1809 reallocate:
1810 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1811 &fio->new_blkaddr, sum, type);
1812
1813 /* writeout dirty page into bdev */
1814 err = f2fs_submit_page_mbio(fio);
1815 if (err == -EAGAIN) {
1816 fio->old_blkaddr = fio->new_blkaddr;
1817 goto reallocate;
1818 }
1819
1820 if (fio->type == NODE || fio->type == DATA)
1821 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1822 }
1823
1824 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1825 {
1826 struct f2fs_io_info fio = {
1827 .sbi = sbi,
1828 .type = META,
1829 .op = REQ_OP_WRITE,
1830 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1831 .old_blkaddr = page->index,
1832 .new_blkaddr = page->index,
1833 .page = page,
1834 .encrypted_page = NULL,
1835 };
1836
1837 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1838 fio.op_flags &= ~REQ_META;
1839
1840 set_page_writeback(page);
1841 f2fs_submit_page_mbio(&fio);
1842 }
1843
1844 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1845 {
1846 struct f2fs_summary sum;
1847
1848 set_summary(&sum, nid, 0, 0);
1849 do_write_page(&sum, fio);
1850 }
1851
1852 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1853 {
1854 struct f2fs_sb_info *sbi = fio->sbi;
1855 struct f2fs_summary sum;
1856 struct node_info ni;
1857
1858 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1859 get_node_info(sbi, dn->nid, &ni);
1860 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1861 do_write_page(&sum, fio);
1862 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1863 }
1864
1865 void rewrite_data_page(struct f2fs_io_info *fio)
1866 {
1867 fio->new_blkaddr = fio->old_blkaddr;
1868 stat_inc_inplace_blocks(fio->sbi);
1869 f2fs_submit_page_mbio(fio);
1870 }
1871
1872 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1873 block_t old_blkaddr, block_t new_blkaddr,
1874 bool recover_curseg, bool recover_newaddr)
1875 {
1876 struct sit_info *sit_i = SIT_I(sbi);
1877 struct curseg_info *curseg;
1878 unsigned int segno, old_cursegno;
1879 struct seg_entry *se;
1880 int type;
1881 unsigned short old_blkoff;
1882
1883 segno = GET_SEGNO(sbi, new_blkaddr);
1884 se = get_seg_entry(sbi, segno);
1885 type = se->type;
1886
1887 if (!recover_curseg) {
1888 /* for recovery flow */
1889 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1890 if (old_blkaddr == NULL_ADDR)
1891 type = CURSEG_COLD_DATA;
1892 else
1893 type = CURSEG_WARM_DATA;
1894 }
1895 } else {
1896 if (!IS_CURSEG(sbi, segno))
1897 type = CURSEG_WARM_DATA;
1898 }
1899
1900 curseg = CURSEG_I(sbi, type);
1901
1902 mutex_lock(&curseg->curseg_mutex);
1903 mutex_lock(&sit_i->sentry_lock);
1904
1905 old_cursegno = curseg->segno;
1906 old_blkoff = curseg->next_blkoff;
1907
1908 /* change the current segment */
1909 if (segno != curseg->segno) {
1910 curseg->next_segno = segno;
1911 change_curseg(sbi, type, true);
1912 }
1913
1914 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1915 __add_sum_entry(sbi, type, sum);
1916
1917 if (!recover_curseg || recover_newaddr)
1918 update_sit_entry(sbi, new_blkaddr, 1);
1919 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1920 update_sit_entry(sbi, old_blkaddr, -1);
1921
1922 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1923 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1924
1925 locate_dirty_segment(sbi, old_cursegno);
1926
1927 if (recover_curseg) {
1928 if (old_cursegno != curseg->segno) {
1929 curseg->next_segno = old_cursegno;
1930 change_curseg(sbi, type, true);
1931 }
1932 curseg->next_blkoff = old_blkoff;
1933 }
1934
1935 mutex_unlock(&sit_i->sentry_lock);
1936 mutex_unlock(&curseg->curseg_mutex);
1937 }
1938
1939 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1940 block_t old_addr, block_t new_addr,
1941 unsigned char version, bool recover_curseg,
1942 bool recover_newaddr)
1943 {
1944 struct f2fs_summary sum;
1945
1946 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1947
1948 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1949 recover_curseg, recover_newaddr);
1950
1951 f2fs_update_data_blkaddr(dn, new_addr);
1952 }
1953
1954 void f2fs_wait_on_page_writeback(struct page *page,
1955 enum page_type type, bool ordered)
1956 {
1957 if (PageWriteback(page)) {
1958 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1959
1960 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
1961 0, page->index, type, WRITE);
1962 if (ordered)
1963 wait_on_page_writeback(page);
1964 else
1965 wait_for_stable_page(page);
1966 }
1967 }
1968
1969 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1970 block_t blkaddr)
1971 {
1972 struct page *cpage;
1973
1974 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1975 return;
1976
1977 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1978 if (cpage) {
1979 f2fs_wait_on_page_writeback(cpage, DATA, true);
1980 f2fs_put_page(cpage, 1);
1981 }
1982 }
1983
1984 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1985 {
1986 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1987 struct curseg_info *seg_i;
1988 unsigned char *kaddr;
1989 struct page *page;
1990 block_t start;
1991 int i, j, offset;
1992
1993 start = start_sum_block(sbi);
1994
1995 page = get_meta_page(sbi, start++);
1996 kaddr = (unsigned char *)page_address(page);
1997
1998 /* Step 1: restore nat cache */
1999 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2000 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2001
2002 /* Step 2: restore sit cache */
2003 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2004 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2005 offset = 2 * SUM_JOURNAL_SIZE;
2006
2007 /* Step 3: restore summary entries */
2008 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2009 unsigned short blk_off;
2010 unsigned int segno;
2011
2012 seg_i = CURSEG_I(sbi, i);
2013 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2014 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2015 seg_i->next_segno = segno;
2016 reset_curseg(sbi, i, 0);
2017 seg_i->alloc_type = ckpt->alloc_type[i];
2018 seg_i->next_blkoff = blk_off;
2019
2020 if (seg_i->alloc_type == SSR)
2021 blk_off = sbi->blocks_per_seg;
2022
2023 for (j = 0; j < blk_off; j++) {
2024 struct f2fs_summary *s;
2025 s = (struct f2fs_summary *)(kaddr + offset);
2026 seg_i->sum_blk->entries[j] = *s;
2027 offset += SUMMARY_SIZE;
2028 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2029 SUM_FOOTER_SIZE)
2030 continue;
2031
2032 f2fs_put_page(page, 1);
2033 page = NULL;
2034
2035 page = get_meta_page(sbi, start++);
2036 kaddr = (unsigned char *)page_address(page);
2037 offset = 0;
2038 }
2039 }
2040 f2fs_put_page(page, 1);
2041 return 0;
2042 }
2043
2044 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2045 {
2046 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2047 struct f2fs_summary_block *sum;
2048 struct curseg_info *curseg;
2049 struct page *new;
2050 unsigned short blk_off;
2051 unsigned int segno = 0;
2052 block_t blk_addr = 0;
2053
2054 /* get segment number and block addr */
2055 if (IS_DATASEG(type)) {
2056 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2057 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2058 CURSEG_HOT_DATA]);
2059 if (__exist_node_summaries(sbi))
2060 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2061 else
2062 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2063 } else {
2064 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2065 CURSEG_HOT_NODE]);
2066 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2067 CURSEG_HOT_NODE]);
2068 if (__exist_node_summaries(sbi))
2069 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2070 type - CURSEG_HOT_NODE);
2071 else
2072 blk_addr = GET_SUM_BLOCK(sbi, segno);
2073 }
2074
2075 new = get_meta_page(sbi, blk_addr);
2076 sum = (struct f2fs_summary_block *)page_address(new);
2077
2078 if (IS_NODESEG(type)) {
2079 if (__exist_node_summaries(sbi)) {
2080 struct f2fs_summary *ns = &sum->entries[0];
2081 int i;
2082 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2083 ns->version = 0;
2084 ns->ofs_in_node = 0;
2085 }
2086 } else {
2087 int err;
2088
2089 err = restore_node_summary(sbi, segno, sum);
2090 if (err) {
2091 f2fs_put_page(new, 1);
2092 return err;
2093 }
2094 }
2095 }
2096
2097 /* set uncompleted segment to curseg */
2098 curseg = CURSEG_I(sbi, type);
2099 mutex_lock(&curseg->curseg_mutex);
2100
2101 /* update journal info */
2102 down_write(&curseg->journal_rwsem);
2103 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2104 up_write(&curseg->journal_rwsem);
2105
2106 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2107 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2108 curseg->next_segno = segno;
2109 reset_curseg(sbi, type, 0);
2110 curseg->alloc_type = ckpt->alloc_type[type];
2111 curseg->next_blkoff = blk_off;
2112 mutex_unlock(&curseg->curseg_mutex);
2113 f2fs_put_page(new, 1);
2114 return 0;
2115 }
2116
2117 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2118 {
2119 int type = CURSEG_HOT_DATA;
2120 int err;
2121
2122 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2123 int npages = npages_for_summary_flush(sbi, true);
2124
2125 if (npages >= 2)
2126 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2127 META_CP, true);
2128
2129 /* restore for compacted data summary */
2130 if (read_compacted_summaries(sbi))
2131 return -EINVAL;
2132 type = CURSEG_HOT_NODE;
2133 }
2134
2135 if (__exist_node_summaries(sbi))
2136 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2137 NR_CURSEG_TYPE - type, META_CP, true);
2138
2139 for (; type <= CURSEG_COLD_NODE; type++) {
2140 err = read_normal_summaries(sbi, type);
2141 if (err)
2142 return err;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2149 {
2150 struct page *page;
2151 unsigned char *kaddr;
2152 struct f2fs_summary *summary;
2153 struct curseg_info *seg_i;
2154 int written_size = 0;
2155 int i, j;
2156
2157 page = grab_meta_page(sbi, blkaddr++);
2158 kaddr = (unsigned char *)page_address(page);
2159
2160 /* Step 1: write nat cache */
2161 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2162 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2163 written_size += SUM_JOURNAL_SIZE;
2164
2165 /* Step 2: write sit cache */
2166 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2167 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2168 written_size += SUM_JOURNAL_SIZE;
2169
2170 /* Step 3: write summary entries */
2171 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2172 unsigned short blkoff;
2173 seg_i = CURSEG_I(sbi, i);
2174 if (sbi->ckpt->alloc_type[i] == SSR)
2175 blkoff = sbi->blocks_per_seg;
2176 else
2177 blkoff = curseg_blkoff(sbi, i);
2178
2179 for (j = 0; j < blkoff; j++) {
2180 if (!page) {
2181 page = grab_meta_page(sbi, blkaddr++);
2182 kaddr = (unsigned char *)page_address(page);
2183 written_size = 0;
2184 }
2185 summary = (struct f2fs_summary *)(kaddr + written_size);
2186 *summary = seg_i->sum_blk->entries[j];
2187 written_size += SUMMARY_SIZE;
2188
2189 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2190 SUM_FOOTER_SIZE)
2191 continue;
2192
2193 set_page_dirty(page);
2194 f2fs_put_page(page, 1);
2195 page = NULL;
2196 }
2197 }
2198 if (page) {
2199 set_page_dirty(page);
2200 f2fs_put_page(page, 1);
2201 }
2202 }
2203
2204 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2205 block_t blkaddr, int type)
2206 {
2207 int i, end;
2208 if (IS_DATASEG(type))
2209 end = type + NR_CURSEG_DATA_TYPE;
2210 else
2211 end = type + NR_CURSEG_NODE_TYPE;
2212
2213 for (i = type; i < end; i++)
2214 write_current_sum_page(sbi, i, blkaddr + (i - type));
2215 }
2216
2217 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2218 {
2219 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2220 write_compacted_summaries(sbi, start_blk);
2221 else
2222 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2223 }
2224
2225 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2226 {
2227 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2228 }
2229
2230 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2231 unsigned int val, int alloc)
2232 {
2233 int i;
2234
2235 if (type == NAT_JOURNAL) {
2236 for (i = 0; i < nats_in_cursum(journal); i++) {
2237 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2238 return i;
2239 }
2240 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2241 return update_nats_in_cursum(journal, 1);
2242 } else if (type == SIT_JOURNAL) {
2243 for (i = 0; i < sits_in_cursum(journal); i++)
2244 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2245 return i;
2246 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2247 return update_sits_in_cursum(journal, 1);
2248 }
2249 return -1;
2250 }
2251
2252 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2253 unsigned int segno)
2254 {
2255 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2256 }
2257
2258 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2259 unsigned int start)
2260 {
2261 struct sit_info *sit_i = SIT_I(sbi);
2262 struct page *src_page, *dst_page;
2263 pgoff_t src_off, dst_off;
2264 void *src_addr, *dst_addr;
2265
2266 src_off = current_sit_addr(sbi, start);
2267 dst_off = next_sit_addr(sbi, src_off);
2268
2269 /* get current sit block page without lock */
2270 src_page = get_meta_page(sbi, src_off);
2271 dst_page = grab_meta_page(sbi, dst_off);
2272 f2fs_bug_on(sbi, PageDirty(src_page));
2273
2274 src_addr = page_address(src_page);
2275 dst_addr = page_address(dst_page);
2276 memcpy(dst_addr, src_addr, PAGE_SIZE);
2277
2278 set_page_dirty(dst_page);
2279 f2fs_put_page(src_page, 1);
2280
2281 set_to_next_sit(sit_i, start);
2282
2283 return dst_page;
2284 }
2285
2286 static struct sit_entry_set *grab_sit_entry_set(void)
2287 {
2288 struct sit_entry_set *ses =
2289 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2290
2291 ses->entry_cnt = 0;
2292 INIT_LIST_HEAD(&ses->set_list);
2293 return ses;
2294 }
2295
2296 static void release_sit_entry_set(struct sit_entry_set *ses)
2297 {
2298 list_del(&ses->set_list);
2299 kmem_cache_free(sit_entry_set_slab, ses);
2300 }
2301
2302 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2303 struct list_head *head)
2304 {
2305 struct sit_entry_set *next = ses;
2306
2307 if (list_is_last(&ses->set_list, head))
2308 return;
2309
2310 list_for_each_entry_continue(next, head, set_list)
2311 if (ses->entry_cnt <= next->entry_cnt)
2312 break;
2313
2314 list_move_tail(&ses->set_list, &next->set_list);
2315 }
2316
2317 static void add_sit_entry(unsigned int segno, struct list_head *head)
2318 {
2319 struct sit_entry_set *ses;
2320 unsigned int start_segno = START_SEGNO(segno);
2321
2322 list_for_each_entry(ses, head, set_list) {
2323 if (ses->start_segno == start_segno) {
2324 ses->entry_cnt++;
2325 adjust_sit_entry_set(ses, head);
2326 return;
2327 }
2328 }
2329
2330 ses = grab_sit_entry_set();
2331
2332 ses->start_segno = start_segno;
2333 ses->entry_cnt++;
2334 list_add(&ses->set_list, head);
2335 }
2336
2337 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2338 {
2339 struct f2fs_sm_info *sm_info = SM_I(sbi);
2340 struct list_head *set_list = &sm_info->sit_entry_set;
2341 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2342 unsigned int segno;
2343
2344 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2345 add_sit_entry(segno, set_list);
2346 }
2347
2348 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2349 {
2350 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2351 struct f2fs_journal *journal = curseg->journal;
2352 int i;
2353
2354 down_write(&curseg->journal_rwsem);
2355 for (i = 0; i < sits_in_cursum(journal); i++) {
2356 unsigned int segno;
2357 bool dirtied;
2358
2359 segno = le32_to_cpu(segno_in_journal(journal, i));
2360 dirtied = __mark_sit_entry_dirty(sbi, segno);
2361
2362 if (!dirtied)
2363 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2364 }
2365 update_sits_in_cursum(journal, -i);
2366 up_write(&curseg->journal_rwsem);
2367 }
2368
2369 /*
2370 * CP calls this function, which flushes SIT entries including sit_journal,
2371 * and moves prefree segs to free segs.
2372 */
2373 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2374 {
2375 struct sit_info *sit_i = SIT_I(sbi);
2376 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2378 struct f2fs_journal *journal = curseg->journal;
2379 struct sit_entry_set *ses, *tmp;
2380 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2381 bool to_journal = true;
2382 struct seg_entry *se;
2383
2384 mutex_lock(&sit_i->sentry_lock);
2385
2386 if (!sit_i->dirty_sentries)
2387 goto out;
2388
2389 /*
2390 * add and account sit entries of dirty bitmap in sit entry
2391 * set temporarily
2392 */
2393 add_sits_in_set(sbi);
2394
2395 /*
2396 * if there are no enough space in journal to store dirty sit
2397 * entries, remove all entries from journal and add and account
2398 * them in sit entry set.
2399 */
2400 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2401 remove_sits_in_journal(sbi);
2402
2403 /*
2404 * there are two steps to flush sit entries:
2405 * #1, flush sit entries to journal in current cold data summary block.
2406 * #2, flush sit entries to sit page.
2407 */
2408 list_for_each_entry_safe(ses, tmp, head, set_list) {
2409 struct page *page = NULL;
2410 struct f2fs_sit_block *raw_sit = NULL;
2411 unsigned int start_segno = ses->start_segno;
2412 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2413 (unsigned long)MAIN_SEGS(sbi));
2414 unsigned int segno = start_segno;
2415
2416 if (to_journal &&
2417 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2418 to_journal = false;
2419
2420 if (to_journal) {
2421 down_write(&curseg->journal_rwsem);
2422 } else {
2423 page = get_next_sit_page(sbi, start_segno);
2424 raw_sit = page_address(page);
2425 }
2426
2427 /* flush dirty sit entries in region of current sit set */
2428 for_each_set_bit_from(segno, bitmap, end) {
2429 int offset, sit_offset;
2430
2431 se = get_seg_entry(sbi, segno);
2432
2433 /* add discard candidates */
2434 if (cpc->reason != CP_DISCARD) {
2435 cpc->trim_start = segno;
2436 add_discard_addrs(sbi, cpc, false);
2437 }
2438
2439 if (to_journal) {
2440 offset = lookup_journal_in_cursum(journal,
2441 SIT_JOURNAL, segno, 1);
2442 f2fs_bug_on(sbi, offset < 0);
2443 segno_in_journal(journal, offset) =
2444 cpu_to_le32(segno);
2445 seg_info_to_raw_sit(se,
2446 &sit_in_journal(journal, offset));
2447 } else {
2448 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2449 seg_info_to_raw_sit(se,
2450 &raw_sit->entries[sit_offset]);
2451 }
2452
2453 __clear_bit(segno, bitmap);
2454 sit_i->dirty_sentries--;
2455 ses->entry_cnt--;
2456 }
2457
2458 if (to_journal)
2459 up_write(&curseg->journal_rwsem);
2460 else
2461 f2fs_put_page(page, 1);
2462
2463 f2fs_bug_on(sbi, ses->entry_cnt);
2464 release_sit_entry_set(ses);
2465 }
2466
2467 f2fs_bug_on(sbi, !list_empty(head));
2468 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2469 out:
2470 if (cpc->reason == CP_DISCARD) {
2471 __u64 trim_start = cpc->trim_start;
2472
2473 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2474 add_discard_addrs(sbi, cpc, false);
2475
2476 cpc->trim_start = trim_start;
2477 }
2478 mutex_unlock(&sit_i->sentry_lock);
2479
2480 set_prefree_as_free_segments(sbi);
2481 }
2482
2483 static int build_sit_info(struct f2fs_sb_info *sbi)
2484 {
2485 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2486 struct sit_info *sit_i;
2487 unsigned int sit_segs, start;
2488 char *src_bitmap;
2489 unsigned int bitmap_size;
2490
2491 /* allocate memory for SIT information */
2492 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2493 if (!sit_i)
2494 return -ENOMEM;
2495
2496 SM_I(sbi)->sit_info = sit_i;
2497
2498 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2499 sizeof(struct seg_entry), GFP_KERNEL);
2500 if (!sit_i->sentries)
2501 return -ENOMEM;
2502
2503 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2504 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2505 if (!sit_i->dirty_sentries_bitmap)
2506 return -ENOMEM;
2507
2508 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2509 sit_i->sentries[start].cur_valid_map
2510 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2511 sit_i->sentries[start].ckpt_valid_map
2512 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2513 if (!sit_i->sentries[start].cur_valid_map ||
2514 !sit_i->sentries[start].ckpt_valid_map)
2515 return -ENOMEM;
2516
2517 #ifdef CONFIG_F2FS_CHECK_FS
2518 sit_i->sentries[start].cur_valid_map_mir
2519 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2520 if (!sit_i->sentries[start].cur_valid_map_mir)
2521 return -ENOMEM;
2522 #endif
2523
2524 if (f2fs_discard_en(sbi)) {
2525 sit_i->sentries[start].discard_map
2526 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2527 if (!sit_i->sentries[start].discard_map)
2528 return -ENOMEM;
2529 }
2530 }
2531
2532 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2533 if (!sit_i->tmp_map)
2534 return -ENOMEM;
2535
2536 if (sbi->segs_per_sec > 1) {
2537 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2538 sizeof(struct sec_entry), GFP_KERNEL);
2539 if (!sit_i->sec_entries)
2540 return -ENOMEM;
2541 }
2542
2543 /* get information related with SIT */
2544 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2545
2546 /* setup SIT bitmap from ckeckpoint pack */
2547 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2548 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2549
2550 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2551 if (!sit_i->sit_bitmap)
2552 return -ENOMEM;
2553
2554 #ifdef CONFIG_F2FS_CHECK_FS
2555 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2556 if (!sit_i->sit_bitmap_mir)
2557 return -ENOMEM;
2558 #endif
2559
2560 /* init SIT information */
2561 sit_i->s_ops = &default_salloc_ops;
2562
2563 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2564 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2565 sit_i->written_valid_blocks = 0;
2566 sit_i->bitmap_size = bitmap_size;
2567 sit_i->dirty_sentries = 0;
2568 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2569 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2570 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2571 mutex_init(&sit_i->sentry_lock);
2572 return 0;
2573 }
2574
2575 static int build_free_segmap(struct f2fs_sb_info *sbi)
2576 {
2577 struct free_segmap_info *free_i;
2578 unsigned int bitmap_size, sec_bitmap_size;
2579
2580 /* allocate memory for free segmap information */
2581 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2582 if (!free_i)
2583 return -ENOMEM;
2584
2585 SM_I(sbi)->free_info = free_i;
2586
2587 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2588 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2589 if (!free_i->free_segmap)
2590 return -ENOMEM;
2591
2592 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2593 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2594 if (!free_i->free_secmap)
2595 return -ENOMEM;
2596
2597 /* set all segments as dirty temporarily */
2598 memset(free_i->free_segmap, 0xff, bitmap_size);
2599 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2600
2601 /* init free segmap information */
2602 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2603 free_i->free_segments = 0;
2604 free_i->free_sections = 0;
2605 spin_lock_init(&free_i->segmap_lock);
2606 return 0;
2607 }
2608
2609 static int build_curseg(struct f2fs_sb_info *sbi)
2610 {
2611 struct curseg_info *array;
2612 int i;
2613
2614 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2615 if (!array)
2616 return -ENOMEM;
2617
2618 SM_I(sbi)->curseg_array = array;
2619
2620 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2621 mutex_init(&array[i].curseg_mutex);
2622 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2623 if (!array[i].sum_blk)
2624 return -ENOMEM;
2625 init_rwsem(&array[i].journal_rwsem);
2626 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2627 GFP_KERNEL);
2628 if (!array[i].journal)
2629 return -ENOMEM;
2630 array[i].segno = NULL_SEGNO;
2631 array[i].next_blkoff = 0;
2632 }
2633 return restore_curseg_summaries(sbi);
2634 }
2635
2636 static void build_sit_entries(struct f2fs_sb_info *sbi)
2637 {
2638 struct sit_info *sit_i = SIT_I(sbi);
2639 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2640 struct f2fs_journal *journal = curseg->journal;
2641 struct seg_entry *se;
2642 struct f2fs_sit_entry sit;
2643 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2644 unsigned int i, start, end;
2645 unsigned int readed, start_blk = 0;
2646
2647 do {
2648 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2649 META_SIT, true);
2650
2651 start = start_blk * sit_i->sents_per_block;
2652 end = (start_blk + readed) * sit_i->sents_per_block;
2653
2654 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2655 struct f2fs_sit_block *sit_blk;
2656 struct page *page;
2657
2658 se = &sit_i->sentries[start];
2659 page = get_current_sit_page(sbi, start);
2660 sit_blk = (struct f2fs_sit_block *)page_address(page);
2661 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2662 f2fs_put_page(page, 1);
2663
2664 check_block_count(sbi, start, &sit);
2665 seg_info_from_raw_sit(se, &sit);
2666
2667 /* build discard map only one time */
2668 if (f2fs_discard_en(sbi)) {
2669 memcpy(se->discard_map, se->cur_valid_map,
2670 SIT_VBLOCK_MAP_SIZE);
2671 sbi->discard_blks += sbi->blocks_per_seg -
2672 se->valid_blocks;
2673 }
2674
2675 if (sbi->segs_per_sec > 1)
2676 get_sec_entry(sbi, start)->valid_blocks +=
2677 se->valid_blocks;
2678 }
2679 start_blk += readed;
2680 } while (start_blk < sit_blk_cnt);
2681
2682 down_read(&curseg->journal_rwsem);
2683 for (i = 0; i < sits_in_cursum(journal); i++) {
2684 unsigned int old_valid_blocks;
2685
2686 start = le32_to_cpu(segno_in_journal(journal, i));
2687 se = &sit_i->sentries[start];
2688 sit = sit_in_journal(journal, i);
2689
2690 old_valid_blocks = se->valid_blocks;
2691
2692 check_block_count(sbi, start, &sit);
2693 seg_info_from_raw_sit(se, &sit);
2694
2695 if (f2fs_discard_en(sbi)) {
2696 memcpy(se->discard_map, se->cur_valid_map,
2697 SIT_VBLOCK_MAP_SIZE);
2698 sbi->discard_blks += old_valid_blocks -
2699 se->valid_blocks;
2700 }
2701
2702 if (sbi->segs_per_sec > 1)
2703 get_sec_entry(sbi, start)->valid_blocks +=
2704 se->valid_blocks - old_valid_blocks;
2705 }
2706 up_read(&curseg->journal_rwsem);
2707 }
2708
2709 static void init_free_segmap(struct f2fs_sb_info *sbi)
2710 {
2711 unsigned int start;
2712 int type;
2713
2714 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2715 struct seg_entry *sentry = get_seg_entry(sbi, start);
2716 if (!sentry->valid_blocks)
2717 __set_free(sbi, start);
2718 else
2719 SIT_I(sbi)->written_valid_blocks +=
2720 sentry->valid_blocks;
2721 }
2722
2723 /* set use the current segments */
2724 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2725 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2726 __set_test_and_inuse(sbi, curseg_t->segno);
2727 }
2728 }
2729
2730 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2731 {
2732 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2733 struct free_segmap_info *free_i = FREE_I(sbi);
2734 unsigned int segno = 0, offset = 0;
2735 unsigned short valid_blocks;
2736
2737 while (1) {
2738 /* find dirty segment based on free segmap */
2739 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2740 if (segno >= MAIN_SEGS(sbi))
2741 break;
2742 offset = segno + 1;
2743 valid_blocks = get_valid_blocks(sbi, segno, 0);
2744 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2745 continue;
2746 if (valid_blocks > sbi->blocks_per_seg) {
2747 f2fs_bug_on(sbi, 1);
2748 continue;
2749 }
2750 mutex_lock(&dirty_i->seglist_lock);
2751 __locate_dirty_segment(sbi, segno, DIRTY);
2752 mutex_unlock(&dirty_i->seglist_lock);
2753 }
2754 }
2755
2756 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2757 {
2758 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2759 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2760
2761 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2762 if (!dirty_i->victim_secmap)
2763 return -ENOMEM;
2764 return 0;
2765 }
2766
2767 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2768 {
2769 struct dirty_seglist_info *dirty_i;
2770 unsigned int bitmap_size, i;
2771
2772 /* allocate memory for dirty segments list information */
2773 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2774 if (!dirty_i)
2775 return -ENOMEM;
2776
2777 SM_I(sbi)->dirty_info = dirty_i;
2778 mutex_init(&dirty_i->seglist_lock);
2779
2780 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2781
2782 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2783 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2784 if (!dirty_i->dirty_segmap[i])
2785 return -ENOMEM;
2786 }
2787
2788 init_dirty_segmap(sbi);
2789 return init_victim_secmap(sbi);
2790 }
2791
2792 /*
2793 * Update min, max modified time for cost-benefit GC algorithm
2794 */
2795 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2796 {
2797 struct sit_info *sit_i = SIT_I(sbi);
2798 unsigned int segno;
2799
2800 mutex_lock(&sit_i->sentry_lock);
2801
2802 sit_i->min_mtime = LLONG_MAX;
2803
2804 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2805 unsigned int i;
2806 unsigned long long mtime = 0;
2807
2808 for (i = 0; i < sbi->segs_per_sec; i++)
2809 mtime += get_seg_entry(sbi, segno + i)->mtime;
2810
2811 mtime = div_u64(mtime, sbi->segs_per_sec);
2812
2813 if (sit_i->min_mtime > mtime)
2814 sit_i->min_mtime = mtime;
2815 }
2816 sit_i->max_mtime = get_mtime(sbi);
2817 mutex_unlock(&sit_i->sentry_lock);
2818 }
2819
2820 int build_segment_manager(struct f2fs_sb_info *sbi)
2821 {
2822 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2823 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2824 struct f2fs_sm_info *sm_info;
2825 int err;
2826
2827 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2828 if (!sm_info)
2829 return -ENOMEM;
2830
2831 /* init sm info */
2832 sbi->sm_info = sm_info;
2833 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2834 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2835 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2836 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2837 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2838 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2839 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2840 sm_info->rec_prefree_segments = sm_info->main_segments *
2841 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2842 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2843 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2844
2845 if (!test_opt(sbi, LFS))
2846 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2847 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2848 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2849
2850 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2851
2852 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2853
2854 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2855 err = create_flush_cmd_control(sbi);
2856 if (err)
2857 return err;
2858 }
2859
2860 err = create_discard_cmd_control(sbi);
2861 if (err)
2862 return err;
2863
2864 err = build_sit_info(sbi);
2865 if (err)
2866 return err;
2867 err = build_free_segmap(sbi);
2868 if (err)
2869 return err;
2870 err = build_curseg(sbi);
2871 if (err)
2872 return err;
2873
2874 /* reinit free segmap based on SIT */
2875 build_sit_entries(sbi);
2876
2877 init_free_segmap(sbi);
2878 err = build_dirty_segmap(sbi);
2879 if (err)
2880 return err;
2881
2882 init_min_max_mtime(sbi);
2883 return 0;
2884 }
2885
2886 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2887 enum dirty_type dirty_type)
2888 {
2889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2890
2891 mutex_lock(&dirty_i->seglist_lock);
2892 kvfree(dirty_i->dirty_segmap[dirty_type]);
2893 dirty_i->nr_dirty[dirty_type] = 0;
2894 mutex_unlock(&dirty_i->seglist_lock);
2895 }
2896
2897 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2898 {
2899 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2900 kvfree(dirty_i->victim_secmap);
2901 }
2902
2903 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2904 {
2905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2906 int i;
2907
2908 if (!dirty_i)
2909 return;
2910
2911 /* discard pre-free/dirty segments list */
2912 for (i = 0; i < NR_DIRTY_TYPE; i++)
2913 discard_dirty_segmap(sbi, i);
2914
2915 destroy_victim_secmap(sbi);
2916 SM_I(sbi)->dirty_info = NULL;
2917 kfree(dirty_i);
2918 }
2919
2920 static void destroy_curseg(struct f2fs_sb_info *sbi)
2921 {
2922 struct curseg_info *array = SM_I(sbi)->curseg_array;
2923 int i;
2924
2925 if (!array)
2926 return;
2927 SM_I(sbi)->curseg_array = NULL;
2928 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2929 kfree(array[i].sum_blk);
2930 kfree(array[i].journal);
2931 }
2932 kfree(array);
2933 }
2934
2935 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2936 {
2937 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2938 if (!free_i)
2939 return;
2940 SM_I(sbi)->free_info = NULL;
2941 kvfree(free_i->free_segmap);
2942 kvfree(free_i->free_secmap);
2943 kfree(free_i);
2944 }
2945
2946 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2947 {
2948 struct sit_info *sit_i = SIT_I(sbi);
2949 unsigned int start;
2950
2951 if (!sit_i)
2952 return;
2953
2954 if (sit_i->sentries) {
2955 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2956 kfree(sit_i->sentries[start].cur_valid_map);
2957 #ifdef CONFIG_F2FS_CHECK_FS
2958 kfree(sit_i->sentries[start].cur_valid_map_mir);
2959 #endif
2960 kfree(sit_i->sentries[start].ckpt_valid_map);
2961 kfree(sit_i->sentries[start].discard_map);
2962 }
2963 }
2964 kfree(sit_i->tmp_map);
2965
2966 kvfree(sit_i->sentries);
2967 kvfree(sit_i->sec_entries);
2968 kvfree(sit_i->dirty_sentries_bitmap);
2969
2970 SM_I(sbi)->sit_info = NULL;
2971 kfree(sit_i->sit_bitmap);
2972 #ifdef CONFIG_F2FS_CHECK_FS
2973 kfree(sit_i->sit_bitmap_mir);
2974 #endif
2975 kfree(sit_i);
2976 }
2977
2978 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2979 {
2980 struct f2fs_sm_info *sm_info = SM_I(sbi);
2981
2982 if (!sm_info)
2983 return;
2984 destroy_flush_cmd_control(sbi, true);
2985 destroy_discard_cmd_control(sbi, true);
2986 destroy_dirty_segmap(sbi);
2987 destroy_curseg(sbi);
2988 destroy_free_segmap(sbi);
2989 destroy_sit_info(sbi);
2990 sbi->sm_info = NULL;
2991 kfree(sm_info);
2992 }
2993
2994 int __init create_segment_manager_caches(void)
2995 {
2996 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2997 sizeof(struct discard_entry));
2998 if (!discard_entry_slab)
2999 goto fail;
3000
3001 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3002 sizeof(struct discard_cmd));
3003 if (!discard_cmd_slab)
3004 goto destroy_discard_entry;
3005
3006 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3007 sizeof(struct sit_entry_set));
3008 if (!sit_entry_set_slab)
3009 goto destroy_discard_cmd;
3010
3011 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3012 sizeof(struct inmem_pages));
3013 if (!inmem_entry_slab)
3014 goto destroy_sit_entry_set;
3015 return 0;
3016
3017 destroy_sit_entry_set:
3018 kmem_cache_destroy(sit_entry_set_slab);
3019 destroy_discard_cmd:
3020 kmem_cache_destroy(discard_cmd_slab);
3021 destroy_discard_entry:
3022 kmem_cache_destroy(discard_entry_slab);
3023 fail:
3024 return -ENOMEM;
3025 }
3026
3027 void destroy_segment_manager_caches(void)
3028 {
3029 kmem_cache_destroy(sit_entry_set_slab);
3030 kmem_cache_destroy(discard_cmd_slab);
3031 kmem_cache_destroy(discard_entry_slab);
3032 kmem_cache_destroy(inmem_entry_slab);
3033 }